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Abstract: We consider string theory on AdS3 × S3 × T4 in the tensionless limit, with
one unit of NS-NS flux. This theory is conjectured to describe the symmetric product
orbifold CFT. We consider the string on different Euclidean backgrounds such as thermal
AdS3, the BTZ black hole, conical defects and wormhole geometries. In simple examples
we compute the full string partition function. We find it to be independent of the precise
bulk geometry, but only dependent on the geometry of the conformal boundary. For ex-
ample, the string partition function on thermal AdS3 and the conical defect with a torus
boundary is shown to agree, thus giving evidence for the equivalence of the tensionless
string on these different background geometries. We also find that thermal AdS3 and the
BTZ black hole are dual descriptions and the vacuum of the BTZ black hole is mapped
to a single long string winding many times asymptotically around thermal AdS3. Thus
the system yields a concrete example of the string-black hole transition. Consequently,
reproducing the boundary partition function does not require a sum over bulk geometries,
but rather agrees with the string partition function on any bulk geometry with the ap-
propriate boundary. We argue that the same mechanism can lead to a resolution of the
factorization problem when geometries with disconnected boundaries are considered, since
the connected and disconnected geometries give the same contribution and we do not have
to include them separately.
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1 Introduction

The AdS/CFT correspondence [1] is a strong-weak duality. Weakly coupled gauge theory
probes the deeply quantum regime of the bulk, where the string becomes tensionless and
the radius of AdS is small in units of string length. Usually a description of such a bulk
system is not directly accessible and bulk computations are often done in the supergravity
limit. The tensionless limit is the regime where the AdS/CFT correspondence is ‘simplest’
and is potentially provable, see [2, 3] for direct attempts on AdS5 × S5. Exposing the
inner workings of the correspondence does not only teach us important lessons about the
formulation of string perturbation theory, but also expose the physics of string theory in
this regime that is somewhat removed from our geometric intuition. Finally, the tensionless
limit roughly corresponds to the unhiggsed phase of string theory and thus exploring it
teaches us something about the underlying symmetries of the string [4].

AdS3 is an arena where many technicalities simplify, but interesting physics still re-
mains. In particular, the program of the tensionless limit can be completely carried out
and equivalence of the string theory with the conjectured boundary CFT is essentially
proven [5–10]. For a brief overview see [11]. The precise statement is that IIB string the-
ory on the background AdS3 × S3 × T4 supported by one unit of NS-NS flux is equivalent
to the symmetric orbifold CFT SymN (T4). The worldsheet theory can be described in
terms of a WZW model based on the supergroup PSU(1, 1|2), which for one unit of flux
becomes essentially a free theory. This definition of tensionless string is somewhat different
to previous attempts in the literature in that the level of the Kac-Moody symmetry on the
worldsheet is not critical [12–16]. The model is tensionless in the sense that is possesses
massless higher spin fields in its spectrum.

In the previous works mentioned above, the tensionless string was always considered
on global AdS3 (×S3 × T4). Many interesting aspects of the AdS3/CFT2 correspondence
emerge only when we consider spaces with different conformal boundaries, such as thermal
AdS3 with a torus boundary. For instance, there are Euclidean black hole geometries: the
BTZ black hole and all its SL(2,Z) images. In the classical gravitational way to evaluate the
boundary torus partition function from the bulk, one should sum over all possible saddles
of the gravitational theory and correct the result of these saddles by loop-corrections. This
computation has a long history in the case of AdS3, see e.g. [17–24].1 For low temperature,
thermal AdS is the dominating saddle, whereas for high temperature black holes dominate.
Thus, this picture leads to Hawking-Page phase transitions in the boundary theory [27, 28].

There is a related gravitational computation that leads to a serious puzzle in the
AdS3/CFT2 correspondence, to which we will refer to as the factorization problem. There
are also saddles of the gravity theory that have disconnected boundaries, such as a worm-
hole connecting two genus 2 surfaces. From a CFT point of view, the partition function
on the disjoint union of the two genus 2 surfaces is simply the product of the two in-
dividual partition functions. When computing the same quantity in gravity, we expect
that disconnected as well as connected bulk geometries contribute. The basic problem is

1For very small radii, the dual CFT can become a RCFT and the partition function obtained this way
matches on the nose [25, 26].

– 1 –



J
H
E
P
0
3
(
2
0
2
1
)
1
7
6

that while the disconnected contributions lead to a factorized answer, the factorization is
destroyed by the connected contributions. The optimist’s answer to the problem is that
the connected geometries all cancel and factorization is restored. While this is an open
question in 3d gravity, this does not happen in JT gravity, where the sum over geometries
becomes a genus expansion [29]. Instead the correct boundary description is interpreted as
an ensemble of theories. In this case, the partition function on two disconnected Riemann
surfaces does not factorize because of the ensemble average [29, 30]. The same is expected
to happen in 3d gravity [31, 32] and was recently argued for in a toy example [33, 34]. The
same conclusion is expected the hold generically from an EFT point of view for chaotic
quantum systems [35]. This resolution is not an option for a stringy AdS/CFT correspon-
dence because there is a unique conjectured dual and no natural ensemble over which to
average is known. Furthermore, the density of states is discrete, as is appropriate for a
single dual theory.

In this paper we address these phenomena for the tensionless string on AdS3. Both the
Hawking-Page phase transition and the factorization problem have to be partially revised
in this setting. We restrict to the somewhat simpler Euclidean setting.

A recurring theme in the literature is the claim that a black hole of string size tran-
sitions into a single long string that winds around the horizon [36–38]. We find a picture
that confirms this view very explicitly. The bulk theory does not contain black holes or
rather the black hole background is equivalent to the long winding string in thermal AdS3.

We start by computing the string partition function on thermal AdS3. Several special
properties of the string on this background allow us to perform this computation exactly
in both α′ and gstring (under some favorable assumptions whose validity is discussed in
section 6.2). A major input for this computation is the conjecture that the worldsheet
moduli localize on holomorphic covering spaces of the boundary torus [8, 9, 39]. This in
particular implies that the worldsheet computation is one-loop exact and that the integral
over the moduli space of tori for the worldsheet one-loop contribution reduces to a discrete
sum. We do not know much about non-perturbative corrections but they seem also absent.
It is then surprising that the string spectrum on thermal AdS3 accounts for the entire
boundary partition function (up to choice of spin structure). It is not necessary to sum
over different gravitational saddles to recover the boundary partition function. This seems
in tension with the existence of the Hawking-Page transition, but we explain that it can
be understood as a transition from the thermal AdS3 vacuum to thermal AdS3 with a long
string winding around the boundary. This suggests that the black hole can be identified
with the single long string. Even though the string itself is light for small string coupling,
the winding number is of order g−2

string, which makes it backreact on the geometry. Thus
there are (at least) two descriptions of the black hole: in terms of the classical Euclidean
BTZ background or in terms of a highly excited string on thermal AdS3. Hence there is a
duality relating these two pictures. This is a very explicit realization of the black hole-string
transition. The computation of the partition function gives a very direct construction of
the ‘black hole’ microstates in this instance.

We solidify this picture by looking at another consistent string background with a torus
boundary: the conical defect. In this case, we can also compute the string partition function
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exactly using the same technology, since the boundary is still a torus. We again find
agreement of the string partition function with the full boundary torus partition function.
However, the agreement is not trivial. Since again a large number of fundamental strings
are involved, the sphere and the torus contributions to the string partition function can
be of comparable size and the spectrum is completely rearranged compared to the thermal
AdS3. In particular, the vacuum of the conical defect with deficit angle 2π(1−M−1) gets
mapped to many strings that wind M times around the boundary of thermal AdS3. This
leads to a similar duality as for the black hole case.

While these are the only backgrounds on which we could reliably compute the string
partition function, they teach us some important lessons that seem to carry over to more
complicated backgrounds. Of particular interest to us is the wormhole that connects two
genus 2 surfaces. We discuss that the computations with one torus boundary suggest
that the connected and disconnected geometries are dual descriptions of each other and
lead to the same factorized partition function, thus resolving the factorization problem we
mentioned earlier. One intuitive way to understand these results is as follows. The single
NS5-brane does not possess a throat and the strings do not fall inside the throat. Instead,
they stay close to the boundary of AdS3 and are insensitive to the internal features of the
bulk manifolds. While this reasoning makes the proposed dualities sound trivial, changing
the background reorders the states in intricate ways.

This paper is organized as follows. We start in section 2 by reviewing consistent
string backgrounds that are locally AdS3. They can all be obtained by taking various
orbifolds of global AdS3. Section 3 contains our main calculation of the string partition
function on thermal AdS3. We review the necessary background on the PSU(1, 1|2)1 WZW
model, discuss the orbifold that reduces the theory to thermal AdS3 and evaluate the
one-loop partition function completely. It is convenient to perform this calculation in a
grand canonical ensemble, which we shall discuss in detail. The sphere contribution to the
partition function is somewhat subtle. At the end of the section, we include a discussion
of the various features of the calculation, such as the interpretation of the Hawking-Page
transition and the black hole/string transition. We repeat a similar calculation in section 4,
where we consider conical defect geometries. This calculation confirms and strengthens
the conclusions gained in the case of thermal AdS3. Finally, we extrapolate our findings in
section 5 to more complicated backgrounds. We discuss the generalization to higher genus
boundaries and the factorization problem. We end with a summary of the most important
points, a discussion and future directions in section 6.

2 Locally Euclidean AdS3 spaces

Let us start by recalling some basic facts about spaces that are locally Euclidean AdS3.
We often also denote Euclidean AdS3 by H3 — hyperbolic space. In string theory, we
can consider also spaces with orbifold singularities, but let us first focus on the smooth
geometries. These are by definition hyperbolic 3-manifolds. Hyperbolic 3-manifolds are
incredible rich and there is a zoo of possibilities. The universal covering space of every
hyperbolic 3-manifold is H3. Thus, every hyperbolic 3-manifold can be written as H3/Γ

– 3 –



J
H
E
P
0
3
(
2
0
2
1
)
1
7
6

for a discrete subgroup Γ ⊂ PSL(2,C) that acts properly discontinuously on H3 (this
requirement is weakened if we allow for orbifold singularities). Such groups are called
Kleinian groups, for an overview see e.g. [40].

The conformal boundary of H3 is the Riemann sphere CP1 and PSL(2,C) acts by
Möbius transformations on it.

We can hence construct hyperbolic three manifolds H3/Γ with conformal boundary
Ω/Γ. Ω/Γ is in general a collection of (possibly singular) Riemann surfaces. This hence
gives a simple recipe for constructing the string worldsheet theory for strings on these
hyperbolic 3-manifolds. H3 is described by the H3 conformal field theory and consequently
H3/Γ should be described by an orbifold CFT of the H3-model. We will mostly consider
the tensionless limit of superstring theory on (Euclidean) AdS3 × S3 × T4. This theory is
most conveniently described in terms of the so-called hybrid formalism [7, 41], where the
target space of the six large dimensions is the supergroup PSU(1, 1|2).2

The non-linear sigma model on H3 has the following action:3

SAdS3 = k

4π

∫
d2z
√
g
(
∂Φ∂̄Φ + ∂̄γ∂γ̄e2Φ

)
(2.1)

∼ k

4π

∫
d2z
√
g
(
∂Φ∂̄Φ + β∂̄γ + β̄∂γ̄ − ββ̄e−2Φ

)
, (2.2)

where in the second line we passed to a first-order form.4 Here, (eΦ, γ, γ̄) correspond to
the Poincaré coordinates on AdS3. The action of PSL(2,C) on these fields is relatively
complicated, but simplifies dramatically in the regime Φ → ∞, which corresponds to the
conformal boundary of H3. The model that describes the quotient space H3/Γ is obtained
by performing the appropriate field identifications.

