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PARTITION IDENTITIES AND LABELS FOR SOME
MODULAR CHARACTERS

G. E. ANDREWS, C. BESSENRODT, AND J. B. OLSSON

Abstract. In this paper we prove two conjectures on partitions with certain
conditions. A motivation for this is given by a problem in the modular repre-
sentation theory of the covering groups Sn of the finite symmetric groups Sn
in characteristic 5 . One of the conjectures (Conjecture B below) has been open
since 1974, when it was stated by the first author in his memoir [A3]. Recently
the second and third author (jointly with A. O. Morris) arrived at essentially
the same conjecture from a completely different direction. Their paper [BMO]
was concerned with decomposition matrices of Sn in characteristic 3 . A basic
difficulty for obtaining similar results in characteristic 5 (or larger) was the
lack of a class of partitions which would be "natural" character labels for the
modular characters of these groups. In this connection two conjectures were
stated (Conjectures A and B * below), whose solutions would be helpful in the
characteristic 5 case. One of them, Conjecture B * , is equivalent to the old
Conjecture B mentioned above. Conjecture A is concerned with a possible in-
ductive definition of the set of partitions which should serve as the required
labels.

In § 1 we give a brief description of the groups Sn and their representations,
leading up to Conjectures A and B * as they were formulated in [BMO]. That
section also presents the background for Conjecture B as stated in [A3] and the
equivalence of Conjectures B and B * is explained. Sections 2 and 3 are devoted
to the proof of Conjecture B, and §4 to the proof of Conjecture A.

1. THE CONJECTURES AND THEIR BACKGROUND

For facts concerning the general representation theory of finite groups needed
in the following, the reader is referred to [F, NT].

In 1911 Schur [SI] proved that the finite symmetric groups Sn have covering
groups Sn of order 2|5„| = 2 • n ! This means that there is an exact sequence

1 -+ (z) -+ S„ -► Sn — 1

where (z) is a central subgroup of order 2 in S„ . Then the irreducible repre-
sentations of S„ are divided in two categories:

Those representations which have z in their kernel will be referred to as
ordinary representations (in characteristic 0 ) and modular representations (in
characteristic p > 0 ).
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Those representations which do not have z in their kernel will be referred
to as spin representations (in characteristic 0 ) and modular spin representations
(in characteristic p > 0 ).

It is well known that the ordinary irreducible representations of S„ are la-
belled by the partitions of n. The modular irreducible representations of Sn
are labelled by the p-regular partitions of n , i.e. partitions where no part is re-
peated p or more times. Both of these labellings are natural in several respects.
One illustration of this is the following result of G. James (see [JK, 6.3.50,
6.3.60]). If an irreducible ordinary or modular representation is identified with
its label, then the decomposition matrices have the form

(1)

p-regular
partitions

p-singular
partitions

p-regular partitions

/I

modular

(2)

Î
ordinary

with the upper square matrix lower unitriangular.
Before proceeding to the spin case it should be mentioned that by a result of

R. Brauer the number of modular irreducible representations of a finite group
(over a splitting field) equals the number of conjugacy classes of elements in
the group of order prime to p . Due to the well-known parametrization of the
conjugacy classes of S„ by partitions of n , the following result of Glaisher is
used in the proof of (1):

The number of p-regular partitions of n equals the number of
partitions of n into parts which are all prime to p .

Therefore Conjecture B * below may be seen as a "spin version" of Glaisher's
result for p = 5 !

In the spin case examples indicate that a result somewhat similar to ( 1 ) may
hold apart from slight complications due to the appearance of associate char-
acters (for p > 2). Already Schur [SI] showed that the (associate classes of)
spin representation of S„ are labelled canonically by the partitions of n into
distinct parts. However it is still an open and apparently very difficult question
to determine a class of partitions providing canonical labels for the (associate
classes of) modular spin characters. For p — 3 this question was solved in
[BMO] and an analogue of ( 1 ) was proved.

James' proof of ( 1 ) features a systematic use of an r-inducing process, which
makes it possible to build a class of partitions inductively as labels for the
modular characters. This class of partitions is described in terms of a certain
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ladder condition and it is shown to be equal to the class of p-regular partitions.
Conjecture A below may be seen as a "spin version" of this for p = 5 and
"ladders" will occur in its proof in §4.

An analogue of r-inducing in the spin case was provided by Morris and
Yaseen [MY] and they called it (r, r)-inducing. To obtain a set of labels which
fits the purpose of this procedure we define for p odd inductively a class Wp(n)
of partitions behaving well with respect to (r, r)-inducing:

Set Wp(l) = {(I)} . Assume that the set Wp(n - 1) is already defined. If
X = (lx,l2,...,lm)£%p(n-l),

where lm>0, then
~k = (h,l2,... , /,_i ,U+l, li+i,... ,lm)£ %(n)

if the following two conditions are satisfied:
(i)   /,•+ 1 < /,-_!    if   i> 1 ;

(ii) for I < j < i-l , lj+l > /7_i or Sj ^ <5, (where 0 < 6k <p/2 satisfies
ôk = lk + (p+ l)/2   (mod p) or Sk = - (lk + (p + l)/2)  (mod p)).

Furthermore, also
~k = (li,...,lm, l)£%(n)

if the following two conditions are satisfied:
(i)    Klml

(ii) for I < j < m , lj + I > /,_] or ôj ¿(p-l)/2.
We are then faced with the following problems:
(I) Find an internal description of ^¡>(n), i.e., find a class 3p(n) of parti-

tions, defined in terms of difference and divisibility conditions on its parts, such
that

%(n)=3fp(n)   for all n.
(II) In view of Brauer's theorem, investigate whether \3p(n)\ equals the

number of partitions of n into distinct parts prime to p .
If these problems have a positive answer we have a well-behaved class 3¡p(n)

of labels at hand. For p = 3 it was found in [BMO] that
2i(n) = {À = (¡i, ... , lm) H- n : for 1 < i < m - 1,

¡i - h+\ > 3 and /, - li+x > 3 if /, = 0 (mod 3)}.
Thus Problem (II) in this case is settled as a special case of a theorem of Schur
[S2, Satz V].

For p = 5 experimental evidence led to the following conjecture, which was
stated in [BMO]:
Conjecture A. %(n) = 9S$(n), where 3>s(ri) — {I = (lx, l2, ... , lm) \- n : l¡ >
li+x for all i < m — 1 ; /, - l¡+2 > 5 for all i < m — 2 ; l¡ - li+2 > 5 if /, = 0
(mod 5) or if /, + /,+! = 0 (mod 5) for all i < m-2; there are no subsequences
of the following types (for some j >0) : (5j + 3, 5j + 2), (5j + 6, 5j + 4, 5j),
(5j + 5,5j+l,5j-l), (5; + 6,5j + 5,5j, Sj - 1)} .

