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Abstract. In this paper we present efficient deterministic algorithms for various 

problems involving lines or segments in the plane, using the partitioning algorithm 

described in a companion paper [A3]. These applications include: (i) an 

O(m2/3n 2/3.10g 2/3 n-log ~t3 (mix~n) + (m + n) log n) algorithm to compute all inci- 

dences between m points and n lines, where o) is a constant < 3.33; (ii) an O(m2/3n 2/3. 

log 5/3 n. log °/3 (m/x/~) + (m + n) log n) algorithm to compute m faces in an arrange- 

ment of n lines; (iii) an O(n 4/3 log (°+2)/3 n) algorithm to count the number of 

intersections in a set of n segments; (iv) an O(n 4/3 log ("+2~/3 n) algorithm to count 

"red-blue" intersections between two sets of segments, and (v) an O(n 3/2 log o'+ ~ n) 

algorithm to compute spanning trees with low stabbing number for a set of n points. 

We also present an algorithm that, given set ofn points in the plane, preprocesses it, in 

time O(nv/-m log '°+1/2 n), into a data structure of size O(m) for n log n < m ~ n 2, so 

that the number of points of S lying inside a query triangle can be computed in 

O((n/x/~ ) log 3/2 n) time. 

1. Introduction 

In the first pa r t  of  this paper  [A3] ,  we showed that  

Theorem L1 [A3].  Given a collection ~ of n lines in the plane and a parameter 

1 <_ r < n, the plane can be partitioned into O(r 2) triangles, in time O(nr log n log"  r), 
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National Science Foundation Grant DCR-83-20085, and by grants from the Digital Equipment 
Corporation and the IBM Corporation. A preliminary version of this paper appears in the Proceedinos 
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so that no triangle meets more than O(n/r) lines of .(~ in its interior, where t~ is some 

constant < 3.33. 

This partitioning is useful to obtain divide-and-conquer algorithms for a variety 
of problems involving lines (or line segments) in the plane. Typically, an original 
problem involving the lines of L~ is split into O(r 2) subproblems, one per triangle in 
the resulting partitioning, each involving only O(n/r) lines of A ° meeting the 
corresponding triangle. (As mentioned in [A3], once we have such a partitioning of 
the plane, the lines intersecting the interior of each triangle, i.e., the set of lines 
involving each subproblem, can be easily computed in O(nr) time.) These subprob- 
lems are then solved either by recursive application of the partitioning technique, 
or, if the size of the subproblems is sufficiently small, by some different and direct 

method. 
In this second part of the paper we apply our partitioning algorithm to obtain 

fast algorithms for a variety of problems involving lines or segments in the plane. 
The problems that benefit from our algorithm have the common property that they 
can be solved efficiently using the random-sampling technique. Our algorithms for 
most of these problems have the same flavor. We divide the original problem into 
O(r 2) subproblems, as explained above, then solve each subproblem directly by a 
simpler algorithm, and finally merge the results of these problems. A considerable 
part of this paper is devoted to the discussion of these simpler algorithms, and to 
details of the merging. In several applications the merging is trivial (e.g., in 
problems (i), (iv), and (v) below), but in other applications it may require some 
extra nontrivial techniques. The following list summarizes the results obtained in 

this paper: 

(i) Computing incidences between lines and points (Section 2). Given a set of n 
lines and a set of m points in the plane, compute how many lines pass through each 
given point. (Alternatively, compute the lines passing through each point, or just 
determine whether any line passes through any point.) Edelsbrunner et al. [EGSh] 
have given a randomized algorithm for this problem whose expected running time 
is O(m2/3-Sn 213+26 + (m + n)log n), for any 6 > 0. A slightly improved, but still 

randomized, algorithm has been given in [EGH*]. We present a deterministic 

algorithm with O(m213n 2/3 log 2/a n log ~'/3 (mix~n) + (m + n) log n) time complexi- 

ty. Since the maximum number of incidences between m points 'and n lines is 
O(m2/3n 2/3 + m + n), our algorithm is close to optimal in the worst case. 

(ii) Computing many faces in an arrangement of lines (Section 3). Given a set of n 
lines and a set of m points in the plane, compute the faces in the arrangement of the 
lines containing the given points. Edelsbrunner et al. [EGSh] have given a 
randomized algorithm for this problem with expected running time 
O(m2/3-sn2/3+28+ n log n log m), for any 6 > 0. As in the case of the incidence 

problem, a slightly better randomized algorithm has been given in [EGH*]. We 

present a deterministic O(m2/3n 2/3 logS/3n log °'/3 (m/x/~) + (m + n) log n) algor- 

ithm, again coming close to optimal in the worst case (see CCEG*] for combinator- 

ial bounds). 
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(iii) Computing many faces in an arrangement of segments (Section 4). This is 

the same problem as the previous one except that now we have a collection of 

segments instead of lines. The previous best solution is by Eddsbrunner et al. 
[EGSh], which is randomized and has expected running time O(m 2/3- ~n 2/3 + 2~ + 

net(n) log 2 n log m), for any t$ > 0, where ~t(n) is a functional inverse of Ackermann's 

function. We present a deterministic algorithm with improved time complexity 

O(m2/an 2/3 log n log °'/3+ 1 (n/x/~) + n log 3 n + m log n). 

(iv) Counting segment intersections (Section 5). We give a deterministic 
O(n 4/3 log {o'+2):3 n) algorithm to count the number of intersections in a given 

collection of n segments; this is an improvement over Guibas et al.'s algorithm 
[GOS 1], which counts the intersections in O(n 4/3 + ~) randomized expected time, for 

any ~ > 0. 
(v) Counting and reporting red-blue intersections (Section 6). Given a set Fr of n, 

"red" segments and another set Fb of n b "blue" segments in the plane, count the 

number of intersections between F, and F b, or report all of them. (In this problem, 

we need to ignore the potentially large number of intersections within Fr or within 

Fb. ) The previous best solution is by Agarwal and Sharir [AS], which reports all K 

red-blue intersections deterministically in O((n~nbb + nbX/~, + K)log n) time, 
where n = n r + nb. We give a deterministic O(n 4/3 log (o'+2)/3 n) algorithm to count 

all red-blue intersections. It can also report all K red-blue intersections in time 
O(n 4/a log{o'+2)/an + K). 

(vi) Implicit point-location problem (Section 7). Given a collection of m points 

and a collection of (possibly intersecting) n triangles in the plane, find which points 

lie in the union of the triagles. This turns out to be a special case of a general 

problem of implicit point location in planar maps formed by overlapping figures. 

We present a deterministic algorithm with O(m2/an 2/3 log2/3n log 0'/3 (n/x/~)+ 

(m + n) log n) time complexity. 

(vii) Approximate half-plane range searching (Section 8). Given a set S of n 

points in the plane and a parameter (not necessarily constant) ~ > 0, preprocess 

them so that, for any query line ~, we can approximately count the number of 

points lying above E with an error of at most + en. We give an algorithm that 
preprocesses S, in time O((n/e) log n logo" (l/e)), into a data structure of size O(1/e 2) 

so that a query can be answered in O(log n) time. 

(viii) Constructing spanning trees with low stabbing number (Section 9). Given a 
set S ofn points in the plane, we present an O(n 3/2 log °'+ t n) algorithm to construct 

a family of k = O(log n) spanning trees : 1  . . . . .  ~'k of S with the property that, for 

any line E, there is tree ~ ,  such that ~ intersects at most O(x/-n ) edges of ~ .  

Moreover, with additional preprocessing of O(n log n) time and O(n) space, the tree 

.~  corresponding to a query line E can be determined in O(log n) time. The 

previously best-known algorithm is by Matou~ek [Mal] ,  which runs in 

O(n 7/4 log 2 n) time, and, moreover, produces a stabbing number O(x/~ log 2 n) 

instead of O(x/~). 
(ix) Space-query-time tradeoff in triangle range searching (Section I0). Given a 

set S of n points in the plane, preprocess it so that, for any query triangle, we can 

quickly compute the number of points contained in that triangle. We give an 
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algorithm with O((n/x/~) log  3/2 n) query time, using O(m) space. The preprocess- 

ing time is bounded by O(nx/~ log ~'÷ 1/2 n). Similar bounds have been obtained 

independently by Chazelle [Ch3]. 
(x) Overlappino planar maps. Given two planar maps P, Q, and a bivariate 

function Fe(x, y), FQ(x, y) associated with each of them, such that over each face of 
P the function Fp has some simple structure (e.g., it is constant, linear, or convex 
over each face), and similarly for Q, determine a point that minimizes Fe(x, y) - 
FQ(x, y). We show that if the maps satisfy certain conditions, then an optimal point 
can be computed in O(n 4/3 log ~°+ 2)/3 n) time, where n is the total complexity of the 

two maps. The details of this application can be found in [A2]. 

