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Partitioned Linear Block Codes for Computer 
Memory with “ Stuck-at” Defects 

CHRIS HEEGARD, MEMBER, IEEE 

Alisrruct-Linear block codes are studied for improving the reliability of 

message storage in computer memory with stuck-at defects and noise. The 

case when the side information about the state of the defects is available to 

the decoder or to the encoder is considered. In the former case, stuck-at 

cells act as erasures so that techniques for decoding linear block codes for 

erasures and errors can be directly applied. We concentrate on the compli- 

mentary problem of incorporating stuck-at information in the encoding of 

linear block codes. An algebraic model for stuck-at defects and additive 

errors is presented. The notion of a “partitioned” linear block code is 
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introduced to mask defects known at the encoder and to correct random 

errors at the decoder. The defect and error correction capability of 

partitioned linear block codes is characterized in terms of minimum 

distances. A class of partitioned cyclic codes is introduced. A BCH-type 

bound for these cyclic codes is derived and employed to construct parti- 

tioned linear block codes with specified bounds on the minimum distances. 

Finally, a probabilistic model for the generation of stuck-at cells is pre- 

sented. It is shown that partitioned linear block codes achieve the Shannon 

capacity for a computer memory with symmetric defects and errors. 

I. INTRODUCTION 

L INEAR block codes can be used to improve the 
reliability of message storage in an imperfect com- 

puter memory. We consider a memory that is composed of 
n cells. Each cell is expected to store one of q symbols. We 
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are concerned with two types of imperfections that affect 
individual memory cells. The first type is a defective mem- 
ory cell that is unable to store information. For example, 
some of the cells of a binary memory may be stuck at 0, 
and when a 1 is written into a stuck-at-0 cell, an error 
results. The second type of imperfection is a noisy cell 
which is occasionally in error. The distinction between 
these two types of imperfections is that stuck-at defects are 
permanent, while errors caused by noise are intermittent. 
Often the terms hard and soft errors, respectively, are used 
to describe these sources of error. 

By testing the memory it may be possible to determine 
the locations of the stuck-at cells. The side information 
that describes the state of the defects can be incorporated 
into the decoding or into the encoding of linear block 
codes. When the locations of the stuck-at defects are 
known at the decoder, these cells act as erasures. Thus 
techniques for decoding linear block codes with random 
errors and erasures can be directly applied as in Stiffler 
[13]. In this paper we consider the complimentary problem 
of incorporating stuck-at information in the encoding of 
linear block codes. 

The origin of this problem is a paper by Kusnetsov and 
Tsybakov [l]. They consider coding for binary memories 
that have a fixed fraction p of stuck-at cells. The assump- 
tion is that the location and nature of the defects are 
available to the encoder and not to the decoder. 

They define a code as a partition of the set of all binary 
sequences of length n into 2k disjoint subsets 
{A,, 4,. . .,&-1). A message is associated with each 
subset. It is desired that when a k-bit message w E 
{O,l; . f ,2k - l} is given to the encoder, along with a 
description of the stuck-at cells of the memory, a sequence 
x E A, can be found that agrees with all of the defective 
cells. This compatible sequence can then be stored without 
alteration. The decoder, recognizing that the sequence be- 
long to subset A,, can infer that message w was stored. 

A binary linear block code can be used to define such a 
partition code. Let G and H be the 1 X n generator and 
k X n parity-check matrix for a binary [n, I] linear block 
code (k + 1 = n). Each matrix has full rank and GH’ = 0. 
For each k-bit message vector w define 

A,= {y(yH’=w}. 

These sets are known as the cosets of the code and they 
partition the binary n-tuples into 2k subsets of equal size 

(2’). 
The decoder for these linear block codes takes the re- 

trieved vector y and sets ri, = yH’. Suppose that a memory 
has u defects at locations 1 6 i, < i, < * * * < i, < n and 
these cells are stuck at st, s2; . .,s, E (0, l}. Let x be any 
vector with xH’ = w (i.e., any vector that would be de- 
coded as w). The encoder tries to solve the matrix equation 

dG’ = [ s1 - xii, s2 - xi2; . . ,s, - x;.] 

for d an 1 vector, where 

G’ = [ gil 9 gizT. . * ,giu] 

is the I x u submatrix of G that involves the u defects. If a 
solution is found then y = x + dG is stored. Note that 

Yil = s19 Yi2 = sZ?’ ’ . ,yi, = s, and yH’ = w so that it will be 
correctly decoded. In order to guarantee that every mes- 
sage be correctly decoded for every memory with u or 
fewer defects, it is necessary and sufficient that every 
submatrix G’ have rank u, i.e., the columns must be 
linearly independent. Thus u can be as large as the mini- 
mum distance, minus one, of the dual code which is 
generated by H. For example, the [n, l] repetition code 
with G = [l 1 ... l] can store n - 1 bits in any 
memory with one stuck-at cell. The [n = 2’ - 1, Z] binary 
simplex codes (dual of the Hamming codes) can store 
k = 2’ - 1 - 1 bits in a memory with two stuck-at cells. 

Codes that are capable of correcting both defects and 
random errors are obtained by partitioning random error 
correcting codes. Let %’ be a binary error-correcting code 
of length n and size ]%?I = 2 k+’ Partition @‘into 2k subsets . 

{A), A,,* * .,4-l }. Then given w E (0, 1,...,2k - l} 
and a description of the defects of the memory, the encoder 
selects a sequence x E A, that is compatible with the 
stuck-at cells. The decoder observes y = x + z, a noisy 
version of X. By using the error correction capability of the 
code, an estimate f E %‘is obtained. Finally the message is 
retrieved by identifying the subset of % to which i belongs. 

A binary [n, k, I] partitioned linear block code is de- 
fined in terms of/an [n, k + I] linear block code with an 
[n, I] subcode. Let G,, G,, H, and Gr be full rank binary 
matrices of sizes I X n, k X n, r X n, and k X n respec- 
tively (k + I + r = n). Assume that the (k + I) x n matrix 
G = [G:, Gh]’ and the matrix H are the generator and 
parity-check matrices for an [n, k + I] linear block code V 
(i.e., rank(G) = k + I, GH’ = 0), G,,?;: = 0 and G,G: = I. 
Then 

A,= {yIyH’=O,y~;=w} 

partitions Pinto 2k subsets each of size 2’. The following 
example illustrates such a code. 

Example: Suppose we would like to store 3 bits of 
information (k = 3) in a binary memory of block length 
n = 7 and protect this information against a single stuck-at 
cell, known at the encoder, and a single random error. 

