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Abstract
Background: RNA has been recognized as a key player in cellular regulation in recent years. In
many cases, non-coding RNAs exert their function by binding to other nucleic acids, as in the case
of microRNAs and snoRNAs. The specificity of these interactions derives from the stability of
inter-molecular base pairing. The accurate computational treatment of RNA-RNA binding
therefore lies at the heart of target prediction algorithms.

Methods: The standard dynamic programming algorithms for computing secondary structures of
linear single-stranded RNA molecules are extended to the co-folding of two interacting RNAs.

Results: We present a program, RNAcofold, that computes the hybridization energy and base
pairing pattern of a pair of interacting RNA molecules. In contrast to earlier approaches, complex
internal structures in both RNAs are fully taken into account. RNAcofold supports the calculation
of the minimum energy structure and of a complete set of suboptimal structures in an energy band
above the ground state. Furthermore, it provides an extension of McCaskill's partition function
algorithm to compute base pairing probabilities, realistic interaction energies, and equilibrium
concentrations of duplex structures.

Availability: RNAcofold is distributed as part of the Vienna RNA Package, http://
www.tbi.univie.ac.at/RNA/.

Contact: Stephan H. Bernhart – berni@tbi.univie.ac.at

Background
Over the last decade, our picture of RNA as a mere infor-
mation carrier has changed dramatically. Since the discov-
ery of microRNAs and siRNAs (see e.g. [1,2] for a recent
reviews), small noncoding RNAs have been recognized as
key regulators in gene expression. Both computational

surveys, e.g. [3-7] and experimental data [8-11] now pro-
vide compelling evidence that non-protein-coding tran-
scripts are a common phenomenon. Indeed, at least in
higher eukaryotes, the complexity of the non-coding
RNome appears to be comparable with the complexity of
the proteome. This extensive inventory of non-coding
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RNAs has been implicated in diverse mechanisms of gene
regulation, see e.g. [12-16] for reviews.

Regulatory RNAs more often than not function by means
of direct RNA-RNA binding. The specificity of these inter-
actions is a direct consequence of complementary base
pairing, allowing the same basic mechanisms to be used
with very high specificity in large collections of target and
effector RNAs. This mechanism underlies the post-tran-
scriptional gene silencing pathways of microRNAs and
siRNAs (reviewed e.g. in [17]), it is crucial for snoRNA-
directed RNA editing [18], and it is used in the gRNA
directed mRNA editing in kinetoplastids [19]. Further-
more, RNA-RNA interactions determine the specificity of
important experimental techniques for changing the gene
expression patterns including RNAi [20] and modifier
RNAs [21-24].

RNA-RNA binding occurs by formation of stacked inter-
molecular base pairs, which of course compete with the
propensity of both interacting partners to form intramo-
lecular base pairs. These base pairing patterns, usually
referred to as secondary structures, not only comprise the
dominating part of the energetics of structure formation,
they also appear as intermediates in the formation of the
tertiary structure of RNAs [25], and they are in many cases
well conserved in evolution. Consequently, secondary
structures provide a convenient, and computationally
tractable, approximation not only to RNA structure but
also to the thermodynamics of RNA-RNA interaction.

From the computational point of view, this requires the
extension of RNA folding algorithms to include intermo-
lecular as well as intramolecular base pairs. Several
approximations have been described in the literature:
Rehmsmeier et al. [26] as well as Dimitrov and Zuker [27]
introduced algorithms that consider exclusively intermo-
lecular base pairs, leading to a drastic algorithmic simpli-
fication of the folding algorithms since multi-branch
loops are by construction excluded in this case.
Andronescu et al. [28], like the present contribution, con-
sider all base pairs that can be formed in secondary struc-
tures in a concatenation of the two hybridizing molecules.
This set in particular contains the complete structural
ensemble of both partners in isolation. Mückstein et al.
[29] recently considered an asymmetric model in which
base pairing is unrestricted in a large target RNA, while the
(short) interaction partner is restricted to intermolecular
base pairs.