2. Computing or Detecting Incidences Between Points and Lines 

Consider the following problem (see Fig. 1): 

Given a set A a = {fl . . . . .  En} of n lines and a set P = {Pl . . . .  , Pro} of m points in 
the plane, for each point p~ compute the lines in A a passing through it. This is an 
extension of Hopcroft's problem which asks whether there is a point in P lying 

on a line in A a. 

Szemerrdi and Trotter [STr] showed that the maximum number of incidences 
between n lines and m points is ®(m2/Sn2/S + m + n) (a much simpler proof, with a 

substantially smaller constant of proportionality, appears in [CEG*]). Edelsbrun- 

ner et al. [EGSh] have given a randomized algorithm for computing all incidences; 
its expected running time is O(m2/3-an2/S+2~ + (m + n)log n), for any J > 0 (see 

also [CSY]). Like many other randomized algorithms of this kind, this algorithm 
can be made deterministic without any additional overhead, using Matougek's 

algorithm [Ma2]. A slightly faster randomized algorithm is given in [EGH*] with 
O(m2/3n 2/3 log 4 n + (m + n 3/2) log 2 n) expected running time, which however is not 

known as yet to admit such "cheap" determinization. In this section we first 

present a very simple algorithm whose running time is roughly m ~  log 1/2 n; this, 
combined with our partitioning algorithm, will yield a deterministic algorithm that 

is faster than the preceding ones. 

es ~ 
Ps 

Fig. 1. An instance of the incidence problem. 
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We can assume that rn < n 2, because otherwise we can compute all incidences in 

time O(n 2 + m log n) = O(m log n) by constructing the arrangement of .L a and 

locating in it each of the points. 
Divide the set P into t disjoint subsets P1 . . . . .  Pt, each of size at most Fm/t-]. For 

each P~, we compute the incidences between P~ and .~e as follows. Dualize the lines ~j 

to points f*, and the points pj to lines p*, so we have a set p* of I-re~t-] lines and a set 

~ *  of n points in the plane. Since duality preserves incidences, it suffices to 

determine the points of LP* lying on each line p*; this can be done by constructing 

the arrangement ~¢(P*), processing it for fast point location as in [EGSt], and 
locating in it each of the points of ~* .  The cost of all this is O(m2/t z + n log n) (see 

[EOS] and [EGSt]). Summing over all Pt's, the overall running time becomes 

((°;)) T(m, n) = O t + n log n = O  + n t l o g n  . 

For t = Fm/~/-n log n~, the total running time is 

T(m, n) = O(mv/n log x/2 n + n log n). (2.1) 

Next, we describe the main algorithm. First, partition the plane into M = O(r 2) 

triangles A1 . . . . .  AM so that the interior of each triangle meets O(n/r) lines of &a, for 

some r to be specified later. Let P~ (resp. &a) denote the set of points (resp. lines) 

lying inside (resp. meeting the interior of) the triangle A~; let n~ (resp. m~) be the size 

of ~ (resp. Pi). The sets £,e~ are computed by determining the triangles intersected 

by each line of ~ ,  as described in [A3], and the sets P~, are obtained, in time 
O((r 2 + m) log r), by locating each point of P in the planar subdivision formed by 

the triangles A i. The incidences between the lines and the points lying on the 

triangle boundaries can be easily computed in time O((m + nr) log n), once we have 

distributed the lines over the triangles. We then apply, for each triangle A~, the 

above algorithm to determine the incidences between P~ and ~e~ within A~. Since 

partitioning the plane takes O(nr log n logo" r) time (see Theorem 1.1), the total time 

T(m, n) spent in computing the incidences between n lines and m points is therefore 

at most 

M 

T(m, n) < ~. T(mi, ni) + O(r 2 log r + m log n + nr log n log ~' r) 
/=1 

M 

= ~, O(mi ~ log 1/2 ni + ni log hi) + O((m + nr log °' r) log n). 
i = l  

(2.2) 

Since ni = O(n/r), (2.2) becomes 

T(m, n) log 1/2 n. ~, mi + O((ra + nr logo" r) log n) 
iffil 

= O f  mx/~ log 1/2 n + m log n + nr log '° r log n)  

t J  / 
(2.3) 
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because ~7'=1 mi = m. Now choose 

m2,3 , 

r = m a x  log 2c°/3 
n ~/3 log x/a n (at/x/n) ) 

since m < n 2, we have r < n as required. Therefore (2.3) gives 

( ra ) 
T(m, n) = 0 mZ/3n 2/3 log 2/a n. log ~/a ~-~ + (at + n) log n . 

Hence, combining this with the case at >_ n 2, we have 

Theorem 2.1. Given a set of n lines and a set of m points in the plane, we can compute 

the lines passing through each point in time O(m2/3n 2/a log 2/3 n. log '°/a (m/x/~) + 

(m + n) log n). (In particular, we can determine whether any line passes through any 

point within the same amount of  time.) 

3. Computing Many Faces in Arrangements of Lines 

Next we consider the following problem: 

Given a set .~ = {:1 . . . . .  fn} of n lines and a set P = {Pl,--. ,  Pro} of at points, 
compute the faces of ~¢(~) containing one or tnore points of P. 

Clarkson et al. [CEG*] have proved that the combinatorial complexity 
of m distinct faces in any arrangement of n lines in the plane is O(m2/3n 2/3 + n) 

(see also [Ca]), and Edelsbrunner et al. [EGSh] have given a randomized 

algorithm to compute at distinct faces, whose expected running time is 
O(m2/3-~n2/a+2~+ n log n log m), for any 6 > 0. This algorithm can be made 

deterministic, without substantially changing its time complexity, using the orig- 

inal technique of Matougek [Ma2]. As in the case of the incidence problem, a 

slightly faster randomized algorithm, for large values of at, is presented in [EGH*] 
and has O(n a/2 log2n + m2/an2/a log 4 n) expected running time, but we do not 

know of any way to make it deterministic without substantially increasing its 

running time. We present a deterministic algorithm that computes these faces in 

time O(m2/3n 2/3 log 5/3 n log '°/3 (ra/x/n) + n log n). 

Similar to the previous section, we first give a slower O(mx/n log 2 n + n log n) 

algorithm for this problem and then, using the same divide-and-conquer technique, 

we obtain an algorithm with the asserted time bound. Without loss of generality we 

can assume that m < n 2, for otherwise the faces can be computed in time O(m log n) 

by constructing the entire arrangement ,d(L~). Our slower algorithm works as 

follows. 
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Fig. 2. 

/el 

p* 

e~ 

A face in an arrangement of lines, and its dual. 

Partition the set P into t disjoint sets P1 . . . . .  P, so that P~ contains mi < [m/t-] 

points. We show how to compute the faces of ~¢(.La) containing the points of Pt, 

and repeat this procedure for all i < t. Let L,e* denote the set of points dual to the 

lines La, and let P* denote the set of lines dual to the points in P~. Let f be a face of 

ed(La) containing some point p. For each line E e .W bounding f, its dual point /*  is 

such that the dual line p* can be moved (actually rotated around some point) to 

touch ~*, without crossing any other point of £a,  while rotating. In other words, 

the dual of the face .f containing a point p corresponds to the portions of the 

convex hulls CH(.W* c~(p*) +) and CH(Le* c~(p*)-) between their common 

tangents, where (p*)+, (p*)- denote the half-planes lying respectively above and 

below p*, as shown in Fig. 2. Therefore, it suffices to describe how to compute the 

convex hull of the points in La* lying above or below the line p* for each line 

p* ~ P*. 
First, compute the arrangement ~¢(P*). Let ~ denote the dual of the planar 

graph formed by ~¢(P*), i.e., the vertices of ~ correspond to the faces of ~¢(P~'), and 

there is an edge %~ between two vertices v~, v~ of ~ if the corresponding faces fl, fk 
of ~¢(P*) share an edge ejk in ~¢(P*) (see Fig. 3). Let £a~ ~_ ~ ,  denote the set of 

points lying in the face f~ E ~¢(P*). For each ,W*, compute its convex hull CH(.W~). 