In the following, we will review some important cases of this construction that play a
major role in this article. We mostly discuss the bosonic case and mention the additional
features of the supersymmetric construction.

2.1 Single torus boundary

A very important and well-known case is where the boundary of H3/Γ is a single torus. In
this case, a complete classification of the possible groups Γ can be given:

1. Γ ∼= Z. The generator g of the infinite cyclic group can be diagonalized into the form

g = diag(eπit, e−πit) , (2.3)

where t is the modular parameter of the resulting torus.5 The resulting 3-manifold
is smooth and is depicted in figure 1. Depending on which cycle in the torus is

2This is the Lorentzian target space. The Euclidean target space is the supersymmetrization of H3 × S3

for which we do not know an appropriate name. PSU(1, 1|2) is meant to denote the Euclidean target space
in the following.

3For the Euclidean model, γ and γ̄ are complex conjugates of each other, whereas in the SL(2,R) model,
they are independent and real.

4There is a linear dilaton that is generated at the quantum level [42, 43]. In our discussion, it will not
play a major role.

5We use t instead of τ , since τ will denote the worldsheet modular parameter.
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AdS3.pdf
e2πit

Figure 1. Thermal AdS3 obtained from the Schottky parametrization. Here we drew AdS3 in
Poincaré coordinates. The boundary is the plane indicated in the figure, while the bulk extends
underneath the plane. The fundamental domain of the group action (2.3) on the boundary is
an annulus, which is depicted in dark gray. In the bulk, the orbifold action identifies the two
hemispheres that extend from the inner and outer circle of the annulus. The resulting space is
fibred by hemispheres that bound circles in the annulus. Thus, it is topologically a disk times
a circle, i.e. a solid torus. The non-contractible cycle corresponds to the radial direction on the
boundary, i.e. to time in radial quantization.

interpreted as time, the resulting geometry can have different physical interpretations.
The 1-cycle of the torus is contractible in the bulk. Thus, interpreting the 1-cycle
as space and the t-cycle as time, the space cycle becomes contractible in the bulk,
whereas the time cycle does not. This is thermal AdS3. Reversing the roles of 1 and
t leads to the Euclidean BTZ black hole. In general, we can declare any cycle a+ bt

for (a, b) = 1 to be the time direction in the torus, which leads to the well-known
SL(2,Z) family of Euclidean black holes in AdS3.

In the supersymmetric setting, we also have to specify a flat SU(2) bundle on the
boundary torus, which we can implement by a Wilson line. Around the space cycle,
the SU(2) bundle is periodic, but along the time cycle, we perform a rotation in the
SU(2) bundle by a matrix

diag(eπiz, e−πiz) . (2.4)

In total, the orbifold group is hence generated by the PSU(1, 1|2) matrix

diag(eπit, e−πit, eπiz, e−πiz) , (2.5)

which generates a cyclic subgroup Z of PSU(1, 1|2). The relevant supersymmetric
thermal AdS3 is then the quotient space PSU(1, 1|2)/Z.

2. Γ ∼= Z×ZM for some integer M ≥ 2 (in the case M = 1, we again obtain the thermal
AdS3 geometry we discussed above). In this case, there are two generators g and h,
where h is of finite order. We can diagonalize them simultaneously and they take
the form

g = diag(e
πit
M , e−

πit
M ) , h = diag(e

πi
M , e−

πi
M ) . (2.6)

Thus, we are applying a further identification on the geometries discussed in the
previous case. The resulting geometry is not smooth, but has a conical singularity in
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defect.pdf e
2πit
M

Figure 2. Conical defect obtained from the Schottky parametrization. We chose M = 4 in the
figure. This is the same as for thermal AdS3, except for the additional identification that reduces
the fundamental domain to a slice of the annulus.

the center of the space. See figure 2 for a schematic depiction. As in the previous case,
we can still choose different time cycles on the boundary, which will lead to different
physical interpretations. Even in the simplest case where we choose the 1-cycle to
be the space direction and the t-cycle to be the time direction, the space cycle is no
longer contractible in the bulk, since it gets stuck on the conical singularity. We will
refer to these spaces as the conical defect geometries.

There is again a supersymmetric analogue of these geometries. We do not want to
introduce an SU(2) rotation for the PSL(2,C) element h, since this is an identification
around the space cycle of the boundary torus. However, g should again be combined
with the SU(2) group element (2.4). Thus the supersymmetric quotient group is
generated by

g̃ = diag(e
πit
M , e−

πit
M , eπiz, e−πiz) , h̃ = diag(e

πi
M , e−

πi
M , 1, 1) ∈ PSU(1, 1|2) . (2.7)

3. Γ ∼= Z × Z. In this case there are two commuting generators which are both non-
diagonalizable and can be taken to be

g1 =
(

1 1
0 1

)
, gt =

(
1 t

0 1

)
, (2.8)

where again t is the modular parameter of the resulting torus. This geometry also
has a singularity in the bulk, but not of conical type. One can think of this geometry
as a cone over a torus. Since the generators of this orbifold are not diagonalizable
but parabolic, it is much harder to describe this space in string theory. Thus, we will
not consider it in this paper and focus on the first two.

2.2 Multiple torus boundaries

There are no hyperbolic 3-manifolds with multiple torus boundaries (not even singular
hyperbolic manifolds). This is somewhat unfortunate for our purposes in this paper, since
we would like to compute the string partition function on these backgrounds. Spaces
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with disconnected boundaries can be interpreted as Euclidean wormhole geometries and as
discussed in the introduction are of particular physical interest.

This statement is easy to prove. The boundary
⊔n
i=1 T2

i can by definition be written as
Ω/Γ, where Ω is an open subset of CP1 and Γ the corresponding Kleinian group. Since Ω is
a covering space of the collection of tori, it follows that Γ is a subgroup of Z2n and is hence
abelian. The set of abelian Kleinian groups is however very small and we essentially already
saw all of them. It now follows quickly that there can at most be one torus boundary.

We should also note that the same argument also shows that there cannot be any
hyperbolic 3-manifold with boundary spheres. The only space with a boundary sphere
is H3. This also follows from the general theorem [44].

2.3 Single higher genus boundary

Next, we consider a single genus g ≥ 2 surface as a boundary. This is much more compli-
cated than the g = 1 case. There is a simple class of such hyperbolic three-manifolds, given
by handlebodies. Handlebodies are obtained when Γ is a Schottky group.6 This generalizes
the construction of thermal AdS3 to higher genus. There is a uniformization theorem that
ensures that there is a Schottky group for any choice of moduli of the boundary surface.
In the case of 3d gravity, this was analyzed in detail in [18, 45]. However the story is much
more complicated in this case and there are many non-handlebody hyperbolic 3-manifolds
with a genus g ≥ 2 boundary. We refer to [46, 47] for further details.

2.4 Two higher genus boundaries

Finally, we consider geometries with two higher genus boundaries. These geometries can
be obtained by choosing Γ to be a Fuchsian group (or a quasi-Fuchsian group when the
moduli of the two boundary surfaces are chosen independently). Fuchsian groups are
discrete subgroups of PSL(2,R) ⊂ PSL(2,C). They act separately on the upper and lower
half plane. Thus Ω has two components in this instance, which leads to the two boundary
surfaces. Bers’ simultaneous uniformization theorem ensures that for any choice of moduli
of the two boundary surfaces, there is a quasi-Fuchsian group that realizes the wormhole
geometry in between them [48].

3 The tensionless string on thermal AdS3

In this section we start with the simplest geometry discussed above — supersymmetric
thermal AdS3. We compute the tensionless string partition function on thermal AdS3×S3×
T4 where the theory is conjectured to be equivalent to the symmetric product orbifold [1,
7, 8]. The theory on global AdS3 is conveniently described in the hybrid formalism [41],
which is built on the PSU(1, 1|2)k WZW model [49].7 The tensionless limit is described by

6A Schottky group Γ is a rank g freely generated Kleinian group whose elements are all loxodromic. A
PSL(2,C) transformation γ is called loxodromic if tr (γ)2 6∈ R.

7Since we are considering Euclidean AdS3, the real form of the WZW model is actually different. Our
treatment is completely algebraic and the difference does not play a major role in the following. See also
footnote 2.
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the value k = 1. The k = 1 model behaves very differently from higher k’s; in particular
it does not contain short string states and instead of a continuum of long strings, only one
particular energy is allowed and hence the resulting spectra are discrete.

In this section, we will first review the important features that are needed to compute
the worldsheet partition function on global AdS3 and will then discuss the orbifold that
reduces the theory to thermal AdS3. We give a physical interpretation of the results in
section 3.7.

3.1 The PSU(1, 1|2)1 WZW model

The relevant model for the tensionless limit is the PSU(1, 1|2)1 WZW model, which was
analyzed in detail in [7]. The reader who does not want to know all the technical details
can jump to eq. (3.8), which is the torus partition function of PSU(1, 1|2)1.

The global subalgebra psu(1, 1|2) that is formed by the zero modes of the affine currents
has only very few representations that are allowed in the affine algebra as highest weight
representations. The essential reason for this is that the subalgebra su(2)1 ⊂ psu(1, 1|2)1
has only the spin 0 and spin 1

2 representations as affine highest weights. In fact, the
only allowed ground state representation of psu(1, 1|2)1 is denoted by Fλ. Here, λ ∈ R/Z
describes the quantization of J3

0 , the Cartan generator of sl(2,R). When decomposing
this psu(1, 1|2) representation into the bosonic subalgebra sl(2,R) ⊕ su(2), it takes the
following form (

C
j= 1

2
λ ,2

)
(
C
j=1
λ+ 1

2
,1
) (

C
j=0
λ+ 1

2
,1
) (3.1)

Here, m denotes the m-dimensional su(2) representation and C
j
λ denotes an sl(2,R) rep-

resentation in the continuous series with spin j and J3
0 -quantization specified by λ. This

representation is BPS and has vanishing quadratic Casimir.8

In the full theory, this representation (or rather the affine representation build on top
of this representation), as well as all its spectrally flowed images σw(Fλ) appear.9 We
follow [7] and abuse the notation by denoting from now on by Fλ the corresponding affine
representation. Its character reads

ch[Fλ](θ, ζ; τ) = tr
(
(−1)Fe2πiθJ3

0 e2πiζK3
0 e2πiτ(L0+ 1

12 )
)

(3.2)

=
∑

r∈Z+λ
e2πirθ ϑ1

( θ+ζ
2 ; τ

)
ϑ1
( θ−ζ

2 ; τ
)

η(τ)4 . (3.3)

Here, we have as before introduced the chemical potential θ for sl(2,R). We have similarly
also introduced a chemical potential ζ for su(2) (whose Cartan generator we denoted by

8When one thinks of PSU(1, 1|2) as the global part of N = 4 superconformal symmetry, this is the
h = 1

2 BPS representation, provided one chooses the discrete representation D
j
j instead of the continuous

representation C
j
λ. Thus, the usual discrete BPS representation is a subrepresentation of this representation

for λ = 1
2 .

9Also indecomposable modules appear, but on the level of the character, they are indistinguishable from
these modules. This is related to the fact that for λ = 1

2 , the representation Fλ is no longer irreducible.
For details, see [7].
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K3
0 ). The character includes a (−1)F to obtain good modular properties. The shift + 1

12 is
the usual shift − c

24 , because c = −2 in this case. The infinite sum leads to distributional
characters, but as we shall see this is a crucial property of the model. The Hilbert space
has the structure

H ∼=
⊕
w∈Z

∫
R/Z

⊕ dλ σw
(
Fλ
)
⊗ σw

(
Fλ
)
. (3.4)

Note that this is quite different from the SL(2,R)k WZW model (or the PSU(1, 1|2)k WZW
model for k > 1), which on top of this involves an integral over all possible sl(2,R) spins,
as well as the inclusion of discrete representations.

