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We derive the recursive relations of the partition function for the eight-vertex

model on an N�N square lattice with domain wall boundary condition. Solving the

recursive relations, we obtain the explicit expression of the domain wall partition

function of the model. In the trigonometric/rational limit, our results recover the

corresponding ones for the six-vertex model. © 2009 American Institute of

Physics. �DOI: 10.1063/1.3205448�

I. INTRODUCTION

The domain wall �DW� boundary condition for the six-vertex model on a finite square lattice

was introduced by Korepin in Ref. 1, where some recursion relations of the partition function

which fully determine the partition function were also derived. It was then found in Refs. 2 and 3

that the partition function can be represented as a determinant. Such an explicit expression of the

partition function has played an important role in constructing norms of Bethe states, correlation

functions,
4–6

and thermodynamical properties of the six-vertex model,
7,8

and also in the Toda

theories.
9

Moreover, it has been proven to be very useful in solving some pure mathematical

problems, such as the problem of alternating sign matrices.
10

Recently, the partition functions with

DW boundary condition have been obtained for the high-spin models
11

and the fermionic

models.
12,13

Among solvable models, elliptic ones stand out as a particularly important class due to the fact

that most trigonometric and rational models can be obtained from them by certain limits. In this

paper, we focus on the most fundamental elliptic model—the eight-vertex model
14,15

whose trigo-

nometric limit gives the six-vertex model. By means of the algebraic Bethe ansatz method we

derive an explicit expression of the partition function for the eight-vertex model on an N�N

square lattice with the DW boundary condition. In the trigonometric limit, our results recover

those obtained in Refs. 1–3 for the six-vertex model.

The paper is organized as follows. In Sec. II, we introduce our notation and some basic

ingredients. In Sec. III, after briefly reviewing the vertex-face correspondence, we introduce the

four boundary states which specify the DW boundary condition of the eight-vertex model. In Sec.

IV, some properties of the partition function of the eight-vertex model with the DW boundary

condition are obtained by using the algebraic Bethe ansatz method. With the help of these prop-

erties, we derive in Sec. V the recursive relations of the partition function and obtain the explicit

expression of the DW partition function by resolving the recursive relations. In Sec. VI, we

summarize our results and give some discussions. Some detailed technical proofs are given in

Appendixes A and B.

a�
Electronic mail: wenli@maths.uq.edu.au.
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II. THE EIGHT-VERTEX MODEL

In this section, we define the DW boundary condition for the eight-vertex model on an N

�N square lattice.
15

A. The eight-vertex R-matrix

Let us fix � such that Im����0 and a generic complex number �. Introduce the following

elliptic functions:

��a

b
��u,�� = �

n=−�

�

exp�i���n + a�2� + 2�n + a��u + b��	 , �2.1�

��j��u� = �

1

2
−

j

2

1

2
��u,2��, j = 1,2, �2.2�

��u� = �

1

2

1

2
��u,��, ���u� =

�

�u
���u�	 . �2.3�

The �-function satisfies the so-called Riemann identity:

��u + x���u − x���v + y���v − y� − ��u + y���u − y���v + x���v − x� = ��u + v���u − v���x

+ y���x − y� , �2.4�

which will be useful in the following. �Our �-function is the 	-function 	1�u�.16
It has the

following relation with the Weierstrassian �-function �w�u�: �w�u�
e�1u
2

��u� with �1=�2�1 /6

−4�n=1
� �nq2n

/ �1−q2n��� and q=ei�.�
Let V be a two-dimensional vector space C

2 and ��i � i=1,2	 be the orthonormal basis of V

such that 
�i ,� j�=�ij. The well-known eight-vertex model R-matrix R�u��End�V � V� is given by

R�u� =�
a�u� d�u�

b�u� c�u�

c�u� b�u�

d�u� a�u�
� . �2.5�

The nonvanishing matrix elements are
15

a�u� =
��1��u���0��u + ������
��1��0���0������u + ��

, b�u� =
��0��u���1��u + ������
��1��0���0������u + ��

,

c�u� =
��1��u���1��u + ������
��1��0���1������u + ��

, d�u� =
��0��u���0��u + ������
��1��0���1������u + ��

. �2.6�

Here u is the spectral parameter and � is the so-called crossing parameter. The R-matrix satisfies

the quantum Yang–Baxter equation �QYBE�

R1,2�u1 − u2�R1,3�u1 − u3�R2,3�u2 − u3� = R2,3�u2 − u3�R1,3�u1 − u3�R1,2�u1 − u2� , �2.7�

and the following properties:

083518-2 W.-L. Yang and Y.-Z. Zhang J. Math. Phys. 50, 083518 �2009�
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Z2-symmetry: �1
i �2

i R1,2�u� = R1,2�u��1
i �2

i for i = x,y,z , �2.8�

initial condition: R1,2�0� = P12, the Boltzmann weights and elements of the eight-vertex R

-matrix. �2.9�

Here �x, �y, and �z are the Pauli matrices and P12 is the usual permutation operator. Through-

out this paper we adopt the standard notations: for any matrix A�End�V�, A j is an embedding

operator in the tensor space V � V � ¯, which acts as A on the jth space and as identity on the

other factor spaces; Ri,j�u� is an embedding operator of the R-matrix in the tensor space, which

acts as identity on the factor spaces except for the ith and jth ones.