We associate A a* and its hull with node vl of ~ .  
Let 3- denote any spanning tree o f ~ ;  it can be easily computed in time O(m2~). If 

o~- contains a subtree of J ' ,  all of whose nodes are associated with empty subsets of 

Z~a*, we remove that subtree from J-. It is easily seen that a line p* ~ P~' intersects at 

most m~ edges of 9- (in the sense that the two faces of ~¢(P*) connected by such an 

edge lie on different sides of p*). Perform a depth-first search on 3" and connect the 

~7 

Q 

Q 

£4 

Fig. 3. 

/~, /P:, 

Arrangements .~(.L,¢), .~(P~), and the dual graph ~. 
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Fig. 4. 

CH(£;) 

1) 2 UJ+I ~J+l 1)2+1 U)+ 1 

, ~ 

$ 

":-~) ~-'  (u) 1)~-~ (~1 1)~-~ (d) 1)~-~ (el 

Transforming a vertex vj of I-1: (a) vertex vj of 11, (b) vj is deleted from H, (c)-(e) v~ is replaced by 
CH(.W*). 

vertices of 3- in the order they are first visited by the depth-first traversal; this gives 

a spanning path H with the property that a line p* e P* intersects at most 2m~ edges 

of H (in the same sense as above, see [CW]), and that each edge of H is intersected 

by exactly one line of P*. Next we construct a spanning path W of ~L~'* from H by 

modifying each vertex v~ of H, depending on the cardinality of CH(~*) .  There are 

three cases to consider: 

(i) ICH(£a*)I = 0: remove the vertex o r and the edges ~o i_ i,j, tpj.j+ 1 from H, 

and add the edge ~0~_1,j÷ 1 to FI (Fig. 4(b)); this shortcuting may be 

repeated several times if needed, producing at the end a shortcut edge q~kk'" 

(it) I CH(Aa*)I < 1 : replace the vertex v~ by CH(,W) ~) (Fig. 4(c)). 

(iii) I CH(&a*)l > 2: let * * _ dx, d r be two adjacent vertices of CH(&e*). Replace vj by 

CH(.W*), make the edge tpj_ t, j (resp. q~.j+ 1) incident to d* (resp. d*) (Fig. 

• * CH(Ze*) 4(d), (e)), and if I CH(-W*)I > 2, then remove the edge dx dy from 

(Fig. 4(e)). 

It is easily seen that the resulting structure is a spanning path ~ of La* (see Fig. 5). 

Lemma 3.1. A line p* 6 P* intersects at most 2rot edges of rg. 

Proof. Let p* e P* be a line intersecting s edges of H. We prove that p* intersects 

at most s edges of ~, by showing that each intersection between p* and an edge of c~ 

can be charged to an edge ~o of II intersecting p*, in such a way that no edge of II is 

charged more than once. There are three types of edges in c~: 

(i) edges that were already present in II  (e.g., f ' d *  in Fig. 5), 

0 ~- - " 0  

7- 17 C 

Fig. 5. Spanning tree .9" and spanning paths H and ~ for points of L~'* shown in Fig. 3. 
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(ii) edges of C H ( ~ * )  for some vj ~ 3" (e.g., ~ in Fig. 5), and 

(iii) edges that were introduced while removing a vertex of II (e.g., * * d4 ds in 
Fig. 5). 

We charge an intersection of P* with an edge of type (i) to the edge itself. Edges of 

type (ii) do not intersect p*, because C H ( ~ * )  lies inside a face of ~'(P*). Finally, if 

p* intersects an edge q~k.k" of type (iii) (i.e., a shortcut edge introduced while deleting 

vertices from H), then p* must intersect at least one edge q~j.~+l of H for 

j = k, k + 1 . . . . .  k' - 1. We can therefore charge this intersection to ~0j.~+ 1. It is 

easily seen that we charge only those edges of H that intersect p* and no edge is 

charged twice. Hence p* intersects at most s < 2m~ edges of ~J. []  

Edelsbrunner et al. [EGH*]  have shown that if T is a spanning path of a set 

S of k points in the plane, then T can be preprocessed in O(k log k) time so that, 

for any line d intersecting at most s edges of T, CH(S c~ d ÷) can be computed 

in O(s log 3 k) time. Since in our case k = n and s < 2m~, CH(L~'* c~ p*), for 

p* ~ P*, can be computed in time O(m i log 3 n), which implies that the total time 

spent in computing the faces in d (~e )  containing the points of P~ is bounded by 
O((m2/t 2) log 3 n + n log n). 

However, Edelsbrunner et al.'s procedure returns only an implicit representa- 

tion, which they referred to as the "necklace representation," of the desired faces. 

That is, the output of their algorithm is a list of pointers, each pointing to some 

node storing a disjoint portion of the convex hull, intermixed with "bridging edges" 

that connect these portions in the overall hull. If we want to compute each desired 

face explicitly, we have to traverse all the hull portions that the algorithm points to, 

and the time to compute a single face f j  becomes O(m i log a n + k j), where kj is the 

number of edges in f~. Therefore, the total time spent in computing the faces 

containing the points of P~ is O(m 2 log a n + n log n + ~p~p,  kj). But in the worst 

case ~p~p,k~ could be as large as ®(min~), e.g., when all of the points lie in the same 

face, which happens to be bounded by all the lines of L~'. This bound is too large for 

our purposes, which means that we cannot afford to output the same face too many 

times. We circumvent this problem by modifying the above algorithm as follows. 

Suppose we have already computed the faces containing Pl . . . . .  pj of P ,  and we are 

about to compute the face fj+ 1 containing Pi+ 1. Before computing this face we first 

check whether p~+ 1 lies in any of the faces computed so far; we compute f j+ 1, as 

described above, only if it is indeed a new face. Since each face of ~¢(.~) is a convex 

polygon, we can easily test p j+ 1 for containment in each of the already-computed 

faces of d(L,e) in O(log n) time, so the total time needed to decide whether fi+l 

should be computed is O(j log n). Thus, the total time required to compute the 

collection S of the desired faces is 

O(m,,og3 o ÷j,ogn)÷ O( Z O(.log.) 
j = 1 \ f j ¢ S  
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Edelsbrunner and Welzl JEW2] (see also [Ca]) have proved that the complexity of 

m distinct faces in an arrangement of n lines is O(mx/~). Therefore 

T(ml, n) = O(m~ log 3 n + n log n) + O(mlx/~). 

Since mi < [m/t'], summing over all P~'s we obtain 

T ( m , n ) =  O ~ - l o g  a n + n l o g n +  
i = 1  

C h o o s i n g  t = [-(m log  n)/x/~-], w e  obtain T(m, n) = O(mv/n log s n + n log n). 

Remark 3.2. We believe that using, in the above procedure, the algorithm of 

[EGH*] of merging the convex hulls to obtain the explicit face representation is an 

overkill, and a simpler, more naive solution should exist. But at present we do not 

know how to simplify the algorithm. 

Now we describe the main algorithm. As in the previous section, we partition the 

plane into M = O(r 2) triangles A1 . . . . .  AM each of which meets O(n/r) lines of ~ .  

Let Pi (resp. L~'~) denote the set of points of P (resp. lines of ~ )  contained in (resp. 

meeting) A~, and let f~(p) denote the face of ~¢(~q'i) containing a point p. The zone of 

A~ in ~¢(.~et) is defined as the collection of the face portions f n A t, for all faces 

f e ~¢(~), that intersect the boundary of At (see Fig. 6). Clarkson et al. [CEG*] 

have observed that the total number of edges in the zone of A t is O(n/r) (see also 

[CGL] and [EOS], where a zone is defined with respect to a half-plane). If a face 

f~(p) is fully co~ained in the interior of A t, then f~(p) = f(p). Otherwise if f~(p) 
intersects the boundary of A t, then it is a face of the zone of A t. Moreover, if a face 

f e s¢ (~ )  does not lie in the interior of a triangle A,, it is split into two or more 

pieces, each being a face in the zone of some triangle. Also, such a face f intersects a 

triangle At if and only if f is a face in the zone of A,. Thus, all the faces in d ( ~ )  

containing the points of P can be obtained by computing, for every A~, (i) the faces 

of ~¢(.~et) that contain the points of P~, and (ii) the zone of At. The faces of ~¢(~e) 

(containing points of P) that are split among the zones, can be easily glued together 

by matching their edges that lie on triangle edges. 