For illustration, we list the partitions contained in ^(15) :
(15), (14,1), (13, 2), (12, 3), (12, 2,1), (11, 4), (11, 3,1), (10, 5),

(10, 4, 1), (9, 6), (9, 5, 1), (9, 4, 2), (8, 6, 1), (8, 5, 2), (8, 4, 3),
(7,6,2).

It was also conjectured, that problem (II) has a positive answer in this case.
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Conjecture B*.   \&5(n)\ = \¿?s(n)\, where â°s(n) is the set of partitions of n
into distinct parts prime to 5 .

It should at this point be mentioned that for p = 1 the class %(n) does
not provide enough labels for the modular characters of Sn in characteristic
7. Indeed, for n — 21, |@v(21)j = 52, but there are 53 partitions of 21 into
distinct parts divisible by 7. Similar difficulties have been found for p — 11
and p = 13 for partitions of 3p . An internal description of %(n) for p > 5
similar to the one given above for p = 3 and p = 5 will probably be very
involved. The experimental evidence shows that there is a difference condition
of the form /,-/,-+(p_i)/2 > p for X = (lx, ... , lm) £ Wp(n), with strict inequality
for /, = 0 (mod p) and in some further cases, and again there is a list of
forbidden subsequences. Though we could prove some of these properties even
for general p , we do not as yet have an internal characterization even for %(n).

There is also a refinement of Conjecture B *, which is suggested by the rep-
resentation theoretical context:

If X = (lx, l2, ... , lm) is any partition of n we may define

ax = \{I, |/, = 4 (mod 5)| - |{/,|/,- = 1 (mod 5)}|,
bx = \{l¡ | /, = 3 (mod 5)| - |{/,|/, = 2 (mod 5)}|,

and
w = wx = jo(2n - 5ax2 - 5bx2 - 3ax - bx) ,

a nonnegative integer. For a, ß £ Z let

&>(a,ß;n) = {X\-n\ax = a, bx = ß},

We conjecture that for any a, ß £ Z, n > 0,

\&(a, ß ; n)n&5(n)\ = \&>(a, ß ; n) n^5(«)| ■

It is known that if 3°(a, ß; n) n£P5(n) / 0 then with w as above

\&>(a, ß; n)nâ°5(n)\ =  \{(XX, X2) | Xx, X2 partitions with |A)| + \X2\ = w}\

We proceed to provide some background for Conjecture B.
The memoir [A3] is devoted to a three parameter extension of the Rogers-

Ramanujan identities. The relevant partition functions are as follows.

Definition 1.1. If / is an even integer we denote by J&i,k,a(n) the set of parti-
tions of n satisfying the following conditions:

(i) only multiples of / + 1 may be repeated,
(ii) no part is =0, ±(a - l/2)(l + I) (mod (2k - I + l)(l + 1)).

If / is an odd integer we denote by &itk¡a(n) the set of partitions of n satis-
fying the following conditions:

(i) only multiples of (/ -(- l)/2 may be repeated,
(ii) no part is = / + 1 (mod 2/ + 2),

(iii) no part is =0, ±(la -/)(/+ l)/2 (mod (2k - I + l)(l + 1)).
We then set Al¡k,a(n) = W,k,a(n)\ ■

Definition 1.2. Let aS¡,k,a(d) denote the set of partitions X = (bi, ... , bs) of
n satisfying the following conditions:

(i) only multiples of / + 1 may be repeated,
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(ii)   bj - bj+k_x > / + 1 with strict inequality if b¡ is a multiple of / + 1,
(iii) denoting the number of appearances of j in our partition by f , then

Ztí+lfi<a-j for l<7<(/+l)/2,
(iv)  fi + fi + • • • + fi+i < a - 1.

We then set B^ka(n) = \&i,k,a(n)\.
The main result in [A3] is

Theorem [A3, Theorem 8.3]. Let I, k and a be integers with 0 < 1/2 < a < k
and I <k ; then for each n > 0

Al,k,a(n)=Bl,k,a(n)-
An extensive account is provided in [A3, p.l] and [Al, pp. 205-206] of the

classical specializations of this theorem. Suffice it to say here that the celebrated
Rogers-Ramanujan identities are the cases / = 0, k = 2, a- 1,2.

At the conclusion of [A3, pp. 83-85] it is pointed out that the above result is
in certain ways best possible. In particular, the conclusion appears to fall apart
if k < I. As evidence for this assertion, it is noted that Schur [S2] proves that

Ai,2,2(n) = Bl22(n),
where 5° 2 2(n) is the number of partitions enumerated by B-i>2t2(n) with the
added condition that no parts are = 2 (mod 4). Note that this is just a mild
tightening of Definition 1.2 in that condition (iii) in this instance requires that
2 does not appear as a part; the new condition excludes 2 and all other integers
= 2 (mod 4).

The paper [A3] concludes with the next natural case where k < I, namely
one of the main results to be proved here:
Conjecture B [A3, p. 84, Conjecture 2].

¿4,3,3(")=<3,3(»)>

where B® 3 3(n) denotes the number of partitions of n satisfying the four
conditions of Definition 1.2 (with 1 = 4, k = a = 3 ), and additionally

(v)   fsj+2 + fsj+i < 1 for ; > 0,
(vi)   f5j+4 + f5j+6 < 1 for ; > 0,

(vii)   fsj-i + hj + fsj+s + fsj+6 < 3 for ; > 1.
We denote the corresponding set of partitions by 3§^ 3 3(n).

We shall prove this conjecture as our Theorem 3.5. Also we point out that
when Definition 1.1 is specialized to the case 1 = 4, k = a = 3, ^4,3,3(n) =
^s(n) for all n. Moreover, as pointed out in [BMO], there is a bijection
between the set âê% 3 3(n) = {X = (h, li, ... , lm) l~ n I h > h+i or /, = 0
(mod 5) for all i < m -1 ; /, - li+2 > 5 for all i<m-2; /, - li+2 > 5 if /, = 0
(mod 5) for all i < m -2 ; there are no subsequences of the following types (for
some ;>0): (5j + 3, 5; + 2), (5; + 6, 5; + 4), (5; + 6, 5; + 5, Sj, Sj-l)}
and the set 2$(n) defined above: Remove any subsequences (57, 57) occuring
in X £ ^4° 3 3(«) and replace them by Sj+l, Sj - 1. We therefore have that
Conjecture B and Conjecture B * are equivalent.

