
Discrete Comput Geom 5:533-573 (1990)

G -6i try
© 1990 Springer-Vertag New York lne

Partitioning Arrangements of Lines
lh Applications*

Panka j K. Agarwali"

Courant Institute of Mathematical Sciences,
New York University, NY 10012, USA

Abstract. In this paper we present efficient deterministic algorithms for various

problems involving lines or segments in the plane, using the partitioning algorithm

described in a companion paper [A3]. These applications include: (i) an

O(m2/3n 2/3.10g 2/3 n-log ~t3 (mix~n) + (m + n) log n) algorithm to compute all inci-

dences between m points and n lines, where o) is a constant < 3.33; (ii) an O(m2/3n 2/3.

log 5/3 n. log °/3 (m/x/~) + (m + n) log n) algorithm to compute m faces in an arrange-

ment of n lines; (iii) an O(n 4/3 log (°+2)/3 n) algorithm to count the number of

intersections in a set of n segments; (iv) an O(n 4/3 log ("+2~/3 n) algorithm to count

"red-blue" intersections between two sets of segments, and (v) an O(n 3/2 log o'+ ~ n)

algorithm to compute spanning trees with low stabbing number for a set of n points.

We also present an algorithm that, given set ofn points in the plane, preprocesses it, in

time O(nv/-m log '°+1/2 n), into a data structure of size O(m) for n log n < m ~ n 2, so

that the number of points of S lying inside a query triangle can be computed in

O((n/x/~) log 3/2 n) time.

1. Introduction

In the first pa r t of this paper [A3] , we showed that

Theorem L1 [A3]. Given a collection ~ of n lines in the plane and a parameter

1 <_ r < n, the plane can be partitioned into O(r 2) triangles, in time O(nr log n log" r),

* Work on this paper has been supported by Office of Naval Research Grant N00014-87-K-0129, by
National Science Foundation Grant DCR-83-20085, and by grants from the Digital Equipment
Corporation and the IBM Corporation. A preliminary version of this paper appears in the Proceedinos
of the 5th ACM Symposium on Computational Geometry, 1989, pp. 11-22.

t Current address: Department of Computer Science, Duke University, Durham, NC 27706, USA.

534 P.K. Agarwal

so that no triangle meets more than O(n/r) lines of .(~ in its interior, where t~ is some

constant < 3.33.

This partitioning is useful to obtain divide-and-conquer algorithms for a variety
of problems involving lines (or line segments) in the plane. Typically, an original
problem involving the lines of L~ is split into O(r 2) subproblems, one per triangle in
the resulting partitioning, each involving only O(n/r) lines of A ° meeting the
corresponding triangle. (As mentioned in [A3], once we have such a partitioning of
the plane, the lines intersecting the interior of each triangle, i.e., the set of lines
involving each subproblem, can be easily computed in O(nr) time.) These subprob-
lems are then solved either by recursive application of the partitioning technique,
or, if the size of the subproblems is sufficiently small, by some different and direct

method.
In this second part of the paper we apply our partitioning algorithm to obtain

fast algorithms for a variety of problems involving lines or segments in the plane.
The problems that benefit from our algorithm have the common property that they
can be solved efficiently using the random-sampling technique. Our algorithms for
most of these problems have the same flavor. We divide the original problem into
O(r 2) subproblems, as explained above, then solve each subproblem directly by a
simpler algorithm, and finally merge the results of these problems. A considerable
part of this paper is devoted to the discussion of these simpler algorithms, and to
details of the merging. In several applications the merging is trivial (e.g., in
problems (i), (iv), and (v) below), but in other applications it may require some
extra nontrivial techniques. The following list summarizes the results obtained in

this paper:

(i) Computing incidences between lines and points (Section 2). Given a set of n
lines and a set of m points in the plane, compute how many lines pass through each
given point. (Alternatively, compute the lines passing through each point, or just
determine whether any line passes through any point.) Edelsbrunner et al. [EGSh]
have given a randomized algorithm for this problem whose expected running time
is O(m2/3-Sn 213+26 + (m + n)log n), for any 6 > 0. A slightly improved, but still

randomized, algorithm has been given in [EGH*]. We present a deterministic

algorithm with O(m213n 2/3 log 2/a n log ~'/3 (mix~n) + (m + n) log n) time complexi-

ty. Since the maximum number of incidences between m points 'and n lines is
O(m2/3n 2/3 + m + n), our algorithm is close to optimal in the worst case.

(ii) Computing many faces in an arrangement of lines (Section 3). Given a set of n
lines and a set of m points in the plane, compute the faces in the arrangement of the
lines containing the given points. Edelsbrunner et al. [EGSh] have given a
randomized algorithm for this problem with expected running time
O(m2/3-sn2/3+28+ n log n log m), for any 6 > 0. As in the case of the incidence

problem, a slightly better randomized algorithm has been given in [EGH*]. We

present a deterministic O(m2/3n 2/3 logS/3n log °'/3 (m/x/~) + (m + n) log n) algor-

ithm, again coming close to optimal in the worst case (see CCEG*] for combinator-

ial bounds).

Partitioning Arrangements of Lines, II 535

(iii) Computing many faces in an arrangement of segments (Section 4). This is

the same problem as the previous one except that now we have a collection of

segments instead of lines. The previous best solution is by Eddsbrunner et al.
[EGSh], which is randomized and has expected running time O(m 2/3- ~n 2/3 + 2~ +

net(n) log 2 n log m), for any t$ > 0, where ~t(n) is a functional inverse of Ackermann's

function. We present a deterministic algorithm with improved time complexity

O(m2/an 2/3 log n log °'/3+ 1 (n/x/~) + n log 3 n + m log n).

(iv) Counting segment intersections (Section 5). We give a deterministic
O(n 4/3 log {o'+2):3 n) algorithm to count the number of intersections in a given

collection of n segments; this is an improvement over Guibas et al.'s algorithm
[GOS 1], which counts the intersections in O(n 4/3 + ~) randomized expected time, for

any ~ > 0.
(v) Counting and reporting red-blue intersections (Section 6). Given a set Fr of n,

"red" segments and another set Fb of n b "blue" segments in the plane, count the

number of intersections between F, and F b, or report all of them. (In this problem,

we need to ignore the potentially large number of intersections within Fr or within

Fb.) The previous best solution is by Agarwal and Sharir [AS], which reports all K

red-blue intersections deterministically in O((n~nbb + nbX/~, + K)log n) time,
where n = n r + nb. We give a deterministic O(n 4/3 log (o'+2)/3 n) algorithm to count

all red-blue intersections. It can also report all K red-blue intersections in time
O(n 4/a log{o'+2)/an + K).

(vi) Implicit point-location problem (Section 7). Given a collection of m points

and a collection of (possibly intersecting) n triangles in the plane, find which points

lie in the union of the triagles. This turns out to be a special case of a general

problem of implicit point location in planar maps formed by overlapping figures.

We present a deterministic algorithm with O(m2/an 2/3 log2/3n log 0'/3 (n/x/~)+

(m + n) log n) time complexity.

(vii) Approximate half-plane range searching (Section 8). Given a set S of n

points in the plane and a parameter (not necessarily constant) ~ > 0, preprocess

them so that, for any query line ~, we can approximately count the number of

points lying above E with an error of at most + en. We give an algorithm that
preprocesses S, in time O((n/e) log n logo" (l/e)), into a data structure of size O(1/e 2)

so that a query can be answered in O(log n) time.

(viii) Constructing spanning trees with low stabbing number (Section 9). Given a
set S ofn points in the plane, we present an O(n 3/2 log °'+ t n) algorithm to construct

a family of k = O(log n) spanning trees : 1 ~'k of S with the property that, for

any line E, there is tree ~ , such that ~ intersects at most O(x/-n) edges of ~ .

Moreover, with additional preprocessing of O(n log n) time and O(n) space, the tree

.~ corresponding to a query line E can be determined in O(log n) time. The

previously best-known algorithm is by Matou~ek [Mal] , which runs in

O(n 7/4 log 2 n) time, and, moreover, produces a stabbing number O(x/~ log 2 n)

instead of O(x/~).
(ix) Space-query-time tradeoff in triangle range searching (Section I0). Given a

set S of n points in the plane, preprocess it so that, for any query triangle, we can

quickly compute the number of points contained in that triangle. We give an

536 P.K. Agarwal

algorithm with O((n/x/~) log 3/2 n) query time, using O(m) space. The preprocess-

ing time is bounded by O(nx/~ log ~'÷ 1/2 n). Similar bounds have been obtained

independently by Chazelle [Ch3].
(x) Overlappino planar maps. Given two planar maps P, Q, and a bivariate

function Fe(x, y), FQ(x, y) associated with each of them, such that over each face of
P the function Fp has some simple structure (e.g., it is constant, linear, or convex
over each face), and similarly for Q, determine a point that minimizes Fe(x, y) -
FQ(x, y). We show that if the maps satisfy certain conditions, then an optimal point
can be computed in O(n 4/3 log ~°+ 2)/3 n) time, where n is the total complexity of the

two maps. The details of this application can be found in [A2].

2. Computing or Detecting Incidences Between Points and Lines

Consider the following problem (see Fig. 1):

Given a set A a = {fl En} of n lines and a set P = {Pl , Pro} of m points in
the plane, for each point p~ compute the lines in A a passing through it. This is an
extension of Hopcroft's problem which asks whether there is a point in P lying

on a line in A a.

Szemerrdi and Trotter [STr] showed that the maximum number of incidences
between n lines and m points is ®(m2/Sn2/S + m + n) (a much simpler proof, with a

substantially smaller constant of proportionality, appears in [CEG*]). Edelsbrun-

ner et al. [EGSh] have given a randomized algorithm for computing all incidences;
its expected running time is O(m2/3-an2/S+2~ + (m + n)log n), for any J > 0 (see

also [CSY]). Like many other randomized algorithms of this kind, this algorithm
can be made deterministic without any additional overhead, using Matougek's

algorithm [Ma2]. A slightly faster randomized algorithm is given in [EGH*] with
O(m2/3n 2/3 log 4 n + (m + n 3/2) log 2 n) expected running time, which however is not

known as yet to admit such "cheap" determinization. In this section we first

present a very simple algorithm whose running time is roughly m ~ log 1/2 n; this,
combined with our partitioning algorithm, will yield a deterministic algorithm that

is faster than the preceding ones.

es ~
Ps

Fig. 1. An instance of the incidence problem.

Partitioning Arrangements of Lines, II 537

We can assume that rn < n 2, because otherwise we can compute all incidences in

time O(n 2 + m log n) = O(m log n) by constructing the arrangement of .L a and

locating in it each of the points.
Divide the set P into t disjoint subsets P1 Pt, each of size at most Fm/t-]. For

each P~, we compute the incidences between P~ and .~e as follows. Dualize the lines ~j

to points f*, and the points pj to lines p*, so we have a set p* of I-re~t-] lines and a set

~ * of n points in the plane. Since duality preserves incidences, it suffices to

determine the points of LP* lying on each line p*; this can be done by constructing

the arrangement ~¢(P*), processing it for fast point location as in [EGSt], and
locating in it each of the points of ~* . The cost of all this is O(m2/t z + n log n) (see

[EOS] and [EGSt]). Summing over all Pt's, the overall running time becomes

((°;)) T(m, n) = O t + n log n = O + n t l o g n .

