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obtain a representation of its inverse in product form. The number of general 

communication steps required by this approach is proportional to the number of 

factors in the factorization. The triangular matrix can be symmetrically permuted to 

minimize the number of factors over suitable classes of permutations, and thereby the 

complexity of the parallel algorithm can be minimized. Algorithms for minimizing the 

number of factors over several classes of permutations have been considered in earlier 

work. Let F = L + LT denote the symmetric filled matrix corresponding to a Cholesky 

factor L, and let G, denote the adjacency graph of F. We consider the problem of 

minimizing the number of factors over all permutations which preserve the structure 

of G,. The graph model of this problem is to partition the vertices G, into the fewest 

transitively closed subgraphs over all perfect elimination orderings while satisfying a 

certain precedence relationship. The solution to this chordal-graph partitioning prob- 

lem can be described by a greedy scheme which eliminates a largest permissible 

subgraph at each step. Further, the subgraph eliminated at each step can be 

characterized in terms of lengths of chordless paths in the current elimination graph. 

This solution relies on several results concerning transitive perfect elimination order- 

ings introduced in this paper. We describe a partitioning algorithm with @(IV 1 + 1 El) 

time and space complexity. 

1. INTRODUCTION 

We consider a graph partitioning problem which arises in the develop- 

ment of a partitioned inverse approach to the solution of sparse triangular 

systems of equations on highly parallel computers. On such machines it is 

advantageous to compute the solution to a lower triangular system Lx = _b by 

matrix-vector multiplication _x := L ‘_b when there are several systems (not 

all available at the same time) involving the matrix L to be solved. This is due 

to the fact that there is much more parallelism to be exploited in the 

multiplication approach than in the conventional substitution algorithm. If we 

can find a factorization L = II:= 1Pi, where each factor Pi has the property 

that P, and P,-’ have the same nonzero structure, then L-l = lI=,Piml can 

be represented in a space-efficient manner, storing the t factors P,-’ in the 

space required for L. Furthermore, the vector g can be computed as a 

sequence of t matrix-vector multiplication steps, exploiting parallelism fully 

within each step. 

The number of factors t in the factorization of L is an important 

measure, since it is proportional to the number of (expensive) router commu- 

nication steps required by the parallel algorithm based on this approach; 

hence it is a good predictor of the running time of triangular solution on 

highly parallel machines like the Connection Machine CM-2. It has been 

recognized that the triangular matrix can be symmetrically permuted to 
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minimize the number of factors, and hence several strategies for minimizing t 

over appropriate permutations of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL have been considered in previous work 

[2,111. 

Minimizing t over all symmetric permutations of L for which the 

permuted matrix remains lower triangular gives rise to a directed-acyclic- 

graph (DAG) partitioning problem [2]. After introducing some notation, we 

discuss this problem in some detail, after which we proceed with a descrip- 

tion of the closely related partitioning problem addressed in this paper. 

Let G, = (V, F) be the directed graph of the matrix L with vertices 

v = (1,. . . , n} corresponding to the columns of L and edges E = ((j, i) : i 

> j and li, j # 0). The edge (j, i> is directed from the lower-numbered vertex 

j to the higher-numbered vertex i. It follows that Gd is a directed acyclic 

graph (DAG). If th ere exists a directed path from a vertex j to another vertex 

i in Gd, then j is a predecessor of i, and i is a successor of j. An ordering 

of GC1 is any bijection from V to the set {1,2, . , IV I}. A topological ordering 

is any ordering that, for every predecessor-successor pair, numbers the 

predecessor with a lower number than that received by the successor. Note 

that the initial ordering imposed on Gd by L is a topological ordering. 

Given a set X c V, let F, c F be the set comprising every edge from a 

vertex in X to any vertex in the graph. The edge subgruph induced by F, is 

the subgraph of G, with edge set F, and vertex set consisting of all vertices 

which are endpoints of these edges. (We will refer to this as the edge 

subgraph induced by X.) A directed graph is transitively closed, or more 

briefly transitive, if the existence of edges (u, v) and (v, u;> implies the 

existence of edge (u, w). 

We can now give a precise statement of the DAG partitioning problem: 

PROBLEM 1. Given a DAG G,, find an ordered partition R, + R, + 

*** < R, of its vertices such that 

(1) for every v E V, if v E R, then all predecessors of v belong to 

R,, > Rj, 
(2) the edge subgraph induced by each Ri is transitively closed, and 

(3) t is minimum over all partitions that satisfy the first two properties. 

Problem 1 can be solved in @(IV 1 IF 1) time and 8(] FI) space when L is 

an arbitrary lower triangular matrix, or is obtained from the sparse LU 

factorization of an unsymmetric coefficient matrix [2]. However, if L is a 

Cholesky factor of a symmetric positive definite matrix, then there is a more 

efficient @ (lV 1) time and space partitioning algorithm [ll]. We consider this 

latter case in more detail now, since it will be helpful in describing the graph 

partitioning problem considered in this paper. 
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Let A be a symmetric positive definite matrix whose nonzeros are 

algbebraically independent, and let F = L + LT denote the symmetric filled 

matrix corresponding to its Cholesky factor L. Then G,, the adjacency graph 

of F, is a chordal graph.i The ordering cy : V + (1, . , IV I} of the vertices of 

G that corresponds to the order in which the unknowns in the linear system 

are eliminated is a pe$xt elimination ordering (PEO) of G. In the case of 

sparse symmetric factorization, because G is a chordal graph, the transitive 

reduction of Gd (a data structure called the elimination tree [8]) can be used 

to obtain an extremely efficient @(IV I) t’  ime and space algorithm for solving 

the chordal DAG partitioning problem ill]. The only other data required are 

the outdegrees of the vertices in G,!, which are either already available or 

easily computed. 

Further details on DAG partitioning problems connected with highly 

parallel alg on ‘th ms for the solution of sparse triangular systems and computa- 

tional results from a Connection Machine CM-2 implementation may be 

found in the papers [2,11]. The partitioned inverse approach has been shown 

to be normwise but not componentwise forward and backward stable when a 

certain scalar, which can be loosely described as a growth factor, is small; this 

scalar is guaranteed to be small when L is well conditioned [5]. A compre- 

hensive survey of the partitioned inverse approach to highly parallel sparse 

triangular solution is provided in [I]. 

The more general chordal graph partitioning problem addressed in this 

paper arises when we consider a larger class of elimination orderings for 

Cholesky factorization (thereby potentially reducing t further). Given the 

matrix A, we may compute an appropriate ordering in two steps: First, we 

compute the filled graph G, for a Cholesky factor L by means of a primary 

fill-reducing ordering; then we compute a secondary reordering that mini- 

mizes the number of factors t in the triangular matrix over all reorderings of 

A that preserve the structure of the-filled graph G,. The computed ordering 

is then applied to the coefficient matrix A before the factorization is 

computed. When there are several systems to be solved involving the same 

triangular matrix, the use of an ordering for factorization that has been 

optimized for efficient parallel triangular solution is justified. This two-step 

approach is similar to that used to compute the Jess-Kees ordering for 

parallel sparse Cholesky factorization [6,9]. 

