
PARTITIONED TRIANGULAR TRIDIAGONALIZATION

MIROSLAV ROZLOŽNÍK, GIL SHKLARSKI, AND SIVAN TOLEDO

Abstract. We present a partitioned algorithm for reducing a symmetric ma-
trix to a tridiagonal form, with partial pivoting. That is, the algorithm com-
putes a factorization PAP T = LTLT where P is a permutation matrix, L

is lower triangular with a unit diagonal and entries’ magnitudes bounded by
1, and T is symmetric and tridiagonal. The algorithm is based on the basic
(non partitioned) methods of Parlett and Reid and of Aasen. We show that
our factorization algorithm is component-wise backward stable (provided that
the growth factor is not too large), with a similar behavior to that of Aasen’s
basic algorithm. Our implementation also computes the QR factorization of T

and solves linear systems of equations using the computed factorization. The
partitioning allows our algorithm to exploit modern computer architectures
(in particular, cache memories and high-performance blas libraries). Exper-
imental results demonstrate that our algorithms achieve approximately the
same level of performance as the partitioned Bunch-Kaufman factor and solve
routines in lapack.

• Categories and Subject Descriptors:
– G.1.3 [Numerical Analysis]: Numerical Linear Algebra—linear systems;

– G.4 [Mathematics of Computing]: Mathematical Software—algorithm analysis; ef-
ficiency

• General Terms: Algorithms, Performance
• Additional Key Words and Phrases: symmetric indefinite matrices, tridiagonalization,

Aasen’s tridagonalization, Parlett-Reid tridagonalization, partitioned factorizations, re-
cursive factorizations

1. Introduction

This paper presents a partitioned algorithm for reducing a square symmetric
matrix to a tridiagonal form. This algorithm is essentially a partitioned formulation
of the algorithm of Aasen [1] combined with an update step from the algorithm of
Parlett and Reid [14]. The new formulation effectively exploits modern computer
architectures through the use of the level-3 blas [8].

The Parlett-Reid and Aasen algorithms factor a symmetric matrix A into a
product of a unit lower triangular matrix L, a symmetric tridiagonal matrix T , and
the transpose of L:

A = LTLT .

When partial pivoting is employed, these algorithms compute a factorization PAPT =
LTLT where P is a permutation matrix. Aasen’s algorithm is component-wise
backward stable when partial pivoting is used [12]. Asymptotically, the Parlett-
Reid algorithm performs 2n3/3 + O(n2) arithmetic operations. Aasen’s method
performs only n3/3 + O(n2) arithmetic operations, so it is much more efficient.

This factorization is one of the two main methods for factoring dense symmetric
matrices. The other method, due to Bunch and Kaufman [7], factors the matrix into

Date: 5 June 2009.
1

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 2

a product PAPT = LDLT where L is unit lower triangular and D is block diagonal
with 1-by-1 and 2-by-2 blocks. The method of Bunch and Kaufman also performs
n3/3 + O(n2) operations. The performance of straightforward implementations of
Bunch and Kaufman’s method is similar to that of straightforward implementations
of Aasen (see [5] for old experimental evidence; there is no reason that the results
should be different on a more modern machine).

The performance of dense matrix algorithms improves dramatically when the
ordering of operations is altered so as to cluster together operations on sub-blocks
of the matrix. This is usually called partitioning or blocking (e.g., see [6] and [10]).
The blocked Bunch-Kaufman algorithm is described in [9]. A study by Anderson
and Dongarra compared the performance of blocked versions of the Bunch-Kaufman
and Aasen methods on the Cray 2 and found that Aasen’s method did not benefit
from blocking as much as the Bunch-Kaufman method [3]. This finding appears
to be the main reason that the Bunch-Kaufman method is used in the symmetric
linear solver in lapack [2] rather than Aasen’s method. The details of the blocked
algorithms are not given in the report by Anderson and Dongarra; the code appears
to have been lost [4].

The Bunch-Kaufman method is conditionally normwise backward stable (condi-
tioned on element growth in the factors). The entries in its triangular factors can
grow and this can lead to accuracy problems [4]. Ashcraft, Grimes, and Lewis, who
observed this phenomenon, developed a variant called Bounded Bunch-Kaufman
to address this problem. They have not implemented a partitioned version of the
algorithm1. This issue has motivated us to develop a partitioned variant of the tridi-
agonalization algorithms, in which the magnitudes of the entries in the triangular
factors are bounded by 1.

The implementation of our partitioned algorithm achieves similar performance
to that of the blocked Bunch-Kaufman code in lapack. Our algorithm performs
partial pivoting and its storage requirements are similar to those of lapack’s im-
plementation of Bunch-Kaufman. Our findings show that there is no performance-
related reason to prefer the Bunch-Kaufman method over that of Aasen. We cannot
determine whether the opposite conclusion of Anderson and Dongarra resulted from
the particular way they blocked the algorithm or whether it is specific to the Cray 2
architecture.

We show that our partitioned algorithm is as stable as the basic (non partitioned)
original algorithm, with only a slight change in the backward stability constant; this
is a stronger result than the normwise backward stability property of the Bunch-
Kaufman algorithm. We also show that our solution routine, which is based on QR
factorization of T is also conditionally backward stable.

This paper is organized as follows. Section 2 presents a variant of Aasen’s al-
gorithm. Section 3 shows our partitioned formulation. Section 4 discusses how
to efficiently implement our partitioned formulation. Section 5 presents numerical
stability analysis of both the factorization and solution routines. Section 6 presents
experimental results. We present our conclusions in Section 7.

1Higham recently wrote to us that he, Hammarling, and Lucas just developed such a code.