Thus, the PSU(1, 1|2)1 partition function becomes

Zpsu(1,1|2)1(θ, z, τ) =
∑
w∈Z

∫ 1

0
dλ

∑
r, r̄∈Z+λ

e2πir(θ−wτ)−2πir̄(θ̄−wτ̄)|q|w2

×
∣∣∣∣∣ϑ1
( θ+ζ

2 ; τ
)
ϑ1
( θ−ζ

2 ; τ
)

η(τ)4

∣∣∣∣∣
2

. (3.5)

Let us look at the sum over r and r̄ in the sector w = 0, together with the integral over λ.
Denoting s = r − r̄ and ∆ = r + r̄, we can write this term as

1
2

∫ ∞
−∞

d∆
∞∑

s=−∞
e2πisRe θ−2π∆ Im θ (3.6)

Through analytic continuation, we can define this to be

1
2δ

2
Z(θ) ≡ 1

2δZ(Re θ)δ(Im θ) = 1
2
∑
r∈Z

δ2(θ − r) . (3.7)

Thus, the partition function can be written as

Zpsu(1,1|2)1(θ, z; τ) = 1
2
∑
r,w∈Z

δ2(θ − wτ − r)|q|w2

∣∣∣∣∣ϑ1
( θ+ζ

2 ; τ
)
ϑ1
( θ−ζ

2 ; τ
)

η(τ)4

∣∣∣∣∣
2

. (3.8)

This is the torus partition function of the Euclidean psu(1, 1|2)1 theory. The appearance
of the δ-functions seems somewhat formal, but we will later interpret them as a local-
ization property of the model. The partition function is formally modular covariant and
transforms as

Zpsu(1,1|2)1

(
θ

cτ + d
,

ζ

cτ + d
; aτ + b

cτ + d

)
=
∣∣∣∣∣exp

(
πi(ζ2 − θ2)c

2(cτ + d)

)∣∣∣∣∣
2

Zpsu(1,1|2)1(θ, ζ; τ) (3.9)

for
(
a b

c d

)
∈ SL(2,Z).
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3.2 The worldsheet partition function

As a next step, we review the worldsheet partition function including both the contributions
from the internal manifold and the ghosts. As discussed in [7], the ghosts cancel effectively
the oscillator contributions from psu(1, 1|2)1 and we end up with

Zworldsheet, global AdS3(θ, ζ; τ) = 1
2
∑
r,w∈Z

δ2(θ − wτ − r)|q|w2
ZT4

R̃ (θ, ζ; τ) . (3.10)

Here, ZT4

R̃ (θ, ζ; τ) is the R-sector partition function of the sigma model on T4 with insertions
of (−1)F. We have refined it by two chemical potentials that correspond to the so(4)1
symmetry that the fermions generate. One of those will become the R-symmetry in the
dual CFT. Explicitly,

ZT4

R̃ (θ, ζ; τ) =
∣∣∣∣∣ϑ1( θ−ζ2 ; τ)ϑ1( θ+ζ2 ; τ)

η(τ)6

∣∣∣∣∣
2

ΘT4(τ) , (3.11)

where ΘT4(τ) is the (non-holomorphic) theta function of the Narain lattice of the torus.
We can bring this formula in a more standard form by using that θ = wτ + r inside the
partition function of T4, thanks to the presence of the delta function. By spectral flow,
we have

ZT4

R̃ (wτ + r, ζ; τ) = |q|−
w2
2 ZT4

[
r
2
w
2

]
(ζ; τ) . (3.12)

Here, we wrote

ZT4
[
0
0

]
= ZT4

R̃ , ZT4
[

1
2
0

]
= ZT4

R , ZT4
[

0
1
2

]
= ZT4

ÑS , ZT4
[

1
2
1
2

]
= ZT4

NS . (3.13)

The arguments in the parenthesis label the spin structures and take values in 1
2Z/Z. The

two entries stand for the periodicity in the time and the space direction of the worldsheet
torus. Under modular transformations, the spin structures with non-zero entries transform
into each other, whereas the R̃ spin structure is invariant. We have

ZT4
[
µ

ν

](
aτ + b

cτ + d

)
= ZT4

[
dµ+ bν

cµ+ aν

]
(τ) . (3.14)

We can thus write

Zworldsheet, global AdS3(θ, ζ; τ) =
∑
r,w∈Z

Z
(
w r

)
(θ, ζ; τ) (3.15)

with

Z
(
w r

)
(θ, ζ; τ) = 1

2δ
2(θ − wτ − r)e−πw Im θZ

[
r
2
w
2

]
(ζ; τ) . (3.16)

We again used the localization constraint to simplify the term |q|
w2
2 .
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Under modular transformations, (w, r) behaves as a doublet. More precisely the trans-
formation behaviour is

Z
(
w r

)( θ

cτ + d
,

ζ

cτ + d
; aτ + b

cτ + d

)

= |cτ + d|2
∣∣∣∣∣exp

(
πi(ζ2 − θ2)c

2(cτ + d)

)∣∣∣∣∣
2

Z
(
aw + rc bw + rd

)
(θ, ζ; τ) . (3.17)

The modular weight (1, 1) is expected for the worldsheet partition function and will be
canceled against the weight of the measure d2τ

Im τ when integrating over the fundamental do-
main.

3.3 The orbifold partition function

Next, we consider the orbifold partition function of this worldsheet theory. In the bosonic
theory, this process is described in appendix A. Similar orbifolds corresponding to the
supersymmetric conical orbifold were explored in [50, 51].

The orbifold will have twisted sectors labelled by two integers m and n, corresponding
to the twists

m�
n

(3.18)

along the cycles of the worldsheet torus. Thus, sectors of the theory are in total labelled
by four integers — m, n and w, r that we encountered already above. We will put them
in a 2× 2 matrix

M =
(
w r

−n m

)
(3.19)

Under modular transformations, M transforms as Mγ−1 for γ ∈ SL(2,Z). For (w, r) we
have established this above and for (m,n) this is just the usual orbifold transformation,
see eq. (A.4).

We have
m�

0
= Im t ZAdS3(mt,mz; τ) , (3.20)

and hence
Z

(
w r

0 m

)
= Im t Z

(
w r

)
(mt,mz; τ) . (3.21)

This follows directly from the interpretation of the torus partition function as a trace over
the Hilbert space and the action of the orbifold generator (2.5). The prefactor Im t can
be thought of as the inverse volume of the orbifold group. Its appearance is explained in
more detail in appendix A.2. Here, we generalized the notation of the previous section to
account for all sectors described by the four integers.

We should note that t and z are the parameters of the orbifold and are no longer
interpreted as chemical potentials on the worldsheet, but as chemical potentials in space-
time. In particular, t is interpreted as the modular parameter in spacetime. This means in
particular that they are fixed under worldsheet modular transformations, contrary to the
transformation behaviour of θ and ζ, see eq. (3.8).
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Note that putting z = 0 implies that the fermions are periodic around the spacetime
thermal cycle and thus the partition function is computed with a fixed spacetime spin
structure (ÑS). We will later consider also the antiperiodic spin structure (NS) that is
then simply obtained by sending z → z + 1, since the fermions have half-integer R-charge.

Thus, we can deduce

Z

(
aw bw

cm dm

)
= 1
|cτ + d|2

Z

(
w 0
0 m

)(
aτ + b

cτ + d

)
(3.22)

for
(
a b

c d

)
∈ SL(2,Z). Since every integer 2 × 2 matrix can be written in this way, this

gives the unique answer

Z

(
a b

c d

)
= 1

2 Im t δ2(t(cτ + d)− aτ − b
) ∣∣∣∣∣exp

(
πit

2 det
(
a b

c d

)
+ πic(cτ + d)

2 z2
)∣∣∣∣∣

2

× ZT4
[
b
2
a
2

]
(z(cτ + d); τ) . (3.23)

The full worldsheet partition function is given by summing over all matrices,

Zworldsheet, thermal AdS3(t, z; τ) =
∑

a, b, c, d∈Z
Z

(
a b

c d

)
. (3.24)

Let us make some comments about this result:

1. The partition function localizes on configurations for which

(cτ + d)t = aτ + b . (3.25)

As we will discuss below, if the modular parameters are related in this way, there is
a holomorphic map from the worldsheet torus to the boundary torus of degree equal
to the determinant of the matrix.

2. Modular invariance only relates integers a, b, c, d with the same determinant. Thus,
the factor

exp
(
πit

2 det
(
a b

c d

))
(3.26)

plays no role for modular invariance. We will compute the result below in a grand
canonical ensemble, where the determinant will be interpreted as the number of
strings in the background.

3. Charge conjugation reverses the sign of (a, b, c, d). Since the theory is invariant under
charge conjugation, we could half the summation range which would cancel the factor
1
2 . We have indeed

Z

(
a b

c d

)
= Z

(
−a −b
−c −d

)
. (3.27)
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3.4 Geometric interpretation

Let us take stock and give a geometric interpretation for the integers (a, b, c, d). They label
the different sectors of the model and correspond to the homotopy classes of maps of the
worldsheet into the asymptotic region of spacetime,

X : T2
τ −→ ∂(thermal AdS3) ∼= T2

t . (3.28)

Since π2(T2) = 0, it follows from general results that the set of homotopy classes is given by

{(a, b) ∈ π1(T2)2 | ab = ba} ∼= Z4 , (3.29)

corresponding to the four integers (a, b, c, d). In fact, these maps are even realized by
holomorphic maps.10 Let

Γ : T2
τ → T2

t , (3.30)

be a holomorphic map, where we indicated the respective modular parameters. Then we
can lift it up to a map Γ̃ : C2 −→ C2. Since the map Γ̃ has to map the lattice Λτ of the
first torus to the second one, it has to be an affine linear map, Γ̃(z) = αz+ β for α, β ∈ C.
In order for this map to descend to the torus, we need Γ̃(Λτ ) ⊂ Λt. In particular, Γ̃(0) ∈ Λt
and Γ̃(1) ∈ Λt, which implies that α, β ∈ Λt. Thus, it only remains to check that

Γ̃(τ) = ατ + β ∈ Λt , (3.31)

and hence also ατ ∈ Λt. Thus, τ has to be the ratio of two lattice elements in Λt, τ = γ
α ,

α, γ ∈ Λt. It follows conversely that

t = aτ + b

cτ + d
, τ = dt− b

−ct+ a
(3.32)

for four integers a, b, c, d ∈ Z. This is exactly the localization condition that we saw in the
partition function. Since both Im τ > 0 and Im t > 0, this is impossible to satisfy unless

det
(
a b

c d

)
= ad− bc > 0 . (3.33)

For every choice of a, b, c, d, there is a canonical map Γ̃ : Tτ −→ Tt that fixes the origin of
the torus given by11,12

Γ(z) = (a− ct)z . (3.34)

The degree of this map is

deg Γ = det
(
a b

c d

)
= ad− bc . (3.35)

10This follows immediately from the Riemann existence theorem.
11The translation has no geometrically interesting meaning and does not change the homotopy class.
12Every torus has a Z2 automorphism and hence also −Γ(z) is a possible map.
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Let us now give a rough geometric picture what the different integers mean. We think of
t as being fixed, since it specifies the background geometry. First, we perform a modular
transformation

τ =
dτ ′ − b

det
−cτ ′ + a

det
, (3.36)

where det = ad − bc, which gives then t = det τ ′ and the corresponding canonical map
becomes Γ(z) = det z. Thus, up to modular transformations, the worldsheet just winds
ad− bc times asymptotically around AdS3.

In [8], it was argued that this map Γ can be directly identified with the worldsheet γ
that appears in the action (2.2) (or rather the one-point function of γ(z) on the worldsheet).
While in general, γ is not holomorphic, it becomes holomorphic for k = 1.