For t = Fm/~/-n log n~, the total running time is

T(m, n) = O(mv/n log x/2 n + n log n). (2.1)

Next, we describe the main algorithm. First, partition the plane into M = O(r 2)

triangles A1 AM so that the interior of each triangle meets O(n/r) lines of &a, for

some r to be specified later. Let P~ (resp. &a) denote the set of points (resp. lines)

lying inside (resp. meeting the interior of) the triangle A~; let n~ (resp. m~) be the size

of ~ (resp. Pi). The sets £,e~ are computed by determining the triangles intersected

by each line of ~ , as described in [A3], and the sets P~, are obtained, in time
O((r 2 + m) log r), by locating each point of P in the planar subdivision formed by

the triangles A i. The incidences between the lines and the points lying on the

triangle boundaries can be easily computed in time O((m + nr) log n), once we have

distributed the lines over the triangles. We then apply, for each triangle A~, the

above algorithm to determine the incidences between P~ and ~e~ within A~. Since

partitioning the plane takes O(nr log n logo" r) time (see Theorem 1.1), the total time

T(m, n) spent in computing the incidences between n lines and m points is therefore

at most

M

T(m, n) < ~. T(mi, ni) + O(r 2 log r + m log n + nr log n log ~' r)
/=1

M

= ~, O(mi ~ log 1/2 ni + ni log hi) + O((m + nr log °' r) log n).
i = l

(2.2)

Since ni = O(n/r), (2.2) becomes

T(m, n) log 1/2 n. ~, mi + O((ra + nr logo" r) log n)
iffil

= O f mx/~ log 1/2 n + m log n + nr log '° r log n)

t J /
(2.3)

538 P.K. Agarwal

because ~7'=1 mi = m. Now choose

m2,3 ,

r = m a x log 2c°/3
n ~/3 log x/a n (at/x/n))

since m < n 2, we have r < n as required. Therefore (2.3) gives

(ra)
T(m, n) = 0 mZ/3n 2/3 log 2/a n. log ~/a ~-~ + (at + n) log n .

Hence, combining this with the case at >_ n 2, we have

Theorem 2.1. Given a set of n lines and a set of m points in the plane, we can compute

the lines passing through each point in time O(m2/3n 2/a log 2/3 n. log '°/a (m/x/~) +

(m + n) log n). (In particular, we can determine whether any line passes through any

point within the same amount of time.)

3. Computing Many Faces in Arrangements of Lines

Next we consider the following problem:

Given a set .~ = {:1 fn} of n lines and a set P = {Pl,--. , Pro} of at points,
compute the faces of ~¢(~) containing one or tnore points of P.

Clarkson et al. [CEG*] have proved that the combinatorial complexity
of m distinct faces in any arrangement of n lines in the plane is O(m2/3n 2/3 + n)

(see also [Ca]), and Edelsbrunner et al. [EGSh] have given a randomized

algorithm to compute at distinct faces, whose expected running time is
O(m2/3-~n2/a+2~+ n log n log m), for any 6 > 0. This algorithm can be made

deterministic, without substantially changing its time complexity, using the orig-

inal technique of Matougek [Ma2]. As in the case of the incidence problem, a

slightly faster randomized algorithm, for large values of at, is presented in [EGH*]
and has O(n a/2 log2n + m2/an2/a log 4 n) expected running time, but we do not

know of any way to make it deterministic without substantially increasing its

running time. We present a deterministic algorithm that computes these faces in

time O(m2/3n 2/3 log 5/3 n log '°/3 (ra/x/n) + n log n).

Similar to the previous section, we first give a slower O(mx/n log 2 n + n log n)

algorithm for this problem and then, using the same divide-and-conquer technique,

we obtain an algorithm with the asserted time bound. Without loss of generality we

can assume that m < n 2, for otherwise the faces can be computed in time O(m log n)

by constructing the entire arrangement ,d(L~). Our slower algorithm works as

follows.

Partitioning Arrangements of Lines, II 539

Fig. 2.

/el

p*

e~

A face in an arrangement of lines, and its dual.

Partition the set P into t disjoint sets P1 P, so that P~ contains mi < [m/t-]

points. We show how to compute the faces of ~¢(.La) containing the points of Pt,

and repeat this procedure for all i < t. Let L,e* denote the set of points dual to the

lines La, and let P* denote the set of lines dual to the points in P~. Let f be a face of

ed(La) containing some point p. For each line E e .W bounding f, its dual point /* is

such that the dual line p* can be moved (actually rotated around some point) to

touch ~*, without crossing any other point of £a, while rotating. In other words,

the dual of the face .f containing a point p corresponds to the portions of the

convex hulls CH(.W* c~(p*) +) and CH(Le* c~(p*)-) between their common

tangents, where (p*)+, (p*)- denote the half-planes lying respectively above and

below p*, as shown in Fig. 2. Therefore, it suffices to describe how to compute the

convex hull of the points in La* lying above or below the line p* for each line

p* ~ P*.
First, compute the arrangement ~¢(P*). Let ~ denote the dual of the planar

graph formed by ~¢(P*), i.e., the vertices of ~ correspond to the faces of ~¢(P~'), and

there is an edge %~ between two vertices v~, v~ of ~ if the corresponding faces fl, fk
of ~¢(P*) share an edge ejk in ~¢(P*) (see Fig. 3). Let £a~ ~_ ~ , denote the set of

points lying in the face f~ E ~¢(P*). For each ,W*, compute its convex hull CH(.W~).

We associate A a* and its hull with node vl of ~ .
Let 3- denote any spanning tree o f ~ ; it can be easily computed in time O(m2~). If

o~- contains a subtree of J ' , all of whose nodes are associated with empty subsets of

Z~a*, we remove that subtree from J-. It is easily seen that a line p* ~ P~' intersects at

most m~ edges of 9- (in the sense that the two faces of ~¢(P*) connected by such an

edge lie on different sides of p*). Perform a depth-first search on 3" and connect the

~7

Q

Q

£4

Fig. 3.

/~, /P:,

Arrangements .~(.L,¢), .~(P~), and the dual graph ~.

540 P.K. Agarwal

Fig. 4.

CH(£;)

1) 2 UJ+I ~J+l 1)2+1 U)+ 1

, ~

$

":-~) ~-' (u) 1)~-~ (~1 1)~-~ (d) 1)~-~ (el

Transforming a vertex vj of I-1: (a) vertex vj of 11, (b) vj is deleted from H, (c)-(e) v~ is replaced by
CH(.W*).

vertices of 3- in the order they are first visited by the depth-first traversal; this gives

a spanning path H with the property that a line p* e P* intersects at most 2m~ edges

of H (in the same sense as above, see [CW]), and that each edge of H is intersected

by exactly one line of P*. Next we construct a spanning path W of ~L~'* from H by

modifying each vertex v~ of H, depending on the cardinality of CH(~*) . There are

three cases to consider:

(i) ICH(£a*)I = 0: remove the vertex o r and the edges ~o i_ i,j, tpj.j+ 1 from H,

and add the edge ~0~_1,j÷ 1 to FI (Fig. 4(b)); this shortcuting may be

repeated several times if needed, producing at the end a shortcut edge q~kk'"

(it) I CH(Aa*)I < 1 : replace the vertex v~ by CH(,W) ~) (Fig. 4(c)).

(iii) I CH(&a*)l > 2: let * * _ dx, d r be two adjacent vertices of CH(&e*). Replace vj by

CH(.W*), make the edge tpj_ t, j (resp. q~.j+ 1) incident to d* (resp. d*) (Fig.

• * CH(Ze*) 4(d), (e)), and if I CH(-W*)I > 2, then remove the edge dx dy from

(Fig. 4(e)).

It is easily seen that the resulting structure is a spanning path ~ of La* (see Fig. 5).

Lemma 3.1. A line p* 6 P* intersects at most 2rot edges of rg.

Proof. Let p* e P* be a line intersecting s edges of H. We prove that p* intersects

at most s edges of ~, by showing that each intersection between p* and an edge of c~

can be charged to an edge ~o of II intersecting p*, in such a way that no edge of II is

charged more than once. There are three types of edges in c~:

(i) edges that were already present in II (e.g., f ' d * in Fig. 5),

0 ~- - " 0

7- 17 C

Fig. 5. Spanning tree .9" and spanning paths H and ~ for points of L~'* shown in Fig. 3.

Partitioning Arrangements of Lines, II 541

(ii) edges of C H (~ *) for some vj ~ 3" (e.g., ~ in Fig. 5), and

(iii) edges that were introduced while removing a vertex of II (e.g., * * d4 ds in
Fig. 5).

We charge an intersection of P* with an edge of type (i) to the edge itself. Edges of

type (ii) do not intersect p*, because C H (~ *) lies inside a face of ~'(P*). Finally, if

p* intersects an edge q~k.k" of type (iii) (i.e., a shortcut edge introduced while deleting

vertices from H), then p* must intersect at least one edge q~j.~+l of H for

j = k, k + 1 k' - 1. We can therefore charge this intersection to ~0j.~+ 1. It is

easily seen that we charge only those edges of H that intersect p* and no edge is

charged twice. Hence p* intersects at most s < 2m~ edges of ~J. []

Edelsbrunner et al. [EGH*] have shown that if T is a spanning path of a set

S of k points in the plane, then T can be preprocessed in O(k log k) time so that,

for any line d intersecting at most s edges of T, CH(S c~ d ÷) can be computed

in O(s log 3 k) time. Since in our case k = n and s < 2m~, CH(L~'* c~ p*), for

p* ~ P*, can be computed in time O(m i log 3 n), which implies that the total time

spent in computing the faces in d (~e) containing the points of P~ is bounded by
O((m2/t 2) log 3 n + n log n).

However, Edelsbrunner et al.'s procedure returns only an implicit representa-

tion, which they referred to as the "necklace representation," of the desired faces.

That is, the output of their algorithm is a list of pointers, each pointing to some

node storing a disjoint portion of the convex hull, intermixed with "bridging edges"

that connect these portions in the overall hull. If we want to compute each desired

face explicitly, we have to traverse all the hull portions that the algorithm points to,

and the time to compute a single face f j becomes O(m i log a n + k j), where kj is the

number of edges in f~. Therefore, the total time spent in computing the faces

containing the points of P~ is O(m 2 log a n + n log n + ~p~p, kj). But in the worst

case ~p~p,k~ could be as large as ®(min~), e.g., when all of the points lie in the same

face, which happens to be bounded by all the lines of L~'. This bound is too large for

our purposes, which means that we cannot afford to output the same face too many

times. We circumvent this problem by modifying the above algorithm as follows.

Suppose we have already computed the faces containing Pl pj of P , and we are

about to compute the face fj+ 1 containing Pi+ 1. Before computing this face we first

check whether p~+ 1 lies in any of the faces computed so far; we compute f j+ 1, as

described above, only if it is indeed a new face. Since each face of ~¢(.~) is a convex

polygon, we can easily test p j+ 1 for containment in each of the already-computed

faces of d(L,e) in O(log n) time, so the total time needed to decide whether fi+l

should be computed is O(j log n). Thus, the total time required to compute the

collection S of the desired faces is

O(m,,og3 o ÷j,ogn)÷ O(Z O(.log.)
j = 1 \ f j ¢ S

542 P.K. Agarwal

Edelsbrunner and Welzl JEW2] (see also [Ca]) have proved that the complexity of

m distinct faces in an arrangement of n lines is O(mx/~). Therefore

T(ml, n) = O(m~ log 3 n + n log n) + O(mlx/~).

Since mi < [m/t'], summing over all P~'s we obtain

T (m , n) = O ~ - l o g a n + n l o g n +
i = 1

C h o o s i n g t = [-(m log n)/x/~-], w e obtain T(m, n) = O(mv/n log s n + n log n).

Remark 3.2. We believe that using, in the above procedure, the algorithm of

[EGH*] of merging the convex hulls to obtain the explicit face representation is an

overkill, and a simpler, more naive solution should exist. But at present we do not

know how to simplify the algorithm.

Now we describe the main algorithm. As in the previous section, we partition the

plane into M = O(r 2) triangles A1 AM each of which meets O(n/r) lines of ~ .

Let Pi (resp. L~'~) denote the set of points of P (resp. lines of ~) contained in (resp.

meeting) A~, and let f~(p) denote the face of ~¢(~q'i) containing a point p. The zone of

A~ in ~¢(.~et) is defined as the collection of the face portions f n A t, for all faces

f e ~¢(~), that intersect the boundary of At (see Fig. 6). Clarkson et al. [CEG*]

have observed that the total number of edges in the zone of A t is O(n/r) (see also

[CGL] and [EOS], where a zone is defined with respect to a half-plane). If a face

f~(p) is fully co~ained in the interior of A t, then f~(p) = f(p). Otherwise if f~(p)
intersects the boundary of A t, then it is a face of the zone of A t. Moreover, if a face

f e s¢ (~) does not lie in the interior of a triangle A,, it is split into two or more

pieces, each being a face in the zone of some triangle. Also, such a face f intersects a

triangle At if and only if f is a face in the zone of A,. Thus, all the faces in d (~)

containing the points of P can be obtained by computing, for every A~, (i) the faces

of ~¢(.~et) that contain the points of P~, and (ii) the zone of At. The faces of ~¢(~e)

(containing points of P) that are split among the zones, can be easily glued together

by matching their edges that lie on triangle edges.