Conjecture B was tested for n < 59 and found to be correct [A3]. As re-
marked in the next to last paragraphs of [A3, p. 85], "Unfortunately the assump-
tion k > I so permeates the work in this paper that Conjecture 2 seems well

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



602 G. E. ANDREWS, C. BESSENRODT, AND J. B. OLSSON

beyond the techniques herein introduced". Nothing that follows contradicts this
assertion; the methods we shall follow are based upon the ideas in [A2, A5, and
A4, §10.6] and are quite unlike those of [A3].

We shall, in fact, prove a refinement of the above conjecture. To this end we
make two special definitions.

Definition 1.3. We denote by A(p,v; N) the number of partitions of N into
distinct nonmultiples of 5 of which p are congruent to 1 or 2 (mod 5) and
v are congruent to 3 or 4 (mod 5).

Definition 1.4. We denote by B(p, v ; N) the number of partitions X = (bx, ... ,
bs) of N satisfying the following conditions:

(i) only multiples of 5 may be repeated,
(ii)   bj - bj+2 > 5 with strict inequality if bj is a multiple of 5,

(iii) denoting the number of appearances of j in our partition by f , we
require

75,+2 + 75y+3 < 1 ,       for 7 > 0 ,
fsj+4 + fsj+6 < 1 ,       for 7 > 0 ,

A/-1 + 7s; + /57+5 + fsj+6 < 3 ,       for 7 > 1 ,
(iv) there are p parts of the partition =0,1 or 2 (mod 5),
(v) there are v parts of the partition =0,3 or 4 (mod 5).

In §3 we prove
Theorem 3.1. For each p, v , N > 0,

A(p,v;N) = B(p,v;N).

For example, A(2, 2; 15) = 4, the relevant partitions being 9 + 3 + 2 + 1,
8 + 4 + 2+1, 7 + 4 + 3+1, and 6 + 4 + 3 + 2; while B(2, 2; 15) = 4 also,
the relevant partitions being 10+5, 10 + 4+1, 9 + 5+1, 8 + 5 + 2.

The next section is devoted to the study of recurrences for polynomial gen-
erating functions arising from Definition 1.4.

2. The recurrences
We begin by noting that for any partition of any integer which satisfies (i)-

(iii) of Definition 1.4 there are exactly 16 possibilities (numbered 0-15) for the
subset of summands of the partition that lie in the interval [57 + 1, 57" + 5],
namely

0:   0    (the empty set)
1:   57 + I
2
3
4
5
6
7
8
9

10

57 + 2
57 + 2, 57 + I
57 + 3
57 + 3, 57 + I
57 + 4
57 + 4, 57 + I
57 + 4, 57 + 2
57 + 4, 57 + 3
57 + 5
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11
12
13
14
15

57 + 5, 57 + 1
57 + 5, 57 + 2
57 + 5, 57 + 3
57 + 5, 57 + 4
57 + 5, 57 + 5.

We now place an ordering on these 16 sets by ordering them lexicographically
from left to right (i.e., the list is presented in increasing order).

Definition 2.1. We define Sn(j; a, b; q) to be the generating function for all
partitions satisfying (i)—(iii) of Definition 1.4 and in addition: (vi) all parts are
< 5« + 5, (vii) the subset of summands that lie in the interval [5« + 1, 5« + 5]
must have number < j on the above list. The exponent on q is the number
being partitioned. The exponent on a is the number of summands congruent
to 0, 1 or 2 (mod 5), and the exponent on b is the number of summands
congruent to 0, 3 or 4 (mod 5). When n = -1, we define S-X (j ; a, b ; q) =
1, and when n < -1, we define Sn(j ; a, b ; q) = 0.

For example,

Sq(9 ;a,b,q) = l+aq + aq2 + a2q3 + bq3 + abq4
+bq4+abq5+abq6+b2q7 ,

and

S0( 15 ; a, b ; q) = 1 + aq + aq2 + a2q3 + bq3 + abq4 + bq4 + 2abq5 + abq6
+ a2bq6 + a2bq7 + b2q7 + ab2q% + ab2q9 + a2b2qx0.

Surprisingly (although less so after seeing §3),

S0(l5;a, b;q) = (1 + aq)(l +aq2)(l + bq3)(l + bq4).

It is now a fairly routine matter to state the 16 defining recurrence relations
for 5„(7'; a,b;q).

To simplify the statements we write S„(j) for S„(j ; a, b ; q) throughout.
Now for each n > 0,

(2.0) Sn(0)= S„_,(15),
(2.1) S„(l)= Sn(0) + aq5,>+x(Sn-X(ll)-Sn-X(9)+Sn-X(S))

-aW°"-10S„_3(9),
(2.2) S„(2)= Sn(l) + aqin+2 (Sn-X(l2) - Sn-X(9) + Sn-X(S)) ,
(2.3) S„(3) = Sn(2) + a2qXOn+3Sn-X(3) ,
(2.4) S„(4)= Sn(3) + bq5n+iSn-X(l3),
(2.5) Sn(S) = Sn(4) + abqXOn+4Sn-X(S) ,
(2.6) S„(6)= Sn(S) + bq5n+4S„-X(l4) ,
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(2.7) 5,(7) = S„(6) + abqXOn+5Sn-X(5) ,
(2.8) S„(8) = Sn(l) + abql0n+6S„-X(8) ,

(2.9) S„(9) = Sn(S) + ¿>y°"+7S„_,(9) ,
(2.10) «,(10)= Sn(9) + abq5n+5Sn-X(l4),
(2.11) S„(ll)= Sn(lO) + a2bqXOn+6Sn-X(5),
(2.12) S„(\2) = SH(U) + a2bql0n+->SH-i(S),
(2.13) S„(13) = 5.(12) + ab2qxo"+*Sn-X(9) ,
(2.14) Sn(l4)= Sn(l3) + ab2qm+9Sn-X(9),
(2.15) 5„(15)= S„(14) + a2Z>V0"+1%,-i(9).

We now describe how these 16 recurrences are proved. First we consider
general observations common to all 16; then we shall carry out the details in a
few cases. The remainder will follow in a similar manner.

In each of these recurrences, we see for j > 0

Sn(j)=S„(j-l) + ---    .