Let us also note in passing that the one-loop string partition function on global AdS3
vanishes, since it corresponds to (3.10) with θ = ζ = 0. This is consistent with the fact
that there is no holomorphic covering map T2 → CP1.13

3.5 String partition function

We now evaluate the one-loop string partition function.14

Grand canonical ensemble. String theory can have a variable number of fundamental
strings in the geometry and from the point of view of the boundary, we are hence com-
puting the partition function in the grand canonical ensemble where different values of
N (the number of copies in the symmetric product orbifold) are allowed, but we fix the
corresponding chemical potential. This chemical potential can be incorporated into the
action (2.2) by adding the following ‘topological term’

S′AdS3 = SAdS3 − 2πiσ
∫
γ∗ω . (3.37)

Here ω is the volume form of the boundary surface of the hyperbolic 3-manifold, normalized
such that

∫
∂M3

ω = 1.15 This term makes only sense for k = 1, where we can identify γ
with the covering map from the worldsheet to the boundary. We have

σ

∫
Σ
γ∗ω = σ deg(γ)

∫
γ(Σ)

ω = σ deg(γ) , (3.38)

which shows that this term is indeed topological in this setting. While this term has a
clear classical interpretation, it is a bit ad hoc. The same term can be introduced directly
on the worldsheet, where it corresponds to the spacetime identity operator [52, 53]. It
was a puzzle that the spacetime identity operator is proportional to the winding number
wi. This puzzle is resolved once one fixes the chemical potential associated to the identity

13Presumably the worldsheet sphere partition function should be non-zero for global AdS3, similar to
what is discussed below for the thermal AdS3 case.

14We thank Shota Komatsu for useful conversations surrounding the sphere partition function and the
grand canonical ensemble.

15If ∂M3 is disconnected, we require
∫
ω = 1 for each boundary component. The orientation of the

boundary and the worldsheet is induced from the complex structure.
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(or computes in the canonical ensemble where the number of strings is fixed). The grand
canonical ensemble corresponds physically to fixing the boundary value of the B-field,
whereas in the canonical ensemble the electric flux is fixed.

Thus, the path integral will weight a string configuration by pdeg(γ), where p = e2πiσ.
As we discussed above,

deg(γ) = deg(Γ) = det
(
a b

c d

)
, (3.39)

and we already noticed in point 2 above that we can insert pdeg(γ) in the string one-loop
partition function while keeping modular invariance intact.

From a dual CFT point of view, we are computing the following partition function

Z(z, t, σ) =
∞∑
N=0

pNZSymN (T4)(z, t) , (3.40)

where p = e2πiσ is the chemical potential, as on the worldsheet.
In the context of the elliptic genus of the symmetric orbifold CFT (considering as seed

theory K3), it is standard to consider the grand canonical ensemble, which leads to Siegel
modular forms.

String path integral. Before going on, let us briefly recall the string path integral. The
general form of the string partition function takes the form

Z = exp
(

1
g2

string
sphere + torus + . . .

)
(3.41)

For the one-loop partition function, we do not include higher genera. The exponential
includes also disconnected worldsheets. The expression in the exponential is the string
free energy. Usually, we evaluate the path integral at fixed gstring and arbitrary number of
strings in the background. This is however not quite what we want in the present context.
We have g−2

string ∼ N under the holographic dictionary, where N represents the number of
fundamental strings in the background. As we have discussed above, N for a single string
is to be identified with deg(Γ) = ad − bc, which is unbounded.16 Thus, when describing
the system in string perturbation theory, we necessarily need to include arbitrarily large
winding sectors. Put differently, within the framework of string perturbation theory, there
cannot be a worldsheet theory that describes the symmetric orbifold for fixed N .

We can however still compute the string partition function at fixed chemical potential
σ in the grand canonical ensemble. In this context, this is the natural ensemble of string
perturbation theory. The grand canonical one-loop string partition function takes the form

Zstring(z, t, σ) = exp
( ∞∑
N=1

(
p esphere

)N
torus(N)

)
, (3.42)

16While it would be consistent from the point of view of modular invariance to bound N on the worldsheet,
see point 2 above, it is not consistent with the worldsheet fusion rules that are discussed in [7, 8].
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where the superscript means that we restrict the partition function to the N -wound sec-
tor. This formula can be derived as follows. Starting with the standard string partition
function (3.41), we can factor out the sphere contribution and obtain

Z = eNsphere exp (torus) . (3.43)

The sphere does not contribute to the number of strings in the background, since the
worldsheet remains small and does not reach the boundary. Write torus =

∑∞
n=1 torus(n).

Then we can expand the exponential as follows:

exp
( ∞∑
n=1

torus(n)
)

=
∑

m1,m2,...,

∏
n≥1

1
mn!

(
torus(n)

)mn
. (3.44)

To obtain the canonical partition function, we have to fix the total degree of the torus
contribution, i.e.

∑
nmnn = N ,

Zcanonical,N = eNsphere ∑∑
n
mnn=N

∏
n≥1

1
mn!

(
torus(n)

)mn
. (3.45)

It is now straightforward to pass to a grand canonical ensemble,

Z =
∞∑
N=0

pNZcanonical,N (3.46)

=
∞∑
N=0

(
p esphere

)N ∑∑
n
mnn=N

∏
n≥1

1
mn!

(
torus(n)

)mn
(3.47)

=
∑

m1,m2,...

∏
n≥1

(
p esphere

)mnn
mn!

(
torus(n)

)mn
(3.48)

= exp
( ∞∑
N=1

(
p esphere

)N
torus(N)

)
. (3.49)

Sphere contribution. To compute the string partition function, we should start with
the leading contribution — the sphere partition function. The sphere is hard to evaluate
in usual string perturbation theory, because we still have to divide by the global conformal
group SL(2,C), which naively gives 0. However, as usual, the worldsheet answer is expected
to diverge because the target space has infinite volume. When properly regularized, one
can obtain a finite answer, as was demonstrated for the two point function in [54], and
argued for in the case of AdS3 in [53]. As far as we are aware, no direct computation of
the sphere partition function has been performed.

Usually, the sphere contribution to the partition function is interpreted as the on-shell
spacetime action [55]. This becomes problematic in our setting, since the spacetime theory
is highly non-local and the supergravity action should not be trusted. We do not know
how to properly compute the sphere contribution to the string partition function.17

17The spacetime on-shell action is proportional to the regularized volume of thermal AdS3. This gives the
answer |q|− k2 , which when naively continued to k = 1 gives the correct answer for a single asymptotic string.

– 16 –



J
H
E
P
0
3
(
2
0
2
1
)
1
7
6

The sphere contribution is however fixed entirely by conformal invariance in the dual
CFT and corresponds to the usual |q|−

c
12 factor in the partition function. In the present

case, the central charge equals c = 6×number of strings [42, 56]. It is important to realize
that a single string can lead to different contributions of the boundary central charge,
depending on the number of times it asymptotically winds around AdS3. This can be
derived from the worldsheet by a DDF-like construction [42, 57].18 This winding number is
geometrically given by the degree of the map Γ that we discussed in the previous subsection,
which equals ad−bc. Thus, the sphere contribution is given by edeg(Γ)π Im t. In other words,
to account for the sphere contribution, we propose to perform the replacement

σ 7−→ σ − i

2 Im t (3.50)

in the torus partition function. This factor exactly cancels the opposite factor present
in (3.23).

Torus partition function. Because of the appearance of the δ-function, we can evaluate
the torus partition function in closed form. We have to integrate the worldsheet partition
function (3.24) over the standard fundamental domain of the torus. Since (c, d) transform
as a doublet under the modular group, we can extend for (c, d) 6= (0, 0) the region of
integration from the fundamental domain to the vertical strip −1

2 ≤ Re τ < 1
2 and restrict

the summation over c and d to c = 0 and d ∈ Z. For (c, d) = (0, 0), the δ-function
reduces to δ2(aτ + b), which is impossible to satisfy inside the fundamental domain of
the torus, except for a = b = 0. If a = b = 0, the δ-function is always true. However,
for (c, d) = (0, 0), the torus partition function is ZT4

R̃ (0, 0; τ), which vanishes due to the
fermion zero modes. Thus, the term (c, d) = 0 does in fact not contribute.19 This is the
same trick as was employed in [59, 60]. It is slightly surprising that the string partition
function is completely free from divergences.

After setting c = 0, the partition function is still symmetric under charge conjugation
(a, b, d)→ (−a,−b,−d) and thus we can further restrict d > 0 (remember that we already
excluded the case (c, d) = (0, 0)). We obtain the following connected string partition
function

Zconn(t, z) =
∞∑
N=0

∫
F

d2τ

Im τ
Z

(N)
worldsheet, thermal AdS3

(t, z; τ)eπN Im tpN (3.51)

=
∫
F

d2τ

Im τ

∑
a,b,c,d∈Z

eπ(ad−bc) Im tpad−bcZ

(
a b

c d

)
(3.52)

= Im t

∫
− 1

2<Re τ≤ 1
2

d2τ

Im τ

∑
a,b∈Z

∞∑
d=1

δ2(dt− aτ − b)padZT4
[
b
2
a
2

]
(dz; τ) . (3.53)

18This construction is done for global AdS3. The corresponding construction for the BTZ black hole was
discussed in [58].

19Formally the a = b = c = d = 0 term is δ2(0)ZT4

R̃ (0; τ), which is ill-defined. Let us regulate it by
choosing d to be slightly non-zero, which leads to δ2(dt)ZT4

R̃ (dz; τ). This vanishes in the limit d→ 0. If we
would do the same analysis for K3, we would instead get ZT4

R̃ (0; τ) = 24, the Euler characteristic of K3. In
this case, this would lead to a divergent contribution.
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Here, Z(N)
worldsheet denotes the N = ad− bc sector of the worldsheet theory. In this formula,

we already included the shift (3.50). Since both Im τ > 0, Im t > 0, only terms a ≥ 1 can
contribute in the above sum. This is the remnant of the condition (3.33). Next, we can
explicitly perform the integral,

Zconn(t, z) = Im t

∫
− 1

2<Re τ≤ 1
2

d2τ

Im τ

∞∑
a,d=1

∑
b∈Z

δ2(dt− aτ − b)padZT4
[
b
2
a
2

]
(dz; τ) (3.54)

= Im t

Im τ

∞∑
a,d=1

1
a2

∑
b∈Z/aZ

padZT4
[
b
2
a
2

]
(dz; τ)

∣∣∣∣∣
τ= dt+b

a

. (3.55)

Since τ covers the vertical strip in the integration, aτ covers a a-fold wider strip and hence
there are a possible values for b for which the localization constraint is satisfied. The factor
a−2 comes from the Jacobian of the δ-function. Simplifying further, we finally obtain

Zconn(t, z) =
∞∑

a,d=1

∑
b∈Z/aZ

pad

ad
ZT4

[
b
2
a
2

](
dz; dt+ b

a

)
(3.56)

The full disconnected one-loop partition function is now easy to obtain, we just have
to exponentiate the connected contribution,

Zthermal AdS3(t, z, σ) = exp

 ∞∑
a,d=1

∑
b∈Z/aZ

pad

ad
ZT4

[
b
2
a
2

](
dz; dt+ b

a

) . (3.57)

Geometrically, it is sometimes more illuminating to rewrite this as

Zthermal AdS3(t, z, σ) = exp
[ ∞∑
L=1

pL

L
TLZ

T4 (z; t)
]
, (3.58)

where TL is the (supersymmetric) Hecke operator

TLZ
T4(z; t) =

∑
a |L

∑
b∈Z/aZ

ZT4
[
b
2
a
2

](
dz; Lt+ ab

a2

)
. (3.59)

Here, L is the degree of the covering map and the Hecke operator sums the partition
function over the connected covering spaces of degree L.