B. The model

The partition function of a statistical model on a two-dimensional lattice is defined by the

following:

Z = � exp�−
E

kT
� ,

where E is the energy of the system, k is the Boltzmann constant, T is the temperature of the

system, and the summation is taken over all possible configurations under the particular boundary

condition such as the DW boundary condition. The model we consider here has eight allowed

local vertex configurations �see Fig. 1, where 1 and 2 respectively denote the spin up and down

states�. Each of these eight configurations is assigned a statistical weight �or Boltzmann weight�
wi. Then the partition function can be rewritten as

Z = � w1
n1w2

n2w3
n3w4

n4w5
n5w6

n6w7
n7w8

n8,

where the summation is over all possible vertex configurations with ni being the number of the

vertices of type i. If the local Boltzmann weights have Z2-symmetry, i.e.,

a � w1 = w2, b � w3 = w4, c � w5 = w6, d � w7 = w8, �2.10�

and the variables a, b, c, and d satisfy a function relation, or equivalently, the local Boltzmann

weights �wi	 can be parametrized by the matrix elements of the eight-vertex R-matrix R �2.5� and

�2.6� as in Fig. 2, then the corresponding model is called the eight-vertex model which can be

exactly solved.
15

Therefore the partition function of the eight-vertex model is given by

FIG. 1. Vertex configurations and their associated Boltzmann weights.
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Z = � an1+n2bn3+n4cn5+n6dn7+n8.

In order to parametrize the local Boltzmann weights in terms of the elements of the R-matrix, one

needs to assign spectral parameters u and 
, respectively, to the vertical line and horizontal line of

each vertex of the lattice, as shown in Fig. 2. In an inhomogeneous model, the statistical weights

are site dependent. Hence two sets of spectral parameters �u�	 and �
i	 are needed, see Fig. 3. The

horizontal lines are enumerated by indices 1 , . . . ,N with spectral parameters �
i	, while the vertical

lines are enumerated by indices 1̄ , . . . , N̄ with spectral parameters �u�	. The DW boundary condi-

tion is specified by four boundary states ���1�����, ��̄�1�����, 
��2���+�N2̂��, and 
�̄�2���
+�N2̂�� �2̂ and the definitions of the boundary states will be given later in Sec. III, see �3.1� and

�3.12�–�3.15� below�. These four states correspond to the particular choices of spin states on the

four boundaries of the lattice. In contrast to the six-vertex case,
4

our boundary states depend not

only on the spectral parameters ����1����� and 
��2���+�N2̂�� depend on �
i	, while ��̄�1����� and


�̄�2���+�N2̂�� depend on �u�	� but also on two continuous parameters �1 and �2 �it is convenient

to introduce a vector ��V associated with these two parameters ��i	: �=�i=1
2 �i�i�. However, in

the trigonometric limit �i.e., setting �2=� /2 and then taking �→+i��, the corresponding boundary

states ���1����� and 
�̄�1����� �or ��̄�2���+�N2̂�� and 
��2���+�N2̂��� become the state of all spin

up and its dual �or the state of all spin down and its dual� up to some overall scalar factors.

Therefore the partition function in the limit reduces to that of the six-vertex model.
1–3

In this

sense, we call the partition function corresponding to the boundary condition given in Fig. 3 the

DW partition function of the eight-vertex model.

Now the partition function of the eight-vertex model with DW boundary condition is a func-

tion of 2N+2 variables �u�	, �
i	, �1, and �2, which will be denoted by ZN��u�	 ; �
i	 ;��. Due to the

fact that the local Boltzmann weights of each vertex of the lattice are given by the matrix elements

of the eight-vertex R-matrix �see Fig. 2�, the partition function can be expressed in terms of the

product of the R-matrices and the four boundary states,

FIG. 2. The Bolzmann weights and elements of the eight-vertex R-matrix.

FIG. 3. The eight-vertex model with DW boundary condition.