Fig. 6. Zone of a triangle Al.

Partitioning Arrangements of Lines, II 543

Edelsbrunner and Guibas lEG] have given an O(n log n) algorithm to compute

a zone with respect to a half-plane in an arrangement of n lines. The same

algorithm can be applied to calculate the zone of each A~. As for computing the

faces that lies in the interior of A, we use the simplified algorithm described above.

Thus, the total time spent in processing A~ is O(m~x/~ log 2 n~ + n i log n3. Finally,

the total time spent in merging the zones is O(nr log n) because zones of two

different triangles do not intersect, and each zone has O(n/r) edges. Hence the total

time T(m, n) spent in computing m distinct faces in an arrangement of n lines in the

plane is (provided m < n 2)

T(m, n) =
M

O(mix/~ log 2 ni + nt log ni) + O(nr log n) + O(nr log n logo, r)
i=l

= r l°g2 n ~ mi + nr log n + O(nr log n log °, r)
i=1

(becauseni<-n-andM=O(r2))r

= o) ~ X//~ log 2 n + nr log n log ~ r ,

because ~7'=1 mi = m. For

(m 2/3 log 2/3 n }

r = maX~nl/3 log 2o,/3 (m/x/~), 2 ,

the above bound becomes

T(m, n) = O(m2/3n2/31ogS/3 n logo,/a m-m-~ + n log n).
.,/n

Combining this with the trivial bound O(m log n), for m > n 2, we obtain.

Theorem 3.3. Given a set of n lines in the plane, we can compute the faces of its
arrangement that contain m oiven points in time

O(m2/3n 2/3 log 5/3 n log 0,/3 (m/~/n) + (m + n) log n).

4. Computing Many Faces in Arrangements of Segments

Consider the following problem:

Given a set ~ = {el en} ofn segments and a set P = {Pt Pro} ofm points,

compute the faces of ~(f¢) containing the points of P.

544 P.K. Agarwal

Aronov et al. I'AEGS] have shown that the combinatorial complexity of m

distinct faces in an arrangement of n segments is bounded by

O(m2/3n 2/3 + n~(n) + n log m).

Edelsbrunner et al. [EGSh] have given a randomized algorithm to compute m

distinct faces in an arrangement of n segments whose expected running time is
O(m2/3-~n2/3 + 2~ + n~(n) log m log 2 n), for any 6 > 0. Our algorithm for computing

many faces in an arrangement of lines cannot be easily extended to the case of

segments, so we present an alternative technique that proceeds by applying the

partitioning algorithm in the dual plane rather than in the primal. Our algorithm is

closely related to the proof of the combinatorial bound given in IAEGS]. Again we

assume that m < n 2 for otherwise we can compute the laces in O(m log n) time by

constructing the entire arrangement .~¢(f~).
Let ~ denote the line containing the segment e of ~. Dualize each line f to a

point ~*, and each point p of P to a line p*; this yields a set P* of m lines, and a set
.£a* of n points in the dual plane. Partition the dual plane into t = O(r z) triangles

A~ A' t so that no triangle meets more than O(m/r) lines of P*. By Theorem 1.1,

this can be done in O(mr log m log '° r) time. If a triangle A; contains nl > n/r 2 points

of ~* , split it further into [-nir2/n -] triangles, none of which contains more than n/r 2
points. Clearly, the distribution of the points of ~e* among the triangles and the

further partitioning of the triangles can be done in O(n log n) time. Let A 1 A M

denote the set of resulting triangles; we still have M = O(r2). Let Z,e* denote the set

of points contained in A i, and let P* denote the set of lines meeting A~. Let fqi

denote the set of segments corresponding to the points .£~'*. If a line p.* does not J

meet A~, then p~ lies either above all lines containing the segments of fq~ or below all

such lines, which implies that pj lies in the unbounded face of ~¢(f~). Hence, for

each subcollection f~, it suffices to compute the unbounded face of d (f ~) and the

faces that contain the points of P~. As a matter of fact, we compute the entire

arrangement ~qC(cg~) in time O(n2/r4), and select the desired faces from it. Let fi(P)

denote the face of ~¢(f~i) containing the point p. Note that the face f (p) of ~ ' (~)

containing p is the connected component of AIM-- 1 ft(P) containing p. Therefore, for

each p e P~, we have to "merge", i.e., compute the connected component containing

p of the intersection of, all M corresponding faces.

Recall that our algorithm [A3] first computes r approximate levels, which are

disjoint polygonal chains with a total of O(r 2) vertices, and then triangulates each

"corridor" lying between two adjacent polygonal chains. We construct a binary

tree ~- of height H = O(log r) whose leaves correspond to these triangles and

whose root corresponding to the enclosing rectangle R (see [AEGS]). We first

construct a binary tree 5 c, as described in [AEGS], for each corridor C on the set

of triangles lying in C so that the preorder traversal of 3-c visits the leaves (i.e., the

triangles in C) in the order in which they appear along C from left to right (see Fig.

7). Binary tree 3- is then constructed with the trees ~'c as its leaves, in a similar

manner.

Each node v of ~- is associated with a simply connected region ~v, which is the

union of the regions associated with the leaves of the subtree ~-~ of 3" rooted at v

(the construction of ,~- implies that each @v is simply connected). For each node v

Partitioning Arrangements of Lines, II 545

T I

~ " , . ~ , : ^ ' . 0, z x , . " / , ,

1 i

Fig. 7. 3" c = T~ and ~-.

of .~', let ~o = UA,~-~qSi and ~v = Ua,~-~,~ Pi. Let no = l(av[and rn o = Ieol-
Observe that any point p ~ P - P~ lies either above all the lines containing the

segments of f#~ or below all these lines, and therefore all these points lie in the

unbounded face of ~g(~q~). Let w and z denote the children of the interior node v. It

is easily seen that Po = Pw w P~. For every node v of 3-, we compute the unbounded
face of d((q~) and the faces containing the points o fP o. Let F o denote the set of these

faces and let R~ denote the total number of edges in the faces of Fo. Note that the

face fv(P) of M(@~) is the connected component of fw(P) n £ (p) that contains the

point p, where fw(P) (resp. f~(p)) is the face of M(f#w) (resp. .~(~)) containing the

point p. Thus if we have already computed Fw and F~, then F~ can be computed by

applying the "red-blue merge" described in [EGSh]. Let ~ o denote the time spent

in merging F~ and Fz. It follows from the analysis of [EGSh] that

~ l v = O((R o + m v + noo~(no)) log no). (4.1)

Therefore, the total time ~ (m, n) spent in merging the faces is

Jtl(m, n) = ~ O((R v + m v + n~ot(no)) log no)

H

= ~,, ~ O((R~ +mo + nook(no)) log no) (4.2)
i= l h(v)=i

where h(v) is the height of v. But it has been proved in [EGSh] that

R~ < R W + R~ + 4my + 6n~. (4.3)

Let q/o (resp. ~) denote the set of leaves (resp. interior nodes) in the subtree ~o- If

h(v) = i, then by (4.3)

Ro-< E R . + 4 X m~+O(n~. i) ,

546 P . K . Agarwal

where the last term follows from the fact that)-'.x n~, over all nodes at the same level

of ~'-~, is n~, and the height ofv is i. Let k~ = t~1 denote the number of leaves of ~r~.

As shown in [AEGS], the special way in which ~ was constructed guarantees that

ckvm
my < + 1, (4.4)

r

where c is some constant > 0. Moreover, for each leaf u of ~,, In~l = O (n / r 2) .

Therefore R, = O(n2/r4), and

Rv=O O k ~ +

which implies that

¢¢[(m, n) = ~ ~ + ~, + nv(~t(n) + i) log n .
/ /

It can be easily proved that

kv=O(r2), ~ n o = n , and ~ ~ kz=O(ir2).
h(v) = i h(v) = i h(v) = i • ~ ~

Therefore

Jr(m. n)= ,=~1 0((n~+r ~ imr+ n(~t(n)+ i)) log n)

O((~,o~+r. ~'~"°~r+'~+°r"°~ r),o~ ~)

because H = O(log r).
Now going back to the original problem, we spent O(mr log m log '° r) time in

partitioning the plane into M triangles, and O(n2/r 4) time in constructing ~¢(f~i) for

each At (see [EOS]). Thus, the total time T(m, n) spent in computing m distinct

faces of an arrangement of n segments in the plane is at most

n 2

o((~ ,o~,~ ~ , ,o~., ~ ~ mr, ~o~ r t ~o~ ~t
O((~ ~ lo: ~ r ~ ~n, ~ ~,o~ r I lo~ ,o~ r I

Partitioning Arrangements of Lines, II 547

Hence, by choosing

m n2,3 }
r = max 1/3 log~,- 1~/3 (n/x/~) ' 2 ,

we obtain

T(m, n) = O(m2/3n2/a log n logt2O+ l)/3 n n) + nlog nlog 2 ~ + mlog n

= O(m2/3n2/31og n log'2'~+1)/3 ~ m + n log3 n + m log n).

Theorem 4.1. The faces of an arrangement of n line segments, which contain m given
points, can be computed in time

O(m2/3n2/310g n lOg'2°+ l'/3 n) X / ~ + n l o g 3 n + m l o g n .

Remark 4.2. If we partition A'i into Fn~/(x/~ log 1/2 r)-] triangles (instead of

Fn~r2/n-]), each containing at most x ~ l o g l / 2 r points of La*, and choose

r = max{(n2/a/m 1/3) log 2~/a- 1 (n / ~) , 2}, then the running time of the algorithm

can be improved slightly to

O(m2/3n 2/3 log n log °'/3 + l _ _
n)

x / ~ + n l o g 3 n + m l o g n .

5. Counting Segment Intersections

In this section we consider the following problem:

Given a set f# = {e t e,} of n line segments in the plane, we wish to count the
number of intersection points between them.

This is a variant of one of the most widely studied problems in computational
geometry, namely that of reporting all intersections (see [BO], [B], [Chl] , and
[CE]). The recent algorithm of Chazelle and Edelsbrunner ICE] reports all k
intersection points in time O(n log n + k) using O(n + k) space. Although it has
optimal running time, it requires quadratic working storage in the worst case.

Guibas et al. [GOS2] gave an O(n 4/a+~ + k) randomized algorithm, for any 6 > 0,
using only O(n) working storage (see also [C12] and I-Mu]). The only algorithms
known for counting the intersection points in time that does not depend on k are by
Chazelle I-Chl] and by Guibas et al. [GOS2]. The latter algorithm is faster but
randomized, and has expected running time 0(n4/3+6), for any 6 > 0. We modify

548 P.K. Agarwal

Guibas et al.'s algorithm to give a slightly faster and deterministic algorithm,

although the space requirement goes up roughly to n 4/a. Their algorithm relies on a

procedure that, for a given triangle A, counts the number of intersection points

contained in A in O((m2+ n) log n) time, where n is the number of segments

meeting A, and m < n is the number of segments having at least one of their

endpoints inside A. For the sake of completeness, we briefly overview this

procedure because we also make use of it.

Partition the segments of f# meeting A into two subsets:

(i) f¢l: "long" segments of f~ whose endpoints do not lie inside A.

(ii) ~ : "short" segments of f# having at least one endpoint inside A.

There are three types of intersections to be counted:

• "Short-short" intersection: intersections between the segments of fg~.

• "Long-long" intersections: intersections between the segments of ~ .

• "Long-short" intersections: intersections between a segment of (~ and

another segment of f~.

Counting Short-Short Intersections. The Short-short intersections can be

counted in O(m 2) time by testing all pairs of segments of (#~.

Counting Long-Long Intersections. Let f~ be the set of lines containing the

segments of ~ . Since the segments in ~ do not have their endpoints inside A, the

number of long-long intersections is the same as the number of intersections of 8~

lying in the interior of A. By Lemma 3.1 of the first part of this paper (see [A3]), the

latter quantity can be computed in time O(n log n).

