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Partition Function Zeros for Aperiodic Systems 

M i c h a e l  B a a k e ,  i. 2 U w e  G r i m m ,  i. 3 and C a r m e l o  Pisani1'  4 

Receioed October 25. 1993; final May 17, 1994 

The study of zeros of partition functions, initiated by Yang and Lee, provides 
an important qualitative and quantitative tool in the study of critical 
phenomena. This has frequently been used for periodic as well as hierarchical 
lattices. Here, we consider magnetic field and temperature zeros of Ising model 
partition functions on several aperiodic structures. In ID, we analyze aperiodic 
chains obtained from substitution rules, the most prominent example being the 
Fibonacci chain. In 2D, we focus on the tenfold symmetric triangular tiling 
which allows efficient numerical treatment by means of corner transfer matrices. 

KEY WORDS: Ising model; Lee-Yang zeros; edge singularities; nonperiodic 
systems; phase transitions; gap labeling. 

1. INTRODUCTION 

The study of critical phenomena  by means of discrete spin systems, 
initiated by Lenz and Is ing]  ~) finally came of age in Onsager 's  spectacular 
solution of the 2D field-free Ising model. ~2) He could show that the 2D 
Ising model on the square lattice with ferromagnetic nearest-neighbor 
interaction exhibits an order-disorder  phase transi t ion of second order at 
finite temperature with the magnetizat ion as order parameter. 

The investigation of many other spin systems followed, as did the 
consideration of Ising-type models on other lattices and graphs. Some cases 
can still be solved exactly, ~3~ but  this is an exception. Consequently,  
one needs complementary methods to tackle questions like existence and 
location of critical points and estimation of critical exponents, especially in 
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higher dimensions. One such technique is provided by the work of Lee and 
Yang, ~4'5~ who investigated the distribution of partition function zeros in 
the complex plane, i.e., field variables or fugacity were treated as a complex 
parameter. Later, also the zeros in the complex temperature variable were 
studied for various systemsJ 6-~J These provide information not only about 
the location of phase boundaries, but also about critical exponents; see, 
e.g., ref. 10, where mainly hierarchical lattices are considered. For those, the 
zero patterns form fractal structures known as Julia sets, whereas they are 
usually expected to lie on simple curves for regular lattices, at least in the 
isotropic case. It has been shown ~ that for anisotropic Ising models on 
two-dimensional regular lattices the temperature zeros generically fill areas 
in the complex plane. 

But what does "simple curves" mean? As we will show, already the 
Ising model on a modulated structure in 1D can result in magnetic field 
zeros which do lie on a simple curve, but occupy only a Cantor-like portion 
of it---even in the thermodynamic limit! This shows that fractal distribu- 
tions of Lee-Yang zeros do not require hierarchical graphs. This also gives 
new (and possibly interesting) situations where edge singularities may 
contain substantial information about the system, but we will not discuss 
that here. 

Although the corresponding phenomenon in 2D does not typically 
show up (or at least not that we could conclude so), the investigation of 
partition function zeros for spin systems on nonperiodic graphs with 
inflation/deflation symmetry might fill the gap between the relatively well- 
studied cases of lattices and hierarchical graphs. This is why we discuss the 
Ising model on certain quasiperiodic graphs. In 2D, we present magnetic 
field and temperature zeros for a nonperiodic Ising model on the so-called 
triangle tiling. Since exact results seem rather hard to obtain, we have 
chosen this example because it allows precise numerical treatment up to 
relatively large patches by means of corner transfer matrices. 

2. NONPERIODIC  1D ISING M O D E L  

Let us consider a one-dimensional chain of N Ising spins aj ~ { + 1 }, 
j = l , 2  ..... N, with periodic boundary conditions (i.e., a N + , = a l ) .  The 
energy of a configuration a = (a~, a_, ..... au) is given by 

N 

E ( a ) =  - y '  Ji, j+,ajaj+,  +Hja j  (2.1) 
j =  I 

Here, we concentrate on systems where the coupling constants Jj.j+l 
can only take two different values Jj.j+ t ~ {J, ,  Jb} and where the magnetic 
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field is constant, i.e., H j ~  H. The actual distribution of the two coupling 
constants Jo and Jb along the chain is determined by an infinite word in the 
letters a and b which is obtained as the unique limit of certain two-letter 
substitution rules. ~4) In fact, we restrict ourselves to the Fibonacci case, 
which corresponds to the substitution rule 

a ~ b  
S: b ~ b a  (2.2) 