Fig. 6. Zone of a triangle Al. 
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Edelsbrunner and Guibas lEG]  have given an O(n log n) algorithm to compute 

a zone with respect to a half-plane in an arrangement of n lines. The same 

algorithm can be applied to calculate the zone of each A~. As for computing the 

faces that lies in the interior of A,  we use the simplified algorithm described above. 

Thus, the total time spent in processing A~ is O(m~x/~ log 2 n~ + n i log n3. Finally, 

the total time spent in merging the zones is O(nr log n) because zones of two 

different triangles do not intersect, and each zone has O(n/r) edges. Hence the total 

time T(m, n) spent in computing m distinct faces in an arrangement of n lines in the 

plane is (provided m < n 2) 

T(m, n) = 
M 

O(mix/~ log 2 ni + nt log ni) + O(nr log n) + O(nr log n logo, r) 
i=l 

= r l°g2 n ~ mi + nr log n + O(nr log n log °, r) 
i=1 

( becauseni<-n-andM=O(r2))r 

= o ) ~ X//~ log 2 n + nr log n log ~ r , 

because ~7'=1 mi = m. For 

( m 2/3 log 2/3 n } 

r = maX~nl/3 log 2o,/3 (m/x/~), 2 , 

the above bound becomes 

T(m, n) = O(m2/3n2/31ogS/3 n logo,/a m-m-~ + n log n). 
.,/n 

Combining this with the trivial bound O(m log n), for m > n 2, we obtain. 

Theorem 3.3. Given a set of n lines in the plane, we can compute the faces of its 
arrangement that contain m oiven points in time 

O(m2/3n 2/3 log 5/3 n log 0,/3 (m/~/n) + (m + n) log n). 

4. Computing Many Faces in Arrangements of Segments 

Consider the following problem: 

Given a set ~ = {el . . . . .  en} ofn segments and a set P = {Pt . . . . .  Pro} ofm points, 

compute the faces of ~(f¢)  containing the points of P. 
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Aronov et al. I'AEGS] have shown that the combinatorial complexity of m 

distinct faces in an arrangement of n segments is bounded by 

O(m2/3n 2/3 + n~(n) + n log m). 

Edelsbrunner et al. [EGSh] have given a randomized algorithm to compute m 

distinct faces in an arrangement of n segments whose expected running time is 
O(m2/3-~n2/3 + 2~ + n~(n) log m log 2 n), for any 6 > 0. Our algorithm for computing 

many faces in an arrangement of lines cannot be easily extended to the case of 

segments, so we present an alternative technique that proceeds by applying the 

partitioning algorithm in the dual plane rather than in the primal. Our algorithm is 

closely related to the proof of the combinatorial bound given in IAEGS]. Again we 

assume that m < n 2 for otherwise we can compute the laces in O(m log n) time by 

constructing the entire arrangement .~¢(f~). 
Let ~ denote the line containing the segment e of ~. Dualize each line f to a 

point ~*, and each point p of P to a line p*; this yields a set P* of m lines, and a set 
.£a* of n points in the dual plane. Partition the dual plane into t = O(r z) triangles 

A~ . . . . .  A' t so that no triangle meets more than O(m/r) lines of P*. By Theorem 1.1, 

this can be done in O(mr log m log '° r) time. If a triangle A; contains nl > n/r 2 points 

of ~* ,  split it further into [-nir2/n -] triangles, none of which contains more than n/r 2 
points. Clearly, the distribution of the points of ~e* among the triangles and the 

further partitioning of the triangles can be done in O(n log n) time. Let A 1 . . . . .  A M 

denote the set of resulting triangles; we still have M = O(r2). Let Z,e* denote the set 

of points contained in A i, and let P* denote the set of lines meeting A~. Let fqi 

denote the set of segments corresponding to the points .£~'*. If a line p.* does not J 

meet A~, then p~ lies either above all lines containing the segments of fq~ or below all 

such lines, which implies that pj lies in the unbounded face of ~¢(f~). Hence, for 

each subcollection f~, it suffices to compute the unbounded face of d ( f ~ )  and the 

faces that contain the points of P~. As a matter of fact, we compute the entire 

arrangement ~qC(cg~) in time O(n2/r4), and select the desired faces from it. Let fi(P) 

denote the face of ~¢(f~i) containing the point p. Note that the face f (p )  of ~ ' (~)  

containing p is the connected component of AIM-- 1 ft(P) containing p. Therefore, for 

each p e P~, we have to "merge", i.e., compute the connected component containing 

p of the intersection of, all M corresponding faces. 

Recall that our algorithm [A3] first computes r approximate levels, which are 

disjoint polygonal chains with a total of O(r 2) vertices, and then triangulates each 

"corridor" lying between two adjacent polygonal chains. We construct a binary 

tree ~- of height H = O(log r) whose leaves correspond to these triangles and 

whose root corresponding to the enclosing rectangle R (see [AEGS]). We first 

construct a binary tree 5 c, as described in [AEGS], for each corridor C on the set 

of triangles lying in C so that the preorder traversal of 3-c visits the leaves (i.e., the 

triangles in C) in the order in which they appear along C from left to right (see Fig. 

7). Binary tree 3- is then constructed with the trees ~'c as its leaves, in a similar 

manner. 

Each node v of ~- is associated with a simply connected region ~v, which is the 

union of the regions associated with the leaves of the subtree ~-~ of 3" rooted at v 

(the construction of ,~- implies that each @v is simply connected). For each node v 
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T I  

~ "  , . ~ , :  ^ ' .  0, z x , . "  / , ,  

1 i 

Fig. 7. 3" c = T~ and ~-. 

of .~', let ~o = UA,~-~qSi and ~v = Ua,~-~,~ Pi. Let no = l(av[ and rn o = Ieol- 
Observe that any point p ~ P - P~ lies either above all the lines containing the 

segments of f#~ or below all these lines, and therefore all these points lie in the 

unbounded face of ~g(~q~). Let w and z denote the children of the interior node v. It 

is easily seen that Po = Pw w P~. For every node v of 3-, we compute the unbounded 
face of d((q~) and the faces containing the points o fP  o. Let F o denote the set of these 

faces and let R~ denote the total number of edges in the faces of Fo. Note that the 

face fv(P) of M(@~) is the connected component of fw(P) n £ (p)  that contains the 

point p, where fw(P) (resp. f~(p)) is the face of M(f#w) ( resp. .~(~))  containing the 

point p. Thus if we have already computed Fw and F~, then F~ can be computed by 

applying the "red-blue merge" described in [EGSh]. Let ~ o  denote the time spent 

in merging F~ and Fz. It follows from the analysis of [EGSh] that 

~ l  v = O((R o + m v + noo~(no) ) log no). (4.1) 

Therefore, the total time ~ (m,  n) spent in merging the faces is 

Jtl(m, n) = ~ O((R v + m v + n~ot(no)) log no) 

H 

= ~,, ~ O((R~ +mo + nook(no)) log no) (4.2) 
i= l h(v)=i 

where h(v) is the height of v. But it has been proved in [EGSh] that 

R~ < R W + R~ + 4my + 6n~. (4.3) 

Let q/o (resp. ~ )  denote the set of leaves (resp. interior nodes) in the subtree ~o- If 

h(v) = i, then by (4.3) 

Ro-< E R . + 4  X m~+O(n~. i ) ,  
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where the last term follows from the fact that )-'.x n~, over all nodes at the same level 

of ~'-~, is n~, and the height ofv is i. Let k~ = t~1 denote the number of leaves of ~r~. 

As shown in [AEGS], the special way in which ~ was constructed guarantees that 

ckvm 
my < + 1, (4.4) 

r 

where c is some constant > 0. Moreover, for each leaf u of ~,, In~l = O ( n / r 2 ) .  