Given a chordal graph G = (V, E) with vertices numbered in a PEO, we 

can associate a DAG Gd with G by directing each edge in E from the 

lower-numbered vertex to the higher-numbered vertex. The more general 

chordal graph partitioning problem may be stated as follows. 

‘Definitions of some technical terms will be deferred until later in the paper. 
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PROBLEM 2. Given a chordal graph zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG = (V, E), compute a PEO, the 

associated DAG Gd, and an ordered partition R, + R, < ... + R, of its 

vertices such that 

(I) for every u E V, if v E I$ then all predecessors of v belong to 

Rip.. . > Ri, 
(2) the edge subgraph induced by each Ri is transitively closed, and 

(3) t is minimum over all partitions that satisfy the first two properties for 
n ,9 

some DAG G,, where Gd ranges over all DAGs obtained from PEOs of G in 

the manner described above. 

In this paper we introduce an @‘(IV 1 + 1 El) algorithm for solving Problem 

2. Our solution, which we discuss briefly now, involves the lengths of certain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
chordless’ paths in G. A vertex v is an interior vertex of a path if it lies on 

the path and is not an endpoint of the path. Observe that any vertex v is 

either an interior vertex on some chordless path in the graph, or else an 

endpoint of every chordless path on which it lies. In the former case, let A(u) 

denote the length of the longest chordless path in G which includes o in its 

interior. [Note that A(u) Z= 2 for all such vertices.] In the latter case, let 

A(v) = 1. The vertices v E V for which A(v) = 1 or h(v) = 2 have certain 

properties which will play a crucial role in our solution to Problem 2. Section 

2 introduces a few of these properties. 

From among all solutions to Problem 2, choose one for which )Ril is as 

large as possible. In Section 3 we show that R, is the unique set consisting of 

vertices 0 which satisfy A(U) < 2, and also satisfy A(u) < 2 for all u E adj[v] 

such that {u} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU adj[u] c {v) U adj[v].3 Th’ is characterization moreover can 

be applied recursively to obtain the largest possible partition member R, in 

the reduced graph G \ (R, U * * - u R,_I ). As we shall see in Section 4, we 

can solve Problem 2 by using a simple greedy scheme that eliminates at the 

ith step a maximum-cardinality set Ri from the reduced graph. This greedy 

scheme is based on concepts associated with transitive perjkt elimination 

orderings of subgraphs of G which are introduced in this paper. 

The remainder of the paper is concerned with the expansion of this 

greedy scheme into an efficient algorithm for solving Problem 2. Section 5 

develops two ideas needed for efficient implementation of the high-level 

scheme. Further details needed to realize our goal of an @(IV I + IEI) 

implementation are given in Section 6. A few concluding remarks are given in 

Section 7. 

“A path is chordless if no edge in G joins two nonadjacent vertices on the path 

3The set adj[u] contains all vertices joined to o by an edge in G. 
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2. CHORDLESS PATHS AND AN ADJACENCY-SET PARTITION 

Assume G = (V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE) is a connected chordal graph,4 and let the “ length”  

parameters A(v), u E V, be as defined in Section 1. Figure 1 displays a 

chordal graph for which A(a) = A(b) = A(c) = A(d) = 1, A(e) = 2, and 

A(f) = A(g) = 3. It is interesting to note that the simplicial vertices5 of the 

graph are a, b, c, and d: precisely the vertices for which A(.) = 1. We 

formalize the result suggested by this observation later in this section. 

The following concepts will be used to define an interesting partition of 

adj[n] in the case where A(v) < 2. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAneighborhood of a vertex v is 

denoted by nbd[v] := {u) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU adj[u]. A ve rt ex u E adj[v] is said to be indis- 

tinguishable from v if nbd[u] = nbd[v]; the set of neighbors indistinguish- 

able from v will be denoted by adj’[v]. A ve rt ex u E adj[v] is said to strictly 

outmatch v if nbd[u] c nbd[v]. Th e set of vertices that strictly outmatch v 

will be written adj-[v]; the set of vertices strictly outmatched by v will be 

written adj ‘[ v]. Finally, let adj*[ v] consist of the vertices u E adj[ v I for 

which nbd[u] and nbd[v] are incomparable. Some of these relationships in 

Figure 1 are: a E adj-[e] and e E adj+[u]; b E adj-[e] and e E adj+[b]; 

e E adj-[f] and f E adj+[e]. Th ere are no pairs of indistinguishable vertices 

in Figure 1. 

It is worth noting that some of these ideas have already played an 

important role in sparse-matrix computations. In particular, vertex indistin- 

guishability and outmatching play an interesting and vital role in efficient 

implementations of the minimum-degree ordering heuristic 141; vertex indis- 

tinguishability also plays a critical role in the subscript compression scheme 

a 

P\ 

FIG. 1. Chordal graph with A(a) = h(b) = A(c) = A(d) = 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(e) = 2, and 

A(f) = A(g) = 3. 

4A graph is chordal if every cycle containing more than three edges has a chord (i.e., 

an edge joining two nonadjacent vertices on the cycle). 

“ A vertex 0 E V is simplicial. if the vertices of adj[ u] induce a complete subgraph of G 

(i.e., adj[u] is a clique in G). 
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introduced by Sherman [I21 and in improving the time efficiency of the 

symbolic factorization step [3]. 

The reader may easily verify that the sets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAadj j[ v], adj’[u], adj+[n], and 

adj*[v] form a partition of adj[v]. The following result shows that the vertices 

v E V for which h(u) < 2 are precisely those vertices for which adj j[ u], 

adjO[u], and adj+[v] form a partition of adj[u] (i.e., adj*[ul = 0). Before 

reading the proof, the reader may find it helpful to verify the result for the 

graph in Figure 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

LEMMA 2.1 (Adj acency-partition lemma). For each vertex v of a chordal 

graph, the sets adj -[ u], adj’[ 01, and adj ‘[VI form a partition of adj[u] if 

and only if A(v) < 2. 

Proof. We first prove the “only if’  part by contraposition. Assume that 

adj-[ v], adjO[u], and adj ‘[ u] do not form a partition of adj[ u]. It follows 

then that there exists a vertex u E adj*[v], and thus we can choose w,, E 

nbd[u] - nbd[ v] # 0, and wO E nbd[v] - nbd[u] f 0. Note that w,, U, O, 

and w, are necessarily distinct, and moreover [w,, u, v, w” ] is a path in G. 

Since (w,, 0) and (u, wti) clearly are not edges in G, the only other possible 

chord for the path is (w,, wJ. If, however, w,, were joined to wv by an edge 

in G, then [w,, U, v, w,, wU] would be a chordless cycle of length four, 

contrary to the chordality of G. It then follows that [tu,,, U, O, w,J is a 

chordless path in G, and consequently we have A(O) > 3. 