Now S„(j) - Sn(j - 1) is the generating function for all those admissible parti-
tions with precisely the 7'th subset of summands in the interval [5zz +1, 5n + 5].

As a prototypical example, let us consider (2.15). Thus 5,, (15) - «S« (14)
must generate partitions whose largest summands are 5« + 5 taken twice. Once
we know that bx = b2 = 5« + 5, we see immediately that ¿3 < 5« - 1,
and we see on a moments reflection that these partitions are generated by
abq5n+5abq5n+5S„-X(9). Hence

$,(15) - 5„(14) = a2è2a10"+1°lS„_1(9) ,

which is (2.15).
The only real exception to the above pattern is (2.0). Clearly S„(0) gen-

erates all admissible partitions with largest part < Sn. Hence we see (2.0)
immediately, namely S„(0) = S„_i(15).

The most intricate of these recurrences is (2.1 ). As above we see that Sn(l)-
Sn(0)  generates those admissible partitions whose only summand in  [Sn +
I, Sn + 5] is precisely Sn+l. Which of the 16 possible subsets can be allowed
in [Sn - 4, Sn] ? Examination reveals the numbers 0,1, 2, 3, 4, 5, 10,  and
II. Thus the admissible partitions are generated by

aa5"+1(1S„_1(ll))-5„_1(9) + S„_1(5)).

However this is not quite correct in that the above allows partitions whose top
four parts are Sn + 1, Sn , Sn - S, Sn - 6. Hence we must subtract off

aq5n+xabq5nabq5"-5bq5"-6Sn^(9) = a3b3q20n-X0Sn-3(9).

Therefore

S„(1)-S„(0)= aq5"+x(Sn-X(ll)-S„-X(9) + Sn-X(S)) -aW0"-10Sn_3(9) ,

which is effectively (2.1).
The remaining 13 formulas are proved in a similar manner.
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We now define two important linear combinations of the sequences Sn(9)
and £„(15). Namely
(2.16)

J(n) = S„(9) - (1 - a5")(l + aq5n+l + aq5n+2 + bq5n+3 + bq5n+4)S„-X(l5)
- q5n(l + aq5n+x + aq5n+2 + a2q5n+3 + bq5n+3 + bq5n+4

+ abq5n+4 + abq5n+5 + abq5n+6 + b2q5n+1)Sn-X(9)

+ (1 - q5")abqX5n~2(a2 + abq + abq2 + abq3 + a2bq3

+ a2bq4 + b2q4 + ab2q5 + ab2q6)Sn-2(9)
+ a3b3q20"-xo(l - q5n)(l - q5"-5)Sn-3(9)

and

K(n) = Sn(9)-Sn(lS) + abq5n+5(l-q5n)Sn-X(lS)
(2.17) + aV0"+5(l + aq + aq2 + bq3 + bq4 + abq5)Sn-X(9)

-a3b3qX5n+5(l-q5n)S„-2(9).

Lemma 2.2. For n > 0

(2.18) J(n) = K(n) = 0.
Proof. This result is easily obtained from (2.0)-(2.15). First we note that the
other 14 sequences Sn(j) (j ^ 9, 15) may be defined as combinations of
5„(9) and S„(15) as follows. Equation (2.15) yields S„(14) as such a combi-
nation (namely £„(15) - a2b2qx0n+x0Sn^x(9) ). Equations (2.14) and (2.13) in
that order then yield £„(13) and £„(12). Equation (2.9) yields £„(8). Then
(2.12) yields £„(11), and (2.10) yields £„(10). Now (2.11) (with n replaced
by n + 1) yields

£„(5) = a-2b-xq-X0"-16(Sn+X(ll) -£„+1(10)) ,

which in turn yields £„(5) in terms of £„(9) and £„(15). Equation (2.8) yields
£„(7), and (2.7) yields £„(6). Equations (2.5), (2.4), (2.3) and (2.2) in that
order yield £„(4), £„(3), £„(2), and £„(1). Finally (2.0) yields £„(0).

Substituting the expressions for £„(6), £„(5), and £„_i(14) into (2.6)
proves that K(n) = 0 for n > 0. Finally substituting the expressions we
have obtained for £„(1), £„(0), £„_i(l 1), and £„_i(5) into (2.1) yields

0 = a2bqx0n+X6J(n) - K(n + 1) + aq5n+i(q3 + aq5n+5 + bq5n+6 + bq5n+7)K(n).

We have already seen that K(n) is zero for each n > 0 ; hence J(n) = 0, i.e.,
(2.16) is valid.

3. Proof of Conjecture B
Theorem 3.1. For all p,v, n>0 A(p ,v;n) = B(p ,v;n).

The engine for proving Theorem 3.1 is Lemma 3.4, which gives a surprisingly
simple functional equation relating £„(15; a, b; q) to £„_i(9; aq5, bq5; q).
Once this result is established, the main result follows easily.
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Lemma 3.2. For n > 0,
(1 + aq5"-4 + aq5n~3 + bq5n~2 + bq5"-x)S„(9)

= px(n;a, b;q)S„-X(9) +p2(n; a, b; a)£„_2(9)(l - q5")
(3.1) +p3(n;a,b;q)(l-q5")(l-q5"-5)Sn^(9)

+ a4b4q25n-30(l + aq5n+x + aq5n+2 + bq5n+3 + bq5n+4)

•(l-a5")(l-a5"-5)(l-a5"-10)£„_4(9),

where
(3.2)
px(n;a,b;q) = b3qX5n+6 + b3qX5n+5 + ab2qx5n+5 + 2ab2ql5n+4 + 2ab2qX5n+3