Therefore R, = O(n2/r4), and 

Rv=O O k ~  + 

which implies that 

¢¢[(m, n) = ~ ~ + ~, + nv(~t(n) + i) log n . 
/ / 

It can be easily proved that 

kv=O(r2), ~ n o = n ,  and ~ ~ kz=O(ir2). 
h(v) = i h(v) = i h(v) = i • ~ ~ 

Therefore 

Jr(m. n)= ,=~1 0(( n~+r ~ imr+ n(~t(n)+ i)) log n) 

O((~,o~+r. ~'~"°~r+'~+°r"°~ r),o~ ~) 

because H = O(log r). 
Now going back to the original problem, we spent O(mr log m log '° r) time in 

partitioning the plane into M triangles, and O(n2/r 4) time in constructing ~¢(f~i) for 

each At (see [EOS]). Thus, the total time T(m, n) spent in computing m distinct 

faces of an arrangement of n segments in the plane is at most 

n 2 

o((~ ,o~,~  ~ ,  ,o~., ~ ~ mr, ~o~ r t ~o~ ~t 
O((~ ~ lo:  ~ r ~ ~n,  ~ ~,o~ r I lo~ ,o~ r I 



Partitioning Arrangements of Lines, II 547 

Hence, by choosing 

m n2,3 } 
r = max 1/3 log~,- 1~/3 (n/x/~) '  2 , 

we obtain 

T(m, n) = O(m2/3n2/a log n logt2O+ l)/3 n n ) + nlog nlog 2 ~ + mlog n 

= O(m2/3n2/31og n log'2'~+1)/3 ~ m  + n log3 n + m log n ). 

Theorem 4.1. The faces of an arrangement of n line segments, which contain m given 
points, can be computed in time 

O( m2/3n2/310g n lOg'2°+ l'/3 n ) X / ~ + n l o g  3 n + m l o g n  . 

Remark 4.2. If we partition A'i into Fn~/(x/~ log 1/2 r)-] triangles (instead of 

Fn~r2/n-]), each containing at most x ~ l o g l / 2 r  points of La*, and choose 

r = max{(n2/a/m 1/3) log 2~/a- 1 ( n / ~ ) ,  2}, then the running time of the algorithm 

can be improved slightly to 

O(m2/3n 2/3 log n log °'/3 + l _ _  
n ) 

x / ~ + n l o g  3 n + m l o g n  . 

5. Counting Segment Intersections 

In this section we consider the following problem: 

Given a set f# = {e t . . . . .  e,} of n line segments in the plane, we wish to count the 
number of intersection points between them. 

This is a variant of one of the most widely studied problems in computational 
geometry, namely that of reporting all intersections (see [BO], [B], [Chl] ,  and 
[CE]). The recent algorithm of Chazelle and Edelsbrunner ICE] reports all k 
intersection points in time O(n log n + k) using O(n + k) space. Although it has 
optimal running time, it requires quadratic working storage in the worst case. 

Guibas et al. [GOS2] gave an O(n 4/a+~ + k) randomized algorithm, for any 6 > 0, 
using only O(n) working storage (see also [C12] and I-Mu]). The only algorithms 
known for counting the intersection points in time that does not depend on k are by 
Chazelle I-Chl] and by Guibas et al. [GOS2]. The latter algorithm is faster but 
randomized, and has expected running time 0(n4/3+6), for any 6 > 0. We modify 
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Guibas et al.'s algorithm to give a slightly faster and deterministic algorithm, 

although the space requirement goes up roughly to n 4/a. Their algorithm relies on a 

procedure that, for a given triangle A, counts the number of intersection points 

contained in A in O((m2+ n) log n) time, where n is the number of segments 

meeting A, and m < n is the number of segments having at least one of their 

endpoints inside A. For the sake of completeness, we briefly overview this 

procedure because we also make use of it. 

Partition the segments of f# meeting A into two subsets: 

(i) f¢l: "long" segments of f~ whose endpoints do not lie inside A. 

(ii) ~ :  "short" segments of f# having at least one endpoint inside A. 

There are three types of intersections to be counted: 

• "Short-short" intersection: intersections between the segments of fg~. 

• "Long-long" intersections: intersections between the segments of ~ .  

• "Long-short" intersections: intersections between a segment of (~ and 

another segment of f~. 

Counting Short-Short Intersections. The Short-short intersections can be 

counted in O(m 2) time by testing all pairs of segments of (#~. 

Counting Long-Long Intersections. Let f~ be the set of lines containing the 

segments of ~ .  Since the segments in ~ do not have their endpoints inside A, the 

number of long-long intersections is the same as the number of intersections of 8~ 

lying in the interior of A. By Lemma 3.1 of the first part of this paper (see [A3]), the 

latter quantity can be computed in time O(n log n). 

Counting Long-Short Intersections. For every segment e e f~s, let ~ denote e n A; 

and ~s = {~[e e (~s}. Let fgi denote the set of lines containing the segments of ~l. 

It clearly suffices to count, for each E e ~ ,  the number of intersections between f 

and f~. 
Dualize each segment ~ e (~s to a double wedge e*, and construct the arrange- 

ment 9f ~ of these double wedges. For any double wedge e*, each face f of A~ is 

either contained in e* or does not intersect e*. The weight of a face f is the number 

of double wedges containing f ;  the weights of all faces of ~ can be determined 

while constructing 9f ~. 
A line d e ~l intersects a segment ~ e ~ if and only if the point d* lies in the 

double wedge e*. Thus, for every segment e in f~l, the number of segments in ~ 

intersecting e is equal to the weight of the face in A~ containing the point d*. 

Therefore, we determine the number of segments intersecting d by locating d* in .~. 

Computing A~ and preprocessing it for fast point-location queries can be done in 

time O(m 2) [EOS], [EGSt], so all long-short intersections can be computed in 

time O(m 2 q- n log n). 

The above discussion implies that all intersection points of @ contained in A can 

be counted in O(m 2 + n log n) time. The time complexity of the above procedure 

can be improved to O(m~/n log n + n log n) by partitioning ~s into Fm/x/n log n]  
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subsets of size at most x/n log n each, and counting the number of intersection 

points between each of the subsets and (9~. 

Next we describe the main algorithm. Partition the plane into M = O(r 2) 

triangles A1 . . . . .  A M, each meeting at most O(n/r) lines containing the segments of 

f~. Using the algorithm described above, we count the number of intersections 

contained in each A+, for i < M, and add up the results. If m+ denotes the number of 

endpoints lying inside Ai, the time spent in counting intersections within A~ is 

O(m~v/n/r log 1/2 n + (n/r) log n). Using the same analysis as in previous sections, 

the total time of the algorithm is 

~, O(mi ~ .  log 1/2 n)  + O(nr log n log °' r) 
i = 1  

/ ) = O~,r- ~ log 1/2 n + nr log n log ~ r 

because ~ =  1 mi < 2n. Hence, by choosing r = ['nl/3/log (2~+ 1)/3 n-I, we obtain 

Theorem 5.1. Given a set of  n line segments, their intersection points can be counted 
in time O(n +13 log t~+ 2)]3 n) and O(n4/a/log (20'+ 1)/3 n) space. 

Remark 5.2. We can combine this algorithm with the algorithm of I'CE] that 

computes the number of intersections k in time O(n log n + k). That is, we first run 

the algorithm of ICE] and stop it as soon as the number of intersections exceeds 

n 4/3 10g (~+2)/3 n. Then we use our algorithm. We thus have 

Corollary 5.3. The number of  k intersections between n line segments can 
be counted in time O(min{n log n + k, n +/3 log ~'+2~/3 n}) and space 
O(min{n + k, n+/3/log ~2'°+ 1~/3 n}). 

6. Counting and Reporting Red-Blue Intersections 

Next, we consider a variant of the segment intersection problem: 

Given a set F r of n r "red" line segments and another set F b of nb "blue" line 

segments, count or report all intersections between Fr and Fb. 