We now prove the “ if’  part of the result, also by contraposition. Suppose 

A(o) > 3, so that there exists a chordless path [u, v, w, X] of length three in 

G with o in the interior. Clearly, u E nbd[v] - nbd[w] and x E nbd[wl - 

nbd[v], whence w E adj*[,]. It follows that adj-[ v], adjO[u], and adj+[ U] do 

not form a partition of adj[ v], thereby giving us the result. n 

The vertices o E V for which A(v) < 2 play a key role throughout the 

rest of the paper. The following properties of these vertices will be useful in 

later proofs. The reader may find it useful to confirm that the result holds for 

the vertices a, b, c, d, and e in Figure 1. 

LEMMA 2.2. 

(1) For each vertex v of a graph, A(u) = 1 if and only if v is simplicial, in 

which case adj -[VI = 0. 

(2) Fur each vertex v of a chordal graph, if A(v) = 2, then ladj -[VII 2 2 

and for every vertex u E adj -[VI there exists a vertex ZJ ’ E adj -[ U] for 

which (u, u’) G E. 
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Proof. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFor the first statement we prove both directions by contraposi- 

tion. If A(u) > 2, then u is an interior vertex of some chordless path in G, 

say [u, u,w]. (Here, G can be any graph.) Whereas u, w E adj[u] and 

(u, w) @ E, it follows that adj[u] is not complete in G, whence u is not 

simplicial in G. Now assume u is not simplicial in G. Since adj[u] is not 

complete in G, we can choose u, w E adj[u] for which (u,w) E E. The 

chordless path [ u, II, w] in G ensures that A(u) > 2. To prove the last part of 

the first statement, assume that u is simplicial, so that nbd[u] is complete in 

G. It follows that nbd[u] c nbd[w] for every vertex w E adj[w], whence 

adj-[u] = 0. 

To prove the second statement, assume that A(u) = 2, and let [u, u, u’] 

be a chordless path in G of length two with u in the interior. (Here, G is 

again assumed to be chordal.) It follows from the adjacency-partition lemma 

that u belongs to one and only one of the sets adjj[u], adj’[u], or adj+[u]. 

Since u’ E nbd[u] - nbd[u], it f 11 o ows that u E adjjlv]. By the same 

argument, u’ E adj j[ u] too, whence ladj-[ u]/  > 2, as required. To prove the 

last part of the second statement, again assume that h(u) = 2; moreover, let 

u E adj-[w] z 0, so that nbd[u] c nbd[u]. Choose a vertex u’ E nbd[u] - 

nbd[u] z 0. Clearly u’ P adj[u], whence it follows that u’ e adj’[u] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU 

adj’[ v], and thus u’ E adj-[ v]. This concludes the proof. n 

Here, also for later use, we verily that each of the sets adj’[u] U adj+[u], 

v E V, is complete (i.e., pairwise adjacent) in G. 

LEMMA 2.3. The vertex set adj’[w] U adj ‘[u] is complete in G for each 

0 E v. 

Proof. Let u E V, and choose w, w’ E adjO[u] U adj+[w]. Since nbd[ul 

c nbd[w], clearly w ’ E adj[w 1, whence nbdlu I is complete in G. n 

3. TRANSITIVE PERFECT ELIMINATION ORDERINGS 

3.1. Definitions and Notation 

An ordering of G is a bijection 

a:V-+{1,2 ,..., n}, 

where n := IV). For any vertex v of an ordered graph, let the monotone 

adjacency set of v be defined by 

madj[u] := {w E adj[u] lo(w) > a(u)}. 
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A pelfect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAelimination ordering (PEO) of G is any ordering of G such that 

madj[v] is complete in G for every vertex o E V. 

In this paper we will be interested in perfect elimination orderings that 

are “partially specified”  in the following sense. An incomplete ordering of G 

relative to a vertex set X 5 V is a mapping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a:v-t {1,2,..., IXI -  l,lXI,n + I} 

such that (Y restricted to X is a bijection from X to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{1,2, . . , 1 Xl] and 

(Y(U) = n + 1 for each vertex v E V - X. For convenience we shall refer to 

such an incomplete ordering of G as an ordering of G(X). Whenever 

X = V, clearly the “ incomplete”  ordering is an ordering of G. A perfect 

elimination ordering of G(X) is an ordering of G(X) such that madj[v ] is 

complete in G for every vertex v E X. (We emphasize that G(X) does not 

refer to the subgraph induced by the vertex set X, and that in the previous 

sentence madj[v] is complete in the graph G and not in the subgraph 

induced by X.) Note that any incomplete PEO can be “ completed”  into a 

PEO of G. 

Unless G is a complete graph, there are some sets X c V for which there 

exists no PEO of G(X). Th e o owing result identifies every vertex set f 11 

X c V for which there exists a PEO of G(X). 

PROPOSITION 3.1 (Shier [13]). Let X c V. There exists a PEO of G( X) if 

and only if the vertices of every chordless path in G joining two vertices in 

V - X are included in V -  X. 

A transitive ordering of G(X) is any ordering of G(X) for which the 

following property holds: If a(u) < a(v) < (u(w) and (u, v), (v, w) E E, 

then (u, w) E E. Note that the vertices u and v are necessarily taken from X 

[because (Y(U) < a(v) < n + 11, while the vertex w may be taken from 

either X or V - X. A transitive pe$xt elimination ordering (TEO) of G(X) 

is any ordering of G(X) that is both a PEO of G( X) and a transitive ordering 

of G(X). Any vertex set X c V for which there exists a TEO of G(X) will 

henceforth be called a T-set of G. 

Due to the additional transitivity condition, the collection of T-sets of G 

is generally much smaller than the collection of vertex sets X c V for which 

merely a PEO of G(X) exists. For example, while there exists a PEO of 

G(V) for every chordal graph G, it is not the case that there exists a TEO of 

G(V) for every chordal graph G. On the contrary, V is not a T-set for most 

chordal graphs G = (V, E). Indeed, any chordal graph G for which V is a 

T-set is also a member of another major class of perfect graphs known as 
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comparability graphs.6 In other words, if a chordal graph G is not also a 

comparability graph, then V is not a T-set of G. Note, however, that a graph 

G can be both a chordal graph and a comparability graph without possessing 

a TEO of G(V). That is, there exist graphs which are both chordal and 

comparability graphs, but for which the set of transitive orderings is disjoint 

from the set of perfect elimination orderings. An example is P4, the path on 

four vertices. 

Though V is not a T-set for most chordal graphs G = (V, E), T-sets 

nevertheless exist for any chordal graph G. For example, consider the vertex 

set X = Sim, # 0, where Simo is the set of simplicial vertices of G. It is 

easy to verify that any ordering of G(X) is a TEO of G(X), and hence X is a 

T-set of G. 