+ a2bqx5n+3 + ab2qX5n+2 + 2a2bqX5n+2 + 2a2bql5n+x

+ a3qX5n-x + b2qXOn+1 + abql0n+6 + abqWn+5 + ab2qX0n+4

+ abqXOn+4 + ab2qXOn+3 + b2qXOn+3 + a2qXOn+3 + 2b2qXOn+2

+ a2bqXOn+2 + b2qx0n+x + a2bqx0n+x + 2abqx0n+x + 2abqx0"-x

+ a2qxo"-x + 2a2qxo"-2 + a2qx0n~3 + bq5n+4 + bq5n+3

+ aq5n+2 + aq5n+x + bq5n~x + bq5n~2 + aq5"-3 + aq5n~4

+ a2bqX5n + a3qx5n + 3abqXOn + abq5" + 1 ,

(3.3)
p2(n ;a,b;q) = ab4q20n+2 + ab4q20n+x + ab4q20n~x + 3a2b3q20"-x

+ 3a2b3q20"-2 + a3b2q20"~2 + a2b3q20"-3 + 3a3b2q20"-3

+ 3a3b2q20"-4 + a4bq20"-4 + a3b2q20"-5 + a4bq20"-5

+ a4bq20"-6 + a4bq20"-1 + ab3qX5n+3 + ab3qx5n+2

+ ab3qX5n+x + a2b2qx5n+x + a2b3qX5"-x + a2b2qX5"-x

+ a3bqX5"-x + a2b3qX5n~2 + ab3qX5"~2 + a3bqX5n~2

+ ab3qX5n~3 + a3b2qx5n~3 + a3bqX5"-3 + ab3qx5n~4

+ a3b2qX5"-4 + a2b2qX5n~4 + 3a2b2qx5"-5 + a2b2qX5"-6

+ a3bqx5"-6 + a3bqX5n-1 + a3bqX5n-* + ab2qxo"-x

+ ab2qxo"-2 + a2bqxo"-3 + a2bqx0"-4 + ab4q20n

+ a2b3q20" + 3a2b2qX5n + a2b2qXOn ,

and
(3.4)

Pi(n ;a,b;q) = a2b5q25n-9 + a2b5q25n-[0 + a3b4q25"-X0

+ 2a3b4q25n~u + 2a3b4q25"-xl + a4b3q25"-X2 + a3b4q25"-x3

+ 2a4b3q25"-x3 + 2a4b3q25"-X4 + a4b3q25"-X5 + a5b2q25"-X5

+ a5b2q25"-x6 - a3b4q20"-6 - a3b4q20n-7 - a4è3a20"~8

- a4b3q20"-9 - a3b3q20"-xo + a2b4q20"-x3 + a3b3q20"-X4

+ a3b3q20"-x5 + a3b3q20"-x6 + a4b2q20"-xl - a3b3qX5"-x0 .

Proof. While the exact expressions for px(n; a, b; q),  p2(n;a,b; q)  and
Pi(n; a, b;q)  are onerous, the proof of (3.1) is quite routine.   Comparing
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(2.18) with (2.16), we see that £„_i(15) may be written as a linear combi-
nation of £„(9), £„_i(9), £„_2(9) and £„_3(9). Noting from (2.18) that
K(n) = 0, we substitute for each appearance of £„(15) and £„_i(15) in (2.17)
our new combination of £„_,-(9). The result is (3.1) after simplification and
the replacement of « by n - 1.

Lemma 3.3. For n>0,
(1 + aq5"'4 + aq5"'3 + bq5n~2 + bq5n~x)Sn(lS)

= px(n-l;aq5,bq5;q)Sn-X(l5)
(35) + p2(n-l;aq5,bq5;q)Sn-2(l5)(l-q5n-5)

+ p3(n - 1 ; aq5, bq5 ; a)£„_3(15)(l - q5"~5)(l - a5""10)
+ a4b4q25"-X5(l + aq5n+x + aq5n+2 + bq5n+3 + bq5n+4)

.   (1 _ fl5„-5)(1 _ fl5„-10)(1 _ fl5»-15)iSn4(15)
Proof. For n > 0, we define A(n) to be the left-hand side of (3.5) minus the
right-hand side of (3.5) with n replaced by n + 1. Then

A(n) = (1 + aq5n+x + aq5n+1 + bq5n+3 + bq5n+4)K(n + 1)

+ p4(n;a,b;q)J(n + l)+p5(n;a,b;q)K(n)
+ p6(n;a, b; q)J(n) + p7(n; a, b; q)K(n- 1)
+ Pi(n; a, b; q)J(n - 1) +p9(n;a, b;q)K(n-2) ,

where
(3.7) p4(n ;a,b;q) = l+ aq5n+x + aq5n+2 + bq5n+3 + bq5n+4 ,

p5(n ;a,b;q) = - b3qX5n+2x - b3qX5n+2° - ab2qX5n+2° - 3ab2qx5n+x9

- 3ab2qX5n+xs - b2qX5n+x* - a2bqX5n+n - ab2ql5n+xl

- 2b2qX5n+xl - 3a2bql5n+l1 - b2qX5n+x6 - 3a2bq15n+x6

- 2abqX5n+x6 - a2bqX5n+x5 - 4abqX5n+X5 - a3qx5n+15

- 2abqX5n+X4 - a3qx5n+X4 - a2qX5n+X4 - 2a2qx5n+x3

(3.8) - a2qX5n+x2 - ab2qx0n+x9 - ab2qXOn+xs - b2qXOn+x7

- a2bqXOn+xl - a2bqXOn+X6 - abqx0n+x6 - 2abqXOn+X5

+ ab2qXOn+x4 - abqx0n+X4 - bqx0n+X4 + ab2qXOn+x3

_   ¿„lOn+13 _ a2„10n+13 + fl2^_10n+12 _ a„10n+12

+ a2bqXOn+xx - aqXOn+xx + abqXOn+xo - bqX0n+9

_   Dql0n+S _ aql0n+7 _ aql0n+6 _ ^5n+5 >

(3.9)
p6(n ;a,b;q) = a2b3qX5n+24 + a2b3qx5n+23 + ab3qx5n+23 + 2ab3qX5n+22

+ a3b2qx5n+22 + ab3qx5n+2x + a3b2qX5n+2x + 2a2b2qx5n+2x

+ 4a2b2qx5n+20 + 2a2b2qx5n+x9 + ab2qX5n+x9 + a3bqi5n+i9

+ ab2qx5n+iS + 2a3bql5n+x* + a3bqX5n+xl + a2bqx5n+xl

+ a2bq15n+x6 + a2b2qXOn+20 + ab2qx0n+X4 + ab2qXOn+x3

+ a2bqXOn+x2 + a2bqXOn+xx + abqXOn+xo ,
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(3.10)
Pt(n;a,b;q)

= (1 - q5") • (a2b4q20n+2* + 2a2b4q20fl+21 + a2b4q20n+26 + ab4q20n+26

+ 2a3b3q20n+26 + ab4q20n+25 + 4a3b3q20n+25 + a2b3q20n+25

+ 2a3b3q20n+24 + 3a2b3q20n+24 + a4b2q20n+24 + 3a2b3q20n+23

+ 2a4b2q20n+23 + a3b2q20n+23 + a2b3q20n+22 + a4b2q20n+22

+ 3a3b2q20n+22 + 3a3b2q20n+2X + a3b2q20n+20 + a4bq20n+20

+ a4bq20n+x9 - a2b2qX5n+2° + a2b3qX5n+l9 + a2b3qX5n+x%

+ ab3qX5n+X7 + a3b2qX5n+xl + a3b2qX5n+x6 + a2b2qX5n+x6

+ 2a2b2qX5n+X5 + a2b2qX5n+X4 + a3bqX5n+X3) ,

(3.11)
ps(n;a,b;q) = -(l- q5n)(a3b4q20n+29 + a3b4q20n+2S + a4b3q20n+21

+ a4b3q20n+26 + a3b3ql5n+2°),

(3.12)
p9(n; a,b;q)

= (1 - q5")(l - q5n-5)(a3b4q25n+24 + a3b4q25n+23 + a4b3q25n+22

+ a4b3q25n+2x+a3b3q20n+X5).

