
Juan J. Navarro, Jose' M. Llaberia, and Mateo Valero

Facultad de Informitica de Barcelona

Universidad Politecnica de Cataluina

The efficient solution
of a large problem on

a small systolic array

requires good
partitioning techniques
to split the problem
into subproblems that
fit the array size.

Ma any scientific and technical
applications require high

A4 computing speed; those
involving matrix computations are typical.
For applications involving matrix
computations, algorithmically specialized,
high-performance, low-cost architectures
have been conceived and implemented.
Systolic array processors (SAPs) are a
good example of these machines.'12
An SAP is a regular array of simple

processing elements (PEs) that have a
nearest-neighbor interconnection pattern.
The simplicity, modularity, and
expandability ofSAPs make them suitable
for VLSI/WSI implementation.

Algorithms that are efficiently executed
on SAPs are called systolic algorithms
(SAs). An SA uses an array of systolic cells
whose parallel operations must be
specified. When an SA is executed on an
SAP, the specified computations of each
cell are carried out by aPE of the SAP. An
SA is a specification of
* the type of operation performed by
each cell during each step,

* the communication pattern among
the cells, and

* the data and control sequences for
I/O in the boundary cells.

In an SA, communication between cells is
regular and local, massive parallelism is
exhibited, and a relatively low number of
I/O operations is required. The properties
of systolic algorithms and architectures
limit their practical use to that of solving
only regular, compute-bound problems
with a high degree of parallelism.2
Fortunately, many matrix problems are of
this type.
A large set of SAs and SA design

methodologies3 has recently been
published. Most of these SAs require a
number of cells that depend on some
dimension of the problem that is to be
solved. We refer to these algorithms as
problem-size-dependent SAs. Normally,
these SAs solve the problem with just one
pass of the data through the array. More-
over, the array topology is dependent on
the type of problem to be solved.
The number of PEs in a real SAP is

fixed. It depends on factors such as tech-
nology, desired speed, available host-SAP
communication bandwidth, and system
cost and complexity. Usually, the problem

0018-9162/87/0700-0077S0 1.00© 19871EEE

0

_i- __[-_ -] n -sr 1-nnS:t|
~';yI ;t-Ii rXD l

- - --~I

77July 1987

166

155

144
*

133

122

165

154

143

132

121

164

153

142

131

163

152

141

162

5i1
161

III

ClliLCILLLC lC

Celli Cell2 Cell3 CelI4 Cells Cel46

N

NW NE
SW SE

PE1 PE2 PE3

PEI PE2 PE3 (d)

Figure 1. (a) A problem-size-dependent systolic algorithm for a lower triangular
system of equations. (b) The SAP communication pattern that results from coales-
cent mapping. (c) The SAP communication pattern that results from cut-and-pile
mapping. (d) Operations performed by PEs.

is too large to allow it to be solved directly
by processing it on the array. In addition,
if the system has fault-tolerant
capabilities, the array is reconfigured in
cases of PE failure, and the algorithm
must be restructured to make it executable
by the smaller array that results from such
failure. Therefore, the original problem
must be partitioned into subproblems
whose individual sizes fit available SAP
dimensions. It is therefore necessary to
find general partitioning techniques
suitable for SAPs and problems of any

size.
Let us review here some previous work

related to systolic partitioning. L.
Johnsson4 proposes partitioning
techniques to aid in performing Gaussian
elimination and matrix multiplication. R.

Schreiber and P.J. Kucks5 present a QR
factorization that is executed on a modi-
fication of the triangular array proposed
by W.M. Gentleman and H.T. Kung. D.
Heller6 describes partitioning methods
that can be used in the QR factorization of
band matrices. Using a trapezoidal exten-
sion of the SAP proposed by W.M.
Gentleman and H.T. Kung, H.Y.H.
Chuang and G. He7 obtain a versatile
SAP oriented to matrix computations that
implement the Faddeeva Algorithm. H.D.
Cheng and K.S. Fu8 propose a

partitioning method and a computational
model that are based on the space-time
domain expansion approach. And
recently, D.I. Moldovan and J.A.B.
Fortes9 have extended their SAP design
methodology to include fixed-size SAPs.

Usually, SAPs are algorithm-specific,
and some ofthem are even direct hardware
implementations of problem-size-
dependent SAs. A typical application area
for algorithm-specific problem-size-
dependent SAPs is real-time digital signal
processing.
To achieve wider applicability, it is

useful to design versatile SAPs, which are
SAPs that, when attached to a host, can
execute several algorithms in a problem-
size-independent manner.
To derive a versatile SAP, we propose

the following steps.
For each problem in the problem set:
(1) find one or several SAs;
(2) select a problem-size-dependent SA

with maximum similarity in cell
operation and interconnection
topology to the other SAs selected
for problems;

(3) find partitioning algorithms for
obtaining subproblems, and modify
the selected SA so that the
subproblems can be executed on a
problem-size-independent SAP.

For the whole problem set:
(4) integrate the requirements (PE

operations, interconnections, and
control) for all the selected
algorithms so that the versatile SAP
can be built; and

(5) improve the versatile SAP with
respect to speed (for example, by
making use ofpipelined PEs), array
utilization, and fault-tolerant
capabilities.

In the process described above, the
selection ofthe SA and of the partitioning
algorithms is the key to achieving the
following goals:

* Maximization ofarray utilization. We
define utilization as U = T,/n T", where
n is the number of PEs in the SAP, T, is
the number of cycles needed to solve the
problem with just one PE, and T, is the
number of cycles required to solve it on the
SAP. Once n is fixed, maximizing U is
equivalent to minimizing problem-
execution time in the available SAP.

* Minimization ofthe complexity ofthe
SAP that resultsfrom the derivation pro-
cess. Important factors that determine
complexity are the types of operations
performed by the PEs and by the different
classes of required PEs, the bandwidth
between the SAP and the host, the amount
of memory needed, the interconnection
pattern, and the overall control of the
array.

In this article, we present a technique for

COMPUTER

(a)

(b)

(c)

78

obtaining the partitioning and the trans-
formation of matrix problems; the tech-
nique is designed to minimize execution
times for big problems in small arrays and
to introduce very little additional
complexity into the system. In the article,
we apply the technique to solving both
matrix-by-vector multiplication (M*V)'O
and triangular system equation (TSE)
problems by means of a one-dimensional
(ID) SAP; we also apply it to solving
matrix-by-matrix multiplication (M*M),
triangular matrix equations (TME), LU
decomposition (LU), and other problems
by means of a 2D SAP." Actually, the
proposed technique allows one to solve
any problem on the preceding list on either
on a ID12 or a 2D array.
We select, in Step 2 of the previously

described process, problem-size-
dependent SAs proposed by H.T. Kung
and C.E. Leiserson. ' We do not explicitly
consider Step 4; however, implementing it
is simple because we make appropriate
choices in Step 2.