3.2. The T-Set of Maximum Cardinality 

In this subsection we show that G has a unique maximum-cardinality 

T-set R, and that this set is given by 

R = (0 E VIA(v) < 2, and h(u) < 2foreveryu E adj-[u]). (1) 

More specifically, ye will show that {a) the vertex set R is a T-set of G, and 

(b) for any T-set R of G we have R G R. [The reader can, with some care, 

verify that these two statements hold for the graph in Figure 1 CR = 

{a, b, c, d, elI.1 
Toward that goal, we first characterize the TEOs of G(R). The outmatch- 

ing relation on V is the key concept needed to obtain the result. Henceforth, 

for any pair of vertices u, v E V, we shall write u < 0 if u E adj-[ v], or 

equivalently, u < v if nbd[u] c nbd[v]. The relation -C clearly imposes a 

strict partial order on the vertex set. An ordering (Y of G(X) is consistent 

with the partial order -K if u -C v implies that a(u) < a(v). The following 

result says that the TEOs of G(R) are precisely the orderings of G(R) that 

are consistent with the partial order -C . 

THEOREM 3.2 (TEO theorem). An ordering (Y of G(R) is a TEO of 

G(R) if and only f i (Y is consistent with the partial order + 

Proof. First we show that any ordering (Y of G(R) that is consistent 

with the partial order -C is a PEO of G(R). Let CY be any ordering of G(R) 

6An arbitrary graph G = (V, E) IS a comparability graph if there exists a transitive 

ordering of G(V); each comparability graph is associated in a natural way with a finite 

partially ordered set. 
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for which a(u) < a(u) whenever u < u. From (1) and the adjacency-parti- 

tion lemma, it follows that for each vertex o E R the sets adj j[ VI, adjO[vl, 

and adj+[ u] form a partition of adj[u]. Furthermore, our assumption that (Y 

is consistent with the partial order -X implies that for each vertex 0 E R, the 

set madj[o] includes no vertices from adjj[ v], and hence contains only 

vertices from adjO[u] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU adj+[u]. From Lemma 2.3 it follows that madj[vl is 

complete in G for every vertex v E R, and (Y is therefore a PEO of G(R). 

Next we show that any ordering CY of G(R) that is consistent with the 

partial order < is also transitive, and hence a TEO of G(R). Assume the 

ordering (Y of G(R) is not transitive. There exist then vertices U, 0 E R and 

w E V such that a(u) < a(v) < a(w), (u, u), (v, W> E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, and (u, W) P E. 

From (1) and the adjacency-partition lemma, it follows that adj-[ u], adj’[v], 

and adj ‘[ v] form a partition of adj[ v]. Consequently, since u, w E adj[ v 1 

and (u, w) e E, we have U, w E adjj[u]. Since LY(D) < (u(w), the ordering 

cr clearly is not consistent with the partial order + , and thus we have proven 

the “ if’  part of the result. 

To complete the proof, we show that any TEO of G(R) is consistent with 

the partial order < Let cx be any ordering of G(R) that is not consistent 

with -C . Then for some vertex u E R there exists a vertex u E adjj[ v] such 

that a(v) < a(u). Now by (1) and Lemma 2.2, A(U) = 2 and moreover 

there exists a vertex w E adj-[ u], w + U, that is not adjacent to U. If 

a(w) < o(z)), then we have a(w) < a(u) < (u(u), (w, u>, (u, U) E E, and 

(w, U) e E, whence (Y is not a transitive ordering of G(R). If on the other 

hand a(w) > a(u), then U, w E madj[v] and (w, v> @ E, whence (Y is not a 

PEO of G(R). In either case, CY is not a TEO of G(R), and this concludes 

the proof. n 

That the vertex set R is a T-set of G follows immediately from the TEO 

theorem. We now show that any T-set of G is contained in R. 

THEOREM 3.3. For any T-set l? of G, we have l? c R. 

Proof. To prove the result it suffices to show that for every vertex 

v E V - R there exists no T-set that contains u. We therefore choose a 

vertex 0 E V - R and consider in turn the following two mutually exclusive 

cases, at least one of which must hold true: 

(1) NV) z 3. 

(2) AC(u) = 2, but h(u) > 3 for some vertex u E adj-[VI. 

Assume first that A( U) > 3, and let [u, o, w, x] be a chordless path of 

length three in G with 2) in the interior. Let LY moreover be any PEO of 
,. ,. 

G(R) where v E R. It suffices to show that CY is not a transitive ordering 
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L1 I 
of G(R). Since o E R, we have cu(u) # (Y(W); there are therefore two cases 

to c_onsider. Consider first the case where a(u) < (Y(W). Since (Y is a PEO of 

G(R), it follows that a(u) < (Y(V) < (Y(W). Such an ordering cannot be a 

transitive ordering of G(g), b ecause (u, u), (u, w) E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, but (u, w) 6 E. Now 

consider the case where a(w) < a(u). Since (Y is a PEO of G(i), it follows 

that CY!X) < (Y(W) < (Y(V). Such an ordering cannot be a transitive ordering 

of G(R), because (x,w), (w,v) E E, but (x, U) @ E. 

Now suppose that A(v) = 2, but h(u) > 3Afor some vertex u E adj-[ u]. 

Again let c~ be any PEO of G(R) w ere p E R; it again suffices to show that h 

cy is not a transitive ordering of G(R). First, by the argument in the 

precedi?g paragraph it is impossible for (Y ,to be a transitive ordering of G( fi> 

if u E R, and thus we assume that u P R; that is, we assume that a(u) = 

n + 1. By Lemma 2.2, there exists another vertex u: E adj-[v] such that 

(w, U) g E. Note that [u, v, w] is a chordless path in G. Since (Y(V) < a(u) 

= n, + 1, we must have (Y(W) < a(o) < (Y(U) in order for CY to be a PEOpf 

G(R). Such an ordering however cannot be a transitive ordering of G(R), 

because (w, v), (v, U) E E, but (w, U) e E. This concludes the proof n . 

4. A GREEDY SCHEME FOR THE CHORDAL 

PARTITIONING PROBLEM 

We can partially reduze the graph G by choosing a T-set 2 of G a?d 

removing the vertices in R from G in the order specified by a TEO of G(R); 

we then complete the reduction of G to th: null graph by applying this 

process recursively to the reduced graph G \ R. 

Suppose the graph G is reduced to the null graph after the removal of t 

distinct T-sets, each ordered by a TEO. Define G, := G, and let 

G,,G,,...,G,+, be the sequence of reduced graphs obtained at the end of 

eAachh “block’: elimination step. (Note that G,, 1 js the empty graph.) Let 

R,, R,, . , f$ be the sequence of T-sets, so that Rj is remo_ved from Gj by a 

TEO of G,(R,) to obtain the zedu_ced graph Gi+ 1 = Gi \ Ri. We shall refer 

to any vertex set partition R,, R,, . , R, obtained by this process as a 

T-partition of V,;7 we shall refer to any PEO of G generateAd by this prccess 

as a compound TEO of G with respect to the T-partition R,, R,, . , R,. 

Note that the solution to Problem 2 consists of a compound TEO, along 

with its associated T-partition and DAG, for which t, the number of mem- 

7Henceforth we will incorporate the graph into our notation as a subscript when 

needed. For example, if G has been reduced to G,, we might write VCC, h,,(u), adjCt[u], 

etc. to distinguish these items from the corresponding items for a different graph. 
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bers in the partition, is as small as po:siblF. Let r(G) be the minimum value t 

for which there exists a T-partition R,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,, . . , R, of V,. Consider a greedy 

approach for generating a T-partition of V by eliminating the T-set of 

maximum cardinality at each major step, as shown in Figure 2. We let 

R,, R,, , R, be the T-partition of V, obtained by this process. For the 

graph in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, the T-partition obtained by this process has members 

R, = (a, h, c, d, e} and R, = {f, g}. 