We can define an [n = 7, k = 3, E = l] partitioned linear 
block code by 

[ 

1000111 
G,= 0 1 0 o o 1 1 

0010101 1 G,=[l 1 1 1 1 1 I] 
[ 

1011100 
H= 1 1 0 1 0 1 o 

1110001 1 
i 

1001000 
q= 0 10 10 0 0. 

0011000 1 
The matrix G = [G:, GA]’ is a generator for the [7], [4] 
single error correcting Hamming code. Suppose, for exam- 
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ple, we would like to store the message w = [l 1 0] and 
the memory has a stuck-at-l defect in the third position 
and a random error in the fourth position. The encoder 
first computes wG, = [l 1 0 0 1 0 01. Since this 
codeword has a 0 in the third position and the encoder is 
told that this cell is stuck-at-l, the encoder stores x = wG, 
+ G, = [0 0 1 1 0 1 11. Note that this sequence 
agrees with the defect, thus avoiding a defect-induced 
error. The decoder then retrieves 

y=[o 0 1 0 0 1 l] 

which has an error in the fourth position. Computing 
s = yHt = [l 1 01, the decoder corrects the fourth posi- 
tion by recoginizing the syndrome as the fourth row of H’. 
Finally, we get a correct estimate of the message B = &i 
= [l 1 01. 

Kusnetsov and Tsybakov [l] show that for binary mem- 
ory with defects, it is sufficient to inform the encoder of 
the location and nature of the defects. By allowing the size 
of the memory n to become large, they prove the existence 
of codes that are capable of storing messages, without 
error, for any rate R 4 k/n < 1 - p (p = fraction of de- 
fects). This paper initiated the search for codes that are 
capable of correcting a fixed number of defects [2]-[4]. In 
[5], Tsybakov looks at linear block codes for the defect 
problem and shows that the asymptotic rate for the best 
linear block code, under the guaranteed correction crite- 
rion, satisfies 

1 - h(p) < R Q 1 - h((1 - &&)/2) 

for 0 Q p Q l/2; h(p) is the binary entropy function. 
Since it is generally true that 1 - p > 1 - h((l 
- c-m/2) we see that these codes are suboptimal 
under this criterion. Tsybakov [6] goes on to introduce the 
problem of coding for binary memory with both defects 
and random errors. He again considers the asymptotic 
rates achievable by linear block codes under a guaranteed 
correction criterion. This paper led to [7] where a scheme 
for correcting defects and random errors is described. 
Many of these results are summarized in [8]. 

In an attempt to further understand the problem of 
defective memory, Gel’fand and Pinsker [9] put forth a 
probabilistic model for the existence of defects and random 
errors in computer memory. They define the capacity to be 
the largest rate R for which there exist codes, for some 
(possibly large) block length n, that; exhibit an arbitrarily 
small average error probability. They determine the capac- 
ity for these memories when the state of the defects is 
available only to the encoder. In [lo], Heegard and El 
Gamal develop a similar probabilistic model for defective 
memory. They determine a lower bound to the capacity of 
these memories when complete or partial defect informa- 
tion is available to the encoder or to the decoder. This 
bound yields the capacity for several cases including all 
cases involving complete description of the defects. In this 
paper we are primarily interested only in the case when the 
encoder is told the state of the defects. 

In Section II we introduce an algebraic model for stuck-at 
defects and additive errors. This model assumes that 4, the 
alphabet size of the memory, is a power of a prime. To find 
codes that efficiently incorporate the defect information in 
the encoding process we define the class of partitioned 
linear block codes (PLBC’s); In [6], these codes are called 
matched adjacent codes. The guaranteed defect and error 
correction capability of these codes is described. 

Section III introduces the class of partitioned cyclic 
codes. The BCH bound for these codes is derived and used 
to construct partitioned linear block codes with guaranteed 
defect-and-error-correction capability. Two examples are 
given of the code construction procedure, one for q = 2 
and one for q = 3. Parameters of binary codes for several 
block lengths are tabulated. 

In Section IV, we turn our attention to the question of 
reliable storage of messages using partitioned linear block 
codes. The capacity of a class of q-ary symmetric memory 
cells is derived using the information-theoretic model [9], 
[lo]. We show that the class of partitioned linear block 
codes achieve capacity for these memories. 

The fact that partitioned linear block codes achieve 
capacity means that with minimum distance encoding and 
decoding we can achieve arbitrarily small error probability 
(for long block lengths) for any rate less than capacity. On 
the other hand, under a guaranteed defect and error correc- 
tion criterion, the rate of the best PLBC’s will necessarily 
be smaller than the capacity [6]. Thus PLBC’s with subop- 
timal encoding and decoding, constrained to encode and 
decode only for defects and errors within the guaranteed 
correction capability of the code, will result in an asymp- 
totic rate less than the capacity. We can conclude that 
while the class of PLBC’s contain “good” codes in the 
sense of error probability, we may need to make a sacrifice 
in the storage rate in order to apply suboptimal encoding 
and decoding algorithms. 

Before proceeding we note the analogy between informa- 
tion storage and information transmission. Natural similar- 
ities exist between the notions of space and time, memory 
and channel, data storage and data transmission, data 
retrieval and data reception. We can measure information 
in bits per cell or bits per second. Information and coding 
theory need not differentiate these notions. Thus the choice 
of terminology is a function of the nature of the problem to 
which the theory is applied. In this paper we have chosen 
the language of information storage as we feel that the 
codes that are discussed will find more application in this 
arena. 

II. PARTITIONED LINEAR BLOCKCODES 

A. Model of a Defective Memory with Errors 

We begin by developing an algebraic model for a com- 
puter memory with q-ary inputs and outputs. This model 
assumes both stuck-at defects and additive errors. 

Let q be a power of a prime and F4 be the field with q 
elements. Let F: denote the set of all n-tuples over Fg. (F,” 
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is an n-dimensional vector space over F,.) Define an addi- 
tional character “A”, Fq = Fq U { h } and define the “ 0 ” 
operator 0 : F4 x & + F4 by 

x0&s= 
i 

x, ifs = h; 
s, ifs # A. 

An n-cell memory with defects and errors is defined by 

y=(xos)+z, (2.1) 

where x is the stored vector, z is the error vector and s is 
the defect vector. The addition “ + ” is defined over the 
field F4 and both + and 0 operate on the vectors compo- 
nentwise. It may seem more general to allow both input 
and output errors, e.g., y = ((x + z,)” s) + z,). However, 
we can always redefine the error vector z 4 y - ((x + 
zt)o s) - z2 and obtain (2.1). 

Example: Let q = 2, n = 6, x = [0 0 0 0 0 01, z 
= [0 0 0 1 1 11, and s = [A 0 1 h 0 11. 
Theny = [0 0 1 1 1 01. 