A consistent treatment of the thermodynamic aspects of
RNA-RNA interactions requires that one takes into
account the entire ensemble of suboptimal structures.
This can be approximated by explicitly computing all
structures in an energy band above the ground state. Cor-

responding algorithms are discussed in [30] for single
RNAs and in [28] for two interacting RNAs. A more direct
approach, that becomes much more efficient for larger
molecules, is to directly compute the partition function of
the entire ensemble along the lines of McCaskill's algo-
rithm [31]. This is the main topic of the present contribu-
tion.

As pointed out by Dimitrov and Zuker [27], the concen-
tration of the two interacting RNAs as well as the possibil-
ity to form homo-dimers plays an important role and
cannot be neglected when quantitative predictions on
RNA-RNA binding are required. In our implementation of
RNAcofold we therefore follow their approach and explic-
itly compute the concentration dependencies of the equi-
librium ensemble in a mixture of two partially
hybridizing RNA species.

This contribution is organized as follows: We first review
the energy model for RNA secondary structures and recall
the minimum energy folding algorithm for simple linear
RNA molecules. Then we discuss the modifications that
are necessary to treat intermolecular base pairs in the par-
tition function setting and describe the computation of
base pairing probabilities. Then the equations for concen-
tration dependencies are derived. Short sections summa-
rize implementation, performance, as well as an
application to real-world data.

RNA secondary structures
A secondary structure S on a sequence x of length n is a set
of base pairs (i, j), i <j, such that

0 (i, j) ∈ S implies that (xi, xj) is either a Watson-Crick (GC
or AU) or a wobble (GU) base pair.

1 Every sequence position i takes part in at most one base
pair, i.e., S is a matching in the graph of "legal" base pairs
that can be formed within sequence x.

2 (i, j) ∈ S implies |i - j| ≥ 4, i.e., hairpin loops have at least
three unpaired positions inside their closing pair.

3 If (i, j) ∈ S and (k, l) ∈ S with i <k, then either i <j <k <l
or i <k <l <j. This condition rules out knots and pseudo-
knots. Together with condition 1 it implies that S is a cir-
cular matching [32,33].

The "loops" of S are planar faces of the unique planar
embedding of the secondary structure graph (whose edges
are the base pairs in S together with the backbone edges (i,
i + 1), i = 1 ..., n - 1). Equivalently, the loops are the ele-
ments of the unique minimum cycle basis of the second-
ary structure graph [34]. The external loop consists of all
those nucleotides that are not enclosed by a base pair in S.
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The standard energy model for RNA secondary structures
associates an energy contribution to each loop L that
depends on the loop type type(L) (hairpin loop, interior
loop, bulge, stacked pair, or multi-branch loop) and the
sequence of some or all of the nucleotides in the loop, x|L:

ε(L) = ε(type(L), x|L).  (1)

The external loop does not contribute to the folding
energy. The total energy of folding sequence x into a sec-
ondary structure S is then the sum over all loops of S.
Energy parameters are available for both RNA [35] and
single stranded DNA [36].

Hairpin loops are uniquely determined by their closing
pair (i, j). The energy of a hairpin loop is tabulated in the
form

(i, j) = (xi, xi+1, �, xj-1, xj)  (2)

where � is the length of the loop (expressed as the number
of its unpaired nucleotides). Each interior loop is deter-
mined by the two base pairs enclosing it. Its energy is tab-
ulated as

(i, j; k, l) = (xi, xi+1; �1; xk-1, xk; xl, xl+1; �2; xj-1, xj)  (3)

where �1 is the length of the unpaired strand between i

and k and �2 is the length of the unpaired strand between

l and j. Symmetry of the energy model dictates (i, j; k, l)

= (l, k; j, i). If �1 = �2 = 0 we have a (stabilizing) stacked

pair, if only one of �1 and �2 vanish we have a bulge. For

multiloops, finally we have an additive energy model of

the form  = a + b × β + c × � where � is the length of
multiloop (again expressed as the number of unpaired

nucleotides) and β is the number of branches, not count-
ing the branch in which the closing pair of the loop
resides.