It is not difficult to show that this process obtains a minimum-cardinality 

T-partition of Vc, and hence a solution to Problem 2. First we show that 

T( H > < T(G) for any induced subgraph H of G, after which the main result 

of this section can be obtained by a simple induction argument. 

LEMMA 4.1. For any induced subgraph H of G, we have r(H) < r(G). 

Proof. Let Ei,, I?,, . . , I?, be a nT-p@tion pf Vc, and let (Y be a 

compound TEO of G with respect to R,, R,, . . , R,. Consider the subgraph 

H of G induced by X c V and the unique ordering / 3 of H that is 

consistent with CY in the sense that p(u) < P(v) whenever u, v E X and 

a(u) < (Y(G). Now, for every vertex v E X we have madj.[cl c madjclvl, 

with madj,[ c] complete in G. It follows therefore that madj,[vl is complete 

in H for every vertex v E X, whence / 3 is a PEO of H. 

Let ii, R,, , g, be the partition of X defined by Rj = ii n X, 

1 < i < t. To prove the result it suffices to show that P is a compound TEO 

of H with respect to gi, I&, . , fi,. Clearly, p is a “block”  ordering of V,, 

consecutively numbering the vertices in R, before numbering next those in 

ii+,. In the previous paragraph we showed that P is a PEO of H. To 

complete the proof, it suffices to show that P restricted to Ri is a transitive 

ordering of Hi(&). Toward that end, assume that u, o E &, w ‘,X, P(u) < 

P(v) < P(u;), and (u, 01, (v, w> E E,. It follows that U, v E Ri, a(u) < 

a(v) < a(w), and (u, v), (v, w) E E,. Since LY is a compound TEO of G 

i + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G, + G; 

while Gi # 0 do 

Let Ri be the maximum-cardinality T-set of Gi; 

Compute Gi+ 1 +- Gi \ R,, 

with R, removed in a TEO of G,(R,); 

i+i+l; 

end while zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FIG. 2. Greedy partitioning scheme for which each Ri is the maximum-cardinal- 

ity T-set of Gi. 
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with respect to the T-partition Gi, RI,, . . . , i,, we have (u, w) E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,, which 

in turn implies that (u, w> E E,, thereby giving us the result. W 

THEOREM 4.2. The greedy partitioning scheme in Figure 2 generates a 

minimum-cardinality T-partition of V,. 

Proof. W e prove the result by induction on n = IVol. Clearly, the result 

is true for n < 2. Let G be a graph with n > 3 vertices, and assume the 

greedy scheme produces a minimum-Fardinality T-partition for any graph 

with fewer vertices. Let R,, R,, . . , R, be a T-partition of Vo for which 

s = r(G), and let R,, R,, . . . , R, be the T-partition of V, generated by the 

greedy scheme in Figure 2. Clearly r(G) = s < t; thus to prove the result it 

suffices to show that t < s. 

Since the greedy scheme applied to G processes the reduced graph 

G \ R, precisely as it does when applied directly to G \ R,, it follows by the 

induction hypothesis that R,, R,, . . . , R, is a minimum-cardinality T-parti- 

tion of V, - tl, and thus we have t - 1 = r(G \ R,). Now, Theorem 3;3 

implies thtt RJ c R,, _whence G \ R, is an induc$d subgraph of G \R,. 

Whereas R,, R,, . . . , R, is a T-partition of V, - R,, it follows by Lemma 

4.1 that 

t - 1 = T(G\R,) < 7(G\&) =s s -  1. 

In consequence we have t < s as required. n 

5. COMPUTING A MAXIMUM-CARDINALITY T-SET 

This section introduces an algorithm for computing the maximum-cardi- 

nality T-set R and a TEO of G(R). The algorithm removes one simplicial 

vertex after another from the graph so that upon termination the vertices of 

R have been eliminated and the order in which they were eliminated is a 

TEO of G(R). Using this algorithm, Section 6 presents the implementation 

details needed for a linear-time implementation of the greedy scheme in 

Figure 2. 

The algorithm introduced in this section is based on two simple ideas. As 

the algorithm eliminates simplicial vertices from the graph, new simplicial 

vertices appear in the reduced graph. The first, and most important, idea 

incorporated into the algorithm is a technique for determining whether or not 

a “ candidate”  simplicial vertex in ;he reduced graph is a member of R and 

hence should be eliminated. Let R denote the set of vertices that have been 
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eliminated thus far by the algorithm, and let o be the next simplical vertex 

examined as a candidate for elimination. We will show that, within the 

context of our algorithm, o E R if and only if 

adj,[ 01 - i? G adjz[ u] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu adjd [ 01 

To enable the test in (21 to accurately distinguish members from non- 

members of R, the order in which the candidate simplicial vertices are 

examined must be carefully prescribed. The second idea incorporated into 

the algorithm deals with this issue. Let deg,(u) be the degree of a vertex w 

in G (i.e., ladjc[n]]). At each step, the algorithm chooses as the next vertex to 

examine for elimination a candidate simplicial vertex u for which deg,(u) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
minimum. Whenever u E adj,[ v], we have nbd,[u] c nbd,[v], whence 

dego(u1 < deg,(u). We th erefore incorporated this particular ordering of 

the candidates into the algorithm to enforce examination of the vertex 

u E adjo[u] bf e ore examination of 0, so that whenever the algorithm finally 

tests whether or not a vertex u satisfies (2), it will have already examined and, 

if called for, eliminated, every member of ad&J u]. 

We have incorporated these two ideas into the algorithm shown in Figure 

3. The algorithm collects the eliminated vertices in the set R. The set C 

contains the candidate simplicial vertices belonging to the current elimina- 

tion graph. Initially C = Sun,. As the computation proceeds, each “ success- 

ful”  candidate is eliminated from both the graph and the set C. When 

elimination of a successful candidate z) results in a new simplicial vertex w in 

n 

H + G; R * 0; C + Sim,; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
whileC#iZIdo 

Choose o E C for which deg,(u) is minimum; 

c + c - {Oli 

if adj,[z,] - R c ad&v] U adjd[u] then 

H'+H\{u};lb-Eiu{v}; 

for u: E Sim,. - Sim, do 

c +- c u {w); 

end for 

H +-H'; 

end if 

end while 

FIG. 3. High-level algorithm for computing the maximum-cardinahty T-set R 

and a TEO of G(R). Upon termination, R = R and the elimination sequence is a 

TEO of G(R). 
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the reduced graph, the algorithm places w in C, where it will be examined 

later for possible elimination. 