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 3

Figure 2.1. An illustration of the factorization. Filled gray circles
represent known values and empty circles represent values that are
computed during the factorization. The lines show the partitioning
of the matrices into blocks.

2. A Variant of Aasen’s Method

We start by describing a variant of Aasen’s method. This variant, which we
use as a building block in our partitioned algorithm, is slightly different from the
original algorithm in [1] and the algorithm described in [12, 13].

Let A be an n-by-n real matrix and let

PAPT = LTLT

be its factorization, where L is a unit lower triangular matrix, T is a symmetric
tridiagonal matrix, and P is a permutation matrix.

Let H = LT . Clearly, H is a lower-Hessenberg matrix and PAPT = HLT . See
Figure 2.1 for an illustration of these matrices. The matrix H plays a central role
in the formulation of Aasen’s method. In our variant we also emit H as the output
of the factorization. This makes it inefficient in terms of space, but this will not be
a problem in the specific way that we use it in our partitioned algorithm.

For clarity, we ignore pivoting initially; we show later how to pivot. The factor-
ization advances column by column. At step i we have already computed the first
i columns of L, the first i− 1 columns of T , and the first i− 1 columns of H . The
output of this step is the ith column of H and T , and the (i + 1)st column of L.

For convenience of presentation, for a matrix M and indices i, j, k and ℓ we

use MT
i:j,k:ℓ to denote (Mi:j,k:ℓ)

T
. Assume that we completed step i − 1, we now

show how to advance in a single step. We first compute Hi:n,i. From the ith
column in the equation A = HLT , we obtain Ai:n,i = Hi:n,1:nLT

i,1:n. Since L is

unit triangular, we have Ai:n,i = Hi:n,1:i−1L
T
i,1:i−1 + Hi:n,i. Therefore, we can set

Hi:n,i = Ai:n,i −Hi:n,1:i−1L
T
i,1:i−1 (or simply Hi:n,i = Ai:n,i if i = 1).

Next we recover Ti−1,i and Hi−1,i. Since T is symmetric we can set Ti−1,i =
Ti,i−1. If i > 1, using the (i − 1, i) element in the system H = LT , and since
Li−1,i−1 = 1, we get Hi−1,i = Ti−1,i. We now use the same equation H = LT to
compute the rest of T:,i and L:,i+1. From elements i to n in the ith column of this
equation we get

Hi:n,i = Li:n,i−1Ti−1,i + Li:n,i:nTi:n,i .

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 4

We define w = Li:n,i:nTi:n,i, and obtain

w = Hi:n,i − Li:n,i−1Ti−1,i .

The vector w can be computed since all the parts of the last equation are known
(again, if i = 1, w is simply Hi:n,i). Moreover, since Li,i = 1, Ti,i = w1. In order to
complete step i, we need to compute Ti+1,i, and L(i+1):n,i+1 (if i < n). They can
both be extracted from w. By definition,

w2:end = L(i+1):n,i:nTi:n,i

= L(i+1):n,iTi,i + L(i+1):n,i+1Ti+1,i .

We define v = L(i+1):n,i+1Ti+1,i. By the last equation, v = w2:end − L(i+1):n,iTi,i,
so it can be easily computed. Still ignoring pivoting for now, we can set Ti+1,i = v1,
since Li+1,i+1 = 1. Now, L(i+2):n,i+1 = v2:end/v1. This complete the formulation
of this variant without pivoting.

Without pivoting, this construction may fail in one specific point. When com-
puting L(i+2):n,i+1, v1 might be zero, or a very small v1 might cause numerical
problems. This can be solved easily, by permuting v, such that v1 is the element
with the highest magnitude. (If v is all zeros, L(i+2):n,i+1 can be set to zero.)
If such a permutation is performed, the appropriate preceding rows of L and H
should be permuted accordingly, and also the trailing submatrix of A should be
symmetrically permuted. Algorithm 1 summarizes our variant of Aasen’s method.

3. Our Partitioned Method

We now derive our partitioned algorithm. We again start our description with
pivoting ignored. Let 1 ≤ k < n. We assume that the first k columns of H , T
and the first (k + 1) columns of L are computed using our Aasen variant from the
previous section. The core idea is that instead of advancing by one more column, we
update the trailing submatrix of A and continue to work on the trailing submatrix
as if it were a new matrix. This is similar to the concept of the Parlett-Reid
algorithm [14], in which the trailing submatrix is always symmetric and ready to
be factored as if it was a new matrix. Moreover, when setting a partition size of 1,
our algorithm is identical to the Parlett-Reid algorithm.

For convenience of presentation, we denote

A[11] = A1:k,1:k ,

A[12] = A1:k,(k+1):n ,

A[21] = A(k+1):n,1:k , and

A[22] = A(k+1):n,(k+1):n ,

and similarly for L, T , and H . We examine the trailing submatrix part in the
equation A = HLT ; we have

A[22] = H(k+1):n,1:nLT
(k+1):n,1:n

= H [21] L[21] T
+ H [22] L[22] T

.

Figure 3.1 illustrates this equation. We have A[22] and we have already computed

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 5

Algorithm 1 Aasen factorization of the symmetric matrix A. This routine can
also receive the first column of L as input, and also the number k of columns to
handle. To get the standard factorization PAPT = LTLT , it should be called
with Aasen(A,e1,n), where n is the order of A and e1 is a unit vector of order n.
These extra parameters are useful when used as a subroutine for the partitioned
factorization.
The routine also emits the permutation matrix P in two ways: as a matrix P and
as a list p representing up to n index exchanges.