The number of defects u is equal to the number of non-X 
components in s or 

u = p-ynll(x 0 s> - 41, 
4 

where )I * I] is the Hamming weight of the vector. The 
number of errors is defined by t = ]]z]]. In the above 
example, u = 4, t = 3. 

B. Block Encoders and Decoders 

An (n, k) block code consists of a set of qk messages, an 
encoder function that maps the message and the state 
vector s into an input vector x 

f,: {O,l; * * ,qk - l} x &’ + F” 4 

and a decoder function that estimates the message from the 
output vector y 

fd: F4” + {O,l;..,qk - l}. 

A code is said to be a u-defect, t-error correcting code if 
for every message w E (0, 1, * * . , qk - l} and any memory 
with u or fewer defects and t or fewer errors 

fd((fe(W S>“S) + 4 = w* 

C, Definition of Partitioned Linear Block Codes 

For linear block codes we take the messages as vectors in 
the set Fqk. An [n, k] linear block code %? C Ft is a 
k-dimensional linear subspace since it forms a group under 
vector addition and is closed under scalar multiplication. 
The cardinality I%] = qk. Any k linearly independent vec- 
tors from the code %‘(a11 vectors are taken as row vectors) 
can be used to obtain a k x n generator matrix G. Then 

V= {x E Fqnlx = wG; w E Fqk}. 

A parity-check matrix H is any k x r matrix (k + r = n) 

of rank r over Fq such that GH’ = Ok,r, the k X r zero 
matrix. Then 

%‘= {x E FJxH’= 0). 

The dual code is defined as the [n, r] LBC generated by H. 
An [n, k, I] partitioned linear block code (PLBC) is a 

pair of linear subspaces vi c F;, q0 c F; of dimension k 
and I such that %‘i n %,, = (0). Then the direct sum 

is an [n, k + I] LBC with a generator matrix G = [Gi, GA]‘, 
where G, generates %?i and G, generates %‘a, and r X n 
parity-check matrix H with k + I + r = n. A message- 
inverse matrix Gi is defined as any k X n matrix with 
G,Gi = Ik (the k-dimensional identity), and G&i = O,,,. 
Since a PLBC involves two generator matrices G, and G, 
and a parity-check matrix H, several dual codes can be 
defined. The (I, r)-dual code is defined as the [n, k, r] 
PLBC with generator matrix [@, GA]’ for %‘. For the 
(I, r)-dual code we may take G,, as the parity-check matrix 
and G, as the message-inverse matrix. 

D. Encoding and Decoding PLBC’s 

The following minimum distance encoding and decoding 
algorithms minimize probability of error for the memories 
which are modeled in Section IV in this paper. / 

Choose an [n, k, I] PLBC and fix G,, G,, H, and G,. 
Encoding: To encode w E .FYk store x = wG, + dG, 

where d E Fi is chosen to nnmmize ]](x 0 s) - xl]. Note 
that xG: = w. 

Decoding: Retrieve y = (x 0 s) + z. Compute the syn- 
drome s = yH’; note that s = z’H’ where z’ = y - x. 
Choose z^ E F; that minimizes ]]f]] subject to -ZH’ = s. 
Then B = ZGi where f = y - z^. 

E. Systematic Form 

An [n, k, E] PLBC is said to be in systematic form if we 
can find generators of the form G, = [Ik Ok,., P] and 
G, = [R II Q] where P is a k x r matrix, R 1s an 1 X k 
matrix and Q is an 1 X r matrix. Thus for systematic 
generators, the message w with a “cover” sequence dR 
added to it forms the first k symbols of the stored vector x 
and the “cover message” d forms the k + 1 to k + I 
components of x. In this form we may take H = [ -P’ 
-(Q + RP)‘I,.] and G, = [Ik - R’ Ok, ,I. 

F. Correction Capability of PLBC’s 

The distance profile of an [n, k] linear block code is 
defined as the set of Hamming weight enumerators { Ai} 
where 

Ai = I{ xlxH’ = 0, llxll = i} I. 

Given any x in the code, Ai is the number of codewords 
that are distance i from x. The minimum distance d for the 
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code is defined by and 

d = 2; II4 
xH*=O 

Thus d is the smallest number of linearly dependent col- 
umns of H. Note that A, = 1, Ai = 0 for 0 < i < d, and 
A, > 0. 

The distance profile of an [n, k, Z] PLBC is defined as a 
pair of sets ({ Ai }, { B, }), where { Ai} is the distance profile 
of the [n, k + l] linear block code with parity-check matrix 
H and { Bi } is the distance profile of the [n, k + r] linear 
block code with parity-check matrix G,. The distance 
profile for the (I, r)-dual PLBC is the pair ({ B, }, { Ai }). A 
PLBC has a pair of minimum distances (d,, d,) where 

d, = min ]jx]j 
XGi#O 
xH’=O 

and 

XC; ='O 

Note that d, is greater than or equal to the minimum 
distance of the [n, k + 11 linear block with parity-check 
matrix H, while d, is the minimum distance of the [n, k + r] 
code with parity-check matrix G,,. Thus A, = B, = 1, Bi = 
0 for 0 < i < d,, Ad1 > 0 and Bd, > 0, yet it may be 
possible that Ai > 0 for 0 < i < d,. 

Theorem 1: An [n, k, I] with minimum distances 
(d,, d,) is a u-defect, t-error correcting code if 

u < d, and 2t<d, 

or 

u & d, and 2( u + t + 1 - d,) < d,. 

Given an [n, k, I] PLBC with distance profile ({ Ai }, 
{ Bi}), we can find an [n, k, I] PLBC with systematic 
generators and the same distance profile. 

A proof of this theorem can be found in the Appendix. 
Example: Let q = 2, n = 15, k = 6, u = 3, and t = 1. 

We can generate a 3-defect, l-error correcting (15, 6, 5) 
PLBC by 

G, = 

Go = 

H= 

1 
100000 
010000 
001000 
000100 
000010 
000001 

110010 
011001 
011110 
101111 
100101 

00000 
00000 
00000 
00000 
00000 
00000 

10000 
01000 
00100 
00010 
00001 

1100 
0110 
0011 
1101 
1010 
0101 

1110 
0111 
1101 
0110 
1101 

-100000 10011 0000 
010000 11100 0000 
001000 .OlllO 0000 
000100 00111 0000 
000010 10110 0000 

~000001 01011 0000 

which has (d,,, d,) = (3,4). 

III. THE CLASS OF PARTITIONED CYCLIC CODES 

We now consider a more restrictive class of PLBC’s, the 
class of partitioned cyclic codes. The additional structure 
imposed by these codes may be useful both in the imple- 
mentation of encoders and decoders and in the construc- 
tion of codes with specified bounds on the correction 
capability. 