Before proving the algorithm correct, we examine how it processes the 

graph shown in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Initially, C = Sim, = {a, b, c, d). It is trivial to 
* 

verify that each of these vertices will pass the test for inclusion in R when it 

is finally examined by the algorithm. (It can be proven formally using Lemma 

2.2 and the adjacency-partition lemma.) The vertex d (degree one in G) will 

be removed first, whereupon the newly simplicial vertex g will be added to 

the candidate set C. The vertices a, b, and c, each of degree two in G, will 

be removed next in succession. Observe that after the removal of these 

vertices, e has become simplicial and f remains nonsimplicial, whence 

C = {e, g}. The algorithm will next examine either e or g for inclusion in 2. 

(Both ar,e of degree three in G.) No matter which is examined first, g will fail 

the test because the vertex f E ad$[ g] remains uneliminated, and e will 

pass the test because the vertex f E adj,+ [ el is the only neighbor of e in the 

reduced graph. The vertex f (degree five in G) becomes simplicial upon the 

removal cf e, but upon examining it the algorithm will reject it for member- 

ship in R because the vertez g E adjc[f] remains uneliminated. The algo- 

rithm thus terminates with R = R = {a, b, c, d, e), as required. 

While the primary purpose of the following result is to prove the 

algorithm correct, it also shows that the minimum degree among the candi- 

dates is nondecreasing as the algorithm proceeds. This property of the 

algorithm provides the implementation presented in Section 6 with efficient 

access to the minimum-degree members of C. 

THEOREM 5.1. The set of vertices I? removed by the algorithm in Figure 

3 is precisely the maximum-cardinality T-set R. Furthemre, the order in 

which the vertices are removed is a TEO of G(R), and the minimum degree 

among the vertices of C is nondecreasing as the algorithm proceeds. 

Proof. _Let I? be the set of vertices removed by the algorithm. We first 

show that R L R. Toward that end, let R denote the set of vertices already 

selected for elimination at some point during the compu!ation, and let o be 

the next vertex selected for elimination. To prove that R c R, it suffkes to 

prove the following: if fi G R, then v E R. 

Let g a” d v be as stated above, and consider a vertex u E adj,[v] n fi. 

Since u E R c R, by (I) we have A,(u) < 2, and thus by the adjacency-par- 

tition lemma the sets adjJ u], adjE[u], and adjG+[ u] form a partition of 

adj,[u]. It follows that u belongs to one of the three_sets adj,[v], ad$[v], 

and adjd [v 1. Now con$der a vertex w E adj,[v] - R. Since v passes the 

test for inclusion in R, it follows that w E adj,$[v] U adj,t[v]. We have 

therefore shown that adj,[ v], adjE[v], and adjd[zj] form a partition of 
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adj,[u], whence h,(u) < 2 by the adjacency-partition lemma. Since adj,[v] 

-fi c ad$[u] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU adjd[u], we have adji[v] c i L R; hence, by (11, h,(u) 

5 2 for each vertex u E adjJ u]. It follows by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) then that w E R, giving us 

R c R as required. This concludes the firzt part of the proof. 

We now complete the proof that R = R by showing \hat fi is not 

properly cc+ained in R. By way of contradiction assume that R c R. Choose 

0 E R - R for which deg,(u) is minimum. We first show that adjJv] G i. 

Consider a vertex u E adj,[v]. By (11, h,(u) < 2; moreover, since 0 E R 

and adjJu] c adjJu], it follows by (1) that u E R. From nbd,[u] c 

nbd,[u] we have degc(u> < deg,(u), and Lhus by the minimality o,f degc(o) 

among the vertices of R excluded from R, it follows that u E R, thereby 

giving us adjc [ v] & R. 

Let fi be the set of vertices already selected for elimination by the 

algorithm im?ediately after the last vertex of _adjc[ v] has been selected for 

inclusion in R, so that we have adjc [u] c R. It follows by applying the 

adjacency-partition lemma to 0 E R that adjJ u], adjE[v], and adjd[ u] form 

a partition of adj,[u], and thus we have adj,[vl - R c_ad$[v] U adj,f[o]. In 

consequence, u is simplicial in the reduced graph G \R (by Lemma 2.3) and 

also henceforth satisfies the test for inclusion in k Observe that the 

algorithm has not yet examined w for inclusion in fi, because degc(u) < 

deg,(u) for any vertex u E adj,[ u], and moreover u becomes simplicial in 

the reduced graph no later than u does. The algorithm therefore eventually 

examines v sometime afer eliminating the last member of adjG[ V] and 

includes it in R, despite our assumption to the contrary. From this contradic- 

tion we conclude that i = R. 

To conclude the argume+ note that the test for inclusion in i ensures 

that for every vertex u E R = R the vertices of adjJ w] precede 0 in the 

elimination sequence. Tb elimination sequence is therefore, by the ATEO 

theorem, a TEO of G(R). Finally, note that the test for inclusion in R also 

ensures that deg,(w) > deg,(u) for each new simplicial vertex w resulting 

from the elimination of V. In consequence, the minimum degree among the 

vertices in C is nondecreasing, which concludes the proof. n 

6. IMPLEMENTING THE GREEDY SCHEME 

Repeated application of the algorithm in Figure 3 to a chordal graph gives 

us an algorithm that implements the greedy partitioning scheme in Figure 2. 

With careful attention to certain implementation details, we can obtain an 

algorithm whose runtime is linear in the number of vertices and edges in the 

chordal graph. 
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Two implementation issues in particular must be successfully dealt with 

in order to achieve a linear-time algorithm. First, we need an efficient 

technique for detecting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnew simplicial vertices (i.e., the vertices w E 

Sim,, - Sim, in Figure 3). Liu and Mirzaian [9] showed how to use a 

previously computed PEO and certain vertex degree information in the graph 

to devise a simple and efficient test for simpliciality. We briefly discuss this 

test in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.1. 

Second, we need an efficient way to implement the test for membership 

of a candidate simplicial vertex in R. Note that straightforward determination 

of whether or not a vertex v satisfies (2) yould require examination of the set 

adj,[w] for each vertex w E adj,[v] - R, which is far too costly. We show in 

Section 6.2 that judicious use of vertex degree information leads to a simple 

and efficient test that is equivalent to (2). 

Other implementation issues are fairly straightforward and will be dealt 

with when we look at the detailed algorithm in Section 6.3. In Section 6.4 we 

show that the time complexity of the algorithm is @(IV 1 + [El). 

6.1. An Eflicient Test for Simpliciality 

In their efficient implementation of the Jess-Kees reordering algorithm, 

Liu and Mirzaian [9] address the issue of how to determine when a vertex has 

become simplicial in the reduced graph. Their approach requires a perfect 

elimination ordering P of the chordal graph. Throughout the rest of Section 

6 we will often subscript the vertices with their position in this PEO; that is, 

we will let V, = {vi, v2, . , v,,}, where p(vj> = j for 1 < j < n. Note that a 

PEO can be computed in @‘(IV 1 + 1 E 1) t ime using the maximum-cardinality 

search algorithm [I4]. 

For each vertex vj, let fj be the index given by 

4 := min{k I ok E nbd,[ vj]}, 

and let mdeg,(vj), the monotone degree of vj, be given by 

The following result is Theorem 3.5 in Liu and Mirzaian [9]. 