083518-4 W.-L. Yang and Y.-Z. Zhang J. Math. Phys. 50, 083518 �2009�
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ZN��u�	;�
i	;�� = 
��2��� + �N2̂��
�̄�1�����R1̄,N�u1 − 
N� ¯ R1̄,1�u1 − 
1� ¯ RN̄,N�uN

− 
N� ¯ RN̄,1�uN − 
1���̄�2��� + �N2̂�����1����� . �2.11�

The aim of this paper is to obtain an explicit expression for ZN��u�	 ; �
i	 ;��.
One can rearrange the product of the R-matrices in �2.11� in terms of a product of the

row-to-row monodromy matrices, namely,

ZN��u�	;�
i	;�� = 
��2��� + �N2̂��
�̄�1�����T1̄�u1� ¯ TN̄�uN���̄�2��� + �N2̂�����1����� ,

�2.12�

where the monodromy matrix Tī�u� is given by

Tī�u� � Tī�u;
1, . . . ,
N� = Rī,N�u − 
N� ¯ Rī,1�u − 
1� . �2.13�

The QYBE �2.7� of the R-matrix gives rise to the so-called RLL relation satisfied by the mono-

dromy matrix Tī�u�,

Rī, j̄�ui − u j�Tī�ui�T j̄�u j� = T j̄�u j�Tī�ui�Rī, j̄�ui − u j� . �2.14�

III. THE BOUNDARY STATES

A. The vertex-face correspondence

Let us briefly review the face-type R-matrix associated with the eight-vertex model. From the

orthonormal basis ��i	 of V, we define

î = �i − �̄, �̄ =
1

2
�
k=1

2

�k, i = 1,2, then �
k=1

2

k̂ = 0. �3.1�

For a generic m�V, define

mi = 
m,�i�, mij = mi − m j = 
m,�i − � j�, i, j = 1,2. �3.2�

Let R̄�u ;m��End�V � V� be the R-matrix of the eight-vertex SOS model
15

given by

R̄�u;m� = �
i=1

2

R̄ii
ii�u;m�Eii � Eii + �

i�j

2

�R̄ij
ij�u;m�Eii � E j j + R̄ij

ji�u;m�E ji � Eij	 , �3.3�

where Eij is the matrix with elements �Eij�k
l =� jk�il. The coefficient functions are

R̄ii
ii�u;m� = 1, R̄ij

ij�u;m� =
��u���mij − ��
��u + ����mij�

, i � j , �3.4�

R̄ij
ji�u;m� =

������u + mij�
��u + ����mij�

, i � j , �3.5�

and mij is defined in �3.2�. The R-matrix R̄ satisfies the dynamical �modified� QYBE.

Let us introduce two intertwiners which are two-component column vectors �m,m−� ĵ�u� la-

beled by �̂=1̂ , 2̂. The kth element of �m,m−� ĵ�u� is given by

�
m,m−� ĵ

�k� �u� = ��k��u + 2m j� . �3.6�

Explicitly,

083518-5 Partition function of the eight-vertex model J. Math. Phys. 50, 083518 �2009�
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�m,m−�1̂�u� = ���1��u + 2m1�

��2��u + 2m1�
�, �m,m−�2̂�u� = ���1��u + 2m2�

��2��u + 2m2�
� .

It is easy to check that these two intertwiner vectors �m,m−�î�u� are linearly independent for a

generic m�V.

Using the intertwiner vectors, one can derive the following vertex-face correspondence

relation:
15,17

R1,2�u1 − u2��
m,m−�ı̂

1
�u1��

m−�ı̂,m−��ı̂+�̂�
2

�u2� = �
k,l

R̄�u1 − u2;m�ij
kl�

m−�l̂,m−��l̂+k̂�
1

�u1��
m,m−�l̂

2
�u2� .

�3.7�

Hereafter we adopt the convention �1=� � id � ¯ ,�2=id � � � id � ¯ , . . .. The QYBE �2.7� of

the vertex-type R-matrix R�u� is equivalent to the dynamical Yang–Baxter equation of the solid-

on-solid �SOS� R-matrix R̄�u ;m�. For a generic m, we can introduce two row-vector intertwiners

�̃ satisfying the conditions

�̃m+��̂,m�u��m+��̂,m�u� = ���, �,� = 1,2, �3.8�

from which one derives the relation

�
�=1

2

�m+��̂,m�u��̃m+��̂,m�u� = id. �3.9�

With the help of �3.6�–�3.9�, we obtain the following relations from the vertex-face correspon-

dence relation �3.7�:

�̃
m+�k̂,m

1
�u1�R1,2�u1 − u2��

m+��̂ ,m

2
�u2� = �

i,l

R̄�u1 − u2;m�ij
kl�̃

m+��ı̂+�̂�,m+��̂

1
�u1��

m+��k̂+l̂�,m+�k̂

2
�u2� ,

�3.10�

�̃
m+�k̂,m

1
�u1��̃

m+��k̂+l̂�,m+�k̂

2
�u2�R1,2�u1 − u2� = �

i,j

R̄�u1 − u2;m�ij
kl�̃

m+��ı̂+�̂�,m+��̂

1
�u1��̃

m+��̂ ,m

2
�u2� .

�3.11�

The intertwiners � and �̃ and the associated vertex-face correspondence relations will play an

important role in determining the very properties of the partition function ZN��u�	 ; �
i	 ;�� that

enable us in Sec. IV to fully determine its explicit expression.