A. Polynomials 

In discussing cyclic codes it is useful to consider a 
codeword as a polynomial over Fq of degree less than n. 

Define the set of polynomials over Fq, 

f(x)lf(x) = ?hdh E Fq . 
i=O I 

The set of polynomials of degree less than n is denoted by 
F;(x). We may define an isomorphism between the n- 
dimensional vector space and the set of polynomials of 
degree less than n, 4: Ft + Fq’(x) by 

n-l 

4: c = [co,cl,-,cnJ + c(x) = c cixi. 

i=O 

F:(x) forms a ring under polynomial multiplication mod- 
ulo xn - 1; thus the isomorphism induces a ring structure 
on Fq*. 

B. Cyclic Codes 

An [n, k] LBC V is a cyclic code if and only if every 
cyclic shift of a codeword is also a codeword. A cyclic LBC 
is an ideal in the ring F;(x) of polynomials modulo 
x” - 1. It is known that every cyclic code has a unique 
manic polynomial g(x) of degree r, such that 

V= {c(x) E F;(x)Ic(x) = w(x)g(x) 

for some w(x) E F:(x)}, 

The generator polynomial g(x) must divide x” - 1, thus 
we may define a parity-check polynomial h(x) = (x” - 
1)/g(x), of degree k. Then an equivalent definition for a 
cyclic code V?is 

V= {C(X) E F,“(x)lc(x)h(x) = 0 modx” - l}. 

100110 10111 1000 

I 

An [n, k, E] partitioned cyclic code (PCC) is an [n, k, I] 

110101 11100 0100 PLBC such that both wand %Yo are cyclic LBC’s. Note that 
011010 11110 0010 V= %‘i + V. does not imply that Vi is a cyclic code. An 
001101 01111 0001 [n, k, I] PCC has two generators, g(x) of degree r (n = k 
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+ l+ r) and g,(x) of degree k + r such that g(x)]g,(x) 
and g,(x)]x” - 1. We might take 

2Yl = {C(X) E F;+‘(x)lc(x) = w(x)g(x) 

for some w(x) E F:(x)}, 

since specifying @and go does not uniquely define Vi. In 
this case, we may take 

I 

g(x) 

xdx> 

G, = x2&4 
I . 

1 : xk-‘g( x) 
and 

, Go= 

h-(x) 
xh-(x) 

1 
H= x’h-(x) , 

go(x) 
xgot4 
x2got4 

x’-lgo(x), 

Lx’-‘h-(x) 1 

where h-(x) = xk+‘h(x-‘) and h(x) = (x” - 1)/g(x). 
Define h,(x) = (x” - 1)/g,(x), the parity-check poly- 

nomial for %$. The (1, r)-dual code is an [n, k, r] PCC 
with h,(x) as the generator polynomial for Vand h(x) = 

(x” - 1)/g(s) as the generator polynomial for go. 

C. Encoding and Decoding of Partitioned Cyclic Codes 

Choose an [n, k, I] PCC and define g(x), g,(x), h(x), 
and h,(x). 

Encoding: Store c(x) = w(x)g(x) + d(x)g,(x), where 
d(x) E F:(x) is chosen to minimize ]](c(x) 0 s(x)) - c(x)]]. 

Decoding: Retrieve y(x) = (c(x)os(x)) + z(x). Com- 
pute the syndrome S(x) = y(x) mod g(x). Choose i(x) E 
F,“(x) which minimizes ]/2(x)]] subject to i(x) g(x) = 
S(x). Then 

Wtx) = (Y(X) - 2(x)> mod gob) 

g(x) . 

D. Fhctors of x” - 1 

In order to find a bound on the minimum distance of 
cyclic codes, it is useful to characterize the factors of 
x” - 1 over both Fq and the splitting field of x” - 1. We 
borrow our notation from MacWilliams and Sloane [ll]. 

Assume that n and q are relatively prime, and let m be 
the smallest positive integer such that nlq” - 1. Then Fqm 
is the splitting field of x” - 1 and 

where (Y E Fqm is a primitive nth root of unity, {M(‘)(x)} 
are the irreducible factors of x” - 1 over Fq, and I c (0, n 
- 11 is a set of coset renresentatives for the cvclotomic 

cosets modulo n over Fq. That is, if i E I, then 

&qaj) if j = iq” mod n for some s; 
otherwise. 

E. Partitioned BCH Codes 

We now introduce the class of partitioned BCH codes. A 
BCH-type bound for PCc’s will be derived. This bound 
can then be used to construct codes with specified lower 
bounds on the minimum distances. Examples will be given. 

Theorem 2: Let g(x) and g,(x) be the generator poly- 
nomials for an [n, k, I] PCC and let h,(x) be the parity- 
check polynomial for g,(x). If there exists an i, j, a,, and 
6, such that 

g(ai) = g(ai+l) = . . . = g(ai+*l-2) = 0, 

and 

ho(&) = ho(&+l) = . . . = hO(aj++2) = 0, 

(i.e., g(x) has a string of 6, - 1 consecutive powers of (Y as 
zeros, etc.) then 

and 

The proof of Theorem 2 is given in the Appendix. 
An [n, k, I] partitioned BCH code of designed distances 

(a,, So) is defined by 

g(x) = lcm{ M(‘)(x), M(‘+l)(~),...,M(~+~l-~)(x)} 

and 

h,(x) = lcm{ M(J)(x), M(j-l)(x),. . .,M(j-So+2)(~)} 

forsome(i, j)undertherestrictionthatg(x)h,(x)]x” - 1, 
(i.e., g(x) and h,(x) share no common roots). Then r G 
m(6, - l), 1 < m(6, - l), k > n - m(6, + 6, - 2), d, 2 
S,, and do 2 8,. 

For q = 2, M(‘)(x) = M(2i)(~); thus we have 

and 

Examples: Let q = 2, n = 15. Then 

xl5 + 1 = (x + 1)(x4 + x + 1)(x4 + x3 + x2 + x + 1) 

-(x2 + x + 1)(x4 + x3 + 1) 

= M(“yX)M(1yX)M(3yX)M(5yX)M(7yX) 

where a4 + (Y + 1 = 0. Then we can construct the codes 
given in Table I. 