Identity (3.6) is conceptually quite easy; both sides are just linear combi-
nations of £„-,(9) and £„_,(15) with polynomial coefficients. It is a simple
matter for MACSYMA to show that each side is the same combination.

Applying Lemma 2.2 to (3.6), we see that A(«) = 0 for n > 2. MACSYMA
then may easily verify that A(0) = A(l) = 0.

Lemma 3.4. For n > 0

£„(15; a, b;q)
= (l+aq)(l+aq2)(l+bq3)(l+bq4)Sn.x(9;aq5,bq5;q).

Proof. Comparing Lemma 3.3 and Lemma 3.2, we see that both sides of (3.13)
satisfy exactly the same fourth order recurrence valid for n > 1. Thus we
need only check that (3.13) is valid for the initial values of n = 0, 1, 2, 3,
and MACSYMA performs this task without difficulty. Hence (3.13) is valid for
each zz > 0.

We are now ready to prove our main result.

Proof of Theorem 3.1. Clearly for 0 < j < 15 ,

(3.14) lim Sn(j; a, b;q)=      V    B(p, v; N)aWqN = S(a, b, q).
n—>oo *—'

H,v,N>Q

Hence letting n —> oo in (3.13), we find that

(3.15) S(a,b,q) = (l+ aq)(l + aq2)(l + bq3)(l + bq4)S(aq5, bq5, q).
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Iterating (3.15), we see that
oo

S(a,b,q)= ]J(l+ aq5n+x)(l + aq5n+2)(l + bq5n+3)(l + bq5n+4) ,

(3.16) »=°
=      Y,    A(p,u;N)aftb,/qN.

V,v,N>0

Comparing (3.14) with (2.16), we see that
A(p,v;N) = B(p,v,N)

for all nonnegative p, v and N.

Theorem 3.5. Conjecture B is valid.
Proof.

A4thi(N)=  £ A(p,v;N)=  £ B(p, v; N) = B°4^3(N).
¡i,v>0 P,v>0

4. Proof of Conjecture A
This section is devoted to the proof of Conjecture A, i.e.:

Theorem 4.1. For all n £ N, we have
W5(n)=&5(n).

(The sets %(ri) and 3^(n) were defined in §1.)
Since the proofs of the two inclusions Ws(n) ç 2^(n) and ^(n) ç ^(/z)

are quite different, we break the proof of the theorem up into these two parts.

Proposition 4.2. For all n e N, we have %(n) ç ü?5(n).
Proof. Assume the statement is false, and let n be minimal with %(n) %
2¡s(ri). So n > 1 and we can take X £ %(n) , X £ 3f$(ri).

By the construction rules of Ws(n), X = (/i, ... , lm) where /i > l2 > ■■• >
lm. As X £ 3ts(ri), one of the conditions for ^-partitions must be false for
X.

(i) Suppose /, - /,+2 < 5 for some z", and let i be minimal with this. As a
predecessor of A is in %(n - 1) and %(n - I) ç 25(n - I), a predecessor of
X must be of the form

X : h >•••>/, > /,+i > li+2 - 1 > /,+3 >■■■> lm

and /, - (/,+2 - 1) > 5, hence li+2 - 1 = /, - 5, or li+2 = 1 and X : h > • • ■ >
I i > li+i with /, = 4.

In both cases, /, ^ /,_i - 1 as otherwise /,_i - li+x < 5, contradicting the
minimality of i. In the first case, S(l¡) = 6(k - 5) = ô(U+2 - 1) and hence
li+2 = /,+2 - 1 cannot be increased to obtain X from I. In the second case,
S(lj) = 0(4) = 2 = 3(0), and hence also here X cannot be obtained from X.
Thus there would be no predecessor of X, a contradiction.

(ii) Suppose /, -1¡+2 = 5 and /, = 0 for some i, and let z" be minimal with
this. The only possible predecessor for X in %s(n - l) ç 3r5(n — \) is

k : /i >•••>// > /i+i > li+2 -!>•••>/«.
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Now 6(l¡) = 3(0) = 2 = 3(4) = 3(li+2 - 1), so if we are allowed to increase
lj+2 = /,+2 - 1, then we must have /,_i = /, + 1. But then li+x = /,_i - 5 as
z*,-_i - U+x = I,■ + 1 - /,+i > 5 and /, - li+x < /, - l¡+2 = 5, so X contains a
forbidden subsequence (/,, 1¡+X, l¡+2) = (Sk, Sk - 4, Sk - 6), a contradiction.

(iii) Suppose X has a subsequence (/,, /,+i ) = (Sk + 3, Sk + 2) for some i,
and let i be minimal with this. A predecessor can only be

X : ¡i >■■■>!, > li+i - 1 > • • ■ .
Now /f_i - (/J+i - 1) > 5 implies /,_i - /, = /,_i - (1¡+X + 1) > 3, and 3(l¡) =
3(3) = l = 3(1) = 3(li+x-l), so /,-+] = ¡i+x-l cannot be raised, a contradiction.

(iv) Suppose /, - ¡i+2 = 5 and /, + /,+i = 0 (mod 5) for some i, and let i
be minimal with this. By (iii), (/,, /,+i) ^ (Sk + 3, Sk + 2) for some k, so we
must have (/,, li+x) = (Sk + 4, Sk + 1) or (Sk + I, Sk - I) for some k .

Consider first the case (/,-, z*,+i) = (5A: + 4, 5/c + 1). Note that /,_i - /, > 2,
since by (i) /,_i - /,+i > 5.   Possible predecessors for k are (a) A :•••/, >
/,+i - 1 > li+2 > ■■■  or (b) k ■.••li > U+i > li+2 - 1 > • • • . But

3(li+x-l) = 3(0) = 2 = 3(4) = S(l¡)
and

3(ll+2-l) = 3(3) = l=3(l) = 3(lt+x),
and hence in both cases we cannot construct k from X, a contradiction.