So-called dangling end contributions arise from the stack-
ing of unpaired bases to an adjacent base pair. We have to
distinguish two types of dangling ends: (1) interior dan-
gles, where the unpaired base i + 1 stacks onto i of the
adjacent basepair (i, j) and correspondingly j - 1 stacks
onto j and (2) exterior dangles, where i - 1 stack onto i and
j + 1 stacks on j. The corresponding energy contributions

are denoted by  and , respectively. Within the addi-

tive energy model, dangling end terms are interpreted as
the contribution of 3' and 5' dangling nucleotides:

Here | separates the dangling nucleotide position from the
adjacent base pair, d5' (k - 1|k, l) thus is the energy of the
nucleotide at position k - 1 when interacting with follow-
ing base pair (k, l), while d3' (k, l|l + 1) scores the interac-
tion of position l + 1 with the preceding pair (k, l).

The Vienna RNA Package currently implements three dif-
ferent models for handling the dangling-end contribu-
tions: They can be (a) ignored, (b) taken into account for
every combination of adjacent bases and base pairs, or (c)
a more complex model can be used in which the unpaired
base can stack with at most one base pair. In cases (a) and
(b) one can absorb the dangling end contributions in the
loop energies (with the exception of contributions in the
external loop). Model (c) strictly speaking violates the sec-
ondary structure model in that an unpaired base xi
between two base pairs (xp, xi-1) and (xi+1, xq) has three dis-
tinct states with different energies: xi does not stack to its
neighbors, xi stacks to xi-1, or xi+1. The algorithm then min-
imizes over these possibilities. While model (c) is the
default for computing minimum free energy structures in
most implementations such as RNAfold and mfold, it is
not tractable in a partition function approach in a consist-
ent way unless different positions of the dangling ends are
explicitly treated as different configurations.

RNA secondary structure prediction
Because of the no-(pseudo)knot condition 3 above, every
base pair (i, j) subdivides a secondary structure into an
interior and an exterior structure that do not interact with
each other. This observation is the starting point of all
dynamic programming approaches to RNA folding, see
e.g. [32,33,37]. Including various classes of pseudoknots
is feasible in dynamic programming approaches [38-40]
at the expense of a dramatic increase in computational
costs, which precludes the application of these
approaches to large molecules such as most mRNAs.

In the course of the "normal" RNA folding algorithm for
linear RNA molecules as implemented in the Vienna RNA
Package [41,42], and in a similar way in Michael Zuker's
mfold package [43-45] the following arrays are computed
for i <j:

Fij free energy of the optimal substructure on the subse-
quence x[i, j].

Cij free energy of the optimal substructure on the subse-
quence x[i, j] subject to the constraint that i and j form a
basepair.
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Mij free energy of the optimal substructure on the subse-
quence x[i, j] subject to the constraint that that x[i, j] is part
of a multiloop and has at least one component, i.e., a sub-
sequence that is enclosed by a base pair.

 free energy of the optimal substructure on the subse-

quence x[i, j] subject to the constraint that that x[i, j] is part
of a multiloop and has exactly one component, which has

the closing pair i, h for some h satisfying i ≤ h <j.

The "conventional" energy minimization algorithm (for
simplicity of presentation without dangling end contribu-
tions) for linear RNA molecules can be summarized in the
following way, which corresponds to the recursions
implemented in the Vienna RNA Package:

The F table is initialized as Fi+1, i = 0, while the other tables

are are set to infinity for empty intervals. It is straightfor-
ward to translate these recursions into recursions for the
partition function because they already provide a parti-
tion of the set of all secondary structures that can be
formed by the sequence x. This unambiguity of the
decomposition of the ensemble structure is not important
for energy minimization, while it is crucial for enumera-
tion and hence also for the computation of the partition
function [31]. Let us write Zij for the partition function on

[xi, xj].  for the partition function constrained to struc-

tures with an (i, j) pair, and ,  for the partition

function versions of the multiloop terms Mij and .

The adaptation of the recursion to the folding of two
RNAs A and B of length n1 and n2 into a dimeric structure
is straightforward: the two molecules are concatenated to
form a single sequence of length n = n1 + n2. It follows

from the algorithmic considerations below that the order
of the two parts is arbitrary.