Let q = 3, n = 8. Then 

x8 - 1 = (x - 1)(x2 - x - 1) 

-(x2 + 1)(x + 1)(x2 + x - 1) 

= M(“~~x~M(‘)~x~M(2)~X~M(4)~X~M(5)~X‘) 
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TABLE I TABLE V 
PARTITIONEDBINARY BCH CODESFOR~ = 15 PARTITIONED BINAI <Y BCH CODESFOR~ = 63 - 

I 
- 

= 
60 

z 

3 

6 

3 

4 

5 

6 

- 

= 

60 
- 

7 

0 

3 

5 

7 

s 

2 

3 

4 

5 

6 

7 

8 

s 

3 

5 

7 

s 

- 

= 
6, 
- 
11 

0 

7 

10 

s 

0 

7 

- 

= 

61 
- 

10 

9 

15 

13 

11 

9 

19 

16 

15 

14 

13 

12 

11 

10 

19 

15 

13 

11 

- 

= 
T 

-ii 

6 

12 

7 

12 

16 

13 

- 

- 

I 

- ZZ 

50 

z 

3 

2 

3 

3 

2 

3 I - 

= 
4 

-i 

3 

5 

4 

6 

7 

6 

- 

- = 

k 

- 

44 

3s 

39 

38 

30 

38 

38 I - 

= 
do 

- 
2 

3 

2 

3 

2 

3 

3 

= 
k 

- 

10 

7 

6 

6 

4 

3 

2 

2 

1 

- 

= 
k 

6e 

51 

50 

50 

45 

44 

44 

- 

- 

I 
- = 

k 

- 

11s 

113 

112 

112 

106 

105 

105 

105 

99 

99 

SE 

96 

98 

sl3 

82 

92 

91 

91 

91 

- 

= 
I 

- 

1 

6 

1 

6 

6 

1 

6 

- 

Z.Z 
1 

- 

1 

7 

1 

7 

7 

1 

7 

8 

7 

14 

1 

7 

6 

14 

7 

14 

1 

7 

8 

- 

- 
= 

k 

- 

243 

239 

238 

236 

231 

230 

230 

230 

223 

223 

222 

222 

222 

222 

- 

= 
1 

- 

1 

B 

1 

6 

i3 

1 

6 

s 

0 

16 

1 

B 

9 

18 

- 

I 
- 

k 1 I 

-l-t 35 1 27 

33 62-l 

33 12 18 

32 6 23 

TABLE VI 
PARTITIONED BINARY BCH CODES FOR n = 127 

- = 
r 

- 

7 

7 

14 

8 

14 

21 

15 

14 

21 

14 

28 

22 

21 

15 

28 

21 

35 

26 

20 

- 

Z!Z!Z 

60 

z 

3 

2 

3 

3 

2 

3 

4 

3 

5 

2 

3 

4 

5 

3 

5 

2 

3 

4 

- 

61 
- 

3 

3 

5 

4 

5 

7 

6 

5 

7 

5 

s 

6 

7 

6 

9 

7 

11 

10 

s 

- 

= = 
k 1 

- - 

01 14 

91 15 

85 7 

85 14 

II5 21 

04 1 

64 7 

EM 6 

84 14 

84 15 

84 21 

78 7 

76 14 

70 21 

7-7 1 

77 7 

77 8 

7-f 14 

77 15 

- - 

= 
r 

- 

22 

21 

35 

28 

21 

42 

36 

35 

29 

28 

22 

42 

35 

28 

4s 

43 

42 

36 

35 

- 

- r 
60 
- 
5 

6 

3 

5 

7 

2 

3 

4 

5 

6 

7 

3 

5 

7 

2 

3 

4 

5 

6 

- 

= 
6, 
- 

6 

7 

11 

9 

7 

13 

12 

11 

10 

s 

B 

13 

11 

s 

15 

14 

13 

12 

11 

- 

k 

- 

77 

77 

71 

71 

71 

71 

70 

70 

70 

70 

70 

70 

70 

70 

64 

64 

64 

64 

= 
1 

- 
21 

22 

7 

14 

21 

28 

1 

7 

6 

14 

15 

21 

22 

26 

7 

14 

21 

28 

- 

1 
- ZZ 

r 

- 

2s 

26 

4S 

42 

35 

20 

56 

50 

49 

43 

42 

36 

35 

2s 

56 

49 

42 

35 

8(Z) 

M(‘)(z) 

M(‘)(z) kP’(z) 

Y@‘(z) M(‘)(z) 

M(‘)(z) Mqz) Mqr) 

M(‘)(I) Mqz) 

M[qz) M(‘)(r) AP’(z) 

M(‘)(z) M(Q) 

M(‘)(z) H(J)(r) I(J)(z) 

- 

TABLE II 
PARTITIONEDTERNARY BCH CODESFOR~ = 8 

TABLE III 
PARTITIONEDBINARY BCH CODESFOR~ = 7 

TABLE IV 
PARTITIONEDBINARY BCH CODESFOR~ = 31 

TABLE VII 
PARTITIONEDBINARY BCH CODESFOR~ = 255 

- - 
= 
r 

- 

I3 

8 

16 

s 

16 

24 

17 

16 

24 

16 

32 

25 

24 

17 

- 

- 
, 

= 
60 

z 

3 

2 

3 

3 

2 

3 

4 

3 

5 

2 

3 

4 

5 

- 

= 
51 

3 
3 

5 

4 

5 

7 

6 

5 

7 

5 

s 

6 

7 

6 

- 

ZZ 
k 

- 

215 

215 

214 

214 

214 

214 

214 

207 

207 

207 

206 

206 

208 

206 

- 

- 
= 
1 

8 

16 

1 

6 

9 

16 

17 

a 
16 

24 

1 

6 

9 

16 

- 

- 

d 
II 
r 

- 

32 

24 

40 

33 

32 

25 

24 

40 

32 

24 

48 

41 

40 

33 

- 

- 
k 
- 
3 

5 

2 

3 

4 

5 

6 

3 

5 

7 

2 

3 

4 

5 

- 

= 

61 

s 

7 

11 

10 

9 

6 

7 

11 

9 

7 

13 

12 

11 

10 

- 

-i-- r 
- - 
206 17 

206 24 

199 8 

199 16 

199 24 

196 1 

198 8 

198 9 

190 16 

168 17 

198 24 

196 25 

- 

I 

- 

32 

25 

48 

40 

32 

56 

49 

48 

41 

40 

33 

32 

- - - 
/ 

a, 
B 
7 

3 

5 

7 

2 

3 

4 

5 

6 

7 

8 

- 

6, 
- 
s 

6 

13 

11 

s 

15 

14 

13 

12 

11 

10 

9 

- 

where a2 - (Y - 1 = 0. Then we can construct the codes in 
Table II. 