Finally, we make some comments
related to the use of pipelined PEs.

Systolic algorithms for
matrix computations

(a)

(C)

(b)

NW N

W_i

Figure 2. (a) A 2D array of cells. (b) The spiral SAP communication pattern that
results from cut-and-pile mapping. (c) Operations performed by PEs.

Several problem-size-dependent SAs
can be derived for a matrix problem,
depending on the speed and direction of
dataflows as well as on the types ofmatrix
substructures (rows, columns, or
diagonals) that form the data sequence
that enters or leaves through each 1/0 link
of the array. We discuss two types of SAs
according to their 1/0 matrix substruc-
tures: band SAs, in which the matrices
enter or leave by diagonals, and dense SAs,
in which the I/O substructures are rows or
columns. We do not consider here hybrid
algorithms (one type is the class of
algorithms in which one matrix enters by
rows or columns and another by
diagonals).

In problem-size-dependent band SAs,
the number of cells is related to the matrix
bandwidth. When these algorithms are
executed on an SAP, maximum array utili-
zation is achieved when problems with
band matrices (bandproblems) are being
solved. In problem-size-dependent dense
SAs, the number of cells depends on the
number of rows or columns in the matrices
involved. Maximum array utilization is
achieved in the case of dense problems
(that is, problems with dense matrices).

When the structure of the matrices
(band or dense) involved in the problem
does not fit the type ofSA (dense or band)
that is being used to solve the problem,
array utilization decreases dramatically.
Nevertheless, this drawback can be over-
come if the original algorithm is modified.
For example, Partial Row Translations'3
have been proposed for the solution of a
dense matrix-by-vector multiplication
problem executing a problem-size-
dependent band SA. On the other hand,
Systolic Rings'4 are well suited for the
efficient solution of band problems
executing problem-size-dependent dense
SAs.
Another important factor in SAs is the

relative direction of dataflows. Accord-
ingly, we differentiate between SAs with
"data contraflow" and SAs without it.
Figures la and 2a show, respectively, one
ID topology and one 2D topology, both
with data contraflow. For example, by
changing the direction ofthe diagonal con-
nections in Figure 2a, we would obtain a
2D topology without data contraflow.

Generally, in ID (or 2D) SAs with data
contraflow, only one of every two (or
three) consecutive cells is active during
each step. In these cases, to achieve maxi-
mum array utilization, every PE of the
SAP would have to execute the computa-
tions of two (or three) consecutive cells.

In the set of problems considered in this
article, we distinguish between two
groups. The first includes M*V and M*M
multiplication. In the second group we
have all other problems (TSE, TME, LU).
Problems in the first group are homogene-
ous; that is, all the operations to be per-
formed on data are ofthe same type. This
fact makes it possible to have only one type
of cell, which is used to construct a
homo5geneous array. In the second group,
the problems are nonhomogeneous. For
example, the operations (division and
change of sign) that are performed on the
elements in the main diagonal are differ-
ent from those operations (multiplication
and addition) that are performed on the
other elements. For this reason, the array
may need different types of cells. Also, in

July 1987

I I

0 .

.

79

problems in this group, there is depen-
dency between results.

For the problems considered in this arti-
cle, we identify certain characteristics for
band SAs.

* All data move by traversing the array,
and each cell performs the same operation
during all the cycles of algorithm execu-
tion; these facts eliminate PE-control
requirements.

* There are several band SAs with and
without data contraflow for solving prob-
lems of the first group.

* For the second group, because of data
dependencies, the band SAs require data
contraflow; in these cases, all the cells per-
form multiplication and addition except
one boundary cell that must perform divi-
sion and change of sign.
We can also identify certain characteris-

tics for dense SAs.
* For both groups of problems, one of

the data sets (either the operands or the
partial results) remains static within the
cells as the computation proceeds. Conse-
quently, additional control is necessary to
establish the difference between array load
(and/or array unload) operations and cal-
culation operations.

* Data contraflow is not required for
either group of problems.

* For problems in the second group, the
dense SAs require that either all the cells
(in the case of a ID array) or all the cells
in the main diagonal (in the case of a 2D
array) must be able to perform division
and change of sign, besides addition and
multiplication. Consequently, the com-
plexity of the array increases.

In summary, dense SAs require greater
array complexity than do band SAs, but
no data contraflow. The absence of data
contraflow usually produces conditions
favorable to fault tolerance and to imple-
mentation with pipelined PEs. 14 Efficient
partitioning for dense SAs leads to the
usual decomposition into square or rectan-
gular submatrices.
The implementation of band SAs

requires lower complexity in the array and
less control than does the implementation
of dense SAs. In this article, we use band
SAs and propose both partitioning tech-
niques that incorporate triangular subma-
trices and the utilization of pipelined PEs.

Partitioning and DBT
transformation
A problem-size-dependent SA defines a

good space-time mapping between the set

of computations in the problem and the set
of cells. If the number of PEs in the array
is smaller than the number of cells in the
algorithm, it is necessary to carry out an
additional space-time mapping. In this sec-
tion we present the SAPs obtained by spa-
tial mapping that are used to execute
problem-size-independent SAs. We also
present the partitioning and DBT (Dense
to Band matrix transformation by
Triangular-block partitioning) algorithms,
which serve to transform a problem-size-
dependent SA-by temporal mapping-
into a problem-size-independent SA.

Spatial mapping. The spatial cell-to-PEs
mapping provides the set of computations
to be performed by each PE; that is, it
defines the different types of operations to
be performed by each element, the array
interconnection pattern, and the location
ofmemory units. A good spatial mapping
must preserve the topological properties of
the SA. To illustrate this, let us suppose
that we want to solve a triangular system
of equations: LX = B, where L is a lower
triangular c-by-c matrix and X and B are
column vectors. A one-pass solution can
be achieved with the band SA' shown in
Figure la, if we assume that c = 6. All the
cells perform multiplication and addition
except cell 1, which performs division and
change of sign.

Let us consider two types of cell-to-PE
mappings: coalescent and cut-and-pile,
both of which preserve regularity and
locality in communications. We assume
that the available SAP has w PEs.

In the coalescing mapping, celli for 1 c
i s c is mapped to PEk, where k =
li/lc/wll for 1 s k s w. (See Figure lb for
an illustration of the communication pat-
tern when w = 3.) In coalescing mapping,
[c/wl consecutive cells are assigned to one
PE, so the PE requires feedback links to
itself; these links are implemented with
local memory. Each data item that has
entered into a PE remains in it for [c/wl
cycles. Hence, each PE must have a local
memory size proportional to [c/wl. In
addition, the computing load is not uni-
formly distributed among PEs. Because of
this, PEs 1, 2, and 3 in Figure lb have to
carry out 11, 7, and 3 computations,
respectively.