Let n = n r + rib. Mairson and Stolfi I-MS] gave an O(n log n + K) algorithm to 

report all K red-blue intersections, when red-red and blue-blue intersections are 

not present. The algorithm of Chazelle and Edelsbrunner ICE] for reporting 

segment intersections can also be applied to report all red-blue intersections in this 

special case. However, in the general case these algorithms cannot avoid encounter- 

ing red-red and blue-blue intersections. For  the general case, Agarwal and Sharir 

[AS] presented an O((n,X/~b + nbx//~ + K) log n) algorithm to report all K 
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red-blue intersections. They showed that a restricted version of this problem, in 

which it is only required to detect a red-blue intersection, can be solved in 

O(n 413 ÷~) (randomized expected) time, for any 6 > 0, by reducing it to the problem 

of computing at most 2n faces in ~ (F r )  and in ~(Fb).  As for the counting problem, 

in the absence of monochromatic intersections, Chazelle et al. [CEGS1] have 

developed an O(n log n) algorithm to count all red-blue intersections (see also 

[CEGS2]). In this section we present a n  O(n 4/3 log ~°'+ 2)/3 n) algorithm to count all 

red-blue intersections in the general case, using roughly n 4/3 space. Our algorithm 

actually computes, for every red segment e, the number of blue segments intersect- 

ing e. The algorithm can be modified to report all K red-blue intersections in time 
O(n 4/3 log ~'+2)/3 n + K). 

As in the previous section, we first consider a restricted version of the problem. 

Let F r and F b be two sets of segments as defined above, all meeting the interior of a 

triangle A, such that m of these segments contain at least one endpoint inside A; we 

wish to count the number of red-blue intersections lying inside A. We describe an 

O((m 2 + n) log n) algorithm that, for every red segment e, counts the number of 

blue segments intersecting e, and can be modified to report all red-blue intersec- 

tions with O(1) overhead per intersection. The algorithm proceeds as follows: 

Partition the segments of Fr and F b into four subsets: 

(i) A: "long" segments in Fr whose endpoints do not lie inside A; let IAI = a. 

(ii) B: "short"  segments in Fr having at least one endpoint inside A; let Inl = b. 

(iii) C: " long" segments in F b whose endpoints do not lie inside A; let I CI = c. 

(iv) D: "shor t"  segments in F b having at least one endpoint inside A; let IDI -- d. 

Note that a + c = n - m and b + d = m. We have to count (or report) four 

types of red-blue intersections 

• Intersections between A and C, 

• intersections between A and D, 

• intersections between B and C, and 

• intersections between B and D. 

Our approach is similar to the one used by Guibas et al. [GOS2] for counting 

segment intersections, as described in the previous section. 

Intersections Between A and C. For a segment e e A u C, its intersection points 

with OA are called the endpoints of e. Let S denote the set of endpoints of segments 

in A u C sorted along OA in clockwise direction, starting from one of its vertices v. 

Let a, b ~ S be the endpoints of a red segment e with a appearing before b in S. 

Similarly, let a', b' be the endpoints of a blue segment e'. It is easily seen that e 

intersects e' if a, b, a', and b' appear in one of the following two orders: 

(i) a, a', b, and b' (see Fig. 8(a)), or 

(ii) a', a, b', and b (see Fig. 8(b)). 

For  each red segment e, we show how to count red-blue intersections along e. Scan 

the boundary of A in clockwise direction. When we encounter a blue segment for 

the first time, we insert it on top of a stack, maintained as a binary tree ~ ,  and when 
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Fig. 8. Intersections between A and C. 

it is encountered for the second time, we delete it from ~.  On the other hand, when 

we encounter a red segment e for the first time, we do nothing, but when we 

encounter it for the second time, we count the number of (blue) segments in the 

stack that were inserted after encountering the first endpoint of e. This gives the 

number of type (i) intersections between e and C. Type (ii) red-blue intersections 

can be counted in a symmetric way by scanning OA in counterclockwise direction. 

We leave it for the reader to verify that this algorithm can be easily modified to 

report all red-blue intersections between A and C. 
For each segment e E A, we spend O(log n) time, therefore the total time 

spent in counting (resp. reporting all KAc) such red-blue intersections is 

O((a + c) log(a + c)) = O(n log n) (resp. O(n log n + Kac)). 

Intersections Between A and D. For every e ~ D, let ~ denote e m A; and let 
i5 = {Fie E D}. Let g denote the set of lines containing the segments of A, and let 

A* denote the set of points dual to the lines of A. Let £e denote the set of lines dual 

to the endpoints of the segments in/]i. Construct the arrangement ~¢(La). For each 

: ~ .~, we count the number of intersections between # and/]i by locating the point 

g* in ~1(~), as in Section 5. The total time spent in counting these intersections is 

easily seen to be O(ra 2 + n log n). 
As for reporting the intersections between A and D contained in A, let O(f) 

denote the set of double wedges dual to the segments of/]i containing a face f of 

~1(~). If two faces ./'1 and f2 share an edge ~, contained in a line f 6 .~, then 

6r = ~O(fl)~ ~O(f2) is the set of segments having dual of : as an endpoint? 

Therefore by first constructing the arrangement ~¢(LP), and then locating each 

point of A* in ~1(~), we can report all Kao intersections between A and D 

contained in A, in time (m 2 + n log n + ~1671 + KAo). Thus, it suffices to bound 

~e~c(.~)16el. Suppose the segments of ~ have t < 2d distinct endpoints and v~ 

segments are incident to the ith endpoint. Obviously, ~[= ~ v i = 2d and, for each 

line : ~ ~ ,  there are t edges of s¢ (~)  contained in : ,  therefore 

t 

E IcS~l = E tv ,~  2d z. (6.1) 

Hence, the total time spent is O(n log n + m 2 + KAD ). 

x We use A (~ B to denote the symmetric difference of sets A and B. 
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Intersections Between B and C. If we just want to report or count the total 

number of intersections between B and C contained in A, we can use the same 

procedure as in the previous case. But if we want to count the number of red-blue 

intersections for each red segment separately, we need a different technique. 

Let/~ = {e c~ Ate E B}, and let B* denote the set of double wedges dual to the 

segments in/~. Let C denote the set of lines containing the segments of C, and let C* 

denote the set of points dual to the lines in (~. The number of intersections between 

a segment e e/~ and C is equal to the number of points of C* in the double wedge 

e*. Therefore, for every double wedge, we want to find the number of points of C* 
lying in it. This can be done in time O(b 2 + c log(b + c)) = O(m 2 + n log n), using 

the algorithm described in Edelsbrunner et al. [EGH*]. 

Intersections Between B and D. For every segment e E B, we can determine the 

segments of D intersecting it by testing all such pairs of segments. This takes O(m 2) 

time. 

Thus, for every segment in Fr, we can count the number of blue segments 

intersecting it inside A in time O(m 2 + n log n), and we can report all red-blue 

intersections inside A within the same time plus O(1) overhead per intersection. The 

running time can be improved to O(mv/n log 1/2 n + n log n) by partitioning the 

collection of short segments (that is B u D) into Fm/x/n log n'] subsets of size 

x/n log n each, and then repeating the above procedure for each subset and the 

entire A w C. 
Going back to the original problem, we partition the plane into O(r 2) triangles, 

each meeting at most n/r lines containing the segments of Fr u F b. Using the 

algorithm described above, count (resp. or more generally report all K~) red-blue 

intersections within the ith triangle in O(m,x/n ~ log 1/2 (n/r) + (n/r) log (n/r)) (resp. 

O ( m ~ x / ~ l o g  1/2 (n/r)+ (n/r) log(n/r)+ K~)) time, where mi is the number of 

segment endpoints falling inside the ith triangle. Following the same analysis as in 

Section 5, we obtain 

Theorem 6.1. Given a set of  n r "red" line segments and another set of  n b "blue" line 

se#ments, we can count, for each red seoment, the number of  blue seoments 

intersecting it in overall time O(n 4/3 log (~'+2J/3 n) usin# O(n4/3/log (2~+1)/3) space, 

where n = nr + rib. Moreover, we can report all K red-blue intersections in time 
O(n 4/3 log (c0+2)/3 n q- K). 

Remark 6.2. (i) Our algorithm uses roughly n 413 space only for partitioning the 

plane into O(r 2) triangles; all other stages of the algorithm require O(n) space. If we 

choose r = 0(1) and solve the problem recursively as in [GOS2], we can reduce the 

space complexity to O(n), but the running time increases to O(n 4/3+ a), for any ~ > 0 

(which can be made as small as we wish by choosing r sufficiently large). 