B. The boundary states

Now we are in the position to construct the boundary states which have been used in Sec. II

to specify the DW boundary condition of the eight-vertex model, see Fig. 3.

For any vector m�V, we introduce four states which live in the two N-tensor spaces of V �one

is indexed by 1, . . . ,N and the other is indexed by 1̄ , . . . , N̄� or their dual spaces as follows:

���i��m�� = �
m,m−�î

1
�
1��

m−�î,m−2�î

2
�
2� ¯ �

m−��N−1�î,m−�Nî

N
�
N�, i = 1,2, �3.12�

��̄�i��m�� = �
m,m−�î

1̄
�u1��

m−�î,m−2�î

2̄
�u2� ¯ �

m−��N−1�î,m−�Nî

N̄
�uN�, i = 1,2, �3.13�


��i��m�� = �̃
m,m−�î

1
�
1��̃

m−�î,m−2�î

2
�
2� ¯ �̃

m−��N−1�î,m−�Nî

N
�
N�, i = 1,2, �3.14�

083518-6 W.-L. Yang and Y.-Z. Zhang J. Math. Phys. 50, 083518 �2009�
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�̄�i��m�� = �̃
m,m−�î

1̄
�u1��̃

m−�î,m−2�î

2̄
�u2� ¯ �̃

m−��N−1�î,m−�Nî

N̄
�uN�, i = 1,2. �3.15�

�Among them, ���i��m��, with special choices of m, are the complete reference states of the open

XYZ spin chain
18

and have played an important role in constructing the extra center elements of

the elliptic algebra at roots of unity.
19,20� The boundary states which have been used to define the

DW boundary condition in Sec. II can be obtained through the above states by special choices of

m and i �for example, m is specified to � or �+�N2̂�. Then the DW partition function

ZN��u�	 ; �
i	 ;�� given by �2.11� becomes

ZN��u�	;�
i	;�� = �̃
�+�N2̂,�+��N−1�2̂
1

�
1� ¯ �̃
�+�2̂,�

N
�
N��̃

�,�−�1̂

1̄
�u1� ¯ �̃

�−��N−1�1̂,�−�N1̂

N̄
�uN�

� R1̄,N�u1 − 
N� ¯ R1̄,1�u1 − 
1� ¯ RN̄,N�uN − 
N� ¯ RN̄,1�uN

− 
1��
�+�N2̂,�+��N−1�2̂
1̄

�u1� ¯ �
�+�2̂,�

N̄
�uN��

�,�−�1̂

1
�
1� ¯ �

�−��N−1�1̂,�−�N1̂

N
�
N� .

�3.16�

IV. THE PROPERTIES OF THE PARTITION FUNCTION

In this section we will derive certain properties of the DW partition function ZN��u�	 ; �
i	 ;��
which enable us to determine its explicit expression. For the case of N=1, the corresponding

partition function �3.16� becomes

Z1�u1;
1;�� = �̃
�+�2̂,�

1
�
1��̃

�,�−�1̂

1̄
�u1�R1̄,1�u1 − 
1��

�+�2̂,�

1̄
�u1��

�,�−�1̂

1
�
1�

=

�3.7�

�
k,l=1

2

R̄2 1
kl �u1 − 
1;� + �2̂���̃

�+�2̂,�

1
�
1��

�+�2̂,�+��2̂−l̂�
1

�
1��

� ��̃
�,�−�1̂

1̄
�u1��

�+��k̂−1̂�,�−�1̂

1̄
�u1��

=

�3.8�

R̄2 1
1 2�u1 − 
1;� + �2̂� .

Thus, we have the first property of the partition function:

Z1�u1;
1;�� =
������u1 − 
1 + �21 + ��
��u1 − 
1 + �����21 + ��

, �4.1�

where �21 is defined by �3.2�. Using the fundamental exchange relation �2.14� and the vertex-face

relations �3.7�, �3.10�, and �3.11�, we derive the second property of the partition function:

ZN��u�	;�
i	;�� is a symmetric function of �u�	 and �
i	 separatively. �4.2�

The proof of the above property is relegated to Appendix A.

In addition to the Riemann identity �2.4�, the �-function enjoys the following quasiperiodic

properties:

��u + 1� = − ��u�, ��u + �� = − e−2i��u+�/2���u� , �4.3�

which are useful in deriving the quasiperiodicity of the partition function. The expansions of the

boundary states in terms of the intertwiner vectors �3.12�–�3.15� and the partition function in terms

of the monodromy matrices �2.12� allow us to rewrite ZN��u�	 ; �
i	 ;�� as
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ZN��u�	;�
i	;�� = �̃
�+�N2̂,�+��N−1�2̂
1

�
1� ¯ �̃
�+�2̂,�

N
�
N��̃

�,�−�1̂

1̄
�u1�T1̄�u1��

�+�N2̂,�+��N−1�2̂
1̄

�u1�

� ¯ �̃
�−��N−1�1̂,�−�N1̂

N̄
�uN�TN̄�uN��

�+�2̂,�

N̄
�uN��

�,�−�1̂

1
�
1� ¯ �

�−��N−1�1̂,�−�N1̂

N
�
N� .