In the cut-and-pile mapping, celli is
mapped to PEk, where k = 1 + (i- l)mod
w (Figure ic). Each PE is functionally
equivalent to a cell in the SA. One feed-
back line between the first and the last PEs
is required. In general, the size of the mem-
ory needed in the feedback loop is propor-

tional to [c/wl. With our technique,
attaining sizes proportional to w alone is
possible. This mapping distributes the
PEs' computing load evenly among the
PEs, and therefore the computing time is
smaller. The loads of PEs 1, 2, and 3 in
Figure lc are 9, 7, and 5 computations,
respectively. We chose cut-and-pile map-
ping for the partitioning methodology we
propose.
When we consider using SAs with 2D

topology to solve problems such as LU
decomposition,' we see that the spatial
cut-and-pile mapping is similar to the map-
ping just described. In Figure 2, an array
with 4-by-4 cells and the SAP with 2-by-2
PEs that results from the mapping are
shown. The feedback lines that can be seen
in the figure must be added to satisfy the
SA communication requirements. This
bidimensional array is named spiral
SAP. 15 The feedback lines in the horizon-
tal and vertical flows, which would form
a torus, are not required because the infor-
mation that flows in these directions is not
modified in the problems under discus-
sion. For the same reason, the feedback
line from the last to the first PE in Figure
lc has been eliminated. It is also possible
to find mappings from the 2D topology to
a ID array.'2 Figures Ic and 2b illustrate
the ID and 2D SAP topologies considered
in this article, and in Figures Id and 2c, the
set of all the necessary operations to be
performed by PEs is shown. In our
descriptions of each algorithm, we will
indicate the particular set of operations to
be carried out by each PE.

Temporal mapping. The original prob-
lem must be partitioned into subproblems
whose data structures fit into the available
SAP dimensions. The subproblem data
structures are conditioned by the spatial
mapping. These subproblems must be
executed one after another in a manner
that respects the data dependencies. The
temporal mapping defines the time at
which each computation assigned to a PE
must be performed. We define this tem-
poral mapping by means of the input data
sequence (that is, by the order in which
subproblems are executed).
The temporal mapping directly

influences the array utilization. A lack of
global communication capability com-
bined with a high degree of pipelining in
the SAP may produce low array utilization
in loading and unloading of subproblems.
Maximum utilization may be achieved if
the matrix structures of subproblems and
the execution order of subproblems allow

COMPUTER80

each subproblem's unloading to overlap
with the next subproblem's loading.
The solution of each subproblem is

arrived at by execution of a band SA. The
execution sequence for solving all the sub-
problems may be viewed as the execution
of a new band problem, which we denote
as the transformed problem. The band-
width of the transformed problem fits the
available SAP size.

Overlapping the loads and unloads of
subproblems is equivalent to achieving
maximum juxtaposition of the subma-
trices that constitute the band of the trans-
formed problem (that is, it is equivalent to
getting maximum density in the band).
Thus, the total execution time is
minimized.
A set of rules for constructing the trans-

formed problem's band with maximum
density must be defined for each type of
problem. The DBT proposed here achieves
the transformation of a homogeneous
problem, such as a matrix-by-vector or a
matrix-by-matrix multiplication, into a
band problem of the same type (such a
band problem is called a homogeneous
transformed problem). The following
rules transform the original N-by-M
matrixA into a band matrix A with band-
width w. N, M, and w can have any value
(usually N, M > > w). However, we
assume (and the assumption does not
result in loss of generality), that N = Nw
andM = Mw. If A does not have these
dimensions, it is augmented with rows and
/or columns of zeros until it does.

Rules for triangular-block partitioning.
(I) Split matrix A(N,M) into N-by-M

square submatrices A,,(w,w).
(2) Decompose each submatrix A;,J,

in turn, into three submatrices: A1j =

ALij + AD,j + Au1,i where Auj is the
strictly lower triangular part of A;j; Aui.
is the strictly upper triangular part of Aij;
and ADI,J is formed with the main
diagonal of A1j. From these matrices we
can define ALDiJ = ALjJ + ADij and
ADUI,j = ADjJ + Au.j, which are, respec-
tively, the lower and upper triangular sub-
matrices of A,j..

Rules for dense matrix to band matrix
transformation in inner-product-based
problems.

(3) Build band matrix A by alter-
nately juxtaposing ALwj and Auvj subma-
trices, or by juxtaposing ALij and ADUij,
to fill up the band of A. Depending on
which submatrix is chosen to be first,
matrix A may be a lower- or an upper-
band matrix. The following refers to the

(a)

A

(b)

X B _

n n n
Xi B1 Yi,

H H H
X2 yii Yi

* H H=H
Xi B2 Y12

H H H
X2 YV2 Y2

H u u
Xl
Li

Figure 3. (a) Triangular-block partitioning of a matrix-by-vector problem. (b) A
problem transformed by DBT algorithm application.

case A1j = ALiJ + ADuij, where I s i s
Nand I s j s Mand A is an upper-band
matrix. The other cases can be easily de-
rived. The rules are

(a) For 1 s k s N M, if Ak k is equal
to ADU;,J, then Ak.k+l must be
equal to ALI,.m for any m such that
1 s m s M.

(b) For I sks NM - 1, if Ak.k+I is
equal to ALij, then Ak+l,k+l must be
equal to ADU.j for any n such that I s n
sN.

Several A matrices can be obtained by
the application of the preceding rules.
However, as we shall note later, in the
selection of a specific A, implementation
factors must be taken into account.
When the original matrix A is dense, the

transformed matrix A, with maximium
band density and containing all the subma-
trices of A, can always be obtained. The
dimensions of A are N Mw-by-
(N M+ l)wifA is an upper-band matrix,
or (NM+l)w-by-NMw if A is a
lower-band matrix. When the DBT algo-
rithm is applied to nondense matrices (for
example, to band matrices), the dimen-

sions of A and the density of its band
depend on the way the sparsity in A is
structured.

In a subsequent section entitled "Parti-
tioning and execution technique," we pre-
sent the partitioning and transformation
algorithm used to transform the STE,
TME, and LU problems.