Now consider the second case (/,, 1¡+X) = (Sk+l, Sk-l). Possible predeces-
sors are (a) X :•••/,■ > li+x - 1 > l¡+2 > ■■■ or (b) I :•••/, > li+x > li+2 - 1 > • • • .

Now 3(li+x - 1) = ¿(3) - 1 - 3(1) = 3(li) and /,_,-/, = /,-_,-(/i+1+2) > 3,
so X cannot be constructed from k as in (a).

But also 3(li+2 - 1) = ¿(0) = 2 = 3(4) = 3(li+x) and /, - li+x = 2 implies
that k cannot be constructed from k as in (b), a contradiction.

(v) Suppose k has a subsequence (/,, /,+i, l¿+2) = (Sk + 6, Sk + 4, Sk) for
some z.

Possible predecessors for A in W¡(n - 1) ç 3S$(n - 1) are (a) A :•••/,• >
li+i - 1 > lf+2 >    ■ and (b) !:•••/,> /,+, > //+2 - 1 > • • • .

In (a), 3(l¡) =S{1) = 3(3) = 3(li+i - 1) and /,_, - /, = /,_i - (li+2 + 2) > 3 .
In (b), ¿(/,+i) = 3(4) = 2 = 3(li+2 - 1) and /, - li+x = 2. So in both cases, X
cannot be constructed from k.

By similar arguments one can show that k has no subsequence (/,, l¡+\,
li+2) = (5k + S, Sk+l, Sk-l).

(vi) Finally, suppose that X has a subsequence

(/,, li+i, li+2, /1+3) = (5/c + 6, 5/c + 5, 5/c, 5/c - 1)
for some z.

The only possible predecessor in W$(n - I) ç 3t5(n - I) is

~X:---U >//+i >/(+2 >/;+3- 1.
But 3(lM - 1) = 3(3) =l=3(l) = 3(h) and /,_, - /, = /,_, - (/l+1 + 1) > 4,
hence X cannot be constructed from X.

Having checked all conditions for ^-partitions, we conclude that none of
these can fail for X— contradiction.
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Hence we have proved %(n) ç 3¡5(n).

Before we turn to the proof of the other inclusion we have to recall some
definitions (see [BMO, §2]):

If X = (li, l2, ... , lm) Y- n has distinct parts, the shifted Young diagram S(X)
of X is obtained from the usual Young diagram (Ferrers diagram) by shifting
the z'th row (i - 1) positions to the right. Thus if X = (7, 3, 1) then

S(k) =

The 7'th node in the z'th row is called the (i, j)-node.
The S-residue of the (i, 7')-node of S(k) is defined to be

1 if 7 = 0 or 1 (mod 5),
2 if 7 = 2 or 4 (mod 5),
3 if 7 = 3 (mod 5).

The 5-residue diagram of k is the diagram obtained from S(k) by replacing
the (i, j)-node by its 5-residue.

Thus the 5-residue diagram of k = (7, 3, 1) is

12   3   2    112
1    2   3

1

The 5-residue diagram fits well with the construction rules for 85 as described
in §1. Indeed, if k = (lx, ... , lm) £ %(n - 1), then the extensions k £ fês(n)
of k correspond to adjoining the highest possible nodes with 5-residue 1,2,
and 3, respectively. The 5-residues are not equal to the 3's occurring in §1,
but it is easy to see that the description above is equivalent to following the
construction rules for W5(n) given in §1.

For k = (7, 3, 1) £ ^(11) its successors in ^(12) are

(8, 3, 1) corresponding to adding the highest possible 3-node:

12    3    2    1    1    2 I (3)
1    2   3 [2

1[2
1

and
(7,4, 1) corresponding to adding the highest possible 2-node:

12   3   2    1     1    2 I 3
1    2   3JW

l[2
1

but not (7,3,2) since this would correspond to adding a 2-node which is not
highest possible. Note also that there is no 1-node that could be adjoined to k.
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We also have to define ladders in the 5-residue diagram:
12321123211232

1232112321123
12  3  2   1   12  3  2   1

12  3  2  112
12  3  2  1

1  2  3
Here, the ladders are indicated by the lines joining the l's, 2's, and 3's respec-
tively.

More precisely, for every r £ {1, 2, 3} and i > 1 we have an r-ladder L,;>r
starting with the first r-node in row z and consisting of r-nodes only, which
are connected as follows:

LiA:(i, 1)-» (/-2, 6)-»(1-2, 5)-»(1-4, 11) —(i-4, 10)
-» (z-6, 16) -(z- 6, 15) —••■

(ending in row 1 or 2, depending on z being odd or even)

Lt,2 : (/, 2) - (i - 1, 4) — (Í - 2, 7) — (Í - 3, 9) -»
- (i-4, 12) —(1-5, 14) — .-. ,

L,,3:(z',3)- (i-2,8) —(1-4, 13)----
(ending in row 1 or 2, depending on i being odd or even).

For a given partition k, the ladders L,r(A) are the parts of these ladders
L,r in (the 5-residue diagram of) k.

Proposition 4.3. For all n G N, we have 2<,(n) ç %(ri).
Proof. We take k £ 3S%(ri)  and show how to construct it by the inductive
procedure.

For this, we consider the ladders L¡tr(k) in k, and work successively from
one ladder to the next, from top down (i.e., starting with the highest node in the
ladder): Lx<x(k), LXt2(k), LXt3(k), L2iX(k), L2t2(k), .... This runs smoothly
(i.e., in accordance with the W5-construction rules) as long as the ladders L,r(A)
are the top parts of the ladders Lir.

Claim. For r = 1   or 3, all the ladders L¡ir(k)  are at the top of the corre-
sponding ladders Lj r, i.e., L¡ r(k) consists of the highest I nodes in L¡ r for
l = \Li,r(k)\.
Proof. First consider the case r = 1, and assume L,, i(A) has its lowest 1-node
in the position (7, Sk).

•    •    1    1

®    1

1    1
Then lj = Sk and l¡-2 - // > 6 implies lj-2 > Sk + 6 and hence L,i(A)
contains the 1-nodes in row 7-2 of Li>x . Now Li<x(k) must contain all
nodes of LiX above (7 , 5/c). If the lowest 1-node of Lit x(k) is in the position
(7 , 5/c + 1), then /, > 5/c + 1 and l¡-2 - /, > 5 also give l¡-2 > Sk + 6. Hence
again L,-_ x(k) is a top part of L/ 1.
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Now consider a 3-ladder L,, 3(A) with lowest node in the position (7, 5/c+3).