[L,T ,P ,H ,p] ←Aasen(A,ℓ,k)
n← order of A.
L← In ⊲ n-by-n identity matrix
H ← On ⊲ n-by-n zero matrix, stored as a whole for clarity only
T ← On ⊲ n-by-n zero matrix, stored as a whole for clarity only
p← {}n⊲ Empty array of order n
L1:n,1 ← ℓ
For i = 1 . . . k do

Hi:n,i ← Ai:n,i −Hi:n,1:(i−1)L
T
i,1:(i−1)

w← Hi:n,i

If (i > 1)
w← w − Li:n,(i−1)T(i−1),i

T(i−1),i ← Ti,(i−1)

H(i−1),i ← Ti,(i−1) ⊲This value is not really needed in practice
End If
Ti,i ← w1

If (i < n)
v ← w2:end − Ti,iL(i+1):n,i

If (max(|v|) 6= 0) and (argmax(|v|) 6= 1)
Switch rows and columns (i + 1) and (i + argmax(|v|)) in A(i+1):n,(i+1):n

Switch rows (i + 1) and (i + argmax(|v|)) in H:,1:i and L:,1:i

Switch values in indecies 1 and argmax(|v|) in v
p(i + 1)← i + argmax(|v|)

End If
T(i+1),i ← v1

If (v1 6= 0)
L(i+1):n,(i+1) ← v/T(i+1),i

End If
End If

End For
⊲ Creating an explicit P
P ← In ⊲ n-by-n identity matrix
For i = 1 . . . n

Switch rows p(i) and i in P
End For

H [21], L[21], so we can compute the product H [22] L[22] T
. We now explore its

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 6

Figure 3.1. Expansion of A[k,22] in the partitioned algorithm.

structure; we first focus on H [22]. We use the equation H = LT and get

H [22] = L(k+1):n,1:nT1:n,(k+1):n

= L[21]T [12] + L[22]T [22] .

We multiply it by L[22] T
and get

H [22] L[22] T
= L[21]T [12] L[22] T

+ L[22]T [22] L[22] T

= L
[21]
:,k T

[12]
k,: L[22] T

+ L[22]T [22] L[22] T

= L
[21]
:,k T

[12]
k,1 L

[22]
1,:

T
+ L[22]T [22] L[22] T

.

The transition from the first to the second line is based on an expansion of L[21]T [12]

into a sum of column-times-row outer products, all of which except the first are
zero. The transition from the second to the third line is based on a similar trick:
L

[21]
:,k T

[12]
k,: is a square matrix in which only the first column, L

[21]
:,k T

[12]
k,1 , is not zero.

Figure 3.2 illustrates these steps. We can compute L
[21]
:,k T

[12]
k,: L[22] T

simply by

multiplying L
[21]
:,k T

[12]
k,1 by the first row of L[22] T

. The first row of L[22] T
is exactly

column (k+1) in L which we already have. Therefore, we can compute the following
expression

L[22]T [22] L[22] T
= H [22] L[22] T

− L
[21]
:,k T

[12]
k,1 L

[22]
1,:

T

= A[22] −H [21] L[21] T
− L

[21]
:,k T

[12]
k,1 L

[22]
1,:

T
.

This computation comprises of a rank-k and a rank-1 updates. The matrix

L[22]T [22] L[22] T

is an (n − k)-by-(n − k) symmetric matrix, so it can be tridiagonalized with first
column set to the (already computed) L(k+1):n,k+1. The resulting factors are the
last (n− k) columns of T and the last (n− k − 1) columns of L.

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 7

Figure 3.2. Expansion of H [22] L[22] T
in the partitioned algorithm.

This reduction step can now be applied every k columns until no columns are
left. At each step we use our Aasen variant to generate the next k columns. Then,
we use them to update the trailing submatrix and continue to work on the trailing
submatrix.

We now address the pivoting issue. The output of the Aasen factorization at each
step is not only the next k columns of H , T and L, but also a permutation matrix
P representing the row and column exchanges that we performed. We perform
the exact row and column switches on A before updating it. This ensures that the
row/column ordering is consistent and we can continue. We also store those updates
to generate the final matrix P and update the previously computed columns of L.
Algorithm 2 summarizes the entire partitioned process with pivoting.

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 8

Algorithm 2 Our partitioned algorithm top-level routine. k is the prescribed
partition size.

[L,T,P] ← PartitionedTridiagonalReduction(A,k)
n← order of A
L← In ⊲ n-by-n identity matrix
T ← On ⊲ n-by-n zero matrix, stored as a whole for clarity only
p← [1, . . . , n] ⊲ Array of order n, used to keep track of interchanges
ℓ← L:,1 ⊲ The prescribed next column of L
i← 0 ⊲Keeps the number of columns of A that were already processed
While (i < n)

k ← min(order of A, k) ⊲Block size is k except (possibly) the last block
[L(k),T (k),P (k),H(k), q] ← Aasen(A,ℓ,k) ⊲ Aasen on the first k columns.
⊲Place the results into L and T
L(i+1):n,(i+1):(i+k) ← L

(k)
:,1:k

T(i+1):(i+k),(i+1):(i+k) ← T
(k)
1:k,1:k

If ((i + k) < n)

ℓ← L
(k)

(k+1):end,(k+1)

T(i+k),(i+k+1) ← T
(k)
(k+1),k

T(i+k+1),(i+k) ← T(i+k),(i+k+1)

End If
⊲Make the appropriate row and column exchanges dictated by the Aasen
For j ← 2 : min(k + 1, order of A)

If (j 6= q(j))
Switch rows and columns j and q(j) in A
Switch rows j and q(j) in L:,1:i