Counting Long-Short Intersections. For every segment e e f~s, let ~ denote e n A;

and ~s = {~[e e (~s}. Let fgi denote the set of lines containing the segments of ~l.

It clearly suffices to count, for each E e ~ , the number of intersections between f

and f~.
Dualize each segment ~ e (~s to a double wedge e*, and construct the arrange-

ment 9f ~ of these double wedges. For any double wedge e*, each face f of A~ is

either contained in e* or does not intersect e*. The weight of a face f is the number

of double wedges containing f ; the weights of all faces of ~ can be determined

while constructing 9f ~.
A line d e ~l intersects a segment ~ e ~ if and only if the point d* lies in the

double wedge e*. Thus, for every segment e in f~l, the number of segments in ~

intersecting e is equal to the weight of the face in A~ containing the point d*.

Therefore, we determine the number of segments intersecting d by locating d* in .~.

Computing A~ and preprocessing it for fast point-location queries can be done in

time O(m 2) [EOS], [EGSt], so all long-short intersections can be computed in

time O(m 2 q- n log n).

The above discussion implies that all intersection points of @ contained in A can

be counted in O(m 2 + n log n) time. The time complexity of the above procedure

can be improved to O(m~/n log n + n log n) by partitioning ~s into Fm/x/n log n]

Partitioning Arrangements of Lines, II 549

subsets of size at most x/n log n each, and counting the number of intersection

points between each of the subsets and (9~.

Next we describe the main algorithm. Partition the plane into M = O(r 2)

triangles A1 A M, each meeting at most O(n/r) lines containing the segments of

f~. Using the algorithm described above, we count the number of intersections

contained in each A+, for i < M, and add up the results. If m+ denotes the number of

endpoints lying inside Ai, the time spent in counting intersections within A~ is

O(m~v/n/r log 1/2 n + (n/r) log n). Using the same analysis as in previous sections,

the total time of the algorithm is

~, O(mi ~ . log 1/2 n) + O(nr log n log °' r)
i = 1

/) = O~,r- ~ log 1/2 n + nr log n log ~ r

because ~ = 1 mi < 2n. Hence, by choosing r = ['nl/3/log (2~+ 1)/3 n-I, we obtain

Theorem 5.1. Given a set of n line segments, their intersection points can be counted
in time O(n +13 log t~+ 2)]3 n) and O(n4/a/log (20'+ 1)/3 n) space.

Remark 5.2. We can combine this algorithm with the algorithm of I'CE] that

computes the number of intersections k in time O(n log n + k). That is, we first run

the algorithm of ICE] and stop it as soon as the number of intersections exceeds

n 4/3 10g (~+2)/3 n. Then we use our algorithm. We thus have

Corollary 5.3. The number of k intersections between n line segments can
be counted in time O(min{n log n + k, n +/3 log ~'+2~/3 n}) and space
O(min{n + k, n+/3/log ~2'°+ 1~/3 n}).

6. Counting and Reporting Red-Blue Intersections

Next, we consider a variant of the segment intersection problem:

Given a set F r of n r "red" line segments and another set F b of nb "blue" line

segments, count or report all intersections between Fr and Fb.

Let n = n r + rib. Mairson and Stolfi I-MS] gave an O(n log n + K) algorithm to

report all K red-blue intersections, when red-red and blue-blue intersections are

not present. The algorithm of Chazelle and Edelsbrunner ICE] for reporting

segment intersections can also be applied to report all red-blue intersections in this

special case. However, in the general case these algorithms cannot avoid encounter-

ing red-red and blue-blue intersections. For the general case, Agarwal and Sharir

[AS] presented an O((n,X/~b + nbx//~ + K) log n) algorithm to report all K

550 P.K. Agarwal

red-blue intersections. They showed that a restricted version of this problem, in

which it is only required to detect a red-blue intersection, can be solved in

O(n 413 ÷~) (randomized expected) time, for any 6 > 0, by reducing it to the problem

of computing at most 2n faces in ~ (F r) and in ~(Fb). As for the counting problem,

in the absence of monochromatic intersections, Chazelle et al. [CEGS1] have

developed an O(n log n) algorithm to count all red-blue intersections (see also

[CEGS2]). In this section we present a n O(n 4/3 log ~°'+ 2)/3 n) algorithm to count all

red-blue intersections in the general case, using roughly n 4/3 space. Our algorithm

actually computes, for every red segment e, the number of blue segments intersect-

ing e. The algorithm can be modified to report all K red-blue intersections in time
O(n 4/3 log ~'+2)/3 n + K).

As in the previous section, we first consider a restricted version of the problem.

Let F r and F b be two sets of segments as defined above, all meeting the interior of a

triangle A, such that m of these segments contain at least one endpoint inside A; we

wish to count the number of red-blue intersections lying inside A. We describe an

O((m 2 + n) log n) algorithm that, for every red segment e, counts the number of

blue segments intersecting e, and can be modified to report all red-blue intersec-

tions with O(1) overhead per intersection. The algorithm proceeds as follows:

Partition the segments of Fr and F b into four subsets:

(i) A: "long" segments in Fr whose endpoints do not lie inside A; let IAI = a.

(ii) B: "short" segments in Fr having at least one endpoint inside A; let Inl = b.

(iii) C: " long" segments in F b whose endpoints do not lie inside A; let I CI = c.

(iv) D: "shor t" segments in F b having at least one endpoint inside A; let IDI -- d.

Note that a + c = n - m and b + d = m. We have to count (or report) four

types of red-blue intersections

• Intersections between A and C,

• intersections between A and D,

• intersections between B and C, and

• intersections between B and D.

Our approach is similar to the one used by Guibas et al. [GOS2] for counting

segment intersections, as described in the previous section.

Intersections Between A and C. For a segment e e A u C, its intersection points

with OA are called the endpoints of e. Let S denote the set of endpoints of segments

in A u C sorted along OA in clockwise direction, starting from one of its vertices v.

Let a, b ~ S be the endpoints of a red segment e with a appearing before b in S.

Similarly, let a', b' be the endpoints of a blue segment e'. It is easily seen that e

intersects e' if a, b, a', and b' appear in one of the following two orders:

(i) a, a', b, and b' (see Fig. 8(a)), or

(ii) a', a, b', and b (see Fig. 8(b)).

For each red segment e, we show how to count red-blue intersections along e. Scan

the boundary of A in clockwise direction. When we encounter a blue segment for

the first time, we insert it on top of a stack, maintained as a binary tree ~ , and when

Partitioning Arrangements of Lines, II 551

• e ~

t2 " e

(a) (b)

Fig. 8. Intersections between A and C.

it is encountered for the second time, we delete it from ~. On the other hand, when

we encounter a red segment e for the first time, we do nothing, but when we

encounter it for the second time, we count the number of (blue) segments in the

stack that were inserted after encountering the first endpoint of e. This gives the

number of type (i) intersections between e and C. Type (ii) red-blue intersections

can be counted in a symmetric way by scanning OA in counterclockwise direction.

We leave it for the reader to verify that this algorithm can be easily modified to

report all red-blue intersections between A and C.
For each segment e E A, we spend O(log n) time, therefore the total time

spent in counting (resp. reporting all KAc) such red-blue intersections is

O((a + c) log(a + c)) = O(n log n) (resp. O(n log n + Kac)).

Intersections Between A and D. For every e ~ D, let ~ denote e m A; and let
i5 = {Fie E D}. Let g denote the set of lines containing the segments of A, and let

A* denote the set of points dual to the lines of A. Let £e denote the set of lines dual

to the endpoints of the segments in/]i. Construct the arrangement ~¢(La). For each

: ~ .~, we count the number of intersections between # and/]i by locating the point

g* in ~1(~), as in Section 5. The total time spent in counting these intersections is

easily seen to be O(ra 2 + n log n).
As for reporting the intersections between A and D contained in A, let O(f)

denote the set of double wedges dual to the segments of/]i containing a face f of

~1(~). If two faces ./'1 and f2 share an edge ~, contained in a line f 6 .~, then

6r = ~O(fl)~ ~O(f2) is the set of segments having dual of : as an endpoint?

Therefore by first constructing the arrangement ~¢(LP), and then locating each

point of A* in ~1(~), we can report all Kao intersections between A and D

contained in A, in time (m 2 + n log n + ~1671 + KAo). Thus, it suffices to bound

~e~c(.~)16el. Suppose the segments of ~ have t < 2d distinct endpoints and v~

segments are incident to the ith endpoint. Obviously, ~[= ~ v i = 2d and, for each

line : ~ ~ , there are t edges of s¢ (~) contained in : , therefore

t

E IcS~l = E tv ,~ 2d z. (6.1)

Hence, the total time spent is O(n log n + m 2 + KAD).

x We use A (~ B to denote the symmetric difference of sets A and B.

552 P.K. Agarwal

Intersections Between B and C. If we just want to report or count the total

number of intersections between B and C contained in A, we can use the same

procedure as in the previous case. But if we want to count the number of red-blue

intersections for each red segment separately, we need a different technique.

Let/~ = {e c~ Ate E B}, and let B* denote the set of double wedges dual to the

segments in/~. Let C denote the set of lines containing the segments of C, and let C*

denote the set of points dual to the lines in (~. The number of intersections between

a segment e e/~ and C is equal to the number of points of C* in the double wedge

e*. Therefore, for every double wedge, we want to find the number of points of C*
lying in it. This can be done in time O(b 2 + c log(b + c)) = O(m 2 + n log n), using

the algorithm described in Edelsbrunner et al. [EGH*].

Intersections Between B and D. For every segment e E B, we can determine the

segments of D intersecting it by testing all such pairs of segments. This takes O(m 2)

time.

Thus, for every segment in Fr, we can count the number of blue segments

intersecting it inside A in time O(m 2 + n log n), and we can report all red-blue

intersections inside A within the same time plus O(1) overhead per intersection. The

running time can be improved to O(mv/n log 1/2 n + n log n) by partitioning the

collection of short segments (that is B u D) into Fm/x/n log n'] subsets of size

x/n log n each, and then repeating the above procedure for each subset and the

entire A w C.
Going back to the original problem, we partition the plane into O(r 2) triangles,

each meeting at most n/r lines containing the segments of Fr u F b. Using the

algorithm described above, count (resp. or more generally report all K~) red-blue

intersections within the ith triangle in O(m,x/n ~ log 1/2 (n/r) + (n/r) log (n/r)) (resp.

O (m ~ x / ~ l o g 1/2 (n/r)+ (n/r) log(n/r)+ K~)) time, where mi is the number of

segment endpoints falling inside the ith triangle. Following the same analysis as in

Section 5, we obtain

Theorem 6.1. Given a set of n r "red" line segments and another set of n b "blue" line

se#ments, we can count, for each red seoment, the number of blue seoments

intersecting it in overall time O(n 4/3 log (~'+2J/3 n) usin# O(n4/3/log (2~+1)/3) space,

where n = nr + rib. Moreover, we can report all K red-blue intersections in time
O(n 4/3 log (c0+2)/3 n q- K).

Remark 6.2. (i) Our algorithm uses roughly n 413 space only for partitioning the

plane into O(r 2) triangles; all other stages of the algorithm require O(n) space. If we

choose r = 0(1) and solve the problem recursively as in [GOS2], we can reduce the

space complexity to O(n), but the running time increases to O(n 4/3+ a), for any ~ > 0

(which can be made as small as we wish by choosing r sufficiently large).

(ii) If we allow randomization, then using the random-sampling technique of

[CI 1] or of [HW], we can count all red-blue intersections in O(n 4/3 log n) expected

time, and can report all K red-blue intersections in expected time O(n 4/3 log n +

K). We leave it for the reader to fill in the missing details.

Partitioning Arrangements of Lines, II 553

(iii) Note that if F r is a set of lines, then we have to consider only the first two

cases, because B = ~ .