The dependence of ZN��u�	 ; �
i	 ;�� on the argument uN only comes from the last term correspond-

ing to the second line of the above equation. Let us denote the term by A�uN�, namely,

A�uN� = �̃
�−��N−1�1̂,�−�N1̂

N̄
�uN�TN̄�uN��

�+�2̂,�

N̄
�uN��

�,�−�1̂

1
�
1� ¯ �

�−��N−1�1̂,�−�N1̂

N
�
N�

= �̃
�−��N−1�1̂,�−�N1̂

N̄
�uN�RN̄,N�uN − 
N��

�−��N−1�1̂,�−�N1̂

N
�
N� ¯

=

�3.10�

�
�−��N−2�1̂,�−��N−1�1̂
N

�
N��̃
�−��N−2�1̂,�−��N−1�1̂
N̄

�uN�RN̄,N−1�uN − 
N−1� ¯ + R̄�uN − 
N;�

− �N1̂�21
12�

�−��N−2�1̂+�2̂,�−��N−1�1̂
N

�
N��̃
�−��N−2�1̂+�2̂,�−��N−1�1̂
N̄

�uN� ¯ = ¯

= �
�−��N−2�1̂,�−��N−1�1̂
N

�
N��̃
�−��N−2�1̂,�−��N−1�1̂
N̄

�uN�RN̄,N−1�uN − 
N−1� ¯ + R̄�uN − 
N;�

− �N1̂�21
12�

l=1

N−1

R̄�uN − 
l;� − �l1̂�21
21�

�+�2̂,�+�2̂−�1̂

1
�
1� ¯ .

It can be shown by induction that A�uN� satisfies the following quasiperiodicity:

A�uN + 1� = A�uN�, A�uN + �� = e−2i���21�A�uN� .

Since ZN��u�	 ; �
i	 ;�� is a symmetric function of �u�	, we conclude that ZN��u�	 ; �
i	 ;�� has the

following quasiperiodic properties:

ZN�u1, . . . ,ul + 1,ul+1, . . . ;�
i	;�� = ZN��u�	;�
i	;��, l = 1, . . . ,N , �4.4�

ZN�u1, . . . ,ul + �,ul+1, . . . ;�
i	;�� = e−2i���21�ZN��u�	;�
i	;��, l = 1, . . . ,N . �4.5�

Using the expressions �3.4� and �3.5� of the matrix elements of the R-matrix R̄ and the vertex-face

correspondences �3.7� and �3.10�, we find the analytic property of the partition function:

ZN��u�	;�
i	;�� is an analytic function of ul with simple poles �
i − ��i

= 1, . . . ,N	 inside the fundamental �upright� rectangle �Ref. 15� generated by 1 and � .

�4.6�

Direct calculation �for details see Appendix B� shows that at each simple pole 
i−� the

corresponding residue is

Resul=
i−��ZN��u�	;�
 j	;��� =
�������21�

���0����21 + �� ���l

��u� − 
i�
��u� − 
i + ���j�i

��
 j − 
i + ��
��
 j − 
i�

�ZN−1��u�	��l;�
 j	 j�i;� + �2̂�, l,i = 1, . . . ,N . �4.7�

Similarly, using the initial condition �2.9� of the R-matrix R and the vertex-face correspondences

�3.7� and �3.10�, one can also show that the partition function ZN��u�	 ; �
i	 ;�� satisfies the fol-

lowing relations:
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ZN��u�	;�
 j	;���ul=
i
= ZN−1��u�	��l;�
 j	 j�i;��, l,i = 1, . . . ,N . �4.8�

So remarks are in order. The properties �4.1�, �4.2�, and �4.4�–�4.7� uniquely determine the parti-

tion function. On the other hand, the properties �4.1�, �4.2�, �4.4�–�4.6�, and �4.8� also fully fix the

partition function. They yield the recursive relations �5.4� and �5.5� �see below�, respectively.

V. THE PARTITION FUNCTION

In this section, we will derive two recursive relations from the properties of the partition

function obtained in Sec. IV. Each of the recursive relations together with �4.1� uniquely deter-

mines the partition function.