The length of the word w. = S(w._ 1) obtained by n iterations from the 
initial word wo = a i s  f , , +  ] ,  where the Fibonacci numbers f,, are defined by 

f o = 0 ,  f j = l ,  f , ,+,  = f,, + f , ,_  ~ (2.3) 

Let us introduce the following notation: 

J ,  Jb H 
K, = kB T' Kb = kB T'  h = kB T (2.4) 

and 

z. = exp(2K.), zb = exp(2Kh), w = exp(2h) (2.5) 

The two elementary transfer matrices t3) To and Tb now read 

Tab (w - , - I / z {W'Z ,b  ~/W~=( w'€ ,-1/2 7",.b (2.6) 
�9 "Za ,  b !  Z a . b / i  

and, in general, do not commute with each other. 
The recursive definition of the sequence gives rise to a recurrence 

formula for the transfer matrices 

To= T,, TI= Tb, T,+~= T,,. T,,_L (2.7) 

where T,, denotes the transfer matrix of the chain that corresponds to the 
nth iteration step. Hence the partition function Z,,(z , ,z  b, w)=tr(T, , )  is 
essentially (i.e., up to an overall factor) a polynomial in its three variables. 
It is also possible to write down a recurrence relation for the partition func- 
tion itself; see refs. 14-16 for details. In this way, it is really easy to generate 
the partition function for very large systems exactly (e.g., by means of 
algebraic manipulation packages). Our problem at hand has thus been 
reduced to the task of computing the roots of a polynomial. 

Let us look at the pattern of zeros of the partition functions 
Z,,(z,, Zb, W) in the field variable w. If both couplings are ferromagnetic 
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( Z a ~ l  , g b ~ l ) ,  the zeros lie on the unit circleJ 17~ Similarly, for purely 
antiferromagnetic coupling (z~ ~< 1, Zb ~< 1), they are on the negative real 
axis (i.e., the zeros in the variable w~/2=eh lie on the imaginary axis), 
whereas the "mixed" case turns out to be complicated and will not be 
discussed here. 

For simplicity, we will from now on stick to the purely ferromagnetic 
regime. If the chain were periodic, the zeros would follow a well-known 
distribution on the unit circle (they can be calculated analyticallyt~S'lgJ). In 
the thermodynamic limit, they fill a connected part of the circle densely 
(though not uniformly if 0 <  T <  or): a gap only remains near the point 
(1, 0) on the real axis, with an opening angle depending on T; compare ref. 
19 for details. Near the gap one finds the famous Lee-Yang edge 
singularity of the density of zeros 5 with exponent - 1/2. ~2~ The gap closes 
only for T =  0, which means that we do not have a phase transition at finite 
temperature ( T >  0). One might perhaps expect the very same (and simple) 
situation in the Fibonacci case, but the latter is always good for a surprise. 

In Fig. 1, we show the location of the zeros of Zn(z~, Zb, W) in the 
complex w plane for ferromagnetic couplings z~=3/2,  zb= 100 (which 
corresponds to K ~ 0 . 2 0 3  and Kb~2.306) and n = 8, 9, 10. As expected, 
the zeros are clearly located on the unit circle, and there is still a large gap 
near (1,0), as it must be because we still cannot have a phase transition at 
finite temperature. However, an additional gap structure in the distribution 
of the zeros on the unit circle is apparent. It turns out that this gap struc- 
ture does not depend on the actual values of the coupling constants (as 
long as they are still ferromagnetic), just the gap widths change and the 
gaps vanish if z a and z b become equal, which of course corresponds to the 
periodic case. The large difference between the two couplings used in our 
pictures was chosen to show the effect clearly--for a small difference one 
might miss it, though it is still there! Consequently, as can also be guessed 
from Fig. 1, there should be a whole hierarchy of edge singularities (the 
limiting set of zeros consists of edges only, so to say). The calculation of 
their exponents would be an interesting task, but is beyond the scope of 
this article. 