7. Batched Implicit Point Location

The planar point-location problem is a well-studied problem in computational

geometry [K], [EGSt], I-STa]. In this problem it is required to preprocess a given

planar subdivision so that, for a query point, the face containing p can be computed

quickly. Guibas et al. [GOS 1] have considered a generalization of this problem, in

which the map is defined as the arrangement (i.e., overlay) of n polygonal objects of

some simple shape, and we want to compute certain information for the query

points related to their arrangement (for example, to determine which query points

lie in the union of these polygons). For simplicity we break the given polygonal

objects into a collection of line segments, and consider the following formal

statement of the problem:

We are given a collection f~ = {e I e,) of n segments, and with each segment

e we associate a function cpe defined on the entire plane, which assumes values in

some associative and commutative semigroup S (denote its operation by +),

and let q~(x) = ~ , ~o~(x). Given a set P = {Pl Pro} of m points, compute

~(Pt) ¢I)(pm) eMciently.

We assume that cp e and • satisfy the following conditions:

(i) The function cp e has constant complexity, that is, we can partition the plane

into O(1) convex regions so that within each region cp e is constant. This also

implies that, for any given point x, ~pe(x) can be computed in O(1) time.

(ii) Any two values in S can be added in O(I) time.

(iii) Given a set fq of n segments in the plane, we can preprocess ff in time

O(n log k n), for some k > 0, into a linear-size data structure so that, for a

query point x lying either above all the lines containing the segments of if,

or below all these lines, ®(x) can be calculated in O(log n) time.

We will see that several natural problems, including the containment problem

mentioned above, can be cast into this abstract framework. Note that we consider

here the batched version of the problem, in which all query points are known in

advance. In another paper [A3] we consider the preprocessing-and-query version

of the problem and solve it using different techniques based on spanning trees with

low stabbing number.

A naive approach to solving this problem is to construct the arrangrnent s /(ff)

(more precisely, the arrangement obtained by overlapping all the convex subdivis-

ions associated with each of the functions ~0,), so that the value of • is constant

within each resulting face. Now q~(Px) ~(p,,) can be easily computed in

O(m log n) time by locating the points of P in the above planar map. Ifm > n 2, then

this is the method of choice, and it runs in overall O(m log n) time, but ifm < n 2 this

554 P.K. Agarwal

procedure takes fl(n 2) time in the worst case, so the goal is to come up with a

subquadratic algorithm. Guibas et al. [GOS1] have indeed given a randomized
algorithm whose expected running time is O(m 2/a-6n2/a +6 + m log n + n log k+ 1 n),

for any ~ > 0. Our (deterministic) algorithm improves their result and works as

follows.
Let A" denote the set of lines containing the segments of (#. Let A¢* (resp. P*)

denote the set of points (resp. lines) dual to the lines (resp. points) of A¢ (resp. P).

Partition the dual plane, in time O(mrlog m log ° r), into t = O(r 2) triangles

A'I A't, each meeting O(m/r) lines of P*. I fa triangle contains n i > n/r 2 points of

A"*, then partition it further, in time O(n log n), into [-n~r~/n] triangles, none of

which contains more than n/r 2 points. Let A t A u denote the resulting

triangles; we have M = O(r2). Let P* denote the set of lines passing through A t,

and let Aa~ denote the set of points contained in At; thus IP~[= O(m/r), [.~¢*[_<

n/r 2. Let ~ = ~ e ~ , <Pc. For each p e P~, compute ~(p) by constructing the entire

arrangement ~(~t) , as discussed above (see also [GOS1]). The total time spent in

computing Oi(P) for all p e Pi is O(n2/r 4 + (m/r) log n) [EOS], [EGSt].
Next, we show how to add the values computed within each triangle to calculate

(l~(p) = ~ i ~i(P)- We use a procedure similar to the one used in Section 4 for

computing many faces in an arrangement of segments. In particular we construct a

binary tree Y with the properties defined in Section 4. For each node v of J , let (¢v,

Pv be as defined in Section 4, let m~ = [Pv[, n~ = [(g~[, and @~ = ~ tp~. At each

node v of I , the goal is to compute ~ for all p E Pv. At the end of this process we

will have obtained, at the root u of J , the value of ~ = • for all p e P~ = P. We

calculate ~ in a bottom-up fashion, starting at the leaves of J,, as described above.

Let v be an internal node of ~d- having children w and z. We preprocess (#w, ~ to

obtain data-structures ~w, ~ of linear size so that, for any point lying either above

all the lines containing the segments of ~ (resp. ~) , or below all these lines, Ow

(resp. ~) can be computed in logarithmic time. Now, for each p e Pv, ~o(P) =

~w(P) + ~(P). If p ~ Pw, we already have computed ~w(P) at w. Otherwise p lies

either above all lines containing the segments of ~w, or below all these lines, so we

can use ~w to compute ~ (p) in O(log nw) time. Similar actions are taken to

compute ~(p) . Thus we can obtain ~ for all points in P~ in time O(m~ log n~). By

the third property of tp e, ~w can be constructed in O(nw log k nw) time, and similarly

for ~ . Hence, the total time spent in computing ~ over all nodes v of ~ , including

the initial partitioning of the dual plane, is

T(m, n) = ~, O(m v log n~ + n~ log k n~) + O(mr log m log °' r)

((n~m))
+ O r 2 + -- log n

= ~ ~ O(m~logn~+n~log"n~)+O ~ + m r l o g n l o g ~°r ,
i ~ 1 h(v)'~t

where H = O(log r) is the height of ~q- and h(v) is the height of a node v of ~r. As

Partitioning Arrangements of Lines, II 555

mentioned in Section 4, it was shown in [AEGS] that

ck~m
m v < + 1,

r

where c is some constant > 0 and kv is the number of leaves in the subtree of ~-

rooted at v. Moreover, we argued in Section 4 that

~, ko = O(r 2) and ~ n~ = n.
h(v) = i h(v) = i

Therefore

T (m , n) = O r 2 . m l o g n + n l o g kn + 0 ~ - ~ + m r l o g n l o g ° r
~=1 r

(:) = 0 mr log n log ° r + n log k n log r + .~- .

By choosing

n2/3 1
r = max m t/3 log l/~ m log °/3 (n / x / ~) ' 2 ,

we obtain

Theorem 7.1. Given a collection f9 o f n segments, a function ~Pe associated with each

e G ~ with the properties listed above, and a set P of m points, we can compute

~ e ~ ~pe(p), for each p G P, in time

O (m 2 / 3 n 2 / 3 log 2/3 mlog 2~/3 n
\

n)
+ n log k n log - - ~ + m log n .

,/m

Remark 7.2. (i) In several special cases it is possible to obtain ~v, in O(nv) time,

by merging ~w and ~z. In such cases the second term of the above bound reduces

to O(n log k n).

(ii) As mentioned above, we have recently obtained, in [A1], an algorithm that

preprocesses ~, in time O(n 3/2 log "+ : n), into a data structure of size O(n log 2 n) so

that, given a point p, @(p) can be computed in O(x/~ log 2 n) time. (The query time

can be reduced to O(x/~ log n) in several special cases.)

(iii) As in Section 4 the running time can be improved to

n k n t 0 m2/3n 2/3 log 2/3 n log °/3 - - ~ + n log n log - - 7 + m log n
x/m ~/m

556 P.K. Agarwat

by partitioning A'~ into ['n~/(x/~ log 1/2 n)-] triangles none of which contains more

than x / ~ l°g 1/2 r points of Ae*, and by choosing

m "2" } r = max 1/3 1ogl/3 n log 2/3 (n/x/~)' 2 .

Various applications of the batched implicit point-location problem have been

discussed in [GOS1]. The running time of all applications can be improved by

using the algorithm provided in Theorem 7.1. We briefly describe a couple of these

applications, and refer to [GOS1] for more details.

7.1. Polygon Containment Problem--Batched Version

Consider the following problem:

Given a set T of n (possibly intersecting) triangles and a set P of m points, for

every point p of P, count the number of triangles in T containing p, or more

generally, for each point p, report all triangles containing p.

We review the solution technique of [-GOS1]. Let ff be the set of the edges of

triangles in T, and let L~' be the set of lines containing the segments of ft. For each

edge e of a triangle A, let B(e) denote the semi-infinite trapezoidal strip lying

directly below e. Define a function ~oe in the plane so that q~¢(p) = 0 if p lies outside

B(e), ~oe(p) = 1 if p is in B(e) and A lies below the line containing e, otherwise

~ o e (p) = - 1 .

It is easily seen that, for any point p, ¢(p) gives the number of triangles

containing p, and tp¢ satisfies properties (i) and (ii). As for property (iii), if a point p

lies above all lines of ~?, then ~(p) = 0, by definition. If p lies below all lines of -~,

then we do the following. Let ~ denote the x-projection of an edge e of a triangle. It

is easily checked that

O(p)= Y~ t j,
{j:pE~j}

where t i is the nonzero value of tpe~ at p. Note that the sum of the right-hand side

does not change between two consecutive endpoints of the projected segments, and

that the value of ¢ over each interval can be computed in overall O(n log n) time,

by scanning these projected segments from left to right. Hence, we can preprocess

T, in time O(n log n), into a data structure ~ so that, for a point p lying below all

lines of La, ~(p) can be computed in O(log n) time. Moreover, for a node v in ~ , ~v

can be obtained in O(nv) time by merging ~w and ~z, where w, z are the children of

v. Hence, Theorem 7.1 and the remark following it imply that

Partitioning Arrangements of Lines, II 557

Corollary 7.3. Given a set T of n triangles and a set P of m points, we can compute,

for each point p ~ P, the number of triangles in T containing p in time

0 m2/3n2/3 log 2/3 m log 2~/3 - - ~ + (m + n) log n .

7.2. Implicit Hidden Surface Removal--Batched Version

The next application of the implicit point-location problem is the following version

of the hidden surface removal problem:

Given a collection of objects in three-dimensional space, and a viewing point a,

we wish to calculate the scene obtained by viewing these objects from a.

The hidden surface removal problem has been extensively studied by many

researchers (see, e.g., [D] and [Mc]), because of its applications in graphics and

other areas. For the sake of simplicity let us restrict our attention to polyhedral

objects, whose boundary T is a collection {A 1 A,} of n nonintersecting

triangles. In the case of the implicit hidden surface removal problem, we do not

want to compute the scene explicitly; instead we wish to determine the objects seen

at given pixels [CS], [GOSt] . In this subsection we consider the following special

case of the implicit hidden surface removal problem. Let T = {A 1 An} be a

collection of n nonintersecting horizontal triangles in R 3 such that A i lies in the

plane z = ci, where cl < c2 < "" < c, are some fixed heights. Let P = {Pl Pro}

be a set of m points lying in a horizontal plane below all triangles of T. The problem

is to determine, for each point p ~ P, the lowest triangle A~ hit by the vertical line

passing through p.

We review the techniques used by Guibas et al. [GOS1]. A point p e P is said to

be blocked by T, if the vertical line from p intersects at least one triangle A~ ~ T. First

consider the following problem: Given a set T of n triangles and a set P of m points,

determine which points of P are blocked by A. This problem can be solved

by applying our implicit point-location algorithm to P and the xy-projection

of the triangles in T. Hence, we can compute the blocked points in

O(mZ/3n 2/3 log 2/3 m log 2°'/a (n/~//mm) + (m + n) log n) time.

Going back to the original problem, if the number of the points or the number of

the triangles is < 1, then we sovle the problem directly; otherwise we split T into

two subsets T 1, T2, so that T: contains the lower half of the triangles A1 An/2

and T 2 contains the upper half of the triangles An/2 + 1 An. Apply the blocking

algorithm to P and T~. Let/)1 c P be the subset of points blocked by T1, and let

P2 = P - P1. We recursively compute the lowest triangle in T~ (resp. in T2) above

each of the points in P~ (resp. P2)- Using the same analysis as in I'GOS1], we can

show that the total running time is

O(m2/3n2/310g2/3 m lOg2c°/3 n)
~ + m log n + n log 2 n .

558 P.K. Agarwal

Hence, we can conclude

Theorem 7.4. Given an ordered collection T of n triangles in •3 and a

set P of m points lying below all of them, we can determine, in

O(m2/an 2/a log 2/a m log 2~/3 (n/x/~) + m log n + n log 2 n) time, the triangle seen

from each point of P in the upward vertical direction.

Remark 7.5. (i) In fact this algorithm works for a more general case, where

triangles in T have the property that they can be linearly ordered so that if a

vertical line hits two triangles Ai and Aj with Ai lying below A~, then A~ < A~.