A. The recursive relation

We now concentrate on the uN-dependence of the partition function ZN��u�	 ; �
 j	 ;��. From

�4.4� and �4.5�, we have

ZN�u1, . . . ,uN−1,uN + 1;�
 j	;�� = ZN��u�	;�
 j	;�� ,

ZN�u1, . . . ,uN−1,uN + �;�
 j	;�� = e−2i���21�ZN��u�	;�
 j	;�� . �5.1�

The analytic properties �4.6� and �4.7� imply that

ZN��u�	;�
 j	;�� = �
i=1

N �������uN − 
i + ai�
��uN − 
i + ����bi�

�
j�i

��
 j − 
i + ��
��
 j − 
i�

�
l�N

��ul − 
i�
��ul − 
i + ��

�ZN−1��u�	��N;�
 j	 j�i;� + �2̂�� + � ,

where �ai	, �bi	, and � are some constants with respect to uN, and ai and bi satisfy the constraints

��ai − ��
��bi�

=
���21�

���21 + ��
, i = 1, . . . ,N . �5.2�

The quasiperiodic condition �5.1� leads to

ai = �21 + �, i = 1, . . . ,N ,

� = 0. �5.3�

The constraint �5.2� then yields that bi=ai=�21+�. Thus the partition function ZN��u�	 ; �
 j	 ;��
satisfies the following recursive relation:

ZN��u�	;�
 j	;�� = �
i=1

N �������uN − 
i + �21 + ��
��uN − 
i + �����21 + ���j�i

��
 j − 
i + ��
��
 j − 
i�

�
l�N

��ul − 
i�
��ul − 
i + ��

�ZN−1��u�	��N;�
 j	 j�i;� + �2̂�� . �5.4�

On the other hand, the quasiperiodicity �5.1� of the partition function, the fact that the partition

function only has simple poles at �
i−�	, and the relation �4.8� imply that the partition function

has the following expansion:
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ZN��u�	;�
 j	;�� = �
i=1

N �������uN − 
i + ai��

��uN − 
i + ����ai��
�
j�i

��uN − 
 j���
i − 
 j + ��
��uN − 
 j + ����
i − 
 j�

ZN−1��u�	��N;�
 j	 j�i;��� ,

where �ai	 are some constants with respect to uN. The quasiperiodicity �5.1� further requires ai�

=�21+N�. Namely, the partition function ZN��u�	 ; �
 j	 ;�� satisfies the following recursive rela-

tion:

ZN��u�	;�
 j	;�� = �
i=1

N �������uN − 
i + �21 + N��
��uN − 
i + �����21 + N���j�i

��uN − 
 j���
i − 
 j + ��
��uN − 
 j + ����
i − 
 j�

�ZN−1��u�	��N;�
 j	 j�i;��� . �5.5�

In the trigonometric limit, the recursive relation �5.5� recovers that of Ref. 6 for the six-vertex

model.

B. The DW partition function

The recursive relation �5.4� and the property �4.1� uniquely determine ZN��u�	 ; �
 j	 ;��; on the

other hand the recursive relation �5.5� and the property �4.1� also fully fix the partition function.

Using the Riemann identity �2.4� of the �-function, one can check that the solution to each of

recursive relations �5.4� and �5.5� gives rise to a symmetric function of �u�	 as required. As a

consequence, the two expressions of the partition function obtained by solving the recursive

relations �5.4� and �5.5�, respectively, are equal since they are related to each other by some

permutation of �u�	. Here, we present the result by resolving the recursive relation �5.5�.
Using the property �4.1� and the recursive relation �5.5�, we obtain the explicit expression of

the partition function ZN��u�	 ; �
 j	 ;��,

ZN��u�	;�
 j	;�� = �
s�SN

�
l=1

N �������ul − 
s�l� + �21 + l��

��ul − 
s�l� + �����21 + l���k=1

l−1
��ul − 
s�k����
s�l� − 
s�k� + ��

��ul − 
s�k� + ����
s�l� − 
s�k��
� ,

�5.6�

where SN is the permutation group of N indices. It is easy to see from the above explicit expression

that ZN��u�	 ; �
 j	 ;�� is indeed a symmetric function of �
i	.

VI. CONCLUSIONS AND DISCUSSIONS

We have introduced the DW boundary condition specified by the four boundary states

�3.12�–�3.15� for the eight-vertex model on an N�N square lattice. The boundary states are the

two-parameter generalization of the all-spin-up and all-spin-down states and their dual states. With

the DW boundary condition, we have obtained the properties �4.1�, �4.2�, �4.4�, �4.5�, �4.7�, and

�4.8� of the partition function ZN��u�	 ; �
 j	 ;��. These properties enable us to derive the two

recursive relations �5.4� and �5.5� of ZN��u�	 ; �
 j	 ;��, whose trigonometric limits recover those

corresponding to the six-vertex model. The recursive relation �5.4� or �5.5� together with �4.1�
uniquely determines the partition function ZN��u�	 ; �
 j	 ;��. Solving the recursive relations, we

obtain the explicit expression �5.6� of the partition function.