The matrix-by-vector
problem

Here we address the problem of com-
puting vector Y, where Y = AX + B,
where A is an N-by-M matrix, and X and
B are vectors whose respective dimensions
areMand N. We assume that our I D SAP
has w PEs. Y = A X + B is the trans-
formed problem. In Figure 3a, the parti-
tioning of the original problem is shown
for N=M= 2. Now, each square block
is decomposed as A1j = ALIJ + ADU!j-
One of the possible DBT transformations
that builds up matrix A by following the
preceding rules is shown in Figure 3b.
Transformed vectors X and B are deter-
mined by the selected DBT because the

July 1987

A X B Y

n n n
X, B1 Yi

* H H= H
X2 B2 Y2
U U U

81

Y16

y15

Y14

b6

b5*

*b4

Y13

Y12

b3
*

b2

b,

select either partial results or the elements
of vector B. The multiplexer's "Select"
signal is easily generated. The Select signal
is defined by the DBT transformation
used. We can observe that the i,j index
sequences of the matrix A elements that
enter through ports N of the SAP obey a
regular pattern. Figure 4 shows the simple
address generation required for the execu-
tion of the transformed problem.

Because the band of matrix A is dense,
it is only during 2w - 2 load cycles and w
- I unload cycles that array utilization is
below the maximum of X for the SAP.
The computation time is given by T =
(2N M/w) + 2w - 3. Nevertheless, to reach
a utilization value near unity, we should
group into a physical PE the computations
assigned to two consecutive PEs in the the-
oretical contraflow array. If we do this and
if the number of available physical PEs is
Wf, w must be equal to 2Wf for the DBT
transformation, and the total computing
time will be T N M/wf with physical
array utilization of U 1. It is also possi-
ble to execute the transformed problem
Y=A X +B directly on a ID SAP that has
w PEs and is without data contraflow. In
such a case, the computing time is
T=(NM/w) + 2w - 2, and utilization
approaches I without PE grouping.

SN

PE1 PE2 PE3

Figure 4. 1/0 data sequencing for the solution of the matrix-by-vector transformed
problem.

transformed solution Y = (Y1,,2,Y3,Y4)
must include the original solution Y =

(YI,Y2). As we can see in Figure 3b, the
transformed vectors are built from the
subvectors of w elements in which the
original X and B vectors have been split.
Note that B and Y have some subvectors
that are the same. By means of these recur-

rences, it is possible to make subvectors
Y2 and Y4 of Y equal to subvectors Y, and
Y2 of Y, respectively.
The 1/0 data sequences for the execu-

tion of the transformed problem forN =

M = 6 and w = 3 are shown in Figure 4.
Each PE performs Operation A (Figure
Id); this operation is equivalent to the one

carried out in all the cells of the original
SA. l Note that the recurrences between B
and _ are implemented by means of the
feedback link between PE, and PEW. All
the elements ofY that must be introduced
as elements of B through the NE input of
PE. are available w cycles before they are

needed in the NW output of PEI. This
fixed delay can be achieved by the insertion
of w equally spaced registers in the feed-
back path; such insertion preserves local
communication in the array. The feedback
selection node (labeled "FSN" in Figure
4) controls the NE data input of PEW so

that the right computations can be made.
In the FSN, only a multiplexer is needed to

Regular DBTs
All DBT transformations originate

matrices with a dense band of minimum
length. The transformations allow maxi-
mum array utilization and minimum com-

putation time. However, the complexity of
both input-data-address generation and of
the feedback selection node depend on the
DBT type used. In general, extra memory
is required in the feedback selection node
to store partial results during some cycles.
The size of this memory and the input-
data-address generation depend on the
selected DBT algorithm. We call DBT
algorithms "regular" when they permit
global designs that have minimum com-

plexity. Some regular DBTs that we will
discuss below are shown in Figure 5. Regu-
lar DBT algorithms are classified into two
groups: standard and transposed. In the
standard group (Figure 5a), NM square
blocks from A(N,M) have been decom-
posed as A,,= AL,J + ADU,iJ, for 1 s i
s N and 1 s j s M. The transformed
matrix A is an NM-by-NM + 1 block
upper-band matrix. Figure 5a illustrates
the order to follow in the selection of tri-

82

STEPS

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

X2
*

XI

X6

X5

X4

x3

X2

XI

X6
*

X5

x4

x3

X2

xl

Y6

Y5

Y4

Y16
*

y's

Y14

Y3
*

Y2

Yi
*

Y13

Y12

y11

*

*

*

COMPUTER

Transformed matrices

by rows by columns by diagonals

I
Transposed Transposed
by rows by columns

Transposed
by diagonals

(b)

Figure 5. Regular DBT transformations. (a) Standard DBT algorithms. (b) Transposed DBT algorithms.

angular blocks when one is building matrix
A for different algorithms, whether by
rows, columns, or diagonals, when
N= 2 and M= 3. DBT transformations
carried out along diagonals originate a

dense band-transformed matrix with max-
imum band density only if N andM are

relatively prime. In the previous section,
DBT transformation carried out along
rows was the applied algorithm.
We say that the second group of regu-

lar DBT algorithms is transposed by rows,
columns, or diagonals. For this group, the
decomposition is A1j = ALDiJ + Auij for
I c i c Nand 1 s j c M. A is a lower-
band matrix with NM+ I-by-NM
blocks. The triangular-block selection
order is illustrated in Figure 5b. We can

obtain the same result by applying a stand-
ard DBT to the transposed matrix A and
then transposing the resulting matrix.
Note that the technique of Partial Row
Translations'3 is an instance of regular
DBT transformation ifNand Mare equal
to 1.

Partitioning and
execution technique
The DBT transformation rules we have

considered so far are used to solve

homogeneous problems, such as matrix-
by-vector multiplications. The execution

of a large nonhomogeneous problem (for
example, a TSE) on a small SAP, which is
performed by partitioning the problem
into subproblems that are subsequently
chained, may be viewed as the execution
of a band problem in which different types
of operations on different frames of the
band are defined.
Our partitioning and execution tech-

nique consists of three steps.

(1) Split the problem into sub-
problems that, in accordance with the
precedences, are executed one after
another. The submatrices need not be tri-
angular ones.

(2) Find a band SA for each sub-
problem. Execute directly those sub-
problems whose size fits the size of the
available array dimensions.

(3) There are subproblems whose
dimensions do not allow direct sub-
problem execution.

(a) If possible, execute them after
they have been transformed to band sub-
problems. When the subproblems are

matrix-by-vector or matrix-by-matrix
types, some of the previously described
DBT algorithms can be used. Otherwise,
new transformation rules must be devised.

(b) When the procedures given in
Steps 2 and 3a are not applicable, the sub-
problems must be partitioned once more,
starting at Step 1.

In summary, all the subproblems are

either directly executed or are executed
after some sort of transformation. Our
technique for finding the best partitioning
is heuristic, and it must obtain the maxi-
mum possible overlapping between the
loading and unloading of subproblems.