3.6 Comparison to the symmetric product orbifold partition function

Let us compare this result to the torus partition function of the symmetric product orb-
ifold. It is simplest to compute the R̃ sector partition function of the symmetric product
orbifold [61, 62], which takes the form

ZSym
R̃ (t, z, σ) = exp

 ∞∑
m,w=1

∑
r∈Z/wZ

pmw

mw
ZT4

[
0
0

](
mz; mt+ r

w

) . (3.60)
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Here, w labels the twisted sectors and r achieves the orbifold projection, which simply
projects to all the states with h− h̄ ∈ Z. The other three spin structures can be found by
flowing z → z + 1 (R), z → z + t (ÑS) and z → z + t+ 1 (NS). This gives

ZSym
R (t, z, σ) = exp

 ∞∑
m,w=1

∑
r∈Z/wZ

pmw

mw
ZT4

[
m
2
0

](
mz; mt+ r

w

) , (3.61a)

ZSym
ÑS (t, z, σ) = exp

 ∞∑
m,w=1

∑
r∈Z/wZ

pmw

mw
ZT4

[
r
2
w
2

](
mz; mt+ r

w

) , (3.61b)

ZSym
NS (t, z, σ) = exp

 ∞∑
m,w=1

∑
r∈Z/wZ

pmw

mw
ZT4

[
r+m

2
w
2

](
mz; mt+ r

w

) . (3.61c)

By comparison with the string result, we have hence exactly

Zthermal AdS3 = ZSym
ÑS . (3.62)

This is the expected spin structure from thermal AdS3. In general, when fixing a bulk
manifold (as we did for thermal AdS3), we should sum over all possible compatible spin
structures. Since in thermal AdS3 the spatial cycle is contractible, only the NS and ÑS
spin structures extend in the bulk.

We implicitly computed the supersymmetric partition function with (−1)F insertions.
We can also compute the partition function in the NS sector without (−1)F insertions,
which corresponds to the other compatible spin structure on thermal AdS3. This can
easily be achieved by flowing z → z + 1, which exchanges the two spin structures. This
is because z had the interpretation of an SU(2) rotation by diag(eπiz, e−πiz) around the
spacetime thermal circle. Since fermions have half-integer charges, sending z → z + 1
changes their periodicity. This flow can directly be performed on the worldsheet and since
z was just a parameter of the orbifold does not break worldsheet modularity. This leads
to the immediate matching between the NS and the ÑS spin structure and thermal AdS3
with the corresponding spin structure.

As was already mentioned, the R-sector spin structure is not compatible with thermal
AdS3. Thus, the R-sector cannot correspond to thermal AdS3. Since the S-modular trans-
formation exchanges the ÑS sector and the R-sector, the spatial cycle in the corresponding
bulk geometry becomes non-contractible. This is the well-known Euclidean BTZ black
hole. One can question whether the distinction between the BTZ black hole and thermal
AdS3 makes sense in the tensionless limit. We will stick to the conventional geometric
interpretation and consider them as two distinct bulk geometries.

3.7 Lessons

We have seen that the thermal AdS3 one-loop string partition function is already modular
invariant (up to the choice of spin structure that break the modular group down to an
index 3 subgroup) and accounts for the full symmetric orbifold partition function of the
given spin structure. This is surprising for a variety of reasons.
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One-loop exactness. We have only computed the one-loop partition function on ther-
mal AdS3. One would expect that also higher genus corrections are necessary to obtain
a fully modular invariant partition function and presumably even D-instanton corrections.
We will argue in section 5 that at least the perturbative corrections vanish.

Sum over bulk geometries. From a gravity point of view, we should sum over all
possible bulk geometries in order to reproduce the boundary partition function [17–24]. In
this case, this involves all the SL(2,Z) images of thermal AdS and possibly also conical
defects. The fact that the partition function is already modular invariant means that all
the SL(2,Z) images of thermal AdS3 with the same spin structure have the same partition
function which suggests that they are indistinguishable by string theory. We will argue
that this picture holds much more generally for the tensionless string. Similarly, we will
check in the next section that the conical defect also leads to the same partition function.

Hawking-Page phase transition. For fixed (large) N , the symmetric orbifold possesses
a Hawking-Page phase transition at temperature THP = 1

2π corresponding to the self-dual
torus [27, 28]. Conventionally this is interpreted as follows in the dual gravitational theory.
The gravitational path integral instructs us to sum over all possible geometries compatible
with the boundary, i.e. at least the full SL(2,Z) family of black holes. Below the Hawking-
Page temperature THP = 1

2π (and at vanishing spin potential), this sum is dominated by
thermal AdS3, whereas above the Hawking-Page temperature the BTZ black hole becomes
the dominating saddle. From this point of view, it is very counterintuitive that the entire
CFT partition function arises from one bulk geometry. Of course, we still have to sum over
spin structures, but this does not resolve the problem, since we can for example consider
the NS spin structure that is compatible both with thermal AdS3 and the BTZ black hole.
In our setting, the contribution to the NS spin structure from thermal AdS3 and the BTZ
black hole is identical.

A semiclassical explanation of this apparent paradox is the following. Instead of sum-
ming over bulk geometries, we sum over a variety of string configurations, as encoded by
the appearance of the δ-functions in the worldsheet partition function (3.24). The gravi-
tational sum over saddles is replaced by the sum over worldsheet configurations. Naively,
one would think that this is always dominated by the sphere topology in the large N limit.
However, as discussed in section 3.5, the torus partition function depends also on N , which
is why one naturally computes the grand canonical partition function. Depending on the
temperature, the torus contribution can compete with the sphere. Roughly speaking, for
low temperatures, the sphere (or the vacuum) dominates, whereas the torus dominates for
high temperatures.

Let us consider the case where t is purely imaginary, i.e. no spin potential is turned on.
Then there are two possible dominating string configurations. This parallels essentially the
discussion for the symmetric product orbifold [63, 64]. For low temperatures, the vacuum
sector is dominating. The vacuum of the dual CFT is identified with a gas of spherical
worldsheets, together with toroidal worldsheets whose modular parameter agrees with the
boundary modular parameter (i.e. the terms with a = d = ±1 and b = c = 0 in (3.23)).
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For high temperature, there is still a gas of spherical worldsheets, but only one toroidal
worldsheet with modular parameter

τ = −N
t
. (3.63)

This corresponds to the term a = d = 0, b = ±N and c = ∓1 in (3.23). Geometrically,
this is one string that winds N times around the boundary of thermal AdS3.

The black hole/string transition. This gives another interpretation why we do not
have to sum over different geometries. The contribution of the BTZ black hole to the
symmetric orbifold partition function is replaced by a single perturbative very long string
winding around the boundary of thermal AdS3. This is in stark contrast to the situation
for higher amounts of NS-NS flux, where black holes are expected to contribute to the
dual CFT partition function. Thus, the tensionless string gives a concrete realization of
the black hole/string transition [36–38, 65, 66]. Let us recall the basic reasoning of this
transition. If strings fall toward the horizon of a black hole they stretch more and more
along the horizon. From the outside observer, the strings never reach the horizon. The
entropy of a single string becomes so large that the thermodynamically most advantageous
configuration is a single string. This motivates the conjecture that string-sized black holes
describe the same degrees of freedom as perturbative strings. In particular it was shown
in [37] that their entropy agrees to leading order (and even logarithmic corrections in the
extremal case [66]).

Here we have seen this phenomenon for the tensionless string. The appearance of
this transition for k = 1 was already qualitatively discussed in [38]. There are other
controllable settings that are expected to exhibit the black hole/string transition such as
the two-dimensional Euclidean black hole SL(2,R)/U(1) [67–69]. We have considered the
Euclidean setting which has no horizon. We expect that the Lorentzian geometry is much
richer and provides an ideal playground to explore this transition.

Hagedorn temperature. Usually, perturbative string theory breaks down at the Hage-
dorn temperature THagedorn [70]. This manifests itself in various ways. The main physical
reason is that there is a new tachyon appearing from the winding of the thermal circle and
thus the string one-loop partition function diverges. For AdS3 × S3 × T4, the Hagedorn
temperature is [71, 72]

THagedorn = 1
2π

√
k(k + 2)
4k − 1 , (3.64)

which for k = 1 agrees with the Hawking-Page temperature THP = 1
2π . One might think

that our computation should only be well-defined for Im t > 1, which corresponds to
temperatures below the Hagedorn temperature.

What saves our calculation is again the grand canonical potential. From the point of
view of the dual CFT, the Hagedorn temperature is a large N effect and the partition func-
tion only diverges at infinite N . There is a reflection of this in the grand canonical ensemble.
Consider the NS-sector partition function of the symmetric product orbifold (3.61c). The
other spin structures can be discussed similarly, but lead to less stringent constraints. We
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should make sure that the sum over m and w converges, since a divergence would precisely
signal a breakdown of string perturbation theory. Let us consider the case where both σ

and t are purely imaginary. We first consider low temperature, i.e. large Im t. Then the
dominating term comes from the vacuum of the partition function ZT4 and the term w = 1.
These terms lead to the sum

Im t→∞ : ZSym
ÑS (t, z, σ) ∼ exp

[ ∞∑
m=1

1
m

e2πimσ+πm Im t

]
, (3.65)

which converges, provided that
Im t < 2 Imσ . (3.66)

There is also a constraint from high temperature, which follows from the S-modular trans-
formation in t. Together, we have

Im t ,
1

Im t
< 2 Imσ . (3.67)

We believe that these conditions are necessary and sufficient to ensure convergence. For
chiral CFTs, this can be established more rigorously, see [73].

Thus, the Hagedorn transition in the grand canonical ensemble appears as a critical
chemical potential, but as long as we assume that the imaginary part of the chemical
potential is big enough, there is no divergence and string perturbation theory should be
trustworthy.

4 Conical defect geometries

Let us move on to the next torus boundary geometry discussed in section 2.1 — the
conical defect geometry. We may get it from global AdS3 by a Z× ZM orbifold. The goal
of this section is to compute the tensionless string partition function on this geometry. The
main take away from this section is that the full string partition function is the same as for
thermal AdS3 (that van be viewed as the conical defect with M = 1). We will be somewhat
briefer than for the thermal AdS3, since the computation is very similar to that case.

The orbifold action (2.6) is diagonal and we can thus implement the untwisted sector
by the replacement θ 7→ dt+n

M , where n ∈ ZN and d ∈ Z. On the su(2) chemical potential,
we perform the replacement ζ → dz, which performs the same R-symmetry rotation around
the non-contractible cycle as in the thermal AdS3 case.

There is one subtlety we have to take care of. Since the spacetime spin structure is the
ÑS spin structure, we do not actually want to enforce periodicity in t 7→ t+1, but rather in
t 7→ t+2 and thus the untwisted sector is obtained from the replacement θ 7→ dt+2n

M .20 This
orbifold will be only consistent with the spin structure provided that M is odd. Since the
result is antiperiodic in t→ t+ 1 it would otherwise imply periodic boundary conditions in
t→ t+M , which would imply that we would need to start with a R̃ spin structure. Thus,
we will assume M to be odd in the following.