Note added in proof

After submitting our paper to the arXiv, we became aware that the partition function for the

elliptic SOS model with the DW boundary condition has been obtained in Refs. 21–23 by different

methods. Our approach is based entirely on the algebraic Bethe ansatz framework and can be used

to obtain partition functions of the eight-vertex model with open boundary conditions.
24

Moreover,

we have obtained the recursive relations �5.4� and �5.5� of ZN��u�	 ; �
 j	 ;��. We would like to

thank V. Mangazeev for kindly drawing our attention to these references.
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APPENDIX A: THE PROOF OF „4.2…

In this appendix, we show that ZN��u�	 ; �
i	 ;�� is a symmetric function of �u�	 and �
i	
separatively. Regarding the tensor space indexed by 1̄ , . . . , N̄ as the auxiliary space, �2.12� can be

rewritten as

ZN��u�	;�
i	;�� = 
��2��� + �N2̂���̃
�,�−�1̂

1̄
�u1�T1̄�u1��

�+�N2̂,�+��N−1�2̂
1̄

�u1�

� ¯ �̃
�−��N−1�1̂,�−�N1̂

N̄
�uN�TN̄�uN��

�+�2̂,�

N̄
�uN����1����� . �A1�

Following Refs. 25 and 26, let us introduce the face-type monodromy matrix with elements given

by

T�m;m0�u��
j = �̃m+��̂ ,m�u�T�u��m0+��̂,m0

�u�, j,� = 1,2. �A2�

Then the partition function ZN��u�	 ; �
i	 ;�� can be expressed in terms of the product of the matrix

elements of the face-type monodromy matrix

ZN��u�	;�
i	;�� = 
��2��� + �N2̂��T�� − �1̂ ;� + ��N − 1�2̂�u1�2
1T�� − 2�1̂ ;� + ��N

− 2�2̂�u2�2
1 ¯ T�� − �N1̂ ;��uN�2

1���1����� . �A3�

The exchange relation �2.14� and the vertex-face correspondence relations �3.7� and �3.11� enable

us to derive the following exchange relations for the operators �A2�:

�
i,j=1

2

R̄�u1 − u2;m�ij
klT�m + ��̂ ;m0 + ��̂�u1��

i T�m;m0�u2��
j = �

�,�=1

2

R̄�u1 − u2;m0���
��T�m + �k̂;m0

+ ��̂�u2��
l T�m;m0�u1��

k .

For the case of k= l=1 and �=�=2, the above relations become

T�m + �1̂ ;m0 + �2̂�u1�2
1T�m;m0�u2�2

1 = T�m + �1̂ ;m0 + �2̂�u2�2
1T�m;m0�u1�2

1. �A4�

This relation with T�m ;m0 �u�2
1 given by �A2� implies that the partition function ZN��u�	 ; �
i	 ;��

�A3� is a symmetric function of �u�	. Similarly, one can check that the partition function is also a

symmetric function of �
i	.

APPENDIX B: THE PROOFS OF „4.7… and „4.8…

Firstly, let us prove the analytic property �4.7� of the partition function. Since the partition

function is a symmetric function of �u�	 and �
i	, it is sufficient to prove �4.7� for the case of

uN=
N−�. For this purpose, we need to rearrange the order of the product of R-matrices in the

expression �2.11� of the partition function as follows:

ZN��u�	;�
i	;�� = 
��2��� + �N2̂��
�̄�1�����R1̄,N�u1 − 
N�R2̄,N�u2 − 
N� ¯ RN̄,N�uN − 
N� ¯ R1̄,1�u1

− 
1� ¯ RN̄,1�uN − 
1���̄�2��� + �N2̂�����1����� = 
��2���

+ �N2̂���̃
�,�−�1̂

1̄
�u1� ¯ �̃

�−��N−2�1̂,�−��N−1�1̂
N − 1

�uN−1�R1̄,N�u1 − 
N� ¯ RN − 1,N�uN−1

− 
N��̃
�−��N−1�1̂,�−�N1̂

N̄
�uN�RN̄,N�uN − 
N��

�−��N−1�1̂,�−�N1̂

N
�
N�R1̄,N−1�u1
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− 
N−1� ¯ RN̄,N−1�uN − 
N−1� ¯ RN̄,1�uN

− 
1��
�,�−�1̂

1
�
1� ¯ �

�−��N−2�1̂,�−��N−1�1̂
N−1

�
N−1���̄�2��� + �N2̂�� . �B1�

The expressions �3.4� and �3.5� of the matrix elements of R̄ imply that

Resu=−�R�u;m�11
11 = 0, Resu=−�R�u;m�21

12 =
������m21 − ��

���0���m21�
. �B2�

Keeping the above equations in mind and using the vertex-face correspondence relation �3.10�, we

find

ResuN=
N−�ZN��u�	;�
i	;��

=
�������21 + �N − 1���

���0����21 + N��

��2��� + �N2̂��

��̃
�,�−�1̂

1̄
�u1� ¯ �̃

�−��N−3�1̂,�−��N−2�1̂
N − 2

�uN−2��̃
�+�2̂−��N−1�1̂,�−��N−1�1̂
N̄

�uN�

�R1̄,N�u1 − 
N� ¯ RN − 2,N�uN−2 − 
N�

��̃
�−��N−2�1̂,�−��N−1�1̂
N − 1

�uN−1�RN − 1,N

��uN−1 − 
N��
�+�2̂−��N−1�1̂,�−��N−1�1̂
N

�
N�

�R1̄,N−1�u1 − 
N−1� ¯ RN̄,N−1�uN − 
N−1� ¯ RN̄,1�uN − 
1�

��
�,�−�1̂

1
�
1� ¯ �

�−��N−2�1̂,�−��N−1�1̂
N−1

�
N−1���̄�2��� + �N2̂��

=

]