(ii) We can extend the above algorithm to the case where the points of P do not

lie below all of the triangles in T. Now at each level of recursion, for each point p of

P1, we also find the highest triangle Ap of T 1 whose projection contains p. If Ap lies

below p, then we remove p from P1 and add it to P2. Using the above algorithm we

can find Ap, for each p e P1, in time

O(m2/an 2/3 log 2/3 m log 2~/3 - -
n)

x / ~ + m log n + n log 2 n .

Therefore the overall running time is

O(m2/3n 2/3 l og 2/3 m log 2~/3 - -
n)

x / ~ + m l o g n + n l o g 3n .

8. Approximate Half-Plane Range Searching

The half-plane range-query problem is defined as: Given a set S of n points in the

plane, preprocess it so that for any query line ~, we can quickly count the number of

points in S lying above ~. In the dual setting, S becomes a set S* of n lines, E

becomes a point E*, and the number of points lying above ¢ is the same as the level

of E* in ~¢(~*). Therefore, if we allow O(n 2) space, the query can be obviously

answered in time O(log n) by precomputing ~¢(S~*) and locating ~* in it. Chazelle

and Welzl [CW] recently gave an algorithm that answers a query in time

O(x/~ log n) using only O(n) space. A result of Chazelle [Ch2] shows that if we

restrict the space to be linear, the query takes at least f~(v/-n) time in the semigroup

model (in particular subtraction is not allowed, see I-Ch2] for details), which

implies that we cannot hope for a much better algorithm if we want to count the

exact number of points. However, in several applications it suffices to count the

number of points approximately (one such example is described in [Mall) .

Therefore, in the dual setting, the approximate half-plane range-query problem is:

Given a set S* of n lines and a parameter (not necessarily a constant) e > 0,

preprocess it so that, for any query point, we can quickly compute an approximate

level for it in ~¢(6e*), namely a level that lies within + en from the true level. It is

Partitioning Arrangements of Lines, II 559

easily seen that the problem can be reduced to an instance of a point-location

problem in an (en/4)-approximate leveling of ~¢(6 ~*) (see also [EW 1] and [Ma2]).

Hence by Corollary 6.6 of the first part of this paper [A3], we obtain

Theorem 8.1. Given a set of n points in the plane and a positive real humber e < 1,

we can preprocess it, in time O((n/e) log n log '~ (l/e)), into a data structure of size

O(l/e2), so that, for any query line :, we can obtain, in 0 (log n) time, an approximate

count of the number of points in S lying above d, which deviates from the true number

by at most +_- en.

9. Computing Spanning Trees with Low Stabbing Number

Let S be a set of n points in R d and let J be a spanning tree on S whose edges are

line segments. The stabbing number tr(J') of ~r is the maximum number of edges of

~-- that can be crossed by a hyperplane h. Chazelle and Welzl [CW] (see also [W])

have proved that, for any set of n points in R a, there exists a spanning tree with

stabbing number O(n 1- i/a), and that this bound is tight in the worst case. For a

family T of trees, the stabbing number tr(T) is s if for every hyperplane h there is a

tree J ~ T such that h intersects at most s edges of ~'.

Edelsbrunner et al. [EGH*] gave a randomized algorithm with expected

running time O(n 3/2 log 2 n) to compute a family T = {51 ~-k} of k = O(Iog n)

spanning trees with the property that, for any line d, there exists at least one tree

such that d intersects O(x/~ log 2 n) edges of ~ . They also showed that a spanning

tree on S with stabbing number O(v/n) can be deterministically constructed in time

O(n 3 log n). Recently Matou~ek [Mal l has improved the running time of these

algorithms. He has given a randomized algorithm with expected running time
O(n */3 log 2 n) to construct a family of O(log n) spanning trees with the above

property; this algorithm can be converted into a deterministic one with
O(n 7/4 log 2 n) running time. He has also given an O(n s/2 log n) deterministic

algorithm (or a randomized algorithm with expected running time O(n~'*+6), for

any ~ > 0) to construct a single spanning tree with stabbing number O(x/~). His

algorithms actually compute spanning paths of S.
In this section we describe a deterministic algorithm for constructing a family T

of O(log n) spanning trees with tr(T) = O(v/n). The crux of Matou~ek's algorithms

lies in the following lemma.

Lemma 9.1 I-Mall. Given a set S of n points in the plane, we can find a set .~e of O(n)

lines with the property that,for any spanning path ~" on S and for every line : , there is

a line : ' ~ .~ such that if d" intersects s edges of ~,, then d intersects at most

s + O(v/n log n) edges of : .

Matou~ek describes an O(n ~/4 log 2 n) deterministic algorithm to compute this

set of lines. Using Theorem 1.1 we can strengthen Lemma 9.1 as follows:

560 P.K. Agarwal

L e m m a 9.2. Given a set S of n points in the plane, we can deterministically construct

a set ~q~ of O(n) lines in time O(n 3/2 log °+ i n) with the property that,for any spanning

path ~q- on S and for every line f , there is a line f ' ~ ~ such that i f f ' intersects s edges

of ~,, then f intersects at most s + O(~/nn) edges of J-.

Proof Dualize the points of S; we obtain a set S* of n lines. By Theorem 1.1,

choosing r = x/-n, we can partition the plane into O(n) triangles in time

0(n3/2 logO>+ 1 n), so that no triangle meets more than 0 (x /n) lines of S. Pick up a

point d* from each triangle, let .L, o* denote the set of these points, and let £f be the

set of their dual lines in the primal plane.

Arguing as in [Mal l , let (be an arbitrary line in the primal plane. By

construction, there exists a line d ~ .~a such that the segment e = (*~* does not

cross more than 0(x/~) lines of S*. Going back to the primal plane, if an edge g of

oa- intersects ~ but not f, then one endpoint of g must lie in the double wedge e*

dual to e, but our construction implies that e* contains at most 0(x/~) points

of S. Thus, there are 0(x/~) edges of 3 that intersect (but not E, and the temma

follows. []

We construct a family of O(log n) spanning paths with low stabbing number

only for the lines in .W. Although the basic approach is the same as in IMa l] or

I-EGH*], we need some additional techniques to improve the running time. Here

we briefly sketch the main idea, and refer the reader to [Ma l] or [EGH*] for more

details.

Suppose we have constructed oq- 1 oq]_ 1, and have obtained a set .W i c .La

such that mi = I-~1 < m~ 2~- 1 (where m = I~1 = 0(n)) and Lfi is "bad" for all paths

constructed so far, that is, a line in £a~ intersects every tree at more than Cx//n edges,

for some constant C to be specified below. We show how to construct ~ and .W~+ 1.

Initially =W 1 = £e.
The spanning path ~ is constructed in O(log n) phases. In the beginning of the

j th phase we have a current collection S~ of vertex-disjoint paths on S (in the

beginning of the first phase the collection St consists of all singleton paths on the

points of S). Our algorithm ensures that nj = IS i I < n.(2) j-1. If nj _< ~/n, we

connect the endpoints of the paths in Sj to form a single spanning path on S, and we

are done (see Fig. 9). Otherwise, if n i > ~/r~, we proceed as follows. Choose

r = c~ ~ and partition the plane into n /3 triangles so that no triangle meets more

Fig. 9. Spanning path ~r~; connecting the endpoints of $1.

Partitioning Arrangements of Lines, II 561

Fig. 10. Maximal matching of endpoints within A~; solid circles denote the selected endpoints of S i.

than c2(m.v/~/ni) lines of &a s, for appropriate constants c 1, c2, which exist by

Theorem 1.1. If a triangle contains endpoints of several paths in S j, we obtain a
maximal matching of these endpoints and connect each pair of matched points by

an edge (see Fig. 10), thereby combining two paths in S~ into a new path. To avoid

creating cycles, we only choose one endpoint of each path of Sj. The endpoints of

the resulting paths form the set S j+ 1. It can be easily proved that we add at least

n/3 new edges to the current set of paths, which implies that nj+ 1 < 2n/3.

Lemma 9.3. There are at least re.J2 lines of ~ i that intersect ~ in < Cx/rn edges,

for some constant C > O.

Proof. We bound the total number of intersection points between edges o f ~ and

L,e i. In the j th phase we add at least n t - n j÷ 1 edges, and each edge intersects at

most c2(mdv/~j) lines of ~ . In the final phase we add at most ~ edges, each

crossed by at most m~ lines. Therefore the total number of intersections I between

and ~ is at most

O(logn) ml /~-- ,
I < ~ (nj - nj+ l)c2 + x / n ra i

j = l ~ j j

O(logn)

< c 2 ml 2 x ~ i + ~4/-~'m,
j = l

O(logn)

<_ c,m, X ÷
j = l

c,m, , / ; .

= ((3 + + 1). m, , / - i .

(because nj < n. (2)j- 1)

Now it follows immediately that at least half of the lines in L~ai intersect ~ in at

most Cx/~ edges, for C = (6 + 2x//6)c2 + 2. []

Lemma 9.3 implies that at most half of the lines are "bad." For every line g e ~i ,

we count the number of intersections between d and ~ , using our red-blue

562 P.K. Agarwal

intersection algorithm given in Section 6. We pick up those lines of ~e i that intersect

at more than Cv/n points. The resulting set is .~ai+ 1-

Next we analyze the running time of our algorithm. We first bound the time to

compute L~ for i < k. Since m~ < n and there are only n edges in ~-~, it follows from

Theorem 6.1 that we can compute &a i in O(n 4/a log ('~+2)/3 n) time. Moreover,

k = O(log n), so the total time spent in computing the incidences between ~ and
Aai, over all k phases, is O(n 4/3 log ~+ 5)/3 n).

As for the time spent in computing ~"i, we choose r = clx//~j in the jth phase,

therefore it requires O(miv/~j log mi log ° n~ + nj log n j) time. (It is easily checked

that this also bounds the time needed to distribute the path endpoints among the

triangles, and to match them to obtain the new set of paths.) Hence the total time

spent in computing ~ is at most

O(logn)

Z
j = l

O(mix/~j log mi log '° nj + nj log nj)

O(Iogn)

= Z O(mix/~l'(~3) (j-l)/2 log m i log ~ n + (~)j-1 n log n)
j = l

= O(mix/~ log m~ log ° n + n log n).

Summing over all i, we obtain

k

O(mix//n log mi log ° n + n log n)
i = l

k

= ~, O(mix/~ logO+ 1 n + n log n)
i=1

) = O ~ x/~ logO,+ 1 n (because mi < m/2 i- 1 and m = O(n))
i

= 0(n3/2 logO+ 1 n).

Hence, we have

Theorem 9.4. Given a set S of n points in the plane, we can deterministically

construct, in time O(n 3/2. log ~'+1 n), a family T of k = O(log n) spanning paths on S

with the property that,for any line ~, there exists a path J" ~ T, such that f intersects

at most O(x/~) edges of ~-.

Moreover, we have

Lemma 9.5. The set of O(log n) spanning paths computed by the above algorithm

have the property that, for any query line f, we can determine, in O(log n) time, a

path that E intersects in at most O(x/~) edges. This requires an additional linear

preprocessing time and storaoe.

Partitioning Arrangements of Lines, II 563

Proof. Let A be the set of triangles computed in the proof of Lemma 9.2. Suppose
the dual of d* lies in Ak e A, and let d* be the point selected from A k. Then dk is a

good line for at least one path ~ , i.e., it meets O(x/~) edges of ~'~. By Lemma 9.2, E

also meets only O(x/~) edges of that path. Moreover, for any given ~, we can find fk
(and thus the corresponding path ~) in O(log n) time, using an efficient point-

location algorithm; since the map formed by A has only O(n) faces, linear
preprocessing time and storage suffices [EGSt]). Hence, the lemma follows. []

Remark 9.6. (i) Note that the best-known deterministic algorithm for construct-

ing a single spanning path with O(x/~) stabbing number has O(n 5/2 log 2 n) time

complexity. Therefore it follows from Theorem 9.4 and Lemma 9.5 that the

multitree structure is better than the single path structure for all purposes except
that the storage requirement is worse by a factor of O(log n). In some applications,
however, it may not be possible to use a multitree structure (e.g., reporting version
of the simplex range searching problem [CW] and also the counting version if

subtraction is not allowed).
(ii) The spanning path obtained by our algorithm may have intersecting edges.

