Partitioned Successive-Cancellation List Decoding of Polar Codes

Seyyed Ali Hashemi^{*}, Alexios Balatsoukas-Stimming[†], Pascal Giard^{*}, Claude Thibeault[¢], Warren J. Gross^{*}

* McGill University, Montréal, Québec, Canada
 † École polytechnique fédérale de Lausanne, Lausanne, Switzerland
 ° École de technologie supérieure, Montréal, Québec, Canada

March 23, 2016

Seyyed Ali Hashemi (McGill)

PSCL Decoding of Polar Codes

ICASSP 2016 1 / 14

What is the problem?

- Polar codes are state-of-the-art codes with interesting properties
- Successive-Cancellation List (SCL) decoding can outperform LDPC codes
- SCL requires large amount of memory
 - High memory requirement translates into high area occupation

In this talk:

We reduce the memory usage of SCL and improve its performance!

Polar Codes

- First family of codes which can provably achieve the channel capacity with explicit construction and low-complexity decoding¹
- The encoding process consists of recursive application of a linear transformation of $G = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ to get the generator matrix $G^{\otimes n}$
 - The channels are then sorted as being either good or bad
 - As the number of channels increases, the fraction of good channels tends to the channel capacity
- Different decoding schemes are available:
 - Successive-Cancellation (SC)
 - SC List

¹E. Arkan, "Channel polarization: A method for constructing capacity achieving codes for symmetric binary input memoryless channels," *Information Theory, IEEE Transactions on*, vol. 557, no. 7, pp. 3051-3073, July 2009.

Background

Polar Encoding

- For a rate $\frac{K}{N}$ code $\mathcal{P}(N, K)$, the K best channels are found and the information bits are assigned to those channels
- The N K worse channels are set to a predefined value (usually 0). These are called *frozen bits* F

Seyyed Ali Hashemi (McGill)

PSCL Decoding of Polar Codes

4/14

Successive-Cancellation Decoding

$$\begin{split} &\alpha_{I}[i] = \text{sgn}(\alpha[i])\text{sgn}(\alpha[i+2^{s-1}])\min(|\alpha[i]|, |\alpha[i+2^{s-1}]|), \\ &\alpha_{r}[i] = \alpha[i+2^{s-1}] + (1-2\beta_{I}[i])\alpha[i], \\ &\beta[i] = \begin{cases} &\beta_{I}[i] \oplus \beta_{r}[i], & \text{if } i < 2^{s-1} \\ &\beta_{r}[i+2^{s-1}], & \text{otherwise}, \end{cases} \end{split}$$

PSCL Decoding of Polar Codes

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ICASSP 2016 5 / 14

SC List Decoding

SC decoding

$$\hat{u}_i = egin{cases} 0, & ext{if } i \in \mathcal{F} ext{ or } lpha_i \geq 0, \ 1, & ext{otherwise.} \end{cases}$$

SCL decoding

$$\begin{split} \hat{u}_{i}^{l} &= \begin{cases} 0, & \text{if } i \in \mathcal{F} \\ 0 \text{ or } 1, & \text{otherwise.} \end{cases} \\ \mathsf{PM}_{i}^{l} &= \begin{cases} \mathsf{PM}_{i-1}^{l}, & \text{if } \hat{u}_{i}^{l} = \frac{1}{2} \left(1 - \mathsf{sgn} \left(\alpha_{i}^{l} \right) \right), \\ \mathsf{PM}_{i-1}^{l} + |\alpha_{i}^{l}|, & \text{otherwise,} \end{cases} \end{split}$$

• Cyclic Redundancy Check (CRC) code can be used to help SCL find the correct candidate

Seyyed Ali Hashemi (McGill)

PSCL Decoding of Polar Codes

ICASSP 2016 6 / 14

6/14

3

イロト イヨト イヨト イヨト

Partitioned SCL Decoding

- The decoder tree is broken into partitions (subtrees)
- SCL decoding is performed only on the partitions
- Standard SC rules are applied to the remainder of the decoding tree
- Each partition outputs a single candidate codeword which is selected with the help of a CRC and then sent to the next partition
- The decoding process starts with the standard SC update rules
- The decoder does not require memory to store *L* entire trees of internal LLRs
- Only *L* copies of the partitions on which SCL decoding is performed are stored

<ロ> (四) (四) (三) (三) (三) (三)

Partitioned SCL Decoding

Seyyed Ali Hashemi (McGill)

PSCL Decoding of Polar Codes

ICASSP 2016 8 / 14

8/14

Memory Requirements

$$M_{SC} = \underbrace{(2N-1) Q_{\alpha}}_{\alpha \text{ (LLR values)}} + \underbrace{N-1}_{\beta \text{ (partial sums)}},$$

$$M_{SCL} = \underbrace{(N + (N-1) L) Q_{\alpha}}_{\alpha \text{ (LLR values)}} + \underbrace{LQ_{PM}}_{\text{path metrics}} + \underbrace{(2N-1) L}_{\beta \text{ (partial sums)}},$$

$$M_{PSCL} = \underbrace{\left(\sum_{k=0}^{P-1} \frac{N}{2^{k}} + \left(\frac{N}{2^{P-1}} - 1\right) L\right) Q_{\alpha}}_{\alpha \text{ (LLR values)}} + \underbrace{LQ_{PM}}_{\text{path metrics}},$$

$$H_{PSCL} = \underbrace{\left(\sum_{k=0}^{P-2} \frac{N}{2^{k}} + \left(\frac{N}{2^{P-2}} - 1\right) L\right)}_{\beta \text{ (partial sums)}},$$

$$M_{PSCL} = \underbrace{\left(\sum_{k=1}^{P-2} \frac{N}{2^{k}} + \left(\frac{N}{2^{P-2}} - 1\right) L\right)}_{\beta \text{ (partial sums)}},$$

9/14

9 / 14

Memory Requirements

Results

Performance Results $\mathcal{P}(2048, 1024)$

Seyyed Ali Hashemi (McGill)

PSCL Decoding of Polar Codes

ICASSP 2016 11 / 14

Results

Implementation Results $\mathcal{P}(2048, 1024)$

Algorithm	Total (mm ²)	Memory (mm ²)
SC	0.723	0.413
SCL2-CRC32	1.563	0.702
SCL4-CRC32	3.075	1.214
PSCL(2, 2)-CRC16	1.189	0.540
PSCL(4, 2)-CRC8	0.909	0.415
PSCL(4, 4)-CRC8	1.356	0.543

Seyyed Ali Hashemi (McGill)

PSCL Decoding of Polar Codes

ICASSP 2016 12 / 14

୬ବ୍ଙ 12/14

Conclusions

- We proposed a novel PSCL decoding algorithm for polar codes
- The code is broken into partitions and each partition is decoded with a CRC-aided SCL decoder
- The memory requirements of PSCL decoder is significantly smaller than that of an SCL decoder
- At equivalent error-correction performance, PSCL leads to memory and total area savings of 41% and 42% compared to a similar SCL decoder implementation
- PSCL enables a coding gain of approximately 0.25 dB at a BER of 10^{-5} while occupying 13% less total area than the SCL decoder

In short:

PSCL achieves better performance *and* reduces memory usage at the same time!

Thank you!

Seyyed Ali Hashemi (McGill)

PSCL Decoding of Polar Codes

ICASSP 2016 14 / 14

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 14/14