(ii) If we allow randomization, then using the random-sampling technique of 

[CI 1 ] or of [HW], we can count all red-blue intersections in O(n 4/3 log n) expected 

time, and can report all K red-blue intersections in expected time O(n 4/3 log n + 

K). We leave it for the reader to fill in the missing details. 
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(iii) Note that if F r is a set of lines, then we have to consider only the first two 

cases, because B = ~ .  

7. Batched Implicit Point Location 

The planar point-location problem is a well-studied problem in computational 

geometry [K], [EGSt], I-STa]. In this problem it is required to preprocess a given 

planar subdivision so that, for a query point, the face containing p can be computed 

quickly. Guibas et al. [GOS 1] have considered a generalization of this problem, in 

which the map is defined as the arrangement (i.e., overlay) of n polygonal objects of 

some simple shape, and we want to compute certain information for the query 

points related to their arrangement (for example, to determine which query points 

lie in the union of these polygons). For  simplicity we break the given polygonal 

objects into a collection of line segments, and consider the following formal 

statement of the problem: 

We are given a collection f~ = {e I . . . . .  e,) of n segments, and with each segment 

e we associate a function cpe defined on the entire plane, which assumes values in 

some associative and commutative semigroup S (denote its operation by +),  

and let q~(x) = ~ ,  ~o~(x). Given a set P = {Pl . . . . .  Pro} of m points, compute 

~(Pt) . . . . .  ¢I)(pm) eMciently. 

We assume that cp e and • satisfy the following conditions: 

(i) The function cp e has constant complexity, that is, we can partition the plane 

into O(1) convex regions so that within each region cp e is constant. This also 

implies that, for any given point x, ~pe(x) can be computed in O(1) time. 

(ii) Any two values in S can be added in O(I) time. 

(iii) Given a set fq of n segments in the plane, we can preprocess ff in time 

O(n log k n), for some k > 0, into a linear-size data structure so that, for a 

query point x lying either above all the lines containing the segments of if, 

or below all these lines, ®(x) can be calculated in O(log n) time. 

We will see that several natural problems, including the containment problem 

mentioned above, can be cast into this abstract framework. Note that we consider 

here the batched version of the problem, in which all query points are known in 

advance. In another paper [A3] we consider the preprocessing-and-query version 

of the problem and solve it using different techniques based on spanning trees with 

low stabbing number. 

A naive approach to solving this problem is to construct the arrangrnent s /(ff)  

(more precisely, the arrangement obtained by overlapping all the convex subdivis- 

ions associated with each of the functions ~0,), so that the value of • is constant 

within each resulting face. Now q~(Px) . . . . .  ~(p,,) can be easily computed in 

O(m log n) time by locating the points of P in the above planar map. Ifm > n 2, then 

this is the method of choice, and it runs in overall O(m log n) time, but ifm < n 2 this 
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procedure takes fl(n 2) time in the worst case, so the goal is to come up with a 

subquadratic algorithm. Guibas et al. [GOS1] have indeed given a randomized 
algorithm whose expected running time is O(m 2/a-6n2/a +6 + m log n + n log k+ 1 n), 

for any ~ > 0. Our (deterministic) algorithm improves their result and works as 

follows. 
Let A" denote the set of lines containing the segments of (#. Let A¢* (resp. P*) 

denote the set of points (resp. lines) dual to the lines (resp. points) of A¢ (resp. P). 

Partition the dual plane, in time O(mrlog m log ° r), into t = O(r 2) triangles 

A'I . . . . .  A't, each meeting O(m/r) lines of P*. I fa  triangle contains n i > n/r 2 points of 

A"*, then partition it further, in time O(n log n), into [-n~r~/n] triangles, none of 

which contains more than n/r 2 points. Let A t . . . . .  A u denote the resulting 

triangles; we have M = O(r2). Let P* denote the set of lines passing through A t, 

and let Aa~ denote the set of points contained in At; thus IP~[ = O(m/r), [.~¢*[ _< 

n/r 2. Let ~ = ~ e ~ ,  <Pc. For each p e P~, compute ~(p)  by constructing the entire 

arrangement ~(~t) ,  as discussed above (see also [GOS1]). The total time spent in 

computing Oi(P) for all p e Pi is O(n2/r 4 + (m/r) log n) [EOS], [EGSt]. 
Next, we show how to add the values computed within each triangle to calculate 

(l~(p) = ~ i  ~i(P)- We use a procedure similar to the one used in Section 4 for 

computing many faces in an arrangement of segments. In particular we construct a 

binary tree Y with the properties defined in Section 4. For each node v of J ,  let (¢v, 

Pv be as defined in Section 4, let m~ = [Pv[, n~ = [(g~[, and @~ = ~ tp~. At each 

node v of I ,  the goal is to compute ~ for all p E Pv. At the end of this process we 

will have obtained, at the root u of J ,  the value of ~ = • for all p e P~ = P. We 

calculate ~ in a bottom-up fashion, starting at the leaves of J,, as described above. 

Let v be an internal node of ~d- having children w and z. We preprocess (#w, ~ to 

obtain data-structures ~w, ~ of linear size so that, for any point lying either above 

all the lines containing the segments of ~ (resp. ~ ) ,  or below all these lines, Ow 

(resp. ~ )  can be computed in logarithmic time. Now, for each p e Pv, ~o(P) = 

~w(P) + ~(P).  If p ~ Pw, we already have computed ~w(P) at w. Otherwise p lies 

either above all lines containing the segments of ~w, or below all these lines, so we 

can use ~w to compute ~ ( p )  in O(log nw) time. Similar actions are taken to 

compute ~(p) .  Thus we can obtain ~ for all points in P~ in time O(m~ log n~). By 

the third property of tp e, ~w can be constructed in O(nw log k nw) time, and similarly 

for ~ .  Hence, the total time spent in computing ~ over all nodes v of ~ ,  including 

the initial partitioning of the dual plane, is 

T(m, n) = ~, O(m v log n~ + n~ log k n~) + O(mr log m log °' r) 

((n~m )) 
+ O r 2 + -- log n 

= ~ ~ O(m~logn~+n~log"n~)+O ~ + m r l o g n l o g  ~°r , 
i ~  1 h(v)'~t 

where H = O(log r) is the height of ~q- and h(v) is the height of a node v of ~r. As 
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mentioned in Section 4, it was shown in [AEGS] that 

ck~m 
m v < + 1, 

r 

where c is some constant > 0 and kv is the number of leaves in the subtree of ~- 

rooted at v. Moreover, we argued in Section 4 that 

~, ko = O(r 2) and ~ n~ = n. 
h(v) = i h(v) = i 

Therefore 

T ( m , n ) =  O r 2 . m l o g n + n l o g  kn + 0  ~ - ~ + m r l o g n l o g  ° r  
~=1 r 

( :) = 0 mr log n log ° r + n log k n log r + .~- . 

By choosing 

n2/3 1 
r = max m t/3 log l/~ m log °/3 ( n / x / ~ ) '  2 , 

we obtain 

Theorem 7.1. Given a collection f9 o f  n segments, a function ~Pe associated with each 

e G ~ with the properties listed above, and a set P of  m points, we can compute 

~ e ~  ~pe(p), for  each p G P, in time 

O ( m 2 / 3 n 2 / 3  log 2/3 mlog 2~/3 n 
\ 

n ) 
+ n log k n log - - ~  + m log n . 

,/m 

Remark 7.2. (i) In several special cases it is possible to obtain ~v, in O(nv) time, 

by merging ~w and ~z. In such cases the second term of the above bound reduces 

to O(n log k n). 

(ii) As mentioned above, we have recently obtained, in [A1], an algorithm that 

preprocesses ~, in time O(n 3/2 log "+ :  n), into a data structure of size O(n log 2 n) so 

that, given a point p, @(p) can be computed in O(x/~ log 2 n) time. (The query time 

can be reduced to O(x/~ log n) in several special cases.) 

(iii) As in Section 4 the running time can be improved to 

n k n t 0 m2/3n 2/3 log 2/3 n log °/3 - - ~  + n log n log - - 7  + m log n 
x/m ~/m 
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by partitioning A'~ into [ 'n~/(x/~ log 1/2 n)-] triangles none of which contains more 

than x / ~  l°g 1/2 r points of Ae*, and by choosing 

m "2" } r = max 1/3 1ogl/3 n log 2/3 (n/x/~)' 2 . 