=
�������21 + �N − 1���

���0����21 + N�� �
l=1

N−1

R̄�ul − 
N;� − �l1̂�12
12

�
��2��� + �N2̂���
�+�2̂,�

N
�
N�

��̃
�+�2̂,�+�2̂−�1̂

1̄
�u1� ¯ �̃

�+�2̂−��N−2�1̂,�+�2̂−��N−1�1̂
N − 1

�uN−1�

�R1̄,N−1�u1 − 
N−1� ¯ RN − 1,N−1�uN−1 − 
N−1�

��̃
�+�2̂−��N−1�1̂,�−��N−1�1̂
N̄

�uN�RN̄,N−1

��uN − 
N−1��
�−��N−2�1̂,�−��N−1�1̂
N−1

�
N−1�

�R1̄,N−2�u1 − 
N−2� ¯ RN̄,N−2�uN − 
N−2� ¯ RN̄,1�uN − 
1�

��
�,�−�1̂

1
�
1� ¯ �

�−��N−3�1̂,�−��N−2�1̂
N−2

�
N−2���̄�2��� + �N2̂��

=

]

=
�������21 + �N − 1���

���0����21 + N�� �
l=1

N−1

R̄�ul − 
N;� − �l1̂�12
12R̄�uN − 
l;� − �l1̂�21

21
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��2��� + �N2̂���
�+�2̂,�

N
�
N�

�̃
�+�2̂,�+�2̂−�1̂

1̄
�u1�

� ¯ �̃
�+�2̂−��N−2�1̂,�+�2̂−��N−1�1̂
N − 1

�uN−1�

R1̄,N−1�u1 − 
N−1� ¯ RN − 1,N−1�uN−1 − 
N−1� ¯ R1̄,1�u1 − 
1� ¯ RN − 1,1�uN−1 − 
1�

�
�+�2̂,�+�2̂−�1̂

1
�
1� ¯ �

�+�2̂−��N−2�1̂,�+�2̂−��N−1�1̂
N−1

�
N−1�

�̃
�+�2̂,�

N̄
�uN���̄�2��� + �N2̂�� . �B3�

It is understood that uN=
N−� in the above equations. With help of the definitions �3.13� and

�3.14� of the boundary states and the condition �3.8�, we finally obtain the residue of

ZN��u�	 ; �
i	 ;�� at the simple pole 
N−�:

ResuN=
N−�ZN��u�	;�
i	;�� =
�������21�

���0����21 + �� �l=1

N−1
��ul − 
N�

��ul − 
N + �� �j=1

N−1
��
 j − 
N + ��

��
 j − 
N�

��̃
�+�2̂+��N−1�2̂,�+�2̂+��N−2�2̂
1

�
1� ¯ �̃
�+�2̂+�2̂,�+�2̂

N−1
�
N−1�

��̃
�+�2̂,�+�2̂−�1̂

1̄
�u1� ¯ �̃

�+�2̂−��N−2�1̂,�+�2̂−��N−1�1̂
N − 1

�uN−1�

�R1̄,N−1�u1 − 
N−1� ¯ RN − 1,N−1�uN−1 − 
N−1� ¯

�R1̄,1�u1 − 
1� ¯ RN − 1,1�uN−1 − 
1�

��
�+�2̂+��N−1�2̂,�+�2̂+��N−2�2̂
1̄

�u1� ¯ �
�+�2̂+�2̂,�+�2̂

N − 1
�uN−1�

��
�+�2̂,�+�2̂−�1̂

1
�
1� ¯ �

�+�2̂−��N−2�1̂,�+�2̂−��N−1�1̂
N−1

�
N−1�

=
�������21�

���0����21 + �� �l=1

N−1
��ul − 
N�

��ul − 
N + �� �j=1

N−1
��
 j − 
N + ��

��
 j − 
N�

�ZN−1��u�	��N;�
i	i�N;� + �2̂� . �B4�

Therefore, we have completed the proof of �4.7�.
Noting R̄�u ;m�ii

ii=1 for any values of u, m, and i=1,2 and the initial condition �2.9� of R, by

a similar procedure as above, one can show that

ZN��u�	;�
i	;���uN=
1
= ZN−1��u�	��N;�
i	i�1;�� . �B5�

�In the proof of �B5�, it is convenient to keep the same order of the product of the R-matrices as

that of �2.11� �cf. �B1�� in the calculation.� The fact that ZN��u�	 ; �
i	 ;�� is a symmetric function

of �u�	 and �
i	 then leads to �4.8�.
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