A basic limitation of this approach arises from the no-
pseudoknots condition: It restricts not only the intramo-
lecular base pairs but also affects intermolecular pairs. Let
SA and SB denote the intramolecular pairs in a cofolded
structure S. These sets of base pairs define secondary struc-
tures on A and B respectively. Because of the no-pseudo-
knot condition on S, an intermolecular base pair in S\(SA

∪ SB) can only connect nucleotides in the external loops
of A and B. This is a serious restriction for some applica-
tions, because it excludes among other pseudoknot-like
structures also the so-called kissing hairpin complexes [46].
Taking such structures into account is equivalent to
employing folding algorithms for structure models that
include certain types of pseudoknots, such as the partition
function approach by Dirks and Pierce [40]. Its high com-
putational cost, however, precludes the analysis of large
mRNAs. In an alternative model [29], no intramolecular
interactions are allowed in the small partner B, thus allow-
ing B to form basepairs with all contiguous unpaired
regions in SA. From a biophysical point of view, however,
it makes sense to consider exclusively hybridization in the
exterior loop provided both partners are large structured
RNAs. In this case, hybridization either stops early, i.e., at
a kissing hairpin complex (in the case of very stable local
structures) or it is thermodynamically controlled and runs
into the ground state via a complete melting of the local
structure. In the latter case, the no-pseudoknots condition
is the same approximation that is also made when folding
individual molecules. Note that this approximation does
not imply that the process of hybridization could only start
at external bases.
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Let us now consider the algorithmic details of folding two
concatenated RNA sequences. The missing backbone edge
between the last nucleotide of the first molecule, position
n1 in the concatenated sequence, and the first nucleotide

of the second molecule (now numbered n1+1) will be

referred to as the cut c. In each dimeric structure there is a
unique loop Lc that contains the cut c. If c lies in the exter-

nal loop of a structure S then the two molecules A and B
do no interact in this structure. Algorithmically, Lc is either

a hairpin loop, interior loop, or multibranch loop. From
an energetic point of view, however, Lc is an exterior loop,

i.e., it does not contribute to the folding energy (relative
to the random coil reference state). For example, an inte-

rior loop (i, j; k, l) does not contribute to the energy if

either i ≤ n1 <k or l ≤ n1 <j. Naturally, dangling end contri-

butions must not span the cut, either. Hairpin loops and
interior loops (including the special cases of bulges and
stacked pairs) can therefore be dealt with by a simple
modification of the energy rules. In the case of the multi-
loop there is also no problem as long as one is only inter-
ested in energy minimization, since multiloops are always
destabilizing and hence have strictly positive energy con-
tribution. Such a modified MFE algorithm has been
described already in [41].

For partition function calculations and the generation of
suboptimal structures, however, we have to ensure that
every secondary structure is counted exactly once. This
requires one to explicitly keep track of loops that contain
the cut c. The cut c needs to be taken into account explic-
itly only in the recursion for the ZP terms, where one has
to distinguish between true hairpin and interior loops
with closing pair (i, j) (upper alternatives in eq.(6)) and
loops containing the cut c in their backbone (lower alter-
natives in eq.(6)). Explicitly, this means i ≤ n1 <j in the
hairpin loop case, in the interior loop case, this either
means i ≤ n1 <k or l ≤ n1 <j. Since multiloops are decom-
posed into two components, it is sufficient to ensure dur-
ing the construction of ZM1 and ZM that these components
neither start nor end adjacent to the cut, see Fig. 1.

In their full form including dangling end terms, the for-
ward recursions for the partition function of an interact-
ing pair of RNAs become

Upper alternatives refer to regular loops, lower alterna-
tives to the loop containing the cutpoint. For brevity we

have used here abbreviations (i, j) = exp(- (i, j)/RT),

and equivalently , , , , , for the Boltzmann fac-
tors of the energy contributions. In the remainder of this
presentation we will again suppress the dangling end
terms for simplicity of presentation.