20Or alternatively periodicity in simultaneous t 7→ t+ 1 and z → z + 1.
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4.1 Worldsheet torus partition function

The different sectors of the partition function are labeled by a matrix a b

m n

c d

 , (4.1)

where as before a, b, c, d ∈ Z and additionally m, n ∈ ZM . This matrix transforms as three
doublets under the modular group. The untwisted sector of the torus partition function
of the orbifold is straightforward to write down. It is a simple generalization of (3.21)
and reads

Z

a b

0 n
0 d

 (t, z; τ) = Im t

2M2 δ
2
(
dt+ 2n
M

− aτ − b
)

e−
πad Im t
M ZT4

[
b
2
a
2

]
(dz; τ) . (4.2)

The additional prefactor M−2 compared to the previous case comes about as follows. One
power M−1 is the volume of the group ZM . The volume of the group Z is also bigger by
a factor of M , since we effectively replaced t by t

M in the orbifold action (2.6) compared
to (2.3). We perform a modular transformation to deduce

Z

aα+ bγ aβ + bδ

nγ nδ

dγ dδ

 (t, z; τ)

= 1
|γτ + δ|2

Z

a b

0 n
0 d

(t, z; ατ + β

γτ + δ

)
(4.3)

= e−
πad Im t
M Im t

2M2|γτ + δ|2
δ2
(
dt+ 2n
M

− aατ + β

γτ + δ
− b
)
ZT4

[
b
2
a
2

](
dz; ατ + β

γτ + δ

)
(4.4)

= e−
πad Im t
M Im t

2 δ2((dt+ 2n)(γτ + δ)− aM(ατ + β)− bM(γτ + δ)
)

×
∣∣∣∣exp

(
γπi

2 (γτ + δ)d2z2
)∣∣∣∣2 ZT4

[
1
2(aβ + bδ)
1
2(aα+ bγ)

]
(dz(γτ + δ); τ) . (4.5)

We can almost uniquely read off the value for the different sectors.21 We find

Z

 a b

m n

c d

 = N Im t

2 δ2(tN(cτ + d)− (aN − 2m)τ − (bN − 2n)
)

× e−π((aN−2m)d−(bN−2n)c) Im t
N2

∣∣∣∣exp
(
cπi

2 (cτ + d)z2
)∣∣∣∣2 ZT4

[
b
2
a
2

]
(z(cτ + d); τ) . (4.6)

21The orbifold group has the non-trivial cohomology group H2(Z× ZM ; U(1)) ∼= ZM and thus one could
introduce discrete torsion [74, 75]. The unique cocycle that can be introduced in the partition function is
ε((c,m), (d, n)) = e 2πi

M
x(cn−md) for x ∈ ZM . We will continue with the model without discrete torsion and

comment further in footnote 23 on the model with discrete torsion.
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Notice also that
1
2(aM − 2m) = 1

2a mod Z ,
1
2(bM − 2n) = 1

2b mod Z , (4.7)

because of our assumption that M is odd. Thus, we can define the combination A =
aM − 2m and B = bM − 2n, which allows us to write the result in a simple form,

Z

(
A B

c d

)
= Im t

2 δ2(t(cτ + d)−Aτ −B
)

exp
(
−π det

(
A B

c d

)
Im t

M2

)

×
∣∣∣∣exp

(
cπi

2 (cτ + d)z2
)∣∣∣∣2 ZT4

[
B
2
A
2

]
(z(cτ + d); τ) . (4.8)

Since M is odd, A and B run exactly once over the integers. At this point, the result looks
almost identical to the result obtained for thermal AdS3, compare to eq. (3.23) The only
difference is the factor of M−2 in the exponential. The full worldsheet partition is obtained
by summing over all integers A,B, c, d.

We should note that the worldsheet partition function again localizes on configurations
for which

t = Aτ +B

cτ + d
, (4.9)

which as discussed in section 3.4 are the modular parameters for which there is a holomor-
phic covering map Γ from the worldsheet to the boundary. This interpretation is unchanged
and in particular

deg(Γ) = det
(
A B

c d

)
(4.10)

yields again the number of fundamental strings in the background.

4.2 String partition function

After having computed the worldsheet torus partition function, we can again compute the
one-loop spacetime partition function. This follows the same steps as in section 3.5.

Sphere contribution. We again do not know how to compute the sphere partition func-
tion directly in the worldsheet theory. Let us first compute the value that is suggested by
supergravity (even though we should not trust supergravity in this regime). The super-
gravity action simply computes the regularized volume of the resulting orbifold geometry.
We have, see e.g. [23],22

vol(H3/(Z× ZM )) = −π
2 Im t

M2 , (4.11)

which suggests that the sphere contribution equals 1
M2 times the sphere contribution of

thermal AdS3, i.e.

sphere = det
(
a b

c d

)
π Im t

M2 , (4.12)

22This result is intuitively straightforward to understand. The volume of H3 can be obtained from the
volume of S3 by analytic continuation, which leads to vol(H3) = −2π2. We should divide this by the volume
of the orbifold group, which, as explained below eq. (4.2), equals 2M2

Im t
.
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thus exactly cancelling the ground state energy in (4.8). This can again be implemented
by a shift in the chemical potential,

σ 7−→ σ − i

2M2 Im t . (4.13)

Alternatively, this ground state energy may also be fixed by conformal invariance in the
boundary CFT alone. Under the additional ZM orbifold, the Virasoro generators in the
dual CFT transform as

Ln → e
2πin
M Ln . (4.14)

Thus, the conical orbifold preserves only Virasoro generators Ln with n ∈ MZ. In order
to bring the algebra back into a canonical form, we define

L̃n = 1
M
LnM + c̃

24

(
1− 1

M2

)
, (4.15)

where c̃ = cM . Then L̃n satisfies the Virasoro algebra with central charge c̃ = cM . In the
conical defect background, L̃n are the Virasoro generators. Thus the total (holomorphic)
ground state energy should be

− c̃

24 + c̃

24

(
1− 1

M2

)
= − c̃

24M2 . (4.16)

The first term is the ground state energy in thermal AdS3 and the second the shift appearing
in (4.15). The central charge is c̃ = 6× number of strings = 6(ad− bc), which shows again
that the sphere contribution should precisely cancel the ground state energy in (4.8).

One-loop partition function. With these preparations, the string one-loop partition
function in the conical defect geometry reads

Zconn(t, z, σ) =
∞∑
N=0

∫
F

d2τ

Im τ
Z

(N)
worldsheet, conical defect(t, z; τ)pN exp

(
N
π Im t

M2

)
(4.17)

=
∫
F

∑
a,b,c,d∈Z

pad−bc
Im t

2 δ2(t(cτ + d)− aτ − b
)

×
∣∣∣∣exp

(
cπi

2 (cτ + d)z2
)∣∣∣∣2 ZT4

[
b
2
a
2

]
(z(cτ + d); τ) . (4.18)

In this formula, we again renamed A → a and B → b. From here on, the calculation is
identical to the thermal AdS3 computation and we obtain23

Zconical defect(t, z, σ) = Zthermal AdS3(t, z, σ) = ZSym
ÑS (t, z, σ) . (4.19)

23With the discrete torsion turned on, there are extra phases in the partition function. They can be
summarized as

Zxconical defect(t, z, σ) = ZSym
ÑS (t, z, σ + x

M
) ,

where x ∈ ZM . In the canonical partition function, we would hence simply multiply the contribution from
SymN (T4) by e 2πixN

M . Thus, the canonical partition function only changes by a phase. We do not know an
interpretation of this phase from the boundary point of view.
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We have thus given strong evidence for the claim that string propagation on thermal AdS3
and the conical defect geometries is equivalent in the tensionless limit.

In the conical defect geometries both cycles of the torus are non-contractible and thus
there is geometrically no problem in putting any spin structure on the boundary. However
it is not possible to obtain the R-sector spin structures by taking an orbifold of global AdS3.

4.3 Rearrangement of the spectrum

The conclusion that the string partition function on the conical defect geometry equals
the string partition function on thermal AdS3 might seem counter intuitive to the reader
familiar with the dictionary of AdS3/CFT2. In [76], the gravity dual of twisted sector
ground states in the symmetric product orbifold was established.

Let us first consider a single-particle chiral primary in the symmetric orbifold, which
means that it is a state in the twisted sector specified by the cyclic permutation (1 · · ·M).
Every twisted sector possesses 16 chiral primaries, which we may denote by σε1ε2ε3ε4M , where
εi = ±1. The conformal weight of these chiral primaries is

h = M

2 + ε1 + ε2
4 , h̄ = M

2 + ε3 + ε4
4 . (4.20)

Let us focus on the ground state σ−−−−M . In supergravity, this state can be interpreted
as a coming from an S3 harmonic of spin M−1

2 . For fixed M , the mass of this state is of
order one and is hence not heavy enough to backreact on the geometry. This changes if we
consider the twisted sector of the conjugacy class

(1 · · ·M)(M + 1 · · · 2M) · · · ((n− 1)M + 1 · · ·nM) , (4.21)

where we assume for simplicity that nM = N . This yields a (multiparticle) chiral primary
of conformal weight

h = h̄ = n(M − 1)
2 = N(M − 1)

2M (4.22)

in the spectrum. This is of order N and one can hence interpret it as a different bulk
geometry. Lunin, Mathur and Saxena showed that the corresponding bulk geometry is
the conical defect with deficit angle 2π(1 −M−1), which is exactly the geometry we have
considered in this section. Since we have placed the conical defect only in AdS3, we should
actually talk about the twisted sector ground state and not the chiral primary in this
twisted sector.

These statements fit naturally together when we notice that while the total string spec-
trum agrees on the conical defect and thermal AdS3, the orbifold rearranged the spectrum
quite non-trivially. The untwisted sector of the ZM orbifold corresponds to sectors with
m = 0 and c = 0 in (4.6), which translates in (4.8) to sectors where M |A and c = 0. We
thus see that M |Ad − Bc and so the degree of the covering map is always a multiple of
M . The untwisted sector of the orbifold hence maps only to twisted sectors whose twist
is a multiple of M . In particular, the vacuum of the conical defect (i.e. the state in the
untwisted sector of the orbifold with the lowest spacetime energy) gets identified with the
state (4.21), which is exactly the statement of [76]. The missing twisted sectors of the
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symmetric orbifold arise from the perspective of the conical defect from the twisted sectors
of the worldsheet orbifold.

We should also note another phenomenon. The ground state energy of the M -twisted
sector in thermal AdS3 arises in the two backgrounds partially from the sphere and the
torus, but the proportions are different. We already explained that the two topologies can
contribute at the same order, since the N−1 suppression of the torus can be compensated
by taking the winding or the number of the strings to be of order N . Let us suppose as
above that nM = N and we take the state (4.21). In thermal AdS3, the (holomorphic)
ground state energy arises as follows:

− cN

24 + cn(M2 − 1)
24M = − cN

24M2 , (4.23)

where the first and second term correspond to the sphere and the torus contribution re-
spectively. In the conical defect, the ground state energy arises directly from the sphere
diagram, see eq. (4.12). Interpreting the sphere contribution as the classical part of the
bulk theory, we see that the conical defect is classically dual to the M -twisted sector
ground states, but to see the M -twisted sector from thermal AdS3, strong quantum effects
are necessary.

This provides us with another important lesson. We should think of different back-
grounds as different duality frames of the same underlying theory. Different sectors of
the theory are easier to access from one perspective or another. In particular, the clas-
sical description around these backgrounds captures different sectors of the symmetric
product orbifold.

5 Handlebodies and wormholes

In this section, we will comment about more complicated geometries, the implications for
the AdS/CFT correspondence and stringy black hole physics.

In general, we would like to consider n Riemann surfaces Σgi (with fixed spin struc-
tures). From a gravity point of view, the partition function on these disconnected spaces
can be computed by summing over all possible three-manifolds with the given boundary
and compatible spin structures,24

ZSym
Σg1t···tΣgn =

∑
M3 spin

∂M3=Σg1t···tΣgn

ZM3 , (5.1)

where ZM3 is the partition function evaluated on the spin manifoldM3.25 In order for the
geometries to correspond to saddles of Euclidean gravity, one should also impose that they
are locally AdS3, i.e. hyperbolic manifolds. However, also non-saddles can contribute which
was demonstrated recently in the case of 3d gravity for the topologyM3 = T2×[0, 1] [31].26

24Conceivably, this sum should also extend over orbifold geometries such as the conical defect that we
discussed above. There is considerable debate about this issue [23, 24, 31].

25Every orientable 3-manifold is spin, see e.g. [77, page 46].
26Historically, it was often assumed that the putative dual CFT to pure 3d gravity is extremal and

holomorphically factorized. In this holomorphic setting and for other holomorphic quantities like the elliptic
genus, the sum over bulk geometries seems to work well [78–81].
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We shall see that the corresponding formula looks very different for the tensionless limit of
string theory.