Triangular system of
equations

In this section our concern is the solu-
tion of the triangular system equation
LX = B. L is a lower triangular matrix with
N-by-Ndimensions. X and B are column
vectors with N elements. The unknowns

xi for 1 s is Nare computed by means of
forward substitutions. The problem is
solved on a ID SAP with w PEs; the SAP
is illustrated in Figure Ic.

Hereafter in this article, we will use the
following notation to denote submatrices
of an N-by-M matrix A. For example,
block-row Ai,a:b refers to the juxtaposi-
tion of consecutive b - a + I blocks of w-

by-w elements from the same block-row:

Ai,.:b = (Ai,. Ai,. + I ... Ai,b).
Similarly, A,:bj is the block-column built
up by the vertical juxtaposition of con-

secutive blocks:

Aa:bJ= (Aaj A, + Ij ... AbJ)T.

The original problem is partitioned and
executed by applying the previously

July 1987

(a)

Original matrices

83

STEPS OP.
,r' 38 * * *O *

37 xg * 8

(3) 35 x8 * B 188 * 197 y9
34 * * * * 187*
33 x7 * B 177 186 y28

.! 32 * y29 * 176 * *
31 X6 * C 196 175 y27

i=3 30 * Y2s * * 9Is5
29 xs * C 185 * 194 ylg
28 * y2 7 * * 184*
27 x4 * c 174 183 yt8

(2) 26 * y B* 12 * 1
25 x3 * C 193 172 Y17
24 * Y1s * * 192 *

23 X2 * C i82 191 bg
22 * Y17 * * 8 *
21 x1 * C 171 _<< ~ ° b8
20 * * * 0 * *

19 * B 166 * b7
3) 18 * * 65 t

()7 x5 * B Iss 164 Y16
1 6 * ***154*

.l,15 x4 * B 144 153 y15i 2 X '14 * y1T6 * 143*
13 x3 * C 163 - 142 Y14

(; 12 * Y15 * 162 -
2) 1 1 X2 * C 152 * 161 b6

10 * Y14 * 151
,9 x 1 * C 141 - b5,' 8 * * * * *

7 x3 * B 133 - \ b4
()6 * 32 -

5 x2 * B 122 * 131 b3
4 * * * * 121 _,'

_ ,3 x 1 * B hib2
2 * * *0 * *
1 * b1

PE1 PE2 PE3

Figure 6. Chained execution of subproblems, and I/O data sequencing for a trian-
gular system of equations.

described steps. The first-level partition-
ing algorithm and the order of execution
of the subproblems is Step I as described
in the section entitled "Partitioning and
execution technique":
Compute XI from L1,1 XI = B, (1)

For i = 2 to N do

Bj = Bi - Li,i:i_i XIj jl (2)
Compute Xi from L1i, Xi = Bi (3)

End for

The 1/0 data sequences for executing
these subproblems on a linear SAP with
N=9 and w=3 are shown in Figure 6.
Subproblems (1) and (3) are of the same

type. They consist of the solution of a tri-
angular system with w unknowns. They
can be directly executed by the SAP'
(according to Step 2). The direct execution
by the array as presented in Figure 6
implies that PE, must perform Operation
B (see Figure Id), while the rest ofthe PEs
perform Operation A. Subproblems of
Expression (2) consist of matrix-by-vector
multiplications with actualization. These
are particular cases, withN= 1 andM= (i
- 1), of the matrix-by-vector multiplica-
tions presented above (Step 3a). For them,
we use DBT transposed by columns. Now
PE, has to perform Operation C while the
rest ofthe PEs must perform Operation A.
The FSN is a simple multiplexer. Figure

6 shows its Select signal sequence and the
operation that PE, must carry out in each
cycle. Address and Select signal generation
is simple. The number ofcycles needed to
solve the problem is T=(N2/w)+N+
w-2.

Matrix-by-matrix
operation

We now consider the operation E=
FG +H to be performed on the spiral sys-

tolic array processor (SSAP) with w-by-w
PEs (Figure 2b); F, G, and H are, respec-

tively, M-by-N, N-by-P, and M-by-P
matrices. First we split the problem into
MP disjoint subproblems according to

the following algorithm (this corresponds
to Step I in the "Partitioning and execu-

tion technique" section):
For m = I toM do

Forp=l toP do
E =F G +H
m,p m, I:N I:N,p m.,p

End for
End for
TheMPsubproblems (Expression (4))

are solved one after another on the SSAP.
Every subproblem is of the type D =
AB + C, where A, B, and C are, respec-
tively, w-by-N, N-by-w, and w-by-w sub-
matrices. By means of DBT algorithms,
the problem D =AB + C is transformed to
a banded one: D = A B + C (Step 3); see
Figure 7 (matrices C andC have been omit-
ted in the figure). By applying DBT trans-
posed by columns to matrix A, and DBT
by columns to matrix B, matrices A and B
are obtained. Matrix A is an (N+ I)-by-N
block lower-band matrix; B is an N-by-(N
+ 1) block upper-band matrix with blocks
of w-by-w elements. We define, now, C as
a tridiagonal (N+ I)-by-(N+ 1) block

(4)

COMPUTER84

matrix in which C,, = C for i=j= 1 and
Cjj =0 otherwise.

Figure 7a shows the triangular-block
partitioning for the problem D =
AB + C, and Figure 7b shows the band
problem D =A B + C. The result D is a
tridiagonal (N+ 1)-by-(N+ 1) block
matrix that can be evaluated by means of
a 2D SAP with w-by-w PEs. ' This evalu-
ation can be accomplished by the SSAP if
all-PEs perform Operation A. Matrix D
can be derived from D if one adds the Di
blocks for 1 y,jcM+ 1. This computa-
tion may be performed inside the array by
means of the spiral feedback lines without
producing any time overhead. The ele-
ments on the main diagonal of Dij are
required 2w cycles later than their appear-
ance in the array output. The other ele-
ments must be delayed w cycles after their
appearance in the output of the North and
West ports before being input into the
South and East ports. Hence, we insert 2w
equally spaced registers in the diagonal
feedback path and w registers in the other
feedbacks. In this way, we preserve the
local communication requirement.
The original problem is solved by chain-

ing M P subproblems, as in the problem
considered above. The selected transfor-
mation requires the insertion of two zero
blocks between subproblems; one is an L
block and the other is a U block. In this
case, the total computation time is
(3MPN/w2) + (3MP/w) + w. A tech-
nique to chain subproblems without zero
blocks already exists.'0 The improved
computation time is (3MPN/w2) + 4w,
but control is slightly more complex. For
the SSAP with contraflow, the maximum
theoretical utilization of 1/3 is reached
when NMP> > W3. Utilization reaches 1
if we group the computations performed
by three theoretical PEs into one physical
PE. The original problem can also be
solved in an SAP without contraflow,
where it achieves U 1 without PE
grouping.