Switch array cells (j + i) and (q(j) + i) in p
End If

End For
i← i + k
If ((i + 1) ≤ n) ⊲ Update the trailing submatrix

A(k+1):end,(k+1):end ← A(k+1):end,(k+1):end

−H
(k)

(k+1):end,1:k
L

(k)

(k+1):end,1:k

T

−L
(k)

(k+1):end,k
T(i+1),i L

(k)

(k+1):end,(k+1)

T

End If
A← A(k+1):end,(k+1):end ⊲ Replace A with its updated the trailing submatrix

End While
⊲ Form the global P
P ← On

For i = 1 . . . n
P (i, p(i))← 1

End For

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 9

4. Implementation

In the algorithm description so far, we have updated the entire trailing subma-
trix, which is inefficient. There is no need to update the entire trailing submatrix
because it is symmetric; the tridiagonalization algorithms only use the lower tri-
angular part of its input matrix A. With only half a matrix represented, the row
and column interchanges should be carefully performed. The key idea is that row
j in a symmetric matrix A with only its lower half is stored in two parts: Aj,1:j

and AT
(j+1):n,j . Using this idea, our implementation only stores and updates half a

matrix.
In order to perform the majority of the update with BLAS-3, we perform the

following changes in the algorithm that we described so far. First, we fuse the rank-k

update with H [k,21] L[k,21] T
with the rank-1 update L

[k,21]
:,k T

[k,12]
k,1 L

[k,22]
1,:

T
, to create

a single rank-(k + 1) update. Let UV T be the fused update to the trailing m-by-m
submatrix B, where U is m-by-(k+1) and V is m-by-(k+1). The second change is
the specific way we update only half a matrix. We update the trailing submatrix in
panels of width k. In the first step we subtract UV T

1:k,1:(k+1) from B1:m,1:k, in the

second step we subtract U (k+1):m,1:(k+1)V
T
(k+1):2k,1:(k+1) from B(k+1)::m,(k+1):2k and

so on. This means that we update k-by-k upper triangular blocks that we never
use. Nevertheless, it keeps most of the update process computation in BLAS-3.

In practice, in order to avoid some memory copies, the update process is not
implemented entirely using BLAS-3. We perform the following slight change. We
update the first column of B using a BLAS-2 update UV T

1,1:(k+1), and then update

the rest of B using panels of width k. This is due to some implementation choices
and is not an inherent problem.

We are now ready to compute the time complexity of our algorithm. The Aasen
factorization of k columns of order n takes O(nk2) operations so the total n/k such
calls cost O(n2k) operations. There are at most O(n) exchange operations per
column that is factored, so the total is O(n2). Therefore, the algorithm performs
O(n2k) operations aside from the updates. Updating a trailing submatrix of size
m costs (m2 + mk)(k + 1) + 2m(k + 1), out of which 2m(k + 1) is outside BLAS-3.
Careful analysis reveals that the total running time is

1

3

(
1 +

1

k

)
n3 + O(n2k) ,

out of which only O(n2k) are not performed using BLAS-3 calls.
The next aspect of implementation that we need to examine is storage require-

ments. In order to perform the Aasen factorization for k columns and to store the
part of H that is needed for the update, we store an extra buffer of size kn. The
rest of the computation can be performed in-place. The computed columns of L
can be stored in the array that stores A and the unit diagonal of L need not be
stored. We do not store T , but factor it into its QR factors using Givens rotations
as we go. The factors are stored in unused diagonals in the upper part of A. We
also use 2 additional temporary arrays of size n. The total extra storage needed
is therefore (k + 3)n which is similar to the working buffer needed for the blocked
Bunch-Kaufman routine in LAPACK.

Our choice of QR and the fact that we fused the factorization of T with that of
A are not essential. We could have also used LU with partial pivoting for T ; both

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 10

preserve the sparsity of a tridiagonal matrix almost completely (in both cases the
upper triangular matrix has 3 nonzero diagonals; in LU the unit lower triangular
matrix has only two nonzero diagonals, and in QR we need to store n−1 rotations).
We chose to fuse the factorization in order to demonstrate that solving with T ,
which is slightly harder than solving with the block diagonal D in Bunch-Kaufman
factorization, does not have a significant effect on performance.

We end this section with a comment about row exchanges in L. There is no real
need to exchange rows in preceding columns of L after a batch of new k columns
of L is created. We do that in Algorithm 2 for clarity, in order to generate the
complete L. In practice, as long as the solve routine is implemented accordingly,
there is no need for exchanging elements of L in memory.

5. Rounding Error Analysis

Our partitioned algorithm (Algorithm 2) is thus the basic Aasen’s algorithm
in which some operations has been grouped and reordered into BLAS-3 matrix-
matrix multiplications. In the rest of the computation we perform scalar (point)
operations in the standard floating point arithmetic with the unit roundoff u (for
details we refer to [13, Chapter 2]). Therefore, the rounding error analysis in [12] of
the basic Aasen’s algorithm (Algorithm 1 in this paper) should apply if the BLAS-
3 operations are computed in a conventional way. However, if fast algorithms for
matrix multiplication such as Strassen’s method are eventually used, the standard
results are not applicable and must be reformulated accordingly. We will make the
assumption that the computed result Ẑ from the BLAS-3 multiplication Z = XY
of matrices X ∈ R

m×k and Y ∈ R
k×n satisfies the component-wise error bound

(5.1) |Ẑ − Z| ≤ c1(k)u|X ||Y |,

where c1(k) is a constant that depends only on the dimension k. If we consider
the conventional matrix-matrix multiplication, then for well-implemented BLAS-
3 routines we have c1(k) ≡ k

1−ku , see e.g. [13]. For implementations based on

Strassen’s method, the component-wise bound (5.1) does not hold and we have

only norm-wise result ‖Ẑ−Z‖ ≤ c2(m, n, k)u‖X‖‖Y ‖, where c2(m, n, k) is a rather
complicated function of dimensions m, n and k and of the threshold that determines
the level of recursion in the algorithm. The results for the corresponding partitioned
Aasen’s method would be significantly weaker than those obtained in Theorem 5.1
below; but we do not treat this issue here any further.