Tables III-IX list some partitioned binary BCH codes 
for block lengths 7, 31, 63, 127, 255, 511, and 1023. These 
codes are defined by using the construction procedure with 
(i, j) = (0, n - l), (lo), or (1, n - l), and I < r. Note 
that for an [n, k, ~‘1 partitioned BCH code of designed 
distance (ai, S,), the (l, r)-dual code is an [n, k, r] parti- 
tioned BCH code with designed distance (S,, 8,). 
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TABLE VIII 
PARTITIONED BINARY BCH CODES FOR n = 511 

= 
k 

- 
Ml 

4a3 

402 

402 

464 

463 

483 

4e3 

475 

475 

474 

- 

= 
1 

- 

1 

9 

1 

9 

0 

1 

0 

10 

9 

18 

1 

- 

= 
7 

T 

9 

18 

10 

18 

27 

19 

12 

27 

12 

36 

- 

= 
50 

z 

3 

2 

3 

3 

2 

3 

4 

3 

5 

2 

- 

= 

dr 
- 

3 

3 

5 

4 

5 

7 

6 

5 

7 

5 

9 

- 

- T.YY 
k 

- 

474 

474 

474 

488 

468 

465 

485 

465 

465 

463 

457 

- 

1 

s 

10 

18 

9 

12 

1 

9 

10 

1.3 

1s 

9 

- 

= 
r 

u, 

27 

19 

36 

2? 

4x5 

37 

38 

2E 

27 

45 

- 

= 
k 

- 

467 

467 

456 

458 

456 

456 

456 

456 

448 

440 

44a 

- 

= 
1 

- 
18 

27 

1 

9 

10 

16 

1s 

27 

9 

18 

27 

- 

- 
r 

ss 

27 

54 

48 

4s 

37 

36 

28 

54 

45 

36 

- 

G 
- 
5 

7 

2 

8 

4 

6 

6 

7 

3 

5 

7 

- 

d, 

-i- 
7 

13 

12 

11 

10 

9 

8 

13 

11 

0 

- 

the input and the output. For example, y = 0 implies only 
noise at the input while y = e implies output noise only. 

B. Capacity of the q-SDMMC 

Assume that a memory is composed of n statistically 
independent and identically distributed q-SDMMC’s. The 
rate of an (n, k) partitioned block code is defined as the 
ratio R e k/n, and 

P,=P(l%-# w) 

qk-1 

= 4P ,Yzo P(fd(Y) # WIX = fe(w, s>) 

is the probability of error averaged over the message II’, 
the defect vector S and the error vector 2. A rate R is said 
to be achievable if and only if there exist codes of that rate 
that exhibit arbitrarily small probability of error. That is, 
for any 8 > 0 there exists an (n, k) partitioned block code 
with P, x 6. The capacity C of the memory is defined as 
the least upper bound on the set of achievable rates. 

Theorem 3: The capacity of the q-SDMMC is 

C = 1 -p + ph(4 -h(P) +(~a - P)log(q - 11, 

(4-l) 

where h(x) = -xlogx - (1 - x)log(l - x), p = (1 - 
p)e + p(a + y - ayq/q - I), and 0 < a < 1 is the root 

TABLE IX 
PARTITIONED BINARY BCH CODES FOR n = iO23 

i- 
- 

1 

10 

1 

10 

10 

1 

10 

11 

10 

P 

- 

;; 
s 
3 

6 

4 

5 

7 

6 

6 

7 

5 

- 

-ii- 
saz 
962 

962 

662 

673 

973 

972 

972 

972 

972 

- 

- 
v 

iii 

31 

30 

21 

40 

30 

50 

41 

46 

31 

- 

a, 
z 

3 

4 

5 

3 

5 

2 

3 

4 

5 

L - 

a, 

0 

8 

7 

6 

9 

7 

11 

10 

9 

8 

- 

r 
-z 
10 

20 

30 

1 

10 

11 

20 

21 

30 

- 

- 
T 

30 

50 

40 

30 

60 

51 

50 

41 

40 

31 

- 

a, 
-ii 

3 

5 

7 

2 

3 

4 

5 

6 

7 

- 

a, 
- 

7 

11 

9 

7 

13 

12 

11 

10 

9 

8 

- 

k 

- 
1012 

log-AL+ l-y4 
( 1 

1-P - 
1-a q - 1 log p 

- 5 log (q - 1) = 0. (4.2) 

IV. PLBC’s ACHIEVE CAPACITY 
All logs are to base q. 

The proof of Theorem 3 can be found in the Appendix. 
For y = 0 and a = p = e, C = (1 - p)(l - h(c) - clog(q 

- 1)). 
To prove that PLBC’s achieve C we need the following 

lemma. 
Lemma: Fix 6 > 0, 0 < z < (q - 1)/q and R = k/n. 

Let G be a random matrix chosen uniformly over the set of 
k X n matrices over the field F4. 

a) Let 2 E Fq” be a random vector with independent 
and identically distributed components chosen according 
to 

A. A Random Model for Defects and Errors 

A stochastic model for the generation of defects and 
errors in a computer memory cell is obtained by assigning 
probabilities to the defect and error events. The (p, e, y) 
q-symmetric discrete memoryless memory cell (q-SDMMC) 
is defined by the equation Y = (x 0 S) + 2, where x, Y, Z 
E F4, S E &, 

/1 -P, s.= A; 

i 

1 - e, z = 0; 
P(Z=z)= 6 

q-l’ 
z # 0. (4.3) P(Z=z(S=X)= 

1 

( 
3’ 

z # 0, 

and Let Y = wG + 2 for any w E F$. If R < 1 - h(c) - 
e log(q - 1) then there exists an n,(S) such that for every 
n > no 

P 
( 

min j[Y - w’Gjl < I/Y - wGll < 6. 
HI’ E F,” 

1 

W’# w 

b) Let Y be a random vector chosen uniformly over Fz. 
If R > 1 - h(c) - elog(q - 1) then there exists an n,(S) 

(1 -Y, z = 0; 
P(Z=zlS#X)= 

1 

Y- 
q-l’ 

z # 0. 

The probability of a defect is 0 Q p < 1, the symmetric 
error probability on a nondefective cell is 0 < E < (q - 
1)/q, and the symmetric error probability on a stuck-at cell 
is 0 < y 6 (q - 1)/q. This model allows for errors at both 
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such that for every n > n, 

P 
( 

rnin]]Y- wG]] > nc < 6. 
WEFqk 1 

This lemma is proved in the Appendix. 
The first part of the lemma pertains to a channel coding 

problem. The channel is the q-symmetric discrete memory- 
less channel (q - SDMC) with parameter e. The q-SDMC 
is defined by the equation Y = x + Z where Y, x, Z E F4, 
and Z has the symmetric distribution (4.3). The capacity of 
this channel is 1 - h(e) - E log (q - 1). The lemma implies 
that linear block codes achieve capacity since for any rate 
R less than capacity, the expected probability of error for a 
randomly chosen generator matrix with minimum distance 
decoding, can be made arbitrarily small by increasing the 
block length n. 