A second complication arises from the initiation energy ΦI

that describes the entropy necessary to bring the two mol-
ecules into contact. This term, which is considered to be
independent of sequence length and composition [47],
has to be taken into account exactly once for every dimer
structure if and only if the structure contains at least one

base pair (i, j) that crosses the cut, i.e., i ≤ n1 <j. The result-

ing bookkeeping problems fortunately can be avoided by
introducing this term only after the dynamic program-
ming tables have been filled. To this end we observe that

Zi, j = , 1 ≤ i, j ≤ n1 are the partition functions for sub-

sequences of the isolated A molecule, while

, 1 ≤ i, j ≤ n2 are the corresponding quan-

tities for the second interaction partner. Thus we can
immediately compute the partition function ZAB - ZAZB

that counts only the structures with intermolecular pairs,
i.e., those that carry the additional initiation energy con-
tribution. The total partition function including the initi-
ation term is therefore
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Base pairing probabilities
McCaskill's algorithm [31] computes the base pairing
probabilities from the partition functions of subse-
quences. Again, it seems easier to first perform the back-
tracking recursions on the "raw" partition functions that
do not take into account the initiation contribution. This
yields pairing probabilities Pkl for an ensemble of struc-
tures that does not distinguish between true dimers and
isolated structures for A and B and ignores the initiation
energy. McCaskill's backwards recursions are formally
almost identical to the case of folding a single linear
sequence. We only have to exclude multiloop contribu-
tions in which the cut-point u between components coin-
cides with the cut point c. All other cases are already taken
care of in the forward recursion.

Thus:

The "raw" values of Pij, which are computed without the

initiation term, can now be corrected for this effect. To
this end, we separately run the backward recursion start-

ing from Z1,n and from  to obtain the base pair-

ing probability matrices  and  for the

isolated molecules. Note that equivalently we could com-

pute  and  directly using the partition function ver-

sion of RNAfold.

In solution, the probability of an intermolecular base pair
is proportional to the (concentration dependent) proba-
bility that a dimer is formed at all. Thus, it makes sense to
consider the conditional pair probabilities given that a
dimer is formed, or not. The fraction of structures without
intermolecular pairs in our partition function Z (i.e. in the
cofold model without initiation contributions) is ZAZB/Z,
and hence the fraction of true dimers is

Now consider a base pair (i, j). If i ∈ A and j ∈ B, it must
arise from the dimeric state. If i, j ∈ A or i, j ∈ B, however,
it arises from the dimeric state with probability p* and
from the monomeric state with probability 1 - p*. Thus
the conditional pairing probabilities in the dimeric com-
plexes can be computed as

The fraction of monomeric and dimeric structures, how-
ever, cannot be directly computed from the above model.
As we shall see below, the solution of this problem
requires that we explicitly take the concentrations of RNAs
into account.

Concentration dependence of RNA-RNA 
hybridization
Consider a (dilute) solution of two nucleic acid sequences
A and B with concentrations a and b, respectively. Hybrid-
ization yields a distribution of five molecular species: the
two monomers A and B, the two homodimers AA and BB,
and the heterodimer AB. In principle, of course, more
complex oligomers might also arise, we will, however,
neglect them in our approach. We may argue that ternary
and higher complexes are disfavored by additional desta-
bilizing initiation entropies.

The presentation in this section closely follows a recent
paper by Dimitrov [27], albeit we use here slightly differ-
ent definitions of the partitions functions. The partition
functions of the secondary structures of the monomeric
states are ZA and ZB, respectively, as introduced in the pre-
vious section. In contrast to [27], we include the unfolded
states in these partition functions. The partition functions
ZAA, ZBB, and ZAB, which are the output of the RNAcofold
algorithm (denoted Z in the previous section), include
those states in which each monomer forms base-pairs
only within itself as well as the unfolded monomers. We
can now define

as the partition functions restricted to the true dimer
states, but neglecting the initiation energies ΘI. An addi-
tional symmetry correction is needed in the case of the
homo-dimers: A structure of a homo-dimer is symmetric
if for any base pair (i, j) there exists a pair (i', j'), where i'
(j') denotes the equivalent of position i in the other copy
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of the molecule. Such symmetric structures have a two-
fold rotational symmetry that reduces their conformation
space by a factor of 2, resulting in an entropic penalty of
∆Gsym = RT ln 2. On the other hand, since the recursion for
the partition functions eq. 6 assumes two distinguishable
molecules A and B, any asymmetric structures of a homo-
dimer are in fact counted twice by the recursion. Leading
to the same correction as for symmetric structures.