Triangular matrix
equations

A matrix equation is a set of linear sys-
tems, all sharing the coefficient matrix but
with different right-hand-side vectors. In
this section, we are concerned with the
solution of the lower triangular matrix
equation LY = B to be performed on a w-
by-w SSAP; L is an N-by-N lower trian-
gular matrix and Y and B are N-by-M

B
A

*

(a)
A

B

*

D

(b)

Figure 7. (a) Triangular-block partitioning of a matrix-by-matrix problem. (b) The
DBT-transformed problem.

matrices. In the first level of partitioning,
the problem is split into M independent
subproblems, each one with Y and B of
dimensions N-by-w. They are executed
one after another. Each N-by-w system is
partitioned and executed following the
algorithm
Compute Y, from L,, Y, = B, (5)
For i = 2 to N

Bi = Bi - Li, Hi- 1YHj_ l (6)
Compute Yifrom L, iY. = Bi (7)

End for

(This corresponds to Step 1.)
Subproblems (5) and (7) are the solution

of w-by-w matrix equations. Consider, for
example, Subproblem (5). The matrix
equation size does not allow a direct exe-
cution, which corresponds to Step 3. For
this reason, Subproblem (5) is decomposed
as follows:

Compute YDUI from

(LIIYDU I)DU =BDUI (8)

BLLI=BLI(L,YDUI)L
Compute YLI from L,I YLI =BBL (10)

Subproblems (8) and (9) are computed
simultaneously by the SSAP when the
boundary PEs are programmed in such a
way that

* PE,Ij performs Operation C,
* PE,,j for 2 c j c w performs Oper-

ation B, and
* the rest of the PEs perform Operation
A.

In order to get the desired result, LI,j
must be input through the West boundary
PEs, and B, through the South and East
PEs. Result Yu, is obtained from the
North PEs. At the same time, matrix B 'LI
is obtained from West PEs. Subproblem
(10) is perfectly chained to the previous

July 1987

s

85

w 2w
0

Figure 8. Chained execution of and I/O data sequencing for the three subproblems
that result from partitioning of the w-by-w triangular matrix equation.

one if B 'LI is input through the PEs, and
YLI is obtained from North PEs. Figure 8
shows the chaining of Subproblems (8),
(9), and (10). Subproblem (6) is a matrix
actualization that is solved by means of
DBT. Observe that now PE,jj for 1 s
js w must perform Operation D (Figure
2c) to change the sign of the previously
computed matrix, Yj,.i. The computation
time needed to find the unknown matrix
Y with N-by-M elements is T= (3MN2/2-
w2) + (3MN/2w) + w.

LU decomposition
Given a square matrixA with dimension

N, two triangular matrices, L (lower) and
U (upper), must be found to verify that
A = LU. We assume thatA can be decom-
posed and that each of the diagonal ele-
ments of L is equal to 1. The LU
decomposition problem is carried out in
the w-by-w SSAP.

In the first level of partitioning, matrix
A is divided into square blocks, Aij; each
block has w-by-w elements. Additionally,

matrices L andU are split into their respec-
tive blocks; each block has w rows and
columns. The partitioning method for and
the execution sequence of the resulting
subproblems are specified in the following
algorithm:
Compute L1ll and Ul from

Al =LI sUs (11)
1,1 Li

For i = 2 to N do

Compute U1 j_ ,i from

LHi l,Hi IUH l1j=AHi li (12)
Compute Li,H l from

Li,HIU ,_li-I=Ai, (13)
Compute Aji=

Ai,i-Li l i UH _ li (14)
Compute L . and U.. from

Aj = Li1U1i (15)
End for

(The algorithm corresponds to Step 1.)

Subproblems (11) and (15) are of the
same type: The LU decomposition of a

matrix A1,j(w,w). Both can be directly
solved by the SSAP (corresponding to Step
2). Matrix Ai,, must enter the array

through East and South PEs, and matrices
L,,j and U1,j go out, respectively, through
West and North PEs. The operations per-
formed by each PE are as follows (Figure
2c): PE,,, performs Operation E; PE1,
for 2 s j s w perform Operation B;
PEj,2 for 2 s i s w perform Operation F;
and the rest of PEs perform Operation A.

Subproblems (12) and (13) are of the
same type: One is the transposition ofthe
other. Each one is the solution of a trian-
gular system of matrix equations, LX =

B; this system of equations has been
addressed previously. The subproblem in
Expression (14) is a matrix-by-matrix mul-
tiplication with actualization. We have
commented before that such a subproblem
is solved by applying DBT transformation
(Step 3a).

In the chaining of Subproblems (15),
(12), (13), and (14), some blocks of zeroes
are required, but they are not necessary
between Subproblems (14) and (15). The
total execution time is given by T=
(N3/W2) + (3N2/2w) + (N/2) + w.

Other problems
Given the problems whose solutions we

have already demonstrated, it is easy to
solve other problems, such as matrix equa-
tions and matrix inversions. For instance,
to compute the inverse of a matrix A, we
can apply the following algorithm. "

(a) Perform LU decomposition of
matrix A.

(b) Solve the lower triangular matrix
equation, which is LLU = I where L' is the
inverse of the triangular matrix L, and I is
the identity matrix. The regular sparsity of
matrices L and L' is taken into account in
the application of DBT transformations;
such application allows us to optimize
computing time to T=(N3/2w2)+
(3N2/2w)+N+ w.

(c) Solve the upper-triangular matrix
equation, which is WU =I; this step is
analogous to Step (b).

(d) Compute the matrix product
A-' = UIL'. The computing time, which is
improved as in Step (b) by exploiting the
triangularity of the involved matrices, is
T=(N3/w2) + (3N2/2w) + (N/2) + w.

The resulting matrix-inversion time is
T=(3N3/w2)+(6N2/w)+(3N)+ w.

Pipelined processing
elements

In the design of SAPs, whether they
have or do not have data contraflow, it is

86

w
-+ 4- w

t
w

COMPUTER

desirable to use pipelined arithmetic units
to increase throughput and, consequently,
to decrease computing time. When arrays
with neither intra-PE cycles nor data con-
traflow are used, it is easy to attain an effi-
cient use of two-level pipelining.14 If
SAPs with data contraflow or intra-PE
cycles are considered, two techniques can
be used to take advantage of pipelining
when we execute big problems on small
arrays:

(a) grouping the input ofadjacent data
streams into an individual physical
PE and

(b) overlapping (that is, parallel) execu-
tion of independent or chainable
subproblems that result from the
original problem's decomposition.