In the following we assume that the BLAS-3 operations satisfy (5.1) and for-
mulate our component-wise results for the factorization and norm-wise results for
the solution of linear systems. The analysis must answer the question whether
Algorithm 2 is influenced in some significant way by the BLAS-3 formulation and
whether the constants c1(k) coming from (5.1) are propagated stably into the final
error bound (we want to prevent the exponential growth of the constants c3(n, k)
and c5(n, k) that will appear in our bounds). First, we wish to bound the residual

P̂AP̂T − L̂T̂ L̂T of the computed factors P̂ , L̂ and T̂ . For simplicity, we will ignore
the permutation matrix P̂ and we look at the matrix A as pre-pivoted. We have
the following backward error bound for the factorization A = LTLT .

Theorem 5.1. If the partitioned Aasen’s algorithm (Algorithm 2) with the partition
size k applied to a symmetric A ∈ R

n×n runs to completion, then the computed

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 11

factors L̂ and T̂ satisfy the factorization

(5.2) A + ∆A = L̂T̂ L̂T , |∆A| ≤ c3(n, k)u|L̂||T̂ ||L̂|T ,

where the constant c3(n, k) depends on the dimension n and the partition size k
(n ≥ k > 1) and

(5.3) c3(n, k) = c1(n +
⌊n

k

⌋
+ 2), c3(n, 1) = c1(n + 3).

Proof. At the first step of the algorithm, we apply Algorithm 1 and tridiagonalize
the first k columns of A to get A[11] = L[11]T [11](L[11])T together with L[21] and
the first column of L[22] . It follows from Theorem 3.5 in [12] that the computed

factors L̂[11] and T̂ [11] satisfy

(5.4) A[11] + ∆A[11] = L̂[11]T̂ [11](L̂[11])T , |∆A[11]| ≤ c3(k, 1)u|L̂[11]||T̂ [11]||L̂[11]|T ,

where c3(k, 1) = c1(k + 3). We note that Algorithm 1 is slightly different than the
algorithm analyzed in [12]. Nevertheless, the same proof technique and the same
bound can be derived for our variant.

The columns of the H [21] are computed using multiple triangular solves as
H:,i = A:,i − H:,1:(i−1)(Li,1:(i−1))

T for i = 1, . . . , k (Actually we compute only
the coordinates i to n in the ith column of H). Using Lemma 2.2 from [12] for

computed quantities we have |A
[21]
:,i − Ĥ

[21]
:,1:i(L̂

[11]
i,1:i)

T | ≤ c1(i)u|Ĥ
[21]
:,1:i||L̂

[11]
i,1:i|

T and

collecting these identities for i = 1, . . . , k we get the identity for computed Ĥ [21]

(5.5) A[21] + ∆B[21] = Ĥ [21](L̂[11])T , |∆B[21]| ≤ c1(k)u|Ĥ [21]||L̂[11]|T .

Similar analysis applied to three-term recurrences Hi:n,i = Li:n,i−1Ti−1,i+Li:n,iTi,i+

Li:n,i+1Ti+1,i for i = 1, . . . , k leads to the matrix equation for computed L̂
[21]
:,2:k (note

that L̂
[21]
:,1 is given), L̂

[22]
:,1 , T̂ [11] and T̂

[21]
1,k in the form

Ĥ [21] + ∆H [21] = L̂[21]T̂ [11] + L̂
[22]
:,1 T̂

[21]
1,k ,(5.6)

|∆H [21]| ≤ c1(3)u
(
|L̂[21]||T̂ [11]|+ |L̂

[22]
:,1 ||T̂

[21]
1,k |

)
.(5.7)

Next we analyze the reduction step which assumes the tridiagonalization of the

(n − k)-by-(n − k) matrix C [22] = A[22] − H [21](L[21])T − L
[21]
:,k T

[21]
1,k (L

[22]
:,1)T =

L[22]T [22](L[22])T and which is performed recursively k columns by k columns un-
til no columns are left. Indeed, this computation comprises of a rank-k and a
rank-1 update of A[22]. In Algorithm 2 we actually combine these two updates,
create a single (k+1)-rank update and work only on the half of a matrix as it is de-
scribed in Section 4. We apply Lemma 2.2 of [12] on each (k+1)-rank update of the
[j∗k : (n−k), (j−1)∗k+1 : j∗k]-submatrix of C [22], where j = 1, . . . , [(n−k)/k]−1.

The corresponding computed matrix Ĉ [22] satisfies (actually we have the result only
for the lower-block half of the matrix)

Ĉ [22] −∆C [22] = A[22] − Ĥ [21](L̂[21])T − L̂
[21]
:,k T̂

[21]
1,k (L̂

[22]
:,1)T ,(5.8)

|∆C [22]| ≤ c1(k + 1)u
(
|Ĥ [21]||L̂[21]|T + |L̂

[21]
:,k ||T̂

[21]
1,k ||L̂

[22]
:,1 |

T
)

.(5.9)

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 12

Since we apply our partitioned algorithm recursively on the top of the (n− k)-by-

(n− k) matrix Ĉ [22] the computed factors L̂[22] and T̂ [22] satisfy

Ĉ [22] + ∆D[22] = L̂[22]T̂ [22](L̂[22])T ,(5.10)

|∆D[22]| ≤ c3(n− k, k)u|L̂[22]||T̂ [22]||L̂[22]|T .(5.11)

Substituting (5.6) into (5.5) and introducing ∆C [21] = ∆H [21](L̂[11])T we get

A[21] + ∆B[21] + ∆C [21] = L̂[21]T̂ [11](L̂[11])T + L̂[22]T̂ [21](L̂[11])T .