Let us rather take a closer look at the gaps themselves. In Fig. 2, we 
present the integrated density of the zeros on the unit circle (i.e., the 
integrated density of their angles (in units of 2n) with respect to the real 
axis) for the same set of parameter values as in Fig. 1. It turns out that this 
has exactly the structure which one would expect from the general gap 
labeling theorem of Bellissard and coworkers t2~'22''4~ which originally 

5 Note the similarity to the van Hove singularity of the electronic density of states at the band 
edges in 1D. 
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Fig. 1. Zeros of  the partition function Z,(z,, Zb, W) of the Fibonacci Ising chain in the field 
variable w = exp(2h) for z a = 3/2, zb = 100, and n = 8, 9, 10. 

applies to the integrated density of states (IDOS) of energy spectra of 
certain discrete Hamiltonians. There, the limit set of the IDOS values at 
the gaps has the form (see ref. 14 and references therein) 

i f =  + ~  # ,veT/  n [ O , l ]  (2.8) 

for the Fibonacci case, where ~ = (1 + .q/5)/2 is the golden ratio. The widest 
gaps in Fig. 2 have been labeled with the corresponding indices (/~, v), 
which for the finite system belong to the rational values 

# f . + v f , , _ l  . . . .  # v 
(#. v): f , + ,  , ~ + ~  (2.9) 

of the integrated density. Note that any two successive Fibonacci numbers 
f,,_ ~ and f ,  are coprime, hence every integer can be written as a linear 
combination of them with integral coefficients. Actually, since ~2= ~ + 1, 
one could alternatively label the gaps for the Fibonacci case by a single 
algebraic integer in the ring Z[z ] ,  (22) but we prefer to use the above 
notation, which immediately generalizes to a large class of substitution 

n=8 ~2. I~ 
O. <0.2+ 
1~,6 41.01 

(. I . t+  (:.-2+ 
0.4 (O.h 

41.-I} 0 . 2  

II 0.2 0.4 0.6 0.8 

0 

0 

0, 

0.2! 

n = 9  (2. i) 

to.++ 
i . o+  

t.l.~+ / / ( 2 . . i i  

(i+.i) 

0.2 0,4 0.6 0.8 

n = l O  +2,1J 
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< I.O) 

(I. I i  / 
0.2 0.4 0.6 0.8 

Fig. 2. Integrated density of  the zeros in Fig. 1 on the unit circle. The corresponding gap 
labels [see Eq+ (2.9)]  for the widest gaps are also shown.  
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rules. ~14) Furthermore, (2.9) shows the relation to the gaps of the periodic 
approximants more transparently. Generically, it appears that at all the 
"allowed" values one actually observes gaps in the density distribution, 
i.e., "all gaps are open." The obvious symmetry in the pictures which relates 
the gaps with labels (p ,v)  and (1- /~ ,  l - v )  stems from the reflection 
symmetry of the zero pattern with respect to the real axis which 
corresponds to a change of the sign in the magnetic field h. 

Admittedly, we did not present a rigorous argument which explains 
why the gap labeling theorem for the IDOS of one-dimensional Sch6dinger 
operators~Z,.22.14) describes the distributions of our partition function zeros 
on the unit circle. However, the agreement is certainly convincing and 
suggests that one might think of the zeros (or rather of their arguments) as 
the eigenvalues of a Schr6dinger-type operator. This is also one relatively 
easy way to prove the Lee-Yang circle theorem (or the corresponding "line 
theorem" in the antiferromagnetic case) for the periodic 1D Ising model. In 
this context, we also mention an old idea of Hilbert's, namely the possible 
connection between the imaginary parts of the (nontrivial) zeros of the 
Riemann ~-function and the eigenvalues of a - - so  far unknown--Hermit ian  
Hamiltonian. This has recently also been linked to some typical aspects of 
quantum chaos; see ref. 23 and references therein. 

3. ISING M O D E L  ON THE TRIANGLE TILING 

The 1D case was presented for two main reasons. On the one hand, 
calculations are either possible analytically or can be made rigorous. On the 
other hand, a new phenomenon--the appearance of gaps--could be seen. 

Nevertheless, investigations of Ising models on graphs of higher 
dimension are in order. If one is not interested in approximative calcula- 
tions (which we are not), one encounters true difficulties on the non- 
periodic ground. Even the existence of local inflation/deflation symmetry 
does not seem to allow exact renormalization schemes for electronic 
models, ~24'25~ and we were not able to find one for Ising-type models either. 