3

3

Then lj > 5/c + 3 and //_2 — ¿7 > 5 imply /j_2 > 5/c + 8, and thus the next 3-
node at position (7-2, 5/c+ 8) is also in L(>3(A). Again, by the same argument
Li<3(k) contains all 3-nodes of Li>3 above row 7 , hence is a top part of this
ladder.

So only the 2-ladders Lit2(k) are critical, and indeed these may have "holes",
but only one:

Claim. For r = 2, the 2-ladders L¡t2(k) are top parts of L, 2 except that one
2-node (at a position (j, 5/c + 2) one row above the lowest node in L¡t2(k) )
may be missing.

Proof. First assume that the lowest node of Lit2(k) is in a position (7, 5/c+2).

3   2
•    •    •    2
3    2

•      •    •    2
3    2

If lj = 5k + 2, then the exclusion of subsequences (5/c + 3, 5/c + 2) guarantees
that the 2-node in position (7 - 1, 5/c + 4) belongs to Li¡2(k). If lj > Sk + 2,
then /,_! > 5/c + 3 and this also forces this 2-node to belong to Li<2(k).

Furthermore, l¡-2 - // > 5 leads to lj-2 > 5/c + 7 , hence also the 2-node in
position (7-2, 5/c+ 7) is in Lit2(k). Continuing like this, we see that L,i2(A)
is indeed a top part of Li>2 .

Thus we may now assume that the lowest 2-node in L, 2(k) is in position
(j,Sk + 4).

1    1    2
7-4 3    2    11
7-3 -112
7-2 -32
7-1        -112

7 3   ©
2

Again, lj-2~ I j > 5 gives the 2-node in position (7—2, 5/c+9), and similarly we
get all 2-nodes in position (7 - 2m, 5(k + m) + 4). As lj-X > Sk + 5 , Li¡x(k)
contains the 1-node at position (j — 1, 5/c + 5) and hence, by the previous
arguments, all 1-nodes in Li<x above this node.

Now suppose that the 2-node in position (7 - 3, 5(k + 2) + 2) is missing in
Lit2(k). As subsequences of the form (5(k + 2) + 4, 5(Zc + 2) + 1, 5(Zc+ l) + 4)
and (S(k + 3), S(k + 2) + 1, S(k + 1) + 4) cannot occur in k £ 3¡i(n), and
by assumption /;_3 = 5(/c + 2) + 1, we conclude (using the previous arguments
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again): /y_4 > 5(Zc + 3) + 1, i.e., the next 1-ladder L(i+X)j(k) must contain all
1-nodesin L(,+i),i down to row 7-4. Furthermore, as Ijs > 5(k+3)+2, this
forces L,,2(A) to contain all 2-nodes down to row j -3 . Hence we know now
that at most the 2-nodes in positions (7-3, 5(/c+2)+2) and O'-l, 5(/c+l)+2)
can constitute holes in L¡t2(k).

Still assuming we have these two 2-nodes missing in L¡ 2(k), we know so
far:

//_3 = 5(k + 2) + l;   /,_2 = 5(k + 1) + 4 or 5(k + 2) ;
/,_, = 5(k+l) or 5(k+l) + l;   5/c + 4 < /,- < /,_,.

As A £ &s(n), the following subsequences are all forbidden:

5(k + 2) + l, 5(k + 2), 5(k+l),       5/c + 4
S(k+l) + 4, 5(fc+l) + l, 5/c+ 4
S(k + 2), S(k+l) + l, 5/c+ 4
S(k + 2), *, 5(k + l)
S(k+l) + 4, *, 5(/c + l)
5(k + 2)+l, S(k+l) + 4, 5(k+l)

But then there is no possibility for /,_3, f_2, lj_x, lj left, contradiction!
Hence it follows that Li>2(X) can have at most one hole at position (7 -

I, Sk + l).
Now if L,)2(A) has no hole or if it has a hole at position (7 - 1, 5/c + 7)

but this is not "accessible", i.e., lj-X = 5/c + 5 , then we can build up A along
L¡,2(k) from top down without any problem.

So assume now /,-_j = 5/c + 6.
We give a procedure that constructs all 2-nodes in Liy2(k) according to the

^5-rules. We may assume that the part of A up to and including L,_i 3(A) has
already been constructed.

®  ®•    •     •     3    Q)    1
• • •    ®    ®    @     3

7-2       •••      1 2 3   ©   ®   ®
7-1        •    •     •     ® ® 2

7 '    •     3     @ 1

As (5/c + 9, 5/c + 6, 5/c + 4) and (5/c + 10, 5/c + 6, 5/c + 4) are forbidden, we
must have l¡-2 > 5/c + 11, and hence Li+X t x(A) contains all 1-nodes in Li+X t x
down to row 7 - 2.

Now we continue with the construction of A : first add all the nodes in L¡ t x (A)
from top down up to the 1-node in position (j - 1, Sk + 5). Now we may add
all 2-nodes in L,,2(A), as the 2-node in position (7- 1, Sk + l) is not accessible
and hence the 2-node in position (7, 5/c + 4) can be added according to the
^5-rules. Next add the nodes in L, ; 3(A), and then the nodes in L,+i, 1 (A) down
to row 7 - 2. At this step, the 1-node in Li<x(k) in position (7 - 1, 5/c + 6) is
the highest accessible 1-node, hence it can be added according to the ^5-rules.
If Li+X ; i(A) has a further node in row j, we now add this. Then we continue
to add the 1-nodes on L()i(A) to its bottom. If Li+XtX(k) has no node in row
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7 , then there are no further nodes in L,-,i. Having completed all these steps,
we have now constructed the part of A up to and including Li+X t x(k). Then we
continue by working down the ladders as before, and as described above, in the
case of a hole in a 2-ladder at a position (7 , 5/c + 2), the "short route" between
the two 1-nodes in row 7 preceding this 2-node is replaced by a deviation
through the next three ladders, but in higher rows. Note that it might already
be necessary to insert such a deviation in the construction of L;+ii(A), but
this can only occur in rows < 7 — 3.

This finishes the algorithm for constructing A as a ^-partition. Hence we
have now proved 3><,(ri) ç W5(n), and thus we have also completed the proof
of the theorem.
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