Notice that we work in the grand canonical ensemble with fixed chemical potential.
From the boundary CFT point of view, the grand canonical partition function naturally
factorizes on disconnected boundary components,

ZSym
Σg1t···tΣgn =

n∏
i=1

ZΣgi . (5.2)

Interpreted in terms of the canonical partition function, we would hence consider the
collection of symmetric product orbifolds SymNi(T4) where only N1 + · · ·+Nn = N is kept
fixed. One could refine the analysis by introducing different chemical potentials for the
different boundary components.

Unfortunately, there are major technical difficulties that prevented us to compute the
string partition function beyond the cases that we have considered:

1. The thermal AdS3/BTZ/conical defect geometry can be obtained by an orbifold with
abelian orbifold group that just acts by diagonal matrices in SL(2,C), see eqs. (2.3)
and (2.6). Consequently it is quite simple to implement this orbifold on the world-
sheet partition function. The third orbifold action that leads to a torus boundary
in section 2.1 could also be computable. However, the orbifold generators are non-
diagonalizable, which means that one should work in a coherent state basis on the
worldsheet. We have not tried to do this. For any other boundary geometry, the
corresponding orbifold group is vastly more complicated (a non-elementary Kleinian
group). For example the genus 2 handlebody can be obtained by orbifolding with a
Schottky group that is isomorphic to a free group on two free generators.

2. All ‘interesting’ geometries beyond those we have considered have at least genus 2
boundaries. This is explained in section 2.2. For a genus 2 boundary, we actually
expect the worldsheet torus partition function to vanish, since there are no branched
covering maps Γ : Σ1 → Σ2. Thus, we would actually need to compute also the genus
g ≥ 2 worldsheet partition function to learn anything interesting.

In view of these difficulties, we will not attempt to compute these partition functions
explicitly, but instead assume that they behave similarly to the cases we could compute.
In particular, we expect the following general statement to always hold true:27

The tensionless string partition function receives only contributions from
worldsheets Σg for g ≥ 1 that cover the boundary of M3 holomorphically.

Evidence for this proposal was collected in a number of circumstances: [8] discussed the
case where both the worldsheet and the boundary is a sphere.28 This was subsequently

27This statement is expected to have a generalization to correlation functions as well, although we do
not need it here. This is discussed in [8, 9] in the case of global AdS3, but we expect that the analogous
statement for general bulk manifolds is also true.

28In order to get non-trivial covering maps, one has to look at correlators that introduce punctures in
the two spheres. The relevant correlators were also studied using a different method in [10].
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generalized to higher genus worldsheets on global M3 = AdS3, i.e. ∂M3 = CP1. Finally,
we have established that the same is true in the case of a genus 1 worldsheet in thermal
AdS3 in section 3 and for the conical defect geometry in section 4.29 We shall assume
in the following discussion that this paradigm holds true in full generality. Notice in
particular that for a disconnected boundary ∂M3 = Σg1 t · · · t Σgn , this means that the
worldsheet covers either of the boundary components. While partial proofs and evidence
of this statement is available, it would be very important to give a general argument for
the validity of this statement, since it lies at the heart of the AdS3/CFT2 correspondence.

There is one notable exception that we excluded from the statement. The sphere does
not have any moduli and the volume of its automorphism group is infinite. Thus, it is
much more subtle than the higher genus terms. There is never a holomorphic map from a
spherical worldsheet to the boundary. The localization statement hence seems to suggest
a vanishing answer which we saw explicitly in the case of thermal AdS3 and the conical
defects is not true. Instead the sphere contribution tends to shift the chemical potential,
see eqs. (3.50) and (4.13).30

5.1 Higher genus boundary

Let us first discuss a single higher genus boundary Σg. The general expectation is that
the worldsheet theory localizes on all holomorphic covering maps Γ : Σ′g′ 7→ Σg. The
existence of such covering maps can be understood fully algebraically, which is the subject
of Hurwitz theory.

In the following we will only need the unramified case. The only topological constraint
for such a map to exist follows by comparing Euler characteristics,31

2− 2g′ = χ(Σ′g′) = dχ(Σg) = d(2− 2g) , (5.3)

where d ∈ Z≥1 is the degree of the covering map. Thus, the genus 0, 1 and ≥ 2 partition
functions behave very differently.

1. g = 0. In this case, the only contribution to the partition function arises from
a spherical worldsheet (or a collection of disconnected spherical worldsheets) that
cover the boundary of global AdS3 once.

2. g = 1. This is the case we have considered so far in this paper. In this case we
necessarily also have g′ = 0, i.e. only worldsheet tori contribute to the torus partition
function.32 However, the degree of the covering map is unconstrained in this case.

29The localization for thermal AdS3 was already anticipated in [7].
30The only case, where such a holomorphic map exists is the case of global AdS3, where the boundary is

itself a sphere. The sphere partition function of the boundary CFT is divergent and the finite piece can be
removed by counterterms, which indicates that a version of localization still holds for the sphere.

31It is sufficient for a covering map to exist topologically, the Riemann existence theorem guarantees that
in this case it will also exist holomorphically.

32Strictly speaking, also the worldsheet sphere contributes, but since the sphere has no moduli, we view
this as an exceptional case.
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This explains in hindsight, why we did not need to include the higher genus world-
sheets to fully account for the torus partition function and why our result turned out
to be exact.

3. g ≥ 2. In this case we have g′ ≥ g, depending on the degree of the map. g′ is
otherwise unconstrained.

In the following we continue to discuss the g ≥ 2 case. There are a priori many bulk
manifolds that could contribute to the CFT partition function. Particularly simple hy-
perbolic manifolds are handlebody geometries. However, starting from genus 2, there are
also non-handlebody bulk geometries, see also the discussion in section 2.3. It is also pos-
sible that one can include various orbifold geometries as saddlepoints of the gravitational
path integral.

We expect that the string picture is much simpler. By computing the string one-
loop partition function, we have given evidence so far that string propagation on thermal
AdS3, on the various black hole geometries in AdS3 that are related to thermal AdS3 by a
boundary SL(2,Z) transformation (modulo the choice of spin structure), and on the conical
defect geometry is equivalent. We believe that the situation is qualitatively similar for a
higher genus boundary. In other words, we conjecture that string theory on the various
handlebody and non-handlebody geometries with the same higher genus surface (and same
choice of boundary spin structure) is equivalent. The vacuum of one string background
can be reinterpreted in another background as a highly excited string state. There should
be various phase transitions in the moduli space Mg,0 because different configurations
dominate the partition function.

It is nothing new that string theory is insensitive to topological features of the target
manifold, but this example takes this phenomenon to the extreme. Thus, in this string
theory example, one can choose any geometry compatible with the boundary spin structure:

ZSym
Σg = ZM3 . (5.4)

N-dependence. There is a confusing aspect about this proposal that again has to do
with the grand canonical ensemble. Since g2

string ∼ N−1, we would expect that the genus
g contribution to the partition function is suppressed. Actually, all higher genus surfaces
contribute at the same order in string theory, but only finitely many of them do for fixed
N . This is in agreement with the higher genus partition function of the symmetric orb-
ifold, where higher genus surfaces are not suppressed in N−1 [64, 82]. To understand
this, consider eq. (5.3). A genus g′ worldsheet will contribute d units of fundamental
strings and contributes a prefactor g2g′−2

string = N1−g′ = Nd(1−g). Here we made use of the
relation (5.3). Accounting for disconnected worldsheets, the canonical partition function
receives a prefactor NN(1−g). This factor can be cancelled in the boundary theory by in-
cluding the counterterm α

∫
Σg
√
gR in the action of the boundary theory for appropriate α.

We note that this problem does not arise in thermal AdS3. It would be good to understand
this better.33

33A perhaps more natural interpretation is the following. The string worldsheet for the covering surfaces
is essentially confined to a two-dimensional subspace of AdS3, which could change the effective string
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5.2 Disconnected boundaries

The sum over geometries (5.1) implies a serious paradox for the AdS/CFT correspon-
dence. While the left-hand-side of the equation is factorized, the factorization is broken
on the right-hand-side by the existence of wormhole geometries that connect the various
boundary components.

In gravity theories, this is usually interpreted that the dual theory is an ensemble
of theories. The ensemble average breaks the factorization on the left-hand-side of (5.1).
This has been explored in detail in JT gravity in [29, 30] and there are signs that a similar
statement also holds in pure 3d gravity [31].

That resolution is not possible in the present example, because there is a single bound-
ary CFT. Consider for example a saddle of the supergravity action of the form Σ2× [0, 1],
where Σ2 is a genus 2 surfaces, see the discussion in section 2.4. There are also discon-
nected saddles with the same boundaries, for example the disjoint union of two genus 2
handlebodies. In analogy to the indistinguishability of thermal AdS3 and the conical defect
geometry (or any of the SL(2,Z) family of black holes with compatible spin structure), we
conjecture that these geometries are indistinguishable for the tensionless string. In general,
we conjecture the following property of the tensionless string:

The tensionless string distinguishes hyperbolic geometries (i.e. saddles of
the gravity action) only according to the boundary geometry.

Assuming this conjecture to hold true in general, we have to suitably modify (5.1) for the
disconnected case. We can always pick a disconnected manifoldM3 =M3,1 t · · · t M3,n,
where the spin structure of M3,i is compatible with the spin structure of Σgi . Thus we
have for the tensionless string

ZSym
Σg1t···tΣgn = ZM3 =

n∏
i=1

ZM3,i , (5.5)

and thus also the bulk part of (5.5) factorizes.
We emphasize that the identification is not trivial. While the factorization becomes

obvious when we choose a disconnected representation of the partition function, it becomes
obscure when we choose a connected representation. The entire spectrum should rearrange
itself as we discussed it for the conical defect in section 4.3. In particular, from the point
of view of the connected geometry, large quantum corrections are necessary to the classical
action to achieve a factorized partition function. It would be interesting to understand the
rearrangement in more detail in simple examples.

We finally mention that one can generalize the grand canonical ensemble for several
boundaries to have independent chemical potentials for the different boundaries, which
corresponds to fixing the field strength of the B-field to have different values close to the
different boundaries. We can then refine (5.5) as follows:

ZSym
Σg1t···tΣgn (t, z, σ1, . . . , σn) = ZM3(t, z, σ1, . . . , σn) =

n∏
i=1

ZM3,i(t, z, σi) . (5.6)

coupling constant of these worldsheets to be N -independent. This would be similar to the mechanism
explained in [38, 83]. We leave a precise understanding of this for future work.
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One might also view the grand canonical ensemble as a kind of ensemble average. We
emphasize however that the grand canonical ensemble and the collection of canonical en-
sembles contain the same information and one could translate our analysis to the canonical
ensemble, where not such ‘average’ occurs.

6 Discussion

6.1 Summary

In this paper, we have studied the tensionless string on hyperbolic manifolds with various
Riemann surfaces as boundaries. Because of computational simplicity, we mainly focused
on the genus 1 case, where we analyzed thermal AdS3, the BTZ black hole and the con-
ical defect geometry. We learned and confirmed some physical lessons. They are mostly
reflections and consequences of each other. We have provided evidence for the following
main statements.

1. Tensionless string theory on different hyperbolic manifolds with the same boundary
surfaces and the same boundary spin structure is equivalent.

2. This equivalence should be understood as a duality. Some states arise in a simple
(classical) manner on some manifolds, while they correspond to highly excited states
on others. In particular, the string sphere contribution in one background can become
a higher genus contribution in another background.

3. These dualities solve the factorization problem that is present for example in JT grav-
ity [29, 84, 85] in this specific setting. The disconnected and connected contributions
to a wormhole partition function agree and thus the partition function manifestly
factorizes also in the bulk.