Since both the initiation energy ΘI and the symmetry cor-
rection ∆Gsym are independent of the sequence length and
composition, the thermodynamically correct partition
functions for the three dimer species are given by

From the partition functions we get the free energies of the

dimer species, such as FAB = -RT ln , and the free

energy of binding ∆F = FAB - FA - FB. We assume that pres-
sure and volume are constant and that the solution is suf-
ficiently dilute so that excluded volume effects can be
neglected. The many particle partition function for this
system is therefore [27]

where a = nA + 2nAA+ nAB is the total number of molecules

of type A put into the solution (equivalently for b); nA, nB,

nAA, nBB, nAB are the particle numbers for the five different

monomer and dimer species, V is the volume and n is the
sum of the particle numbers. The system now minimizes

the free energy -kT ln , i.e., it maximizes , by choosing
the particle numbers optimally.

As in [27], the dimer concentrations are therefore deter-
mined by the mass action equilibria:

[AA] = KAA[A]2

[BB] = KBB[B]2

[AB] = KAB[A][B]  (14)

with

Concentrations in eq.(14) are in mol/l.

Note, however, that the equilibrium constants in eq.(15)
are computed from a different microscopic model than in
[27], which in particular also includes internal base pairs
within the dimers.

Together with the constraints on particle numbers,
eq.(14) forms a complete set of equations to determine x
= [A] and y = [B] from a and b by solving the resulting
quadratic equation in two variables:

0 = f(x, y) : = x + KABxy + 2KABx2 - a

0 = g(x, y) : = y + KABxy + 2KBBy2 - b  (16)

The Jacobian

of this system is strictly positive and diagonally domi-
nated, and hence invertible on �+ × �+. Furthermore f and
g are thrice continuously differentiable on  = [0, a] × [0,
b] and we know (because of mass conservation and the
finiteness of the equilibrium constants) that the solution

( , ) is contained in the interior of the rectangle .
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thus converges(at least) quadratically [48, 5.4.2]. We use
(a, b) as initial values for the iteration.

Implementation and performance
The algorithm is implemented in ANSI C, and is distrib-
uted as part of the of the Vienna RNA package. The
resource requirements of RNAcofold and RNAfold are

theoretically the same: both require (n3) CPU time and

(n2) memory. In practice, however, keeping track of the
cut makes the evaluation of the loop energies much more
expensive and increases the CPU time requirements by an
order of magnitude: RNAcofold takes about 22 minutes to
cofold an about 3000 nt mRNA with a 20 nt miRNA on an
Intel Pentium 4 (3.2 GHz), while RNAfold takes about 3
minutes to fold the concatenated molecule.

The base pairing probabilities are represented as a dot plot
in which squares with an area proportional to Pij represent
the the raw pairing probabilities, see Fig. 2. The dot plot is
provided as Postscript file which is structured in such a
way that the raw data can be easily recovered explicitly.
RNAcofold also computes a table of monomer and dimer
concentrations dependent on a set of user supplied initial
conditions. This feature can readily be used to investigate
the concentration dependence of RNA-RNA hybridiza-
tion, see Fig. 3 for an example.

Like RNAfold, RNAcofold can be used to compute DNA
dimers by replacing the RNA parameter set by a suitable set

of DNA parameters. At present, the computation of DNA-
RNA heterodimers is not supported. This would not only
require a complete set of DNA-RNA parameters (stacking
energies are available [49], but we are not aware of a com-
plete set of loop energies) but also further complicate the
evaluation of the loop energy contributions since pure
RNA and pure DNA loops will have to be distinguished
from mixed RNA-DNA loops.