The number of grouped streams in (a) and
the number of parallel subproblems
executed in (b) are proportional to the
number of pipeline stages in the arithmetic
units.
The structures present in contraflow

SAPs are diagonals. They are grouped
after the DBT algorithm is applied. This
algorithm balances the load allocated to
each processor and reduces to a minimum
loading and unloading times. The required
local memory is a function only of the
available SAP dimensions, since it is
independent of the size of the problem to
be solved.
Subproblems considered in Technique

Step (b) are obtained from a first-level par-
tition. These subproblems fit one or two
dimensions of the available array. They
are transformed in a later step.

Matrix-by-vector problem execution
that involves the application of a DBT
transposed by columns algorithm and
diagonal groupings (Technique (a)) is
depicted in Figure 9a. The matrix size is
8-by-8, and the array has w _ 2 PEs. Each
PE includes an adder and a multiplier,
both of which have three pipelining stages.
There are 4w registers in the feedback
path.

t present, systolic array processors
A are a viable choice for solving a

wide class of matrix problems.
Systolic algorithms have usually been con-
ceived with the assumption that an
unlimited number of processing elements
are available. The necessity for partitioning
problems appears when the algorithm
requires more processing elements than exist
in the array. Partitioning is an essential step
in mapping algorithms into both algorithm-

44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

XS
X8
Xs
Xs
X7

X7
x7
X7

X6

X6
X6

X6

XS

X4

XS
XS
X4
X4
x4
x4
x3
x3
x3
x3
X2

X2

X2

X2

xI

xI

xI

Y7
Y6
Y5
Y4
*

*

* Y17

Y3 *

Y2 *

Yi a78 *
Ys la6 Y16
* | a58 *

| a4s *
* a3s8 67 *

y17 a28 a57 Y1s
* 8a8 a47 *
* ass8 | a37
* a27 8S6 *

Y16 a17 a46 Y14
* a87 a36
* a77 | a26
* a16 85 *
y15 a86 a35 y13
* a76 a25 *
* /66 a8s *
* ass / *

Y14 a75 a24 Y12
* a65 8a14 *

* 855 a94 *
* a74 23 *

y13 a64 813 Y1i
* ~a4 8a3
* 84,48aan
* a63 12 *

Y12 a53 a82 b8
* a43 a72 b7
* a33 a62 b6

* 5a2 a1 b5
y11 a42 a71 *
* a32 a61 *

* a22 as1 *
* a41 b4
* a31 b3
* a21 b2
* a11 bl

4-

-4

(a) (b)

Figure 9. (a) I/O data sequencing for matrix-by-matrix execution in a 1D systolic
array with pipelined PEs. (b) A pipelined PE.

July 1987 87

specific and versatile systolic array
processors.
We have presented a technique for trans-

forming problems with dense matrices of
any size into problems with band matrices
whose bandwidth fits the systolic array
dimensions. The transformed problems are
efficiently solved through the execution of
systolic algorithms oriented to band prob-
lems. These algorithms require low com-
plexity in the array. We have proposed
transformation algorithms (DBTs) that can
be applied to inner-product-based
homogeneous problems such as matrix-by-
vector and matrix-by-matrix multiplication.
The original matrices are partitioned into
triangular submatrices. The band of the
transformed-problem matrices is obtained
by means of suitable juxtaposition of trian-
gular submatrices. For other problems, such
as triangular systems of equations and LU
decomposition, several partitioning steps
are performed. Subproblems that fit the
array size are executed directly, and the rest
are executed after a DBT transformation.

For all the problems, array utilization is
maximized, and consequently computation
time is minimized, because of the perfect
overlap between the loading and unloading
of triangular subproblems.
We have discussed the solution of matrix-

by-vector multiplication and triangular sys-
tem of equations problems on a ID array,
and the solution of matrix-by-matrix mul-
tiplication, triangular matrix equations, and
LU decomposition problems on a 2D array.
Nevertheless, all the problems we have dis-
cussed can be solved on either ID or 2D ver-
satile systolic arrays.
The systolic arrays we have discussed (ID

and 2D) have feedback paths for the com-
munication of partial results. These paths
are pipelined, which preserves local com-
munication. All the PEs must perform mul-
tiplications and additions, and only one of
them needs to be able to perform divisions
and changes of sign. The functionality of
only a few PEs must be modified in some
cycles (PE, in the 1D array, and the North
and West boundary PEs in the 2D array).
The control signals of these PEs can be
generated by a centralized unit; the control
signals flow through the boundary PEs in
a pipelined fashion. In this way, locality of
control communications is maintained.
Finally, we have addressed the design of
data contraflow arrays with pipelined
PEs. El

Acknowledgments
We wish to thank the reviewers for their help-

ful criticism of previous versions of this article.
Their comments led to many improvements. We
also wish to thank F. Nutnez, E. Herrada,
Miguel Valero, and N. Torralba for their con-
structive comments and suggestions about this
work.

This research was partially supported by the
Spanish Comisi6n Asesora para la Investigaci6n
Cientifica y Tecnica (CAICYT) under Grants
2906-83 and 314-85, and by Telef6nica.

References
1. H.T. Kung and C.E. Leiserson, "Systolic

Arrays (for VLSI)," Sparse Matrix Proc.

1978, 1979, Society for Industrial and
Applied Mathematics (SIAM), pp.256-282.
(A slightly different version appears in the
text Introduction to VLSI Systems, Section
8.3, C.A. Mead and L.A. Conway, eds.,
1980, Addison-Wesley, Reading, Mass.)

2 . H.T. Kung, "Why Systolic Architectures?"
Computer, Vol. 15, No. 1, Jan. 1982, pp.
37-46.

3. J.A.B. Fortes, S.Y. Fu, and B.W. Wah,
"Systematic Approaches to the Design of
Algorithmically Specified Systolic Arrays,"
Proc. Int'l Conf. Acoustics, Speech, and
Signal Processing, 1985, pp. 300-303.

4. L. Johnsson, "Computational Arrays for
Band Matrix Equations, " tech. report 4287,
May 1981, Computer Science Dept.,
California Institute of Technology,
Pasadena, Calif.

5 . R. Schreiber and P.J. Kucks, "Systolic Lin-
ear Algebra Machines in Digital Signal
Processing," in Chapter 22 of VLSI and
Modern SignalProcessing, S.Y. Kung, H.J.
Whitehouse, and T. Kailath, eds., 1985,
Prentice-Hall, Englewood Cliffs, N.J., pp.
389-405.

6. D. Heller, "Partitioning Big Matrices for
Small Systolic Arrays," in Chapter 11 of
VLSlandModern Signal Processing, S.Y.
Kung, H.J. Whitehouse, and T. Kailath,
eds., 1985, Prentice-Hall, Englewood
Cliffs, N.J., pp. 185-199.