Similarly we substitute (5.6) into (5.8) to obtain

A[22] + ∆B[22] + ∆C [22] + ∆D[22] = (L̂[21]T̂ [11] + L̂[22]T̂ [21])(L̂[21])T

+ (L̂[21]T̂ [21] + L̂[22]T̂ [22])(L̂[22])T ,(5.12)

where ∆B[22] = ∆H [21](L̂[21])T . Taking these two equations together with (5.4)

we get the statement A + ∆A = L̂T̂ L̂T , where ∆A[21] = ∆B[21] + ∆C [21] and
∆A[22] = ∆B[212] +∆C [22] +∆D[22]. The perturbation matrices ∆A[21] and ∆A[22]

can be after some manipulation bounded as follows

|∆A[21]| ≤ [c1(k) + c1(3)] u
(
|L̂[21]||T̂ [11]|+ |L̂[22]||T̂ [21]|

)
|L̂[11]|T ,

|∆A[22]| ≤ [c1(k) + c1(3)] u
(
|L̂[21]||T̂ [11]|+ |L̂[22]||T̂ [21]|

)
|L̂[21]|T ,

+ [c1(k + 1) + c3(n− k, k)] u
(
|L̂[21]||T̂ [21]|+ u|L̂[22]||T̂ [22]|

)
|L̂[22]|T .(5.13)

The error constant c3(n, k) in the final bound depends on the constants c3(k, 1),
c1(k + 3) and c1(k + 1) + c3(n − k, k) and the block size k. Since c1(k) + c1(3) ≤
c1(k + 3), we set c3(n, k) to

c3(n, k) = max {c1(k + 3), c3(k, 1), c1(k + 1) + c3(n− k, k)} .

�

The bound (5.1) for the BLAS-3 matrix-matrix multiplication used in the rank-
(k+1) updates of A[22] actually appears in the presence of the term c1(k+1) in (5.8),
which is then reflected in the bound (5.13) for the matrix ∆A[22]. It seems that
the error constant c3(n, k) grows additively at worst. The difference of constants
c3(n, k) − c3(n, 1) in bounds for the partitioned and basic algorithm is negligible
and is given by the number of extra rank-1 updates occurring after reduction of
each partition, which do not appear in the basic Aasen’s method.

The result of Theorem 5.1 essentially justifies the use of conventional BLAS-3
routines in the partitioned Aasen’s scheme. To solve a symmetric linear system
Ax = b using the factorization A = LTLT we need to consider the systems Ly = b,
Tz = y and LT x = z. The tridiagonal system Tz = y is solved by QR factorization
using Givens rotations. Given a QR factorization of T , the system Tz = y can be
solved by forming QT y and then solving Rz = QT y. As already noted, instead of
storing T in our implementation we keep only the rotations for Q and the upper
triangular matrix R which has 3 nonzero diagonals. For the approximate solution
x̂ computed in finite precision arithmetic we can formulate the following statement.

Theorem 5.2. Let A be symmetric and L̂ and T̂ be the computed factors from the

partitioned Aasen’s algorithm (Algorithm 2). Assuming c4(2n − 2)n1/2uκ∞(T̂) <

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 13

1, the computed solution x̂ to Ax = b computed with the aid of the Givens QR
factorization of T̂ satisfies

(A + ∆̂A)x̂ = b + ∆̂b,(5.14)

‖∆̂A‖∞ ≤ c5(n, k)u‖T̂‖∞, ‖∆̂b‖∞ ≤ c5(n, k)u‖T̂‖∞‖x̂‖∞(5.15)

where c4(k) stands for a small multiple of c1(k) (that is, c4(k) = c0c1(k) for some
small c0) and the constant c5(n, k) depends on the dimension n and the partition
size k.

Proof. Since L̂ is unit lower-diagonal, for the computed vector ẑ we have (L̂ +

∆L1)ẑ = b with |∆L1| ≤ c1(n − 1)u|L̂|. Based on Theorem 19.10 in [13] the

computed triangular factor R̂ obtained via the Givens QR decomposition of the
matrix T̂ satisfy

(5.16) T̂ + ∆T = Q̃R̂, ‖∆T ‖∞ ≤ c4(2n− 2)u‖T̂‖∞, j = 1, . . . n,

where Q̃ is exactly orthonormal matrix with Q̃T Q̃ = I. By Lemma 19.9 in [13], the

computed right-hand side satisfies ĉ = Q̃T (ẑ + ∆z), where ‖∆z‖ ≤ c4(2n− 2)u‖ẑ‖.

It is clear from (5.16) that the computed R̂ is guaranteed to be nonsingular if

c4(2n − 2)n1/2uκ∞(T̂) < 1. The computed solution ŷ to the triangular system

R̂y = ĉ satisfies (R̂ +∆R)ŷ = ĉ, where |∆R| ≤ c1(n)u|R̂|. Multiplying this identity

from the left by Q̃ together with (5.16) we obtain

(5.17) (T̂ + ∆T + Q̃∆R)ŷ = ẑ + ∆z.