PROPOSITION 6.1 (Liu and Mirzaian [9]). 

if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdeg,(u$ = mdeg,(v4). 

We have vj E Simc ifand only 

In order to use the simpliciality test of Proposition 6.1, the algorithm will 

maintain the degree values deg,(vj) and mdeg,(vj) in the variables deg(uj) 

and mdeg(vj) respectively, where H is the current reduced graph. 
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6.2. An Efficient Test for Membership in R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnoted earlier, a naive implementation of the test in (2) is far too 

expensive to lead to a linear-time implementation. The following result 

provides us with an efficient alternative to (2). 

PROPOSITION 6.2. Suppose the algorithm in Figure 3 is currently testing 

the simplicial vertex v E C for elimination, and let I? now denote the subset of 

R containing those vertices that have been eliminated thus far. We then have 

(2) zf and only zf 

Inbd,[u] - I?( =Inbd,[v] - I?[ forewey u E nbd,[v] n I?. (3) 

Proof. Let v and E be as stated, and choose a vertex u E nbd,[ v] n I?. 

Because u was simplicialjn the reduced graph from which it was removed, it 

follows that nbd,[u] - R is complete in G. Since v belongs to the clique 
A 

nbd,[u] - R, the following statement holds true: 

nbd,[u] - R^ c nbdc[w] - k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAevery u E nbd,[u] n 2. (4) 

Assume that (3) holds. It follows then from (4) that 

nbd,[u] - 2 = nbd,[v] - k for every u E nbd,[v] n fi. (5) 

Choose a vertex w E adj,[ul - g. To show that (2) holds, it suffices to show 

that nbd,[uh] c nbd,[w]. Let r E nbd,[ v]. If x belongs to the clique 

nbd,[v] - R from which w was ta@n, clearly x E nbd,[w] as required. If 

o,”  the other handA x E nbd,[u] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn R, then from (5) we have w E nbd,[u] - 

R = nbd,[xl - R, whence x E nbd,[w], completing the first half of the 

argument. 

Now assume that (2) holds, and choose a vertex u E nbd,[v] n l?. To 

show that (3) holds, it suffices [by (41 to show that 

nbd,[v] - I? c nbd,[u] - fi. 

Clearly, v belongs to both sets. Let w # u belong to nbd,[v] - k It follows 

by (2) that w E adji[vl U adj,+[v]. In consequen:e, nbd,[u] & nbd,[w]; 

hence u E nbd,[w], and thus w E nbd,[ul - R, which completes the 

proof. H 

To test for (3), our algorithm must accurately maintain the variable 

deg(u) = ladj,[u] _A1 f or eliminated vertices u E Ei as well as uneliminated 

vertices u E V, - R. 
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6.3. Implementation Details zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The algorithm introduced in Figure 4 (along with Figures 5, 6, and 7) 

implements the greedy scheme introduced in Figure 2. That is, it generates 

the minimum-cardinality T-partition R,, R,, . . , R,, where each partition 

member Ri is the unique maximum-cardinality T-set of the reduced graph 

Gj = G\{R, u ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU Rip,}, and it also generates a compound TEO of G 

with respect to the T-partition R,, R,, , R,. For efficient access to a 

Input: A chordal graph G = (V, El; f or each vertex vj E V, deg(v.1 [= degc.vj)], 

mdeg(vj) [ = mdegC(vi)], and adj,[v,], sorted in ascending order b y the numbers 

assigned by the initial PEO. 

Output: Upon termination, i,, I?,, , I?, is precisely the minimum-cardinality 

T-partition R,, R,, , R,, where each partition member Ri is the maximum-cardi- 

n&y T-set of the reduced graph Gi = G \ {R, U ... U Ri_ 1}. The PEO CY (com- 

puted in Figure 7) is a compound TEO of G with respect to the T-partition 

R,, R,, > R,. 
INITIALIZE (markt * ), C[ * 1, S,); /*Figure 5*/ 

r + 0; i + 1; G, + G; U 6 V; 

while Gi # 0 do 

d ,,,= + 0; d,i, + IVI; 

for vj E Si do 

d,, +- max{d,,,, deg(uj)k 

d,,i, + min{d,,,, deg(v.)]; 

C]dedvJ)l + c[degCv,)j U {vj]; 

end for 

fpr vj E U do olddeg(vj) + deg(vj) end for 

R<+0; Si+l + 0; u +- 0; 

while dmi, < d,,, do 

for each vertex vI E C[d,,,,] do 

C]d,,ll,,l + G]d,,,i”l - {vj]; 

if IN_TSET(V~) = 1 then /*Figure 6*/ 

ELIMINATE(V]); /*Figure 7*/ 

else 

si+r + si+ 1  u ivj); 

end if 

end for 

while C[d,,] = 0 and dmin < d,, do 

dIni*, + dmi, + 1; 

end while 

end while 
. 

for vI E Ri do mark(vj) + 0 end for 

‘G+I + Gi \ ii; i +-  i + 1; 

end while 

Fig, 4. Detailed implementation of scheme in Figure 2. 
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procedure INITIAI,IZE(mZdCf*), c[*], s,> 

s, +- 0; 

for d E {I, 2,. , n} do ~[d] + 0 end for 

for j E {l, 2,. , n} do 

if deg(vj) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmdegfy) then 

mai+ + 2; S, + S, U {vj}; 

else mark(uj;j) + 3; end if 

end for 

Fig. 5. Initialization procedure: initializes data structures for main while loop. 

candidate simplicial vertex of smallest degree in Gj, the algorithm maintains a 

collection of sets C[d] (1 < d < n), where ~[d] contains the current candi- 

date simplicial vertices u; for which deg,!w) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd. Since vertices are both 

added to and removed from these sets, they should be implemented as a 

collection of doubly linked lists. Because no vertex appears in more than one 

set at a time, only three n-vectors are required: one for the first pointers into 

the lists, two more for the backward and forward links. We now discuss other 

details of the implementation. 

Initialization for the algorithm is performed by the procedure INITIALIZE 

shown in Figure 5. This procedure initializes S, to Sim. (see Proposition 

6.11, each candidate set C[d] to the empty set, and each marker variable 

mark(uj) to an appropriate integer value. The various values taken on by the 

marker variables mark(l;j) during the course of the algorithm have the 

meanings given below: 

0 if vj has been eliminated during an earlier major step, 

1 
mark( vj) = 

: 

if vj has been eliminated during the current major step, 

2 if vj is simplicial, but not yet chosen for elimination, 

3 if vj is not yet simplicial, 

where each major step is a single iteration of the main while loop. 

boolean function IN_TsET(u~) 

IN_TSET + 1; 

for each vertex ok E adj,[l;,] do 

if marMu,) = 1 and deg(t+) # deg(uj) + 1 then 

IN_TSET + 0; 

end if 

end for 

Fig. 6. Boolean function that tests for membership in the maximum-cardinality T-set 

Rj. 
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procedure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAELI~INAT;( uj) 

mar!duj) + 1; Rj + Rj U {u,}; U +- U - {uj}; 

r + r + 1; cu(Ui> ‘+ r; 

for each vertex ok E adj,[uj] in ascending order do 

dedsk) + deg(uk) - 1; 

if mark&) > 2 then 

Update fk if necessary; u + u u {ok}; 

if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk <j then mdeg(uk) + mdeg(vk) - I; 

if de&+) = mdeg(vfk) and mark(+) = 3 then 

marktuk) + 2; 

C[olddeg(t+)] + C[olddeg(uk)] u (+}; 

d ,nax + ma+,,,, olddeg(u,)k 

end if 

end if 

end for 

Fig. 7. Elimination procedure: updates data structures to reflect the selection of ‘oj 

for elimination. 