7. H.Y.H. Chuang and G. He, "A Versatile
Systolic Array for Matrix Computations, "
Proc. 12th Int'l Symp. ComputerArchitec-
ture, 1985, pp. 315-322.

8 . H.D. Cheng and K.S. Fu, "Algorithm Par-
tition for Fixed-Size VLSI Architecture
Using Space-Time Domain Expansion,"
Proc. Seventh Symp. Computer Arith-
metic, 1985, pp. 126-132.

9. D.I. Moldovan and J.A.B. Fortes, "Parti-
tioning and Mapping Algorithms Into Fixed
Size Systolic Arrays," IEEE Trans. Com-
puters, Vol. C-35, No. 1, Jan. 1986, pp.
1-12.

10. J.J. Navarro, J.M. Llaberia, and M.
Valero, "Computing Size-Independent
Matrix Problems on Systolic Array Proces-
sors," 13th Int'l Symp. ComputerArchitec-
ture, 1986, pp. 271-279.

11. J.J. Navarro, J.M. Llaberia, and M.
Valero, "Solving Matrix Problems with No
Size Restriction on a Systolic Array ProceS-
sor, " Int'l Conf. Parallel Processing, Aug.
1986, pp. 676-683.

12. J.J. Navarro et al., "LU Decomposition
with No Size-Restriction Using a One-
Dimensional Systolic Array Processor,"
Proc. Second Int'l Conf. Supercomputing,
May 1987, Vol. 3, p. 218.

13. R.W. Priester et al., "Signal Processing
with Systolic Arrays," Proc. Int'l Conf.
Parallel Processing, 1981, pp. 207-215.

14. H.T. Kung and M. Lam, "Wafer-Scale
Integration and Two-Level Pipelined
Implementations of Systolic Arrays," J.
ParallelandDistributed Processing, Vol. 1,
No. 1, Aug. 1984, pp. 32-63.

15. S.Y. Kung, "VLSI Array Processors,"
IEEEASSPMagazine, Vol. 2, No. 3, July
1985, pp. 4-22.

COMPUTER88

Juan J. Navarro is an assistant professor at the
Facultad de Informatica de Barcelona of the
Universidad Politecnica de Cataluna, Spain,
and a member of the Computer Architecture
Dept.
His current research interests include VLSI

architectures, parallel processors and
algorithms, and architectures for digital signal
processing.
Navarro earned engineering (1982) and PhD

degrees (1986) from the Universidad Politecnica
de Cataluna in telecommunication engineering
and computer science, respectively.

Jose M. Liaberia is an assistant professor at the
Facultad de Informatica de Barcelona of the
Universidad Politecnica de Cataluna.

His teaching and research activities are deve-
loped at the Computer Architecture Dept.; these
involve systolic array processors, the design of
VLSI architectures, and design and perfor-
mance evaluation of interconnection networks
for multiprocessor systems.

Llaberia received the telecommunication en-
gineering degree in 1979, computer science
degree in 1981, and the PhD in computer science
in 1983, all from the Universidad Politecnica de
Cataluna.
He is a member of IEEE.

Readers may write to Juan J. Navarro at the Departamento de Arquitectura de Computa-
dores, Facultad de Informatica (UPC), Pau Gargallo, 5.08028 Barcelona, Spain; phone
34 (3) 333-83-08.

Mateo Valero was an assistant professor at the
Universidad Politecnica de Cataluna (Escuela
de Telecommunicati6n) from 1974 to 1980.
Since October 1980, he has been at the Facul-
tad de Informatica de Barcelona. In 1983 he was
made a full professor of computer architecture.
Between May 1984 and December 1985 he was
the dean of the Facultad de Informatica. He is
currently head of the Computer Architecture
Dept.

Valero's teaching and research interests are
in computer architecture, with emphasis on the
design and performance evaluation of intercon-
nection networks for multiprocessor systems,
for local area networks, for systolic array
processors, and for RISC-like processors.
He received the telecommunication engineer-

ing degree from the Universidad Politecnica de
Madrid in 1974 and his PhD in telecommunica-
tion engineering from the Universidad
Politecnica de Cataluna in 1980.

Valero is a member ofIEEE and is vice presi-
dent of the Spanish Chapter of the Computer
Society of the IEEE.

Softwae Engneers
Northrop Corporation's Defense Systems Division in Rolling
Meadows, Illinois is the fastest-growing enterprise in an expan-

000 ding electronic countermeasures industry. We offer professionals
i with a BSCS, BSEE, BS Math or Physics (or equivalent) MS prefer-

red, and a minimum of 3 years experience, opportunities in the
following areas. Managermen4 SysfemArdie4 Tech,kalLeaders
and engineerng assignnents avauible.

System Programmers
Our many varied applications require significant growth in our
support capabilities. We need the best people with experience in:

* LANGUAGES, including Ada, Assembler, C, FORTRAN,
JOVIAL, and Pascal

* OPERATING SYSTEMS, including UNIX and VMS
* Development of Real-Time Operating Systems
* Development of Software Tools
_ Performance Modeling and Evaluation

* Use of Software Structured Development Methodologies

Software Systems Engineers
Our software engineers develop software from system re-
quirements through implementation, and need experience in:

* Software Requirements Analysis * Architectural Design
* Software Validation and Test Specification
* Performance Specification and Modeling
* Interface Design and Specification

9 ECM/EW Systems Software Engineers
0000, ECM/EW Systems are our business. We need the best people with

experience in:
* ReatTime Control Systems * Object Discrimination &

.
* Radar Data Processing Classification

* Embedded Computer * ECM Algorithm
Systems Development

* System and Unit Level * Calman Filtering
Diagnostics * Optimal Control

Hardware Diagnostics Software Engineers
We design and develop advanced systems using the latest hard-
ware and software technologies for our military clients. Experience
required:
* Intelligent Control Panel Systems * Built-in-Test
* Development * Functional Test
* Micro and Macro Diagnostics for Fault Identification

Artificial Intelligence
Artificial intelligence technologies promise state-of-the-art solu-
tions to complex ECM/EW challenges. PRsitions require people
who can bring Al technologies to avionic electronics, with ex-

perience in:

* LANGUAGES, including: Ada, C, LISP, and Prolog
* System Prototyping * Knowledge Engineering
* Implementation of Al Technology * Expert Systems

in Real-Time Embedded Systems Development
Interested individuals areencouraged toforward resumeto: James
Frascona, Technical Recruiter, Dept. C91, Northrop Corporation,
Defense Systems Division, 600 Hkks Road, Rofling Meadows,
IL 60006 We are an equal opportunity employer M/FIVIH. U.S.
Citizenship Required.

NORTHROP
Defense Systems Division
Electronics Systems Group

Juy1978

'1_001' Imiop", '"P.P'.l impp, .01"`
0.0",

July 1987 89