Applications
Intermolecular binding of RNA molecules is important in
a broad spectrum of cases, ranging from mRNA accessibil-
ity to siRNA or miRNA binding, RNA probe design, or
designing RNA openers [50]. An important question that
arises repeatedly is to explain differences in RNA-RNA
binding between seemingly very similar or even identical
binding sites. As demonstrated e.g. in [22,29,51,52], dif-
ferent RNA secondary structure of the target molecule can
have dramatic effects on binding affinities even if the
sequence of the binding site is identical.

Since the comparison of base pairing patterns is a crucial
step in such investigations we provide a tool for graphi-
cally comparing two dot plots, see Fig. 4. It is written in
Perl-Tk and takes two dot plot files and, optionally, an
alignment file as input. The differences between the two
dot plots are displayed in color-code, the dot plot is zooma-
ble and the identity and probability(-difference) of a base
pair is displayed when a box is clicked.

As a simple example for the applicability of RNAcofold,
we re-evaluate here parts of a recent study by Doench and
Sharp [53]. In this work, the influence of GU base pairs on
the effectivity of translation attenuation by miRNAs is
assayed by mutating binding sites and comparing attenu-
ation effectivity to wild type binding sites

Introducing three GU base pairs into the mRNA/miRNA
duplex did, with only minor changes to the binding
energy, almost completely destroy the functionality of the
binding site. While Doench and Sharp concluded that
miRNA binding sites are not functional because of the GU
base pairs, testing the dimer with RNAcofold shows that
there is also a significant difference in the cofolding struc-
ture that might account for the activity difference without
invoking sequence specificities: Because of the secondary
structure of the target, the binding at the 5' end of the
miRNA is much weaker than in the wild type, Fig. 4.

Limitations and future extensions
We have described here an algorithm to compute the par-
tition function of the secondary structure of RNA dimers
and to model in detail the thermodynamics of a mixture
of two RNA species. At present, RNAcofold implements
the most sophisticated method for modeling the interac-




Dot plot (left) and mfe structure representation (right) of the cofolding structure of the two RNA molecules AUGAA-GAUGA (red) and CUGUCUGUCUUGAGACA (blue)Figure 2
Dot plot (left) and mfe structure representation (right) of the 
cofolding structure of the two RNA molecules AUGAA-
GAUGA (red) and CUGUCUGUCUUGAGACA (blue). Dot 
Plot: Upper right: Partition function. The area of the squares 
is proportional to the corresponding pair probabilities. 
Lower left: Minimum free energy structure. The two lines 
forming a cross indicate the cut point, intermolecular base 
pairs are depicted in the green upper right (partition func-
tion) and lower left (mfe) rectangle.
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tions of two (large) RNAs. Because the no-pseudoknot
condition is enforced to limit computational costs, our
approach disregards certain interaction structures that are
known to be important, including kissing hairpin com-
plexes.

The second limitation, which is of potential importance
in particular in histochemical applications, is the restric-
tion to dimeric complexes. More complex oligomers are
likely to form in reality. The generalization of the present
approach to trimers or tetramers is complicated by the fact
that for more than two molecules the results of the calcu-
lation are not independent of the order of the concatena-
tion any more, so that for M-mers (M - 1)! permutations
have to be considered separately. This also leads to book-
keeping problems since every secondary structure still has
to be counted exactly once.
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Example for the concentration dependency for two mRNA-siRNA binding experimentsFigure 3
Example for the concentration dependency for two mRNA-
siRNA binding experiments. In [54], Schubert et al. designed 
several mRNAs with identical target sites for an siRNA si, 
which are located in different secondary structures. In vari-
ant A, the VR1 straight mRNA, the binding site is unpaired, 
while in the mutant mRNA VR1 HP5-11, A', only 11 bases 
remain unpaired. We assume an mRNA concentration of a = 
10 nmol/1 for both experiments. Despite the similar binding 
pattern, the binding energies (∆F = FAB - FA - FB) differ dramat-
ically. In [54], the authors observed 10% expression for VR1 
straight, and 30% expression for the HP5-11 mutant. Our cal-
culation shows that even if siRNA is added in excess, a large 
fraction of the VR1 HP5-11 mRNA remains unbound.
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Binding energies: ∆F (A) = −24.53kcal/mol
∆F (A′) = −11.76kcal/mol.
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