The second half of the lemma relates to a source coding 
problem. The q-symmetric discrete memoryless source (q- 
SDMS) is an independent and identically distributed source 
with output letters that are uniformly distributed over Fq. 
For the q-SDMS, the rate distortion function with Ham- 
ming distortion e is given by R(r) = 1 - h(r) - elog(q - 
1). This is a lower bound on the rate needed to describe the 
q-SDMS with expected Hamming distortion at most E. 
Again, the lemma implies that linear block codes achieve 
the rate distortion bound, since the expected distortion for 
a randomly chosen generator matrix with rate greater than 
R(c) can be made arbitrarily close to c by increasing the 
block length n. 

Theorem 4: Given a (p, E, y) q-SDMMC and 6 > 0 let 
p = (1 - p)c + p(a + y - ayq/q - 1) for some 0 < ~1 < 
1. Fix rates R = k/n and R’ = I/n such that 

R + R’ < 1 - h(P) - ,l?log(q - 1) 

and 

R’ > p(1 - h(a) - culog(q - 1)). 

Then there exists an [n, k, I] PLBC such that for any 
WE F4” 

P, = P(ti# w) < 6. 

The proof of this theorem is found in the Appendix. 
Theorem 4 shows that PLBC’s achieve capacity. By 

combining the bounds on the rates, any rate R satisfying 

R < 1 - h(P) - plog(q - 1) -R’ 

< 1 -P + @(a) - h(P) +(~a - P)log(q - 1) 

is achievable. By choosing (Y as the root of (4.2) we see that 
this bound is the capacity (4.1). 

V. CLOSINGREMARKS 

We conclude this paper with a short discussion of two 
related issues. 

In some computer memories the defects may occur in 
“clusters” or “bursts.” The presence of one defective cell 
may indicate that adjacent cells of the memory are also 
defective. A u-burst defect-correcting code must correct 

839 

any u (or fewer) adjacent defects. An [n, k, I] modified 
cyclic code is well suited to the task of correcting a single 
burst defect. In fact the redundancy I required by these 
codes is equal to the burst length u. The reason for this is 
the fact that any I (cyclically) consecutive columns of the 
generator matrix G, are linearly independent. 

The second issue involves the splitting of defect informa- 
tion between the encoder and the decoder. We have as- 
sumed throughout that only the encoder or the decoder, 
but not both, is given the locations of the defects. It is 
better, in some instances, to tell the encoder the location of 
some defects and to tell the decoder the locations of other 
defects. The following example demonstrates this. 

Example: Suppose that we store 10 bits (k = 10) in a 
binary memeory (q = 2) and protect this information 
against one random error and two stuck-at defects. If we 
use an [n, k] LBC and correct both defects at the decoder, 
then a minimum distance d = 5 is required. The Hamming 
bound for binary codes (see [ll, p. 19]), 

Id-l1 

requires that n 2 18 for k = 10 and d = 5. If we correct 
both defects at the encoder using an [n, k, I] PLBC then 
minimum distances d, = d, = 3 are required. The Single- 
ton bound for binary [n, k] linear block codes with mini- 
mum distance d ([ll, p. 33]), n - k a d - 1, can be 
combined with the Hamming bound to obtain 

Znek 2 max 2do-1 

i 

for [n, k, 11 PLBC’s with minimum distances d,, d,. For 
k = 10 and d, = d, = 3, this bound requires n >/ 17. 

However, we can correct one defect at the encoder and 
one defect at the decoder by using an [n, k, Zl PLBC with 

The following minimum distances d, = 4 and d, = 2. 
[16,10, l] modified linear block code with 

1000000000011100’ 
0100000000011010 
0010000000011001 
0001000000010110 

G 0000100000010101 
1 

= 
0000010000010011 
0000001000001110 
0000000100001101 
0000000010001011 

&0000000001000111 

G, = [1111111111111111] 

is such a code. Note that the block length of 16 is smaller 
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than the required block length when the defect information Then 
is not split. Z(U; Y) - z(u; S) 

= H(UIS) - H(UIY) 

APPENDIX 
=Plog(q) +pth(a) + alog(q - 1)) 

Proof of Theorem I -h(P) - Plogtq - 1) 

Let G,, Go be the generator matrices for an [n, k, I] PLBC with 
=F + $(a) -h(P) +(~a - P)logtq - 1) 

minimum distances (d,, d,). Assume that 2( t + max (0, u + 1 - where p = 1 - p, h(x) = -xlog(x) - xlog(x) and /I = pr + 

d,)) < d, and let s, z be a u-defect, t-error memory. p(cu + y - ay(q/( q - 1))). Taking the derivative with respect to 

To encode, let i,, i,; . ., u i be the locations of s where si # A. a we get 

Let m = min(d, - 1, U),S’= [Si,,S,2,.-.,Sim], 

G; = [gl,i,gl.iz ... gl,i,,,] and Gi= [go,ilgO,rz ... go,i,]~ 
P’oP(~)-P(l-~)lo~(~)+~PY~/~-~~~~~~~-~~. 

where g,, i is the i th column of G,, etc. Then rank (Gh) = m and Setting the derivative equal to zero is equivalent to finding the 

there exists a solution d (not necessarily unique) to the equation root of 

dG6 = s’ + WC;. For this solution, 11(x 0 s) - XII d max(O, u + 1 

- do). 
1 - y4 

For the decoder let x = WC, + dG,,, x’ = w’G, + d’G,, where 
q-1 

--J&log(q-l)=O. 

w#w’,andy=(xos)+z.Then 
Proof of Lemma 

a) Fix 0 < y < (q - l/q) - E such that R < 1 - h( c + y) - 
(z + y ) log (q - l), with base q logs. 

IIy - ~‘(1 = II(xos) - x’ + zll > d, - t - max(O, u + 1 - d,). Since Y- wG=Zand Y- w’G=Z-(w’- w)G, 

Since t + max(O, u + 1 - d,) < d, - t - max(O, u + 1 - d,), 
we conclude II y - XII < II y - ~‘11. P min IIY - w’Gll d I(Y - wGl[ 

For a given pair of generators G, and Go we can find invertible 
W’E F,” 

W’#W 1 
matrices A 0, A,, and B and a permutation matrix n such that 
G; = A,G,H and G; = A,(G,II - BG,$) are of the form G,J, = 
[RZ,Q] and G; = [Z,O,,,P], without disturbing the distance pro- 

= P w$$lZ - ~41 Q IIZII 

file of the code. I 
4 

W#O 1 
d f’[llZll a n(~ + Y>] + c [PIIZ - wGll d ntc + Y)] 

Proof of Theorem 2 

The proof of this theorem follows directly from the BCH 
bound for cyclic codes (see [ll, p. 2011) and the following facts: 

a) The minimum distance d, is equal to the minimum distance 
of the linear block code generated by h 0 (x). 

b) The minimum distance d, satisfies 

WEFqk 

<‘P[IIZII > rz(E + y)] + qk-nx(g)( 1)(4 - # 

< P[llZll > n(c + y)] + qk--nqn++y)(q - l)n(r+v) 

= P[llZll a n(E + Y>l + 4 
n(R-l+h(r+y)+(r+y)log(q-1)) 

By the law of large numbers, there exists an n, such that for all 

n > nl 
n 

P(llZll> n(E + y)) d 5. 