However, if the application requires the paths to be non-self-intersecting, we can
apply a technique of [EGH*] that converts a polygonal path ~- with n edges into

another, non-self-intersecting path ~-', in time O(n log n), with the property that a
line intersects 3-' in at most twice as many edges as it intersects ~..

(iii) If we use the randomized version of our red-blue intersection algorithm, to
count the intersections between the edges of ~ and .~, in Matou~ek's randomized

algorithm [Mal l for constructing T, then a(T) can be improved to O(v/n log n)
without increasing the time complexity of his algorithm.

Chazelle and Welzl [CW] have shown that spanning trees with low stabbing
number can be used to develop an almost optimal algorithm for answering simplex
range queries. Other applications of spanning trees with low stabbing number

include computing a face in an arrangement of lines [EGH*], ray shooting in
nonsimple polygons [A1] and implicit point location [A1]. Our algorithm
improves the preprocessing time as well as query time of most of these applications.
For example, Edelsbrunner et al. [EGH*] have shown that given a set .~ of n lines,
it can be preprocessed in O(n 3/2 log 2 n) (randomized expected) time, into a data

structure of size O(n log n), using a family T of O(log n) spanning trees with
a(T) = s, so that, for a query point p, the face in ~ (-~) containing p can be
computed in time O(s log 2 n + K), where K is the number of edges bounding the

desired face. The result of Matou~ek [Mal l implies that the preprocessing can be
done deterministically in O(n 7/4 log 2 n) time. However, if we use our algorithm for

constructing the spanning trees, we obtain

Corollary 9.7. Given a set .~ of n lines, we can preprocess it deterministically in

O(na/2 logO,+ 1 n) time into a data structure of size O(n log n) so that, for a query point

p, we can compute the face in ~ (. ~) containino the point p in O(~j-n log 3 n + K) time,

where K is the number of edges bounding the desired face.

564 P.K. Agarwal

Another result of [EGH*] , combined with our algorithm, implies that

Corollary 9.8. Given a set .~ of n lines, we can preprocess it in O(n 3/2 log '~ +1 n)

time, into a data structure of size O(n log 2 n) so that, for any ray p emanating from a

point p in direction d, we can compute, in time O(v/n log n), the intersection point,

between p and the lines of .~, that lies nearest to p.

Similarly, using the result of [CW], 2 we obtain

Corollary 9.9. Given a set S of n points in the plane, we can preprocess it

deterministically, in O(n 3/2 log ~'+ 1 n) time, into a data structure of size O(n log n) so

that, for a query line/~, we can compute the number of points of S lying above ~ in

O(x/~ log n) time.

Remark 9.10. Recently Matou~ek and Welzl [MW] gave an alternative determin-

istic algorithm to perform such half-plane range queries. Their algorithm has the

same storage and query-time bounds, and its preprocessing time is only
O(n 3/2 log n).

10. Space-Query-Time Tradeoff in Triangle Range Search

Finally we consider the following problem:

Given a set S of n points in the plane, preprocess S so that, for a query triangle A,

we can quickly count the number of points of S lying in A.

As just noted, the problem has been solved by Chazelle and Welzl [CW], using a

spanning tree with low stabbing number, in O(n) space and O(x,/n log n) query

time. In this section we study the issue of tradeoff between the allowed space and

query time. Chazelle [Ch2] has proved that if we allow O(m) space, then the query

time is at least f l(n/x/~). (However, this lower bound applies to an arithmetic

model involving operations in a semigroup; in particular no subtractions are

allowed.) For m = n 2, a query can be easily answered in O(log n) time, so the

interesting case is when n < m < n 2. In this section we show that our partitioning

algorithm in conjunction with ChazeUe and Welzl's technique yields an algorithm

that counts the number of points lying in a query triangle in O((n/x//-m) log 3/2 n)

time using O(m) space, where n 1 +~° < m < n 2-~', for some constants Co, ~1 > 0. The

preprocessing time of our algorithm is bounded by O(nv/-m log '°+ 1/2 n), which is

faster than that of any previously known algorithm.

The half-plane range-searching algorithm of Chazelle and Welz! uses a single spanning tree, but it
works even if we use a family of O(log n) spanning trees instead of a single tree structure, though the

space complexity rises to O(n log n).

Partitioning Arrangements of Lines, II 565

pl

p3

P2

Fig. i l . A triangle A and its dual A*.

We first establish this tradeoff for the half-plane range-search problem: "Given a
set S of n points, preprocess S so that, for any query line ~, we can quickly count the

number of points lying below f."
Dualize S to a set of n lines, S*, and partition the plane into M = O(r 2) triangles

A1 Au so that no triangle meets more than O(n/r) lines of S*. The dual of a
triangle A is a 3-corridor, namely the region lying between the upper and the lower
envelopes of the three lines dual to the vertices of A (see [HW] and Fig. 11). Let A*

denote the dual ofA. A line p* fully lies in A* if and only ifp lies in A, and a point E*
is in A* if and only i f f meets A. Let St c S denote the points orS contained in A*;
by construction I S~'l = O(n/r). For each A*, construct a family T t of O(log (n/r))
spanning paths on the set St with the property that, for every line ~, there exists a

path f~. e T t such that E intersects O (x / ~) edges of .~-~ (see Section 9). We
preprocess every 5-~ e T t into a data structure of size O(n/r) for half-plane range

searching, as described in [CW], so that a query can be answered in

O(v/~/r log (n/r)) time.
To answer a query, we first find the 3-corridor A* containing the query line E.

That is, we locate the triangle At containing the dual point Y*. Let ~t denote the
number of points in S - St lying below g, which we will have precomputed for each
i. We thus only need to count the number of points of St lying below f. By Lemma
9.5, we can find, in O(log (n/r)) time, a path .~'~ a T i that intersects C in at most

0 (~ / ~) edges. Moreover, the number of points of Si lying below Y can be counted

in O (x / ~ log (n/r)) time using J~ , as in Corollary 9.9. Hence, the total query time

is bounded by O (x / ~ log (n/r)). Since each T i requires O((n/r) log (n/r)) space, the

total space used is O(nr log (n/r)). We choose

to achieve O(m) space, and the query time is therefore O((n/x/~) log 3/2 (n/v/m) +
log n).

As for the preprocessing time, we spend O(nr log n log '~ r) time in partitioning
the plane into M triangles. Let W~ c S* denote the set of lines lying below the

triangle At, so ~t = I W~l. It is easily seen that for two adjacent triangles At, A t,
Wi ~) W~ c S* u Sj ~. Therefore, ~t, for each Ai, can be computed in time O(nr),
spending O(n) time at the first triangle plus O(n/r) time at each of the remaining

566 P.K. Agarwal

triangles. We can compute ~ , for each triangle A i, in O(nr log n) time, and, by
Theorem 9.4, we can construct T i in O((n/r) 3/2 log °+ l(n/r)) time. It follows from

[CW] that J-~ can be preprocessed in O((n/r)log (n/r)) time for answering

half-plane range searching. Therefore the total time spent in preprocessing is

n)
P(n) = O(nr log n log ° r) + O . r 2 log ° + 1

(° L ° 2)
= O n logn log°r + n 3/2 log °+1

n log log

= O (m l o g ° + ' n + n ~ l o g ° + ' / 2 ~) .

By Chazelle's lower bound mentioned above, we obtain

Theorem 10.1. Given a set S of n points in the plane and n log n <_ m <__ n 2 storage,

we can preprocess S, in O(m log°~+l n + nx/~log °+t/2 (n/x/~)) time, so that, for

any query line :, we can count the number of points of S lying below : in time

O((n/~/-m) log 3/2 (n/x,/m) + log n), using O(m) space. This is optimal up to a polylog

factor.

Remark 10.2. (i) Matou~ek's original algorithm [Ma2] can also be used to

obtain the same tradeoff. However, since we use large values oft, our preprocessing
is faster than that obtainable by Matou~ek's algorithm. We have recently learnt

that Chazelle [Ch3] has also independently obtained a similar result.

(ii) We can reduce a logl/2(n/x/m) factor in the query time, if we compute a
single spanning path instead of O(log n) paths. But then the (deterministic) time

complexity of computing one such path rises to O((n3/r 3) log (n/r)).

(iii) Notice that the counting version of the half-plane range-query problem is

more difficult than the reporting version; for the latter version, Chazelle et al.

[CGL] have given an O(log n + K) algorithm to report all K points lying below

the query line, using only O(n) space and O(n log n) preprocessing.

Next, we extend the above algorithm to obtain a similar tradeoff for the slanted

range-search problem: "Given a set S of n points, preprocess S so that, for a query
segment e, we can count efficiently the number of points that lie in the semi-infinite

trapezoidal strip lying directly below e." Let us denote the number of such points

by W(e) (see Fig. 12).
Chazelle and Guibas [CG] have given an optimal algorithm for the reporting

version of the slanted range-query problem, which reports all K such points in
O(log n + K) time, using O(n) space and O(n log n) preprocessing. Since the

half-plane range-search problem is a special case of the slanted range-search

problem, the lower bound on the query time for the slanted range-search problem,

with O(m) storage, is also D.(n/v/m). Our tradeoff is obtained as follows.

Partitioning Arrangements of Lines, II 567

..L.....1--
f

i

Fig. 12. Instance of a slanted range searching; ~P(e) = 9.

Construct a binary tree ~ on the x-projections of the points in S as follows. Sort

the points of S in increasing x order. Decompose the sorted set into n/c blocks, each

containing at most c points, for some fixed constant c > 0, and associate each block

with a leaf of ~ . Each node v of ~ is thus associated with the set S~ _ S of points

stored in the leaves of the subtree of ~ rooted at v. For each node v of ~ we

preprocess the points in Sv for answering half-plane range queries, using the above

algorithm, with r = r~, where r~ is a parameter depending on the level i of v in ~ . A

segment e is called a canonical se#ment if there is a node v e ~ such that the x-

projection of e covers the x-projections of all the points in S o, and of no other point

in S - So. Observe that, for a canonical segment e, W(e) can be computed by

solving a half-plane range query at the corresponding node. In general, a query

segment e can be decomposed into k < 2 log n canonical subsegments e 1 e k,

such that at most two of them correspond to nodes at the same level of ~ (see

[PS]). Thus ~P(e)= ~ = l ~stt(ei), which implies that tP(e) can be computed by

answering at most 2 log n half-plane range queries.

Since the nodes of the same level are associated with pairwise disjoint sets of

points, and we are choosing the same value of r for all nodes of the same level, the

space s(n) used by our algorithm is

/log n /
s(n)--- O~i__~l nrt log n .

Let m = n y, where 1 + e o < 7 < 2 -- e t, for some constants %, ~1 • 0. If we

choose r i = n~- X/(log n), where n~ = n/2 ~- 1 is the size of each set So at level i, we

have

t log n ~y - t t tt f
s(.) -- o n log n

i

/ tog , , / n \~-i\

--Oln Z)
\ i = 1 \ / /

= O(nO (because ~, > 1 + %)

= O (m) .

568

Next, the total time spent in answering a query is

,,i = 1 y r i :1

/logn)
= O~i_~ t x//n/2-' 10g3/2 n

P. K. Agarwal

= O(n I -~/2 10g3/2 n) (because), _< 2 -- el)

- - 0 (~ log 3/2 n) .

As for the time required in preprocessing, we spend O((n:i + n3/2 ~ /) log '~+ 1 n)

at a node of the ith level. Since there are 2 i nodes at level i, the overall preprocessing

time is bounded by

logn)
Pin) = ~. O(2'(nir, + n3/2x//~i)" log °~+1 n

i=1

= 0 n.rl +-~i~" . log ~+1 n
i=1

-- n3]2 n~ -1 o_tO+ 1

= 0 ((n!..~ + log,,,+ .
\ \ l o g n l x / / i ~ , /

= O(nxfm log~, + 1/2 n) (because m _< n2).

Therefore, we have

Theorem 10.3. Given a set S of n points in the plane and n 1+~° <_ m <_ n2-~', for

some constants e o, e 1 > 0, we can preprocess S, in O (n ~ log ~+ 1/2 n) time, into a

data structure of size O(m) so that, for a query segment e, ~F(e) can be computed in

O((n/x//-m) log 3/2 n) time. This is optimal up to a polylog factor.