The computed approximate solution x̂ comes from the triangular solve involving
unit upper triangular matrix L̂T and thus we have (L̂ + ∆L2)

T x̂ = ŷ with |∆L2| ≤

c1(n− 1)u|L̂2|. Substituting for ŷ and multiplying (5.17) by (L̂ + ∆L1) we get

(L̂ + ∆L1)(T̂ + ∆T + Q̃∆R)(L̂ + ∆L2)
T x̂ = (L̂ + ∆L1)(ẑ + ∆z).

Since due to Theorem 5.1 A + ∆A = L̂T̂ L̂T we introduce the perturbations ∆̂A =
∆A+∆L1(T̂ +∆T +Q̃∆R)(L̂+∆L2)

T +L̂(∆T +Q̃∆R)(L̂+∆L2)
T +L̂T̂ (∆L2)

T and

∆̂b = (L̂+∆L1)∆z to obtain the desired identity (A+∆̂A)x̂ = b+∆̂b. The bounds

for ‖∆̂A‖ and ‖∆̂b‖ follow accordingly from bounds ‖∆A‖∞ ≤ c3(n, k)u‖L̂‖∞‖T̂‖∞‖L̂
T‖∞,

‖∆T ‖, ‖∆R‖∞ ≤ c1(n)u‖R̂‖∞, ‖∆L1‖∞ ≤ c1(n − 1)u‖L̂‖∞ and ‖∆L2‖∞ ≤

c1(n − 1)u‖L̂‖∞. Due to pivoting, every element of L̂ is bounded by 1 and since

its first column is a unit vector, we have that ‖L̂‖ ≤ ‖L̂‖∞ ≤ n− 1. Consequently,
for the constant c5(n, k) we have c5(n, k) = (n− 1)2[c3(n, k)+ c4(2n− 2)+ 3c1(n)].
Neglecting higher order terms (that lead only to somewhat larger constant c5(n, k))
we obtain the statement of our Theorem. �

Theorem 5.2 shows that solving systems with the partitioned Aasen’s algorithm
is a backward stable method provided that ‖T̂‖∞/‖A‖∞ is not too large. As in

[12], we can define the growth factor ρn =
maxi,j |T̂i,j |
maxi,j |Ai,j|

to obtain the bounds

‖∆̂A‖∞ ≤ c5(n, k)nuρn‖A‖∞, ‖∆̂b‖∞ ≤ c5(n, k)nuρn‖A‖∞‖x̂‖∞.

The growth factor ρn can be easily monitored and plays a similar role as in Gauss-
ian elimination with pivoting. For a discussion on this topic we refer to Subsection
3.2.2 of [12]. The influence of partitioning on the accuracy of the computed ap-
proximate solution x̂ is again marginal and it appears only in the constant c5(n, k)

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 14

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000
Factorization Performance for small Matrix Size

M
F

LO
P

/s

N

LAPACK−3.1.1
Our Method

0 5000 10000 15000
4000

4500

5000

5500

6000
Factorization Performance for large Matrix Size

M
F

LO
P

/s

N

LAPACK−3.1.1
Our Method

Figure 6.1. The performance of the methods. The vertical axis
shows the effective computational rate.

which depends additively on c3(n, k). Therefore, the difference between the numer-
ical behaviors of partitioned and point Aasen’s algorithm will be hardly visible in
practical computations.

6. Experimental Results

We have compared the performance of our partitioned tridiagonalization method
to the performance of the partitioned Bunch-Kaufman algorithm in lapack ver-
sion 3.1.1 [2]. The results that we report below show that the performance of
the partitioned tridiagonalization method is similar to that of the Bunch-Kaufman
algorithm. The performance of the solver phases is also similar.

We linked all the codes (ours and lapack) to the Goto blas version 1.12 [11].
The codes were compiled using gcc version 4.1.2 on an Intel x86 64 machine run-
ning Linux. The computer on which we ran the experiments had an Intel Core 2
model 6400 running at 2.13 GHz. We restricted the blas to use only one core of
the CPU using an environment variable. The computer had 4 GB of main memory;
we did not detect any significant paging activity during the experiments.

We used a block size k = 64 both in our method and in lapack. This value is
the default of lapack 3.1.1. In experiments not reported here, we verified that this
value is indeed the optimal block size for this machine (and for all the methods).

The experiments were conducted using random symmetric matrices whose el-
ements are uniformly distributed in (−1, 1). The relative residuals were always
below 10−12 and the residuals produced by the different methods were of similar
magnitude.

Figure 6.1 compares the performance of the methods. The vertical axis shows
effective computational rates in millions of floating-point operations per second,

1

3

n3

T
× 10−6 ,

where T is the running time in seconds. Note that this metric compares actual
running times and ignores differences in operation counts. Therefore, a higher
value always indicates a faster factorization.

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 15

0 1000 2000 3000 4000
0

50

100

150

200

Number of Right−Hand−Sides

T
im

e
(S

ec
on

ds
)

Solve Time, Fixed Matrix Orders

LAPACK−3.1.1 n=1000
LAPACK−3.1.1 n=2000
LAPACK−3.1.1 n=4000
Our Method n=1000
Our Method n=2000
Our Method n=4000

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

n

T
im

e
(S

ec
on

ds
)

Solve Time, fixed Numbers of Right−Hand−Sides (NRHS)

LAPACK−3.1.1 NRHS=100
LAPACK−3.1.1 NRHS=500
LAPACK−3.1.1 NRHS=2000
Our Method NRHS=100
Our Method NRHS=500
Our Method NRHS=2000

Figure 6.2. The performance of the solve phase. The graphs
of our method coincide with the graphs of the Bunch-Kaufman
method in lapack.