Thus d, is bounded by the minimum distance of the linear block 
code generated by g(x). Since R < 1 - h(c + y) - (c + y)log(q - l), there exists an n2 

such that for all n > n2 

Proof of Theorem 3 

The capacity C for a (9, p(s), %, p(ylx, s), q) discrete mem- 
oryless memory cell [9], [lo] is given by 

c = I$x)z(u; Y) - z(u; S). 

For the q-SDMMC, let (I = X, a = 1 - (Y, and 

1 

4’ 
P(UlS) = a, I- 

s = A; 

u=s#h; 
a 

q-l’ 
UfSZX. 

6 

4 
n(R-l+h(r+y)+(c+~)k?$(9-1)) < -. 

2 

Thus we may take no = max(n,, nz). 
b) This proof is suggested by a technique due to El Gamal 

[12]. Fix 0 d y Q 1, and define 

Q= {xEF~lwG=xforsomewEF,k} 

and 

Then 

P min IIY - wGll > nc = P[ lAYI = 01. 
WEF; 1 
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Using Chebyshev’s inequality, one gets Also, 

P[ IArl = 01 d P[ lIArI - W,lI 2 Y-WI41 P[Y+ziEQ,Y+zjEQ] 

~ EIIA,I - EIA~l12 = u2[IAd . (Al) =p 

Y2t%412 Y*b%41* [ 

U U {xG=Y+z~,wG= y+Zj} 

XEF; wsFqk 1 
We may write < C C P[(x-w)G=Zi-Zj] 

N 
XEF$ WEF; 

A,= c l,(YS z) = c 1,(y+ Zi) 
DE-F,” i=l 

P[xG= Y+zJ(x- w)G=z,-zj]. 

where 

Since Y is independent of G, 

P[xG= Y-t zil( x - w)G = zi - zj] 

and so we have 

= P[ Y = XC - Zi] = q-“3 

N = igo( ;)tq - lji, P[Y+ziEQ,Y+zjEE4]dq*‘k-“) 

and 
and zl, z2; . . , zN is a lexicographical ordering of all length n 

sequences with Hamming weight d nc. 
E(IA,l)* < Nqk-” + N2qZck-“). (A3) 

Now Combining (A2) and A3) we have 

N N 

EIAyI = C E[l,(Y+ Zi)] = C ‘[‘+ zi E ‘1 
i-l i=l 

u’[ lAyI] < Nqk-” + 2N2q3’k-“’ 

= N*q*(k-n)[N-lqn-k + zqk-“]. 

and Thus from (Al) 

P[++z, E %‘I ~P[rank(G) =k]P[Y+ zi E%‘]rank(G) = k] 
P(IA,I = 0) d 

[ N-lq”-k + 2qk-“1 

= [l - P[rank(G) < k]]qk-” 
y2[1- 2qk-“1 . 

Since 

N = iEo( ;)(q - l)j 2 qnh(‘)&- ‘)“, 

where c = 8r(l - e)([ll, p. 310]), 

> [l - qk-“]qk-” N-lq”-k < &qn-k-nW(q - ,)-” 

= n(l-R-h(r)-rloS(q-1)+(1/2n)loS(cn)) 

where the last step follows from the union of events bound. Thus 
4 , 

which approaches zero for large n since R > 1 - h(c) - clog (q 

EIA,I > Nqk-“[1 - qk-“1 
- 1). sillily, qk-fl = qn(R-1) goes to zero since R < 1, and we 
conclude that there exists an n, such that P(IA,I = 0) d 6 for all 

and n > n,. 

[E&,1]* 2 N2q2’k-“‘[l - 2qk-“1. 642) 

Next, 

N 

W,l)2 = c E[l,.(Y+ z,>l 
i=O 

+ i~o,~oE[lc(Y+ Zi)lc(Y+ Zj>] 
j#i 

N 

= CP[Y+ziEQl 

i=O 

+; fP[y+ziEI,Y+z,E%] 
i-0 j=O 

j#i 

and 

P[Y+~~EQ]=P u {wG=y+zi} dqk-n. 
WEFqk 1 

Proof of Theorem 4 

Fix w E F,” and small X > 0 such that 

R’ > (p + X)(1 - h(a) > “log(q - l)), 

R + R’ < 1 - h(p’) - /3’log(q - l), 

where /?’ p (1 - X)p + 2A((q - 1)/q) and p < (q - 1)/q. 
Define the two random variables 

Q = min ]I(( WC, + dGo) 0 S) - WC, - dG,ll. 
dsF,’ 

Letx=~G,+dG~where]](x~S)-x]l=QandY=(xoS)+ 
Z. Then 

P,= P(Fv# W) 

P min min ](Y - x’]] d ]]Y - x]] 
w’~Fqk d’EFq 

W’ZW 1 
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where x’ = w%, + d’G,. Thus 

P, 6 P[lT - npl > nil] + P[IT - npl< d, Q > n(p + x)&l 

+P min min IIY - x’ll d IIY - XII, for IT - npl d nh, 
W’E F,” d’E Fq 

W’#W 

Q d n(p + x)a 1 . 

By the law of large numbers, there exists an n, such that for all 
n 2 n, 

P[IT- npJ > nh] < s. 

By applying the proof of the lemma (part a)), we see that if we 
randomly chose Go there exists an n2 such that for all n 2 n2 

P[lT - npl < nh, Q > n(p + X)(Y] < t 

since R’ > (p + h)(l - h(a) - alog(q - 1)). 
Finally, on the set 

{IT - npl < n, Q d “(P + X>a!> 

2 = Y - x is an independent identically distributed random 
vector with components chosen according to 

i 

1 - P, z = 0; 

P(Z=z)= p 
q-l’ 

z # 0, 

where p < /3’. From the proof of the lemma (part b)), if we 
randomly choose G, and Go, there exists an n3 such that for all 
n 2 n3, 

P 

i 

min min j(Y - x’ll 6 IIY - XII, for JT - npl < d, 
w’~Fqk d’EFq 

wf2w 

Q<n(p+X)cr if 
i 

since R + R’ < 1 - h(P’) - /3’log(q - 1). 
By letting n > max(n,, n2, n3) we see that there exist PLBC’s 

with P, < 6, concluding the proof of the theorem. 
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