Remark 10.4. (i) The remarks following Theorem 10.1 apply here as well.

(ii) If n log 2 n _< m ~ n 1 +~ for all e > o, then

Q(n) = O((n/x/-m) log 2 n).

Similarly, i fm > n 2 -~ for all e > O, then a more careful analysis shows that

Q(n) = O((n/w/-m) log s:2 (n/,,/~) + log n).

Partitioning Arrangements of Lines, II 569

P2

P t

Pa ~ 2

i I

Fig. 13. Two types of triangles.

Finally, we show how to solve the triangle range-query problem using Theorem

10.3. Let A denote a triangle with vertices Pl, P2, and P3- Assume that Pl is the

leftmost vertex and PlP2 lies above PlP3 (see Fig. t3). If x(p2) < x(p3), then the

number of points in A is

W(p~ P2) + ~P(P'2P3) -- W(PlPa),

and if x(p2) > x(p3), then the number is

W(Pl P2) - W(Pt P3) - W(PzPa).

It thus follows from Theorem 10.3 that

Theorem 10.5. Given a set S of n points in the plane and n 1 +~o < m <_ n 2 -~lfor some

constants eo, e 1 > O, we can preprocess S, in O(nx/m log °'+ 1/2 n) time, into a data

structure of size O(m) so that, for a query triangle A, we can count the number of

points contained in A in O ((n / x ~) log 3/z n) time.

Remark 10.6. (i) If n log2n _< m < n 1÷' for any e > 0, then the query time

becomes O((n /x /~) log 2 n). Similarly, if m > n 2-~ for all e > 0, then Q(n)=

O((n /x /~) log 5/2 (n /x /~) + log n).

(ii) Notice that we use subtraction to count the number of points lying inside a

triangle. It is not known whether Chazelle's lower bound [Ch2] can be extended to

the case where we use subtraction, that is to the group model. Therefore, we do not

know how sharp our bounds are in that model.

11. Conclusions

In this paper we have presented various applications of our partitioning algorithm,

described in a companion paper [A3]. Most of the algorithms described in this

paper have a similar flavor. In particular, we first give a simple but slower

algorithm with running time roughly mx/~ or nxfm, and then combine it with our

partitioning algorithm to obtain a faster algorithm. As mentioned in the Introduc-

tion, we do not need the second phase of our partitioning algorithm in several

570 P.K. Agarwal

applications, because the number of triangles produced in the first phase is
sufficiently small to imply the asserted running time. For example, consider the

problem of computing incidences between a given set ofm points and a set ofn lines
in the plane, and suppose we perform only the first phase of our partitioning
algorithm. Equation (2.2) implies that the running time of the algorithm is

M

T(m, n) < ~ O(m~x/~ I log 1/2 nl + ni log ni)
i=1

+ O((m + nr log °' r) log n),

where ~ 1 mi = m, n i = O(n/r), and M = O(r z log °' r). Therefore,

T(m, n)= O (: 1°gl/2 t mi)+O((nr logo ' r+ m)log n)

ofm~:n 1ogl/2 n) = - + nr logo" r log n + O(m log n).

Again, if we choose

r = maX{n1/3 log 1/3 m2/3), 21
n log 2o'/3 (m/,,/~ '

we get

(°) T(m, n) = 0 m213n2/3 log 2/3 n log 0"/3 ~ n + (m + n) log n .

Similarly, we can show that we do not need the second phase of the partitioning
procedure for the algorithms presented in Sections 3-7. However, we do need if for
approximate half-plane range searching, constructing spanning trees with low
stabbing number, and simplex range searching.

Although this paper describes algorithms for several problems, which improve

previous, often randomized, techniques, there is no reason to believe that all the
algorithms presented here are close to optimal. Some of these problems that
deserve further attention are Hopcroft's problem, counting segment intersections,

red-blue intersection, and constructing spanning trees with low stabbing number.

One of the most intriguing open problems is whether there exists an O(n log n)
algorithm (or for that matter any algorithm faster than those given above) for

counting segment intersections, or for counting (or just detecting) red-blue
segment intersections. The "red-blue" version of such an algorithm would also be

able to detect an incidence between points and lines (Hopcroft's problem) in the

same time. Another interesting open problem is to obtain a faster algorithm for
constructing a spanning tree (or a family of spanning trees) with low stabbing

Partitioning Arrangements of Lines, II

number, because that will improve the

problems (as in [EGH*] and [A1]).

preprocessing time of various

571

other

Acknowledgments

I would like to thank my adviser Micha Sharir for encouraging me to work on this

problem, for several valuable discussions, and for reading earlier versions of this

paper. I am also thankful to Boris Aronov for helpful discussions. Thanks are also

due to two anonymous referees for their useful comments.

References

[A3]

[AS]

[AEGS]

[BO]

[a]

[Ca]

[Chl]

[Ch2]

[Ch3]
ICE]

[CEGS I]

[CEGS2]

[CG]

[CGL]

[A1] P. K. Agarwal, Ray shooting and other applications of spanning trees with low stabbing
number, Proceedings of the 5th Annual Symposium on Computational Geometry, 1989, pp.
315-325.

[A2] P.K. Agarwal, Intersection and decomposition algorithms for arrangements of curves in the
plane, Ph.D. Thesis, Dept. Computer Science, New York University, New York, August
1989.
P. K. Agarwal, Partitioning arrangements of lines: I. An efficient deterministic algorithm,
Discrete and Computational Geometry, this issue (1990), 449-483.
P. K. Agarwal and M. Sharir, Red-blue intersection detection algorithms with applications
to motion planning and collision detection, SIAM Journal on Computing 19 (1990), 297-322.
B. Aronov, H. Edelsbrunner, L. Guibas, and M. Sharir, Improved bounds on the complexity
of many faces in arrangements of segments, Technical Report 459, Dept. Computer Science,
New York University, July 1989.
J. Bentley and T. Ottmann, Algorithms for reporting and counting geometric intersections,
1EEE Transactions on Computers 28 (1979), 643-647.
K. Brown, Algorithms for reporting and counting geometric intersections, IEEE Transac-

twns on Computers 30 (1981), 147-148.
R. Canham, A theorem on arrangements of lines in the plane, Israel Journal of Mathematics

7 (1969), 393-397.
B. Chazelle, Reporting and counting segment intersections, Journal of Computer and Systems

Sciences 32 (1986), 156-182.
B. Chazelle, Lower bounds on the complexity of polytope range searching, Journal of the

American Mathematical Society 2 (1989), 637-666.
B. Chazelle, Private communication.
B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting line segments in the
plane, Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science,

1988, pp. 590-600. (Also to appear in Journal of the Association for Computing Machinery.)

B. Chazelle, H. Edelsbrunner, L Guibas, and M. Sharir, Algorithms for bichromatic line
segment problems and polyhedral terrains, Manuscript, 1989.
B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Lines in space: combinatorics,
algorithms and applications, Proceedinos of the 21st Annual ACM Symposium on Theory of

Computing, 1989.
[CF] B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in

geometry, Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer

Science, 1988, pp. 539-549.
B. Chazelle and L. Guibas. Fractional cascading: II. Applications, Algorithmica 1 (1986),

163-191.
B. Chazelle, L Guibas, and D. T. Lee, The power of geometric duality, BIT 25 (1985), 76-90.

572 P.K. Agarwal

[cw]

[Ol]

[Cl2]

[CEG*]

[cs]

[csv]

[D]

[EG]

[EGH*]

[EGSh]

[EGSt]

[EOS]

[EW1]

[EW2]

[GOS1]

[GOS2]

[HW]

[K]

[MS]

[Mal l

[Ma2]

[MW]

[Me]

[Mu]

B. Chazelle and E. Welzl, Quasi-optimal range searching in spaces with finite VC-dimension,
Discrete and Computational Geometry 4 (1989), 467-490.
K. Clarkson, New applications of random sampling in computational geometry, Discrete

and Computational Geometry 2 (1987), 195-222.
K. Clarkson, Applications of random sampling in computational geometry II, Proceedings

of the 4th Annual Symposium on Computational Geometry, 1988, pp. 1-11.
K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl, Combinatorial
complexity bounds for arrangements of curves and surfaces, Discrete and Computational

Geometry 5 (1990), 99-160.

R. Cole and M. Sharir, Visibility problems for polyhedral terrains, Journal of Symbolic

Computation 7 (1989), t 1-30.

R. Cole, M. Sharir, and C. K. Yap, on k-hulls and related problems, SlAM Journal on

Computing 16 (1987), 61-77.

F. D~vai, Quadratic bounds for hidden line elimination, Proceedings of the 2nd Annual

Symposium on Computational Geometry, 1986, pp. 269-275.
H. Edelsbrunner and L. Guibas, Topologically sweeping an arrangement, Journal of

Computer and Systems Sciences 38 (1989), 165-194.

H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, M. Sharir, J. Snoeyink, and E. Welzl,
Implicitly representing arrangements of lines or segments, Discrete and Computational

Geometry 4 (1989), 433-466.
H. Edelsbrunner, L. Guibas, and M. Sharir, The complexity and construction of many faces
in arrangements of lines and segments, Discrete and Computational Geometry 5 (1990),

161-196.
H. Edelsbrunner, L. Guibas, and G. Stolfi, Optimal point location in monotone subdivisions,
SIAM Journal on Computing 15 (1986), 317-340.

H. Edeisbrunner, J. O'Rourke, and R. Seidel, Constructing arrangements of lines and
hyperplanes with applications, SIAM Journal on Computing 15 (1986), 341-363.
H. Edelsbrunner and E. Welzl, Constructing belts in two-dimensional arrangements with
applications, SIAM Journal on Computing 15 (1980, 271-284.
H. Edelsbrunner and E. Welzl, On the maximal number of edges of many faces in an
arrangement, Journal of Combinatorial Theory, Series A 41 (1986), 159-166.
L. Guibas, M. Overmars, and M. Sharir, Ray shooting, implicit point location, and related
queries in arrangements of segments, Technical Report 433, Dept. Computer Science, New

York University, March 1989.
L. Guibas, M. Overmars, and M. Sharir, Counting and reporting intersections in arrange-
ments of line segments, Technical Report 434, Dept. Computer Science, New York

University, March 1989.
D. Haussler and E. Welzl, t-nets and simplex range queries, Discrete and Computational

Geometry 2 (1987), 127-151.
D. Kirkpatrick, Optimal search in planar subdivisions, SIAM Journal on Computing 12

(1983), 28-35.
H. Mairson and J. Stolfi, Reporting and counting intersections between two sets of line
segments, in Theoretical Foundations of Computer Graphics and CAD, ed. R. Earnshaw,
NATO ASI Series, F40, Springer-Verlag, Berlin, 1988, pp. 307-325.

J. Matou~k, Constructing spanning trees with low crossing numbers, to appear in
lnformatique Th~orique et Appliqu~e.

J. Matou~ek, Construction of s-nets, Discrete and Computational Geometry 5 (1990),
427-448.

J. Matot~k and E. Welzl, Good splitters for counting points in triangles, Proceedings of the

5th Annual Symposium on Computational Geometry, 1989, pp. 124-130. (Also to appear in
Journal of Algorithms.)

M. McKenna, Worst case optimal hidden surface removal, ACM Transactions on Graphics 6

(i987), 9-31.
K. Mulmuley, A fast planar partition algorithm, Proceedings of the 29th Annual IEEE

Symposium on Foundations of Computer Science, 1988, pp. 580-589.

Partitioning Arrangements of Lines, II 573

[PSI F. Preparata and M. Shamos, Computational Geometry: An Introduction, Springer-Verlag,

Heidelberg, 1985.
[STa]N. Sarnak and R. Tarjan, Planar point location using persistent search trees, Communica-

tions of the Association for Computing Machinery, 29 (1986), 669-679.
[STr] E. Szemer~di and W. Trotter Jr., Extremal problems in discrete geometry, Combinatorica 3

(1983), 381-392.
[W] E. Welzl, Partition trees for triangle counting and other range searching problems,

Proceedings of the 4th Annual Symposium on Computational Geometry, 1988, pp. 23-33.

Recei~,ed May 20, 1989, and in revised form January 5, 1990.