4. The theory does not contain any black holes. Instead, black holes become a single very
long string. This is an explicit realization of the black hole/string transition [36, 37].

5. On a more technical level, we found it convenient to compute string partition func-
tions in the grand canonical ensemble. We amassed further evidence for the localiza-
tion of worldsheet correlators to covering spaces.

6.2 Discussion

There are several points that are not well understood that we would like to mention.

Grand canonical ensemble. Our use of the grand canonical ensemble in string per-
turbation theory was ad hoc. To make the computations presented in this article more
rigorous and to extend them to more complicated situations, it would be important to de-
velop the grand canonical formulation better. In particular, it would be very illuminating
if such a formalism could be derived from string field theory. We should also note that
the gstring dependence in this situation is somewhat confusing. In particular we have seen
that different higher genus surfaces can contribute at the same order, but the perturbative
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series still makes sense since it truncates for given N at sufficiently high order (and is
hence exact).

Sphere diagram. We fixed the contribution of the sphere diagram to the string par-
tition function using the constraints of conformal symmetry in the boundary and from
extrapolating the supergravity result to k = 1. It would be much more satisfying to give
a first principle derivation of the value within string perturbation theory. This requires
either a regularization of the usual string perturbation theory prescription or a different
gauge fixing of the SL(2,C) automorphism group of the Riemann sphere as is done in [54],
see also [86, 87].

Backreaction. We started with the ‘near-horizon limit’ of one NS5-brane, which has
mass of order 1/g2

string ∼ N . However, we put N fundamental strings in the background;
a single string winding N times around the boundary of AdS3 also has mass of order N
and thus its backreaction on the geometry is no longer negligible. This is exactly what we
found: the N -fold winding string gives a description of the BTZ black hole. However it is
actually questionable why we just trust string perturbation theory in this regime. Given
that the partition functions we computed match exactly those of the symmetric orbifold,
this seems to be the correct description. However, it would be interesting to understand
this point better.

Non-perturbative effects. The discussion in this paper was limited to the perturbative
sector of string theory, but in general one also expects D-instanton contributions to be
present. In the symmetric product orbifold, there is no indication of non-perturbative
effects and one hence might expect that the D-instanton corrections are absent. As a first
step in this direction one should classify possible worldsheet boundary states. It would
be good to understand this more directly analogously to the recent advances in another
potentially provable version of holography — the duality between c = 1 strings and Matrix
Quantum Mechanics [88–91].34

Non-saddle contributions. In 3d gravity, one should potentially also include geome-
tries that are not saddles, such as the Seifert manifolds considered in [24]. Since these are
not valid string backgrounds, we do not know how to set up string perturbation theory
around these backgrounds and we cannot exclude that we should include these backgrounds
in the full string path integral. Given that the other saddles are already included in the
perturbative partition function around a given saddle, we find it reasonable that the string
partition function that we have computed also accounts for these non-saddle contributions.

6.3 Future directions

Let us outline a couple of interesting questions for future research.

Euclidean wormhole. While we have only computed the partition function on geome-
tries with a single torus boundary, it would be important to confirm that the picture that
we developed indeed holds true. While this is probably not possible in closed form, one

34Also in the context of the c = 1 string, only certain ZZ-instantons were needed on the worldsheet in
order to reproduce the answer of Matrix Quantum Mechanics.
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could try to evaluate the partition function somewhat more abstractly. The general expec-
tation is that one can write it as a sum over T4 partition functions evaluated on covering
surfaces of the boundary.

Proof of localization. We have made use of the localization result that the worldsheet
theory localizes to covering spaces. While for thermal AdS3, we can directly check the
validity of this assertion, we had to assume it in the higher genus case. An important
technical open question is to give a full proof of this property. For correlators with a genus 0
boundary, this proposal passes strong consistency checks, such as the Ward identities of the
current algebra on the worldsheet [8, 9]. These arguments are however rather involved and
do not constitute a full proof or a conceptually clear understanding. It might be technically
easier to show localization in a topologically twisted version of the correspondence [92, 93].

Other instances. Our computations give hints about how string theory manages to
cure various problems that are present in quantum theories of gravity without known UV
completion, such as JT gravity or possibly also pure Einstein gravity on AdS3, whose
existence is unclear. At least in this specific instance various contributions to the string
path integral conspired to achieve factorization of the partition function. The ingredients
are however quite specific to the considered setting and holomorphic coverings etc. are
expected to be replaced by different concepts in more complicated theories.

There are related AdS3/CFT2 examples like AdS3 × S3 × S3 × S1 that seem to exhibit
very similar properties. There are two fluxes k+ and k− through the two 3-spheres and
varying them gives a one-parameter generalization of the story we have explored in this
paper. This background was discussed intensely in the literature and while for k+ = 1
there is a convincing proposed dual CFT, the symmetric orbifold of S3 × S1, no such
explicit proposal exists for general fluxes [94–97]. It would be worthwhile to understand
these features also in this background.

One particularly important and perhaps most-studied instance of AdS/CFT is the
correspondence between AdS5 × S5 and N = 4 SYM [1, 98]. In this case, no ensemble
average should or can be taken and thus one also needs to resolve the factorization problem.
There exist (stable) wormhole solutions in this context [99]. It is tempting to think that
a similar picture as the one proposed in the present context applies. From a dual CFT
point of view, the study of tensionless strings was pioneered in [100, 101]. In AdS5 × S5,
one can continuously vary the radius of AdS5 and thus better understand how this picture
connects to usual supergravity computations.

Deformations. For AdS3×S3×T4, the jump to k = 2 is rather drastic and the features
of the model change completely.35 The continuum signals a singularity of this point in
the moduli space [102]. Instead, one could try to deform the theory away from the (non-
singular) symmetric product orbifold by turning on Ramond-Ramond flux on T4. In the

35In the Euclidean setting, some aspects of our analysis might continue to hold for the long string sector
of the k ≥ 2 background, that is conjectured to be captured by a symmetric product orbifold of an N = 4
Liouville theory [57, 102, 103]. The theory exhibits a continuum which makes the computation of the
partition function much more subtle.
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CFT, this can be done in conformal perturbation theory and one could try to understand
how the spectrum gets deformed in the various backgrounds at least to leading order
in conformal perturbation theory, see e.g. [104]. One expects from U-duality that this
deformation brings one closer to the supergravity point of the system [105, 106].

Lorentzian picture. Our consideration was entirely Euclidean, but the correspondence
between strings on AdS3×S3×T4 at k = 1 and the symmetric product orbifold is expected
to hold also true in a Lorentzian spacetime. It would be important to work out the
corresponding Lorentzian picture of our analysis. The spacetimes we have considered
admit different analytic continuations [107]. In this context, similar ideas than the one
presented in this paper were recently advocated by Jafferis [108].

Symmetries of the unhiggsed phase of string theory. It is tantalizing to speculate
that most of what we have said in this paper is a consequence of the enormous underlying
symmetry principle of unhiggsed string theory that allows only for a unique answer of the
string partition function. At present, there is insufficient understanding of these symmetries
to answer this question. At the level of the chiral algebra of the symmetric orbifold, the
corresponding symmetry is the so-called Higher Spin Square, which is a very big extension
of the higher spin symmetry [109, 110].
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A The bosonic string on thermal AdS3

In this appendix, we show how to reproduce the known thermal bosonic AdS3 partition
function by taking a Z-orbifold of the sl(2,R)k model, or rather of the Euclidean analogue
— theH3-model. This serves as a testing ground for the technology we employ in this paper.

A.1 The partition function of the H3 model

We start by recalling the partition function of the H3-model describing global Euclidean
AdS3. It is derived in [111]. Let us introduce a chemical potential θ for sl(2,C). We
normalize the charge such that the adjoint representation has charges 1, 0 and −1. The
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partition function reads [111, 112]36

ZH3
k
(θ; τ) =

√
k − 2 exp

(
− (k−2)π(Im θ)2

Im τ

)
2
√
Im τ |ϑ1(θ; τ)|2

. (A.1)

The theta-function in the denominator accounts for the oscillator contribution to the par-
tition function, whereas the remaining part comes from the integration over all possible
sl(2,C) spins. The partition function is modular covariant, as is appropriate for a non-
holomorphic Jacobi form of index (−k

4 ,−
k
4 ):

ZH3
k

(
θ

cτ + d
; aτ + b

cτ + d

)
=
∣∣∣∣∣exp

(
− πikθ2c

2(cτ + d)

)∣∣∣∣∣
2

ZH3
k
(θ; τ) . (A.2)

A.2 The partition function on thermal AdS3

We now perform the orbifold to obtain the worldsheet theory that describes the boundary
torus. By definition, states with charge Q under sl(2,C) receive a factor e2πiQt under the
orbifold action. Thus,

m�
0

= ZH3
k
(mt; τ) . (A.3)

Under modular transformations

m�
n

(
a b

c d

)
−−−−−→ am+ bn �

cm+dn
. (A.4)

Thus,

am�
cm

= ZH3
k

(
mt; dτ − b
−cτ + a

)
(A.5)

= ZH3
k

(
mt(−cτ + a)
−cτ + a

; dτ − b
−cτ + a

)
(A.6)

= ZH3
k

(mt(−cτ + a); τ)
∣∣∣∣∣exp

(
πikm2t2(−cτ + a)2c

2(−cτ + a)

)∣∣∣∣∣
2

. (A.7)

As anticipated, this only depends on the combinations ma and cm. This fixes unambigu-
ously

m�
n

= ZH3
k
(t(m− nτ); τ)

∣∣∣∣∣exp
(
πikt2n(m− nτ)

2

)∣∣∣∣∣
2

. (A.8)

By inserting the definition, we can rewrite the result as

m�
n

=
√
k − 2 e

2π(Im tm,n)2

Im τ
− kπ(Im t)2

Im τ
|m−nτ |2

2
√
Im τ |ϑ1(tm,n; τ)|2

. (A.9)

36The constant prefactor 1
2
√
k − 2 is somewhat subtle to fix, since it depends on the measure that one

chooses for the sl(2,C) spin. Choosing the Lebesgue measure results in this constant.
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Here, tm,n = t(m− nτ) such that t1,0 = t. The full partition function is then

Zthermal AdS3(t; τ) = N
∑

m,n∈Z
m�

n

. (A.10)

The normalization factor N (that should correspond to the inverse volume of the group we
are orbifolding by) can be determined as follows. The orbifold projection imposes a singlet
condition on the charge. For a state of charge (h, h̄) w.r.t. left- and right-movers (h and h̄
are both real and not complex conjugates), we have

N
∑
m∈Z

e2πim(ht−h̄t̄) = N δZ(ht− h̄t̄) . (A.11)

Let us assume that t is purely imaginary, which allows us to simplify further,

N δZ(ht− h̄t̄) = N δZ(i Im(t)(h+ h̄)) = N
Im(t)δ(h+ h̄) . (A.12)

Here, we used that the argument is purely imaginary and the delta-function can only be
satisfied for vanishing ∆ = h+h̄. This is what one would expect, since a field with vanishing
∆ is invariant under the scaling x → e2πitx for t ∈ iR. Thus, we should have N = Im(t),
since then this sum corresponds indeed to the projection of charges to the invariant ones
with h+ h̄ = 0. For Re(t) 6= 0, the normalization should not change. The normalization N
should be inversely proportional to the size of the orbifold group and hence proportional
to the size of the target space. This size only depends on Im(t) and hence we postulate
that in general N = Im(t).

We have hence derived

ZHk/Z(t; τ) = 1
2 Im t

√
k − 2

∑
m,n∈Z

e
2π(Im tm,n)2

Im τ
− kπ(Im t)2

Im τ
|m−nτ |2

√
Im τ |ϑ1(tm,n; τ)|2

. (A.13)

This agrees with equation (27) of [60].37
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