So, the best thing one can then do is the exact calculation of the 
partition sum for finite patches, followed by a numerical approach of the 
thermodynamic limit. Even this is a difficult task which requires a good 
choice of the graph, i.e., the nonperiodic tiling. From our experience with 
Ising quantum chains in 1Dt26)--which can be seen as anisotropic limits of 
2D classical systems--we decided to take a quasiperiodic example in order 
to stay free of difficult effects caused by fluctuations (which, however, may 
yield new physics; see, e.g., refs. 27 and 28). 

The triangle tiling developed in T/ibingen t29-31) has the advantage that 
we can start from a patch with decagonal boundary that is--in a natural 
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Fig. 3. Initial decagonal patch of the Tiibingen triangle tiling. 

way--par t i t ioned into sectors, each covering an angle of 2n/10; see Fig. 3. 
This tiling is quasiperiodic and can be generated by successive substitution or 
inflation 6 as well as by the standard projection technique; for details see ref. 
30. It consists of two golden triangles (of two orientations each) (see Fig. 4), 
and thus has two types of edges with length ratio z = (1 + x/~)/2. We identify 
them with two different bonds and attach different couplings to them. In our 
present context, we consider the cartwheel tiling which is obtained from the 
patch of Fig. 3 by repeated application of the inflation rule of Fig. 4 and 
which does preserve the sectoral structure in each step; see Fig. 5. 

This structure suggests the use of corner transfer matrices (CTMs)  for 
the sectors t3~ to calculate the part i t ion sum and the magnet izat ion at the cen- 
ter of the patch. However,  the patch is not a repetition of ten equal sectors; 
therefore we cannot  reduce the problem to the C T M  of one single sector. 
On the other hand, the C T M s  of sectors of opposite orientation (indicated 
by the arrow in the initial patch)  are the t ransposed matrices of each other. 
Giving half weight to all bonds and all magnetic field terms of single spins 
on the boundaries  of the sector, we can obtain the parti t ion function as 

Z = t r ( ( M 2 M ' M 2 )  . ( M 2 M ' M 2 )  ') (3.1) 

Here, M is the C T M  of a single sector and we have used the symmetry  of 
Fig. 3 (and of all patches obtained from it by successive inflation) under 
reflection in the horizontal  axis, Equat ion (3.1) can then be evaluated again 
by algebraic manipulat ion packages. 

6 This process is normally called deflation in the physical literature and inflation in the mathe- 
matical literature. We use the latter convention here. 
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Fig. 4. Inflation rules for the Tiibingen triangle tiling. 
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Fig. 5. One sector of Fig. 3 after n inflation steps (see Fig. 4) for n ~< 4. The dashed line 
indicates a sector that also leads to a patch with decagonal boundary, which, however, is not 
obtained by entire inflation steps from the initial patch shown in Fig. 3. 
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Fig. 6. Zeros of the partition function Z,(4, 4, w) (fixed boundary conditions) in the field 
variable w for n = 1, 2, 3. 

In what fol lows,  we use the same notat ion as in the Fibonacci  case 
above,  but with indices s (for short) and l (for long) in place of  a and b. 
In particular, we also assume that the magnetic  field is uniform. Here, 
Z,,(zs, zz, w) n o w  denotes  the partition function of  the Ising model  on  the 
patch which is obtained by n inflation steps (see Fig. 4) from the initial 
decagonal  patch shown in Fig. 3 (which corresponds to n---0). It is 
impossible  to define periodic boundary condit ions  on  our tiling without  
destroying the tenfold symmetry 7 and the sector structure; therefore we 
either use fixed boundary condit ions (i.e., all spins on  the decagonal  
boundary of  the patch are frozen to be + 1) or free boundary condit ions  
(i.e., we sum over all values of  the boundary spins). 