Various applications of the batched implicit point-location problem have been 

discussed in [GOS1]. The running time of all applications can be improved by 

using the algorithm provided in Theorem 7.1. We briefly describe a couple of these 

applications, and refer to [GOS1] for more details. 

7.1. Polygon Containment Problem--Batched Version 

Consider the following problem: 

Given a set T of n (possibly intersecting) triangles and a set P of m points, for 

every point p of P, count the number of triangles in T containing p, or more 

generally, for each point p, report all triangles containing p. 

We review the solution technique of [-GOS1]. Let ff be the set of the edges of 

triangles in T, and let L~' be the set of lines containing the segments of ft. For each 

edge e of a triangle A, let B(e) denote the semi-infinite trapezoidal strip lying 

directly below e. Define a function ~oe in the plane so that q~¢(p) = 0 if p lies outside 

B(e), ~oe(p) = 1 if p is in B(e) and A lies below the line containing e, otherwise 

~ o e ( p )  = - 1 .  

It is easily seen that, for any point p, ¢(p) gives the number of triangles 

containing p, and tp¢ satisfies properties (i) and (ii). As for property (iii), if a point p 

lies above all lines of ~?, then ~(p) = 0, by definition. If p lies below all lines of -~, 

then we do the following. Let ~ denote the x-projection of an edge e of a triangle. It 

is easily checked that 

O(p)=  Y~ t j, 
{j:pE~j} 

where t i is the nonzero value of tpe~ at p. Note that the sum of the right-hand side 

does not change between two consecutive endpoints of the projected segments, and 

that the value of ¢ over each interval can be computed in overall O(n log n) time, 

by scanning these projected segments from left to right. Hence, we can preprocess 

T, in time O(n log n), into a data structure ~ so that, for a point p lying below all 

lines of La, ~(p) can be computed in O(log n) time. Moreover, for a node v in ~ ,  ~v 

can be obtained in O(nv) time by merging ~w and ~z, where w, z are the children of 

v. Hence, Theorem 7.1 and the remark following it imply that 
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Corollary 7.3. Given a set T of n triangles and a set P of  m points, we can compute, 

for each point p ~ P, the number of  triangles in T containing p in time 

0 m2/3n2/3 log 2/3 m log 2~/3 - - ~  + (m + n) log n . 

7.2. Implicit Hidden Surface Removal--Batched Version 

The next application of the implicit point-location problem is the following version 

of the hidden surface removal problem: 

Given a collection of objects in three-dimensional space, and a viewing point a, 

we wish to calculate the scene obtained by viewing these objects from a. 

The hidden surface removal problem has been extensively studied by many 

researchers (see, e.g., [D] and [Mc]), because of its applications in graphics and 

other areas. For the sake of simplicity let us restrict our attention to polyhedral 

objects, whose boundary T is a collection {A 1 . . . . .  A,} of n nonintersecting 

triangles. In the case of the implicit hidden surface removal problem, we do not 

want to compute the scene explicitly; instead we wish to determine the objects seen 

at given pixels [CS], [GOSt] .  In this subsection we consider the following special 

case of the implicit hidden surface removal problem. Let T = {A 1 . . . . .  An} be a 

collection of n nonintersecting horizontal triangles in R 3 such that A i lies in the 

plane z = ci, where cl < c2 < "" < c, are some fixed heights. Let P = {Pl . . . . .  Pro} 

be a set of m points lying in a horizontal plane below all triangles of T. The problem 

is to determine, for each point p ~ P, the lowest triangle A~ hit by the vertical line 

passing through p. 

We review the techniques used by Guibas et al. [GOS1]. A point p e P is said to 

be blocked by T, if the vertical line from p intersects at least one triangle A~ ~ T. First 

consider the following problem: Given a set T of n triangles and a set P of m points, 

determine which points of P are blocked by A. This problem can be solved 

by applying our implicit point-location algorithm to P and the xy-projection 

of the triangles in T. Hence, we can compute the blocked points in 

O(mZ/3n 2/3 log 2/3 m log 2°'/a (n/~//mm) + (m + n) log n) time. 

Going back to the original problem, if the number of the points or the number of 

the triangles is < 1, then we sovle the problem directly; otherwise we split T into 

two subsets T 1, T2, so that T:  contains the lower half of the triangles A1 . . . . .  An/2 

and T 2 contains the upper half of the triangles An/2 + 1 . . . . .  An. Apply the blocking 

algorithm to P and T~. Let/)1 c P be the subset of points blocked by T1, and let 

P2 = P - P1. We recursively compute the lowest triangle in T~ (resp. in T2) above 

each of the points in P~ (resp. P2)- Using the same analysis as in I'GOS1], we can 

show that the total running time is 

O( m2/3n2/310g2/3 m lOg2c°/3 n ) 
~ + m log n + n log 2 n . 
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Hence, we can conclude 

Theorem 7.4. Given an ordered collection T of n triangles in •3 and a 

set P of m points lying below all of them, we can determine, in 

O(m2/an 2/a log 2/a m log 2~/3 (n/x/~)  + m log n + n log 2 n) time, the triangle seen 

from each point of P in the upward vertical direction. 

Remark 7.5. (i) In fact this algorithm works for a more general case, where 

triangles in T have the property that they can be linearly ordered so that if a 

vertical line hits two triangles Ai and Aj with Ai lying below A~, then A~ < A~. 

(ii) We can extend the above algorithm to the case where the points of P do not 

lie below all of the triangles in T. Now at each level of recursion, for each point p of 

P1, we also find the highest triangle Ap of T 1 whose projection contains p. If Ap lies 

below p, then we remove p from P1 and add it to P2. Using the above algorithm we 

can find Ap, for each p e P1, in time 

O(m2/an 2/3 log  2/3 m log  2~/3 - -  
n ) 

x / ~  + m log n + n log 2 n . 

Therefore the overall running time is 

O(m2/3n 2/3 l og  2/3 m log  2~/3 - -  
n ) 

x / ~ + m l o g n + n l o g  3n . 

8. Approximate Half-Plane Range Searching 

The half-plane range-query problem is defined as: Given a set S of n points in the 

plane, preprocess it so that for any query line ~, we can quickly count the number of 

points in S lying above ~. In the dual setting, S becomes a set S* of n lines, E 

becomes a point E*, and the number of points lying above ¢ is the same as the level 

of E* in ~¢(~*). Therefore, if we allow O(n 2) space, the query can be obviously 

answered in time O(log n) by precomputing ~¢(S~*) and locating ~* in it. Chazelle 

and Welzl [CW] recently gave an algorithm that answers a query in time 

O(x/~ log n) using only O(n) space. A result of Chazelle [Ch2] shows that if we 

restrict the space to be linear, the query takes at least f~(v/-n) time in the semigroup 

model (in particular subtraction is not allowed, see I-Ch2] for details), which 

implies that we cannot hope for a much better algorithm if we want to count the 

exact number of points. However, in several applications it suffices to count the 

number of points approximately (one such example is described in [Mall) .  

Therefore, in the dual setting, the approximate half-plane range-query problem is: 

Given a set S* of n lines and a parameter (not necessarily a constant) e > 0, 

preprocess it so that, for any query point, we can quickly compute an approximate 

level for it in ~¢(6e*), namely a level that lies within + en from the true level. It is 
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easily seen that the problem can be reduced to an instance of a point-location 

problem in an (en/4)-approximate leveling of ~¢(6 ~*) (see also [EW 1] and [Ma2]). 

Hence by Corollary 6.6 of the first part of this paper [A3], we obtain 

Theorem 8.1. Given a set of n points in the plane and a positive real humber e < 1, 

we can preprocess it, in time O((n/e) log n log '~ (l/e)), into a data structure of  size 

O(l/e2), so that, for any query line :, we can obtain, in 0 (log n) time, an approximate 

count of  the number of  points in S lying above d, which deviates from the true number 

by at most +_- en. 

9. Computing Spanning Trees with Low Stabbing Number 

Let S be a set of n points in R d and let J be a spanning tree on S whose edges are 

line segments. The stabbing number tr(J') of ~r is the maximum number