On matrices of order up to about 5000, our tridiagonalization method is slightly
faster or run at the same speed as the Bunch-Kaufman algorithm. On larger matri-
ces, the Bunch-Kaufman algorithm is sometimes faster. In either case, the relative
performance differences are not large. We do not know why the performance of the
tridiagonalization algorithm drops at n = 8000.

The graphs in Figure 6.2 show that the performance of the solve phase is es-
sentially the same for our new methods and for lapack’s implementation of the
Bunch-Kaufman algorithm.

7. Concluding Remarks

We have presented a symmetric tridiagonalization algorithm. The algorithm is
partitioned, so it effectively exploits high-performance level-3 blas routines. The
algorithm performs almost the same number of operations asymptotically as the
basic Aasen algorithm [1]. We have analyzed this issue theoretically and verified
the results experimentally.

A detailed stability analysis shows that our factorization is conditionally component-
wise backward stable as long as the BLAS-3 routines satisfy a componentwise error
bound. This error bound is satisfied by partitioned (blocked) conventional matrix
multiplication codes but not by Strassen-like algorithms. With a conventional (non-
Strassen) BLAS-3, the only noticeable difference between the analysis of Aasen’s
original algorithm and that of our algorithm is due to extra rank-1 update per
partition. Therefore, in this sense, the analysis is quite similar; numerically, our
algorithm perform almost the same as the original one.

Our implementation of the algorithm performs similarly to lapack’s symmetric
indefinite solver, in both the factor and the solve phases. This shows that the
findings of Anderson and Dongarra, who found that a partitioned variant of Aasen’s
algorithm performed more poorly than a partitioned Bunch-Kaufman [3], are not
valid for our new algorithm. Our experiments were conducted on a very different
machine than the one used by Anderson and Dongarra, but we do not see why our
algorithm would perform poorer than lapack even on a machine like the Cray 2;

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 16

our methods and lapack’s implementation of Bunch-Kaufman perform essentially
the same sequence of level-3 blas calls.

More generally, our results show that symmetric tridiagonalization methods can
be as efficient as symmetric block-diagonalization (when both utilize non-unitary
transformations). The extra cost of solving tridiagonal matrices is negligible. The
triangular factors that our methods produce always have elements bounded in mag-
nitude by 1, whereas Bunch-Kaufman methods sometimes produce triangular fac-
tors with large elements [4].

In terms of stability, the tridiagonal factor computed by the Aasen method may
also have large elements. Roughly speaking, the numerical behavior of both ap-
proaches is similar (although of a somewhat different nature) and provided that the
corresponding growth factors are not too large, both their partitioned versions are
backward stable.

Acknowledgement. Shlarski and Toledo were supported by an IBM Faculty Part-
nership Award, by grant 848/04 from the Israel Science Foundation (founded by the
Israel Academy of Sciences and Humanities), and by grant 2002261 from the United-
States-Israel Binational Science Foundation. Rozložńık was supported by the Grant
Agency of the Czech Academy of Sciences under the project IAA100300802. We
thank the anonymous referees and Nick Higham for helpful suggestions and com-
ments.

References

[1] J. O. Aasen. On the reduction of a symmetric matrix to tridiagonal form. BIT, 11:233–242,
1971.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[3] Edward Anderson and Jack Dongarra. Evaluating block algorithm variants in LAPACK. In
Jack Dongarra, Paul Messina, Danny C. Sorensen, and Robert G. Voigt, editors, Proceedings

of the 4th Conference on Parallel Processing for Scientific Computing, pages 3–8. SIAM,
1989.

[4] Cleve Ashcraft, Roger G. Grimes, and John G. Lewis. Accurate symmetric indefinite linear
equation solvers. SIAM J. Matrix Anal. Appl., 20(2):513–561, 1998.

[5] Barwell, V. and George, A. A comparison of algorithms for solving symmetric indefinite
systems of linear equations. ACM Trans. Math. Software, 2:242–251, 1976.

[6] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique Quintana-Orti, and Robert
van de Geijn. The science of deriving dense linear algebra algorithms. ACM Transactions on

Mathematical Software, 31:1–26, 2005.
[7] J. Bunch and L. Kaufman. Some stable methods for calculating inertia and solving symmetric

linear systems. Mathematics of Computation, 31(137):163–179, January 1977.
[8] Jack J. Dongarra, Jeremy Du Cruz, Sven Hammarling, and Ian Duff. A set of level 3 basic

linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1):1–17, 1990.
[9] Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and Henk A. van der Vorst. Numer-

ical Linear Algebra for High-Performance Computers. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1998.

[10] Erik Elmroth, Fred Gustavson, Isak Jonsson, and Bo K̊agström. Recursive blocked algorithms
and hybrid data structures for dense matrix library software. SIAM Review, 46(1):3–45,

March 2004.
[11] Kazushige Goto and Robert van de Geijn. High-performance implementation of the level-3

BLAS. Technical Report CS-TR-06-23, The University of Texas at Austin, Department of
Computer Sciences, May 5 2006.

PARTITIONED TRIANGULAR TRIDIAGONALIZATION 17

[12] Nicholas J. Higham. Notes on accuracy and stability of algorithms in numerical linear algebra.
In Mark Ainsworth, Jeremy Levesley, and Marco Marletta, editors, The Graduate Student’s

Guide to Numerical Analysis ’98, pages 48–82. Springer-Verlag , Berlin, 1999.
[13] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, second edition, 2002.
[14] B. N. Parlett and J. K. Reid. On the solution of a system of linear equations whose matrix

is symmetric but not definite. BIT, 10:386–397, 1970.