For  fixed boundary condit ions,  the zeros of  the partition function 
Z,,(zs, zz, w) (for finite n) in the field variable w are no  longer located on 
the unit circle, as this case (in contrast to the free boundary case) is not 
covered by the circle theorem of  Lee and Yang. ~s~ This is clearly seen in 
Fig. 6, which shows  the locations of the zeros in the complex w plane for 
couplings zs = z / =  4 and three different patch sizes. The picture is some-  
what surprising,- as the finite-size effects on  the absolute values of  the zeros 
are quite large. Nevertheless,  it is plausible ( though certainly not  obvious  
from Fig. 6) that the zeros approach the unit circle in the thermodynamic  

7 See ref. 30 for details on the symmetry concept needed here. 
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Fig. 7. Zeros of the partition function Z3(z, z, 1) (fixed boundary conditions) for the 
"isotropic" zero-field case (equal coupling for long and short bonds) in the temperature 
variable -. 

limit�9 However,  the angular  dis t r ibut ion of the zeros is r emarkab ly  regular;  
there is no apparen t  gap structure as in the one-dimensional  case. We also 
computed  the zeros for different couplings z s and zt for fixed and free 
bounda ry  condit ions,  which show the same behavior�9 

Let us also look at the zeros in the other  variables�9 Here, we restrict 
ourselves to the zero-field par t i t ion  function Z , , ( z , ,  zl ,  1) and use fixed 
bounda ry  conditions�9 F o r  the "isotropic'" case z = z s = z i ,  the zeros of 
Z3(z ,  z, 1) in the variable z are shown in Fig. 7. Al though the d is t r ibut ion  
of the zeros in the complex z plane is apparent ly  not  simple (i.e., the zeros 
do not  appear  to lie on simple curves), the zeros close to the real axis con- 
tain informat ion about  the locat ion of the critical point  and,  in principle, 
also abou t  the critical exponents.  ~n'mJ In Table 1, we give the numerical  
values of the zero closest to the real line with a real par t  greater  than one 
for the following five choices of ( z ,  zt): (1, z), (z, z2), ( z , z ) ,  (z2, z) ,  and 
(z, 1), i.e., in addi t ion  to the "isotropic" case we look at those cases where 

Table I�9 Partit ion Function Zero Located Closest to the 
Real Line and wi th  a Real Part Greater than One, for  

Vanishing Magnet ic  Field and Fixed Boundary Condit ions 

_ _ _  ~ 2  _ 2  - -  n zs= ! - s - ~ l  Zs=Z~ - s - z l  zl= 1 

1 1.3514+0.9560i 1.2396_0.2819i 1,3249+0.4315i 1.1987+0.2492i 1.4511+_1.3404i 
2 1.8056+0.8702i 1.3270+0.2006i 1.4709+0.3238i 1.2788+0.1844i 2.4447+1.3460i 
3 1.9089-1-0�9 1.3670+___0.1412i 1.5249+0�9 1.2983__0.1320i 3.0508+1.1471i 
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one of the coupling constants vanishes and where one coupling constant is 
twice as large as the other. 

The approximants for the critical couplings are in good agreement 
with our values obtained from the behavior of the specific heat and the 
center spin magnetization of the model (with the exception of z~ = 1, where 
the center spin is isolated), but we omit details here. Let us only remark 
that the nature of the critical point looks very much like that of the 
periodic case, though further calculations are needed to confirm that. 

4. CONCLUDING REMARKS 

The distribution of partition function zeros on the unit circle shows a 
gap structure for ferromagnetic Ising models on aperiodic chains. Although 
we have only demonstrated this phenomenon for the ubiquitous Fibonacci 
chain, one can translate each step to any of the other chains obtained by 
substitution rules--no matter whether one restricts oneself to the two-letter 
case or not. 

The 2D case did not show any apparent gap structure for the magnetic 
field zeros (and thus resembles the situation of the electronic spectra 
again). The partition function zeros in the temperature variable do not 
seem to lie on simple curves, even in the "isotropic" case where the 
couplings for short and long bonds are identical--more work is to be done 
to clarify this point. On the other hand, one can clearly see the existence 
of a phase transition, because the zeros "pinch" the real axis. For given 
(finite) coupling constants, the critical point has finite To. 

Now, looking at the limiting cases zs=  1 and z~= 1, one gets the 
impression that Tc heads to 0, quite similarly as in the case of the square 
lattice. ~3) However, the corresponding graph with one type of bond 
"switched off" is by no means one-dimensional (or at least not in an 
obvious way)--wherefore the question arises what this means. To clear this 
up, one should first treat a model where the location of the critical point 
can be found exactly, without numerical estimates. This is indeed partially 
possible for another quasiperiodic tiling, the so-called Labyrinth. An 
investigation of this phenomenon is more promising there, but we will 
discuss details elsewhere. 133) 
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