An iteration of the main while loop in Figure 4 removes the vertices of 

the maximum-cardinality T-set Ri from the reduced graph Gi, generating a 

TEO of G,(R,) as the elimination sequence for the set. Note that the set 

Si = Sirno, is available at the beginning of the ith iteration. The first for loop 

computes the minimum and maximum degrees encountered among the 

vertices of Sim,, (d,,, and dmin, respectively), and also places each simpli- 

cial vertex V~ in the appropriate candidate set C[deg,-vj)]. The algorithm 

maintains the degree value deg,{v.) in the variable olddeg(uj). 

The second for loop updates ofddeg(vj) for each vertex vj whose degree 

was reduced during the preceding major step. To do this efficiently, the 

algorithm maintains a set U, which contains every uneliminated vertex whose 

degree has been reduced during the current major step. 

As long as there remain candidate simplicial vertices to be processed, the 

algorithm examines those of minimum degree in Gi (i.e., those in C[d,,]). 

For each vertex v. E C[d,,,], the boolean function IN_TSET (see Figure 6) 

uses the current d egree information to determine if V~ satisfies the test for 

elimination given in (3). In Figure 6, note that 

deg(vk) =ladjG[+] - A,[ =Inbd,[vk] -&I 

and 

deg(vj) =ladj,[vj] - ii1 =Inbd,[u,] - i?,l - 1. 
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If vj is not to be eliminated at this step, the algorithm then places oj in 

the set of simplicial vertices Si+ i, where it will be processed (and eliminated) 

during the next iteration of the main zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhile loop. Otherwise, the procedure 

shown in Figure 7 selects vj for elimination and updates the current T-set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARi 

and the relevant marker and degree variables. More specifically, while the 

degree variables of the peighbors of uj are updated, new simplicial vertices 

detected in adjo[vj] - Ri (see Proposition 6.1) are placed in the appropriate 

candidate set. The set U of uneliminated vertices whose degrees have been 

reduced is also updated. 

Note that the procedure ELIMINATE must process the members of adj,[u,] 

in ascending order by their numbering in the initial PEO. This is needed to 

enable efficient updating of the parameters fk and to ensure that the values 

mdeg(vk) have been correctly updated before they are used in simpliciality 

tests. In Figure 7, we have not shown the details of how zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfk is updated. 

Efficient access to fk can be obtained by maintaining a pointer to the first 

vertex in the ordered list adj,[ vk] that has not yet been chosen for elimina- 

tion. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfk =j, where vj is the vertex just chosen for elimination, then 

adj,[u, ] must be searched to the right of vj for the new first uneliminated 

vertex, and the pointer must be adjusted accordingly. 

After the algorithm examines vj for possible elimination, it then increases 

dmin if necessary. That dmin cannot possibly decrease during the course of a 

major step was shown in *Theorem 5.1. After computing & ( = I$), the 

algorithm then eliminates Rj from the graph and marks each vertex of ii as 

eliminated from the graph. 

Finally, that the algorithm in Figure 4 correctly implements the greedy 

scheme in Figure 2 follows immediately from the fact that each iteration of 

the main while loop implements the algorithm in Figure 3. 

6.4. Complexity Analysis 

In this section we verify that the algorithm in Figure 4 runs in time 

proportional to IV 1 + 1 El. Recall that the algorithm in Figure 4 requires 

(1) a PEO of G, and 

(2) sorted adjacency lists so that neighbors can be processed in ascending 

order by their labels in the PEO. 

The first can be obtained in @ ‘(IV 1 + IEI> time using the maximum-cardinal- 

ity search algorithm [14]; the second can be obtained in @‘(IV 1 + 1 E 1) time by 

careful application of a bin sort. It is worth pointing out that in our 

application, the PEO and sorting can be obtained as a by-product of the 

symbolic factorization step, and thus are available at no extra cost in computa- 

tion time. (For further details consult Liu [7].) 
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The total work associated with the procedure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINITIALIZE is clearly propor- 

tional to [VI. Because Si c Rj at each major step i, the total work performed 

by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor loop that distributes the members of Si among the candidate sets 

is also proportional to IVl. Each vertex is eliminated from the graph once, 

and thus the work associated with the procedure ELIMINATE is @‘(IV 1 + 1~1). 

Note that each vertex is eliminated either by the major step during which it 

first becomes simplicial or by the next major step. As a result, each vertex is 

examined for possible elimination no more than twice, and consequently the 

work associated with the boolean function IN_TSET is also @(IV 1 + [El). For 

each vertex uj E U whose “ old’ degree is updated by the algorithm at major 
n 

step i + 1, we have oj E adjc [uk ] for some vertex vk E R,; that is, to each 

vertex uj E U there corresponds one or more edges which were removed 

from the graph during the previous major step i. In consequence, the total 

work spent updating the variables olddeg(vj) (1 < j < n) is @‘(lVl + /El). 

Finally, we consider the work expended by the while loop that updates 

dmi,. During any given iteration of the main while loop, the work performed 

updating dmi, is bounded above by the maximum of deg,(u) over all vertices 

v examined for possible elimination during the step. Since each vertex is 

examined for possible elimination no more than twice during the course of 

the algorithm, it follows that the total work spent updating dmin is @(IV] + 

/El>. From this and the foregoing observations, it follows that the time 

complexity of the algorithm in Figure 4 is @(IV 1 + I El). Note that the space 

complexity is also @(IV I + I E I). 

7. CONCLUDING REMARKS 

In this paper we have developed an &'(lVl + IEI) algorithm for solving 

the graph partitioning problem stated as Problem 2 in Section 1. Two new 

ideas-TEOs and T-sets-enabled us to devise a simple greedy scheme that 

solves Problem 2. We then provided a high-level description of an algorithm 

for computing a maximum-cardinality T-set R, along with the required TEO 

of G(R). Careful implementation provides us with a detailed @(IV I + I El) 

algorithm that implements the greedy scheme, and thus solves Problem 2. 

The approach taken in this paper has the virtue of simplicity and provides 

insight into the essential features of this fairly involved graph partitioning 

problem. A forthcoming paper [lo] will present an implementation of a 

variant of the greedy scheme in Figure 2 that processes a clique tree 

representation of G, rather than the conventional representation by adja- 

cency lists. The new clique tree algorithm makes use of some interesting new 

concepts about separators in the clique intersection graph of the chordal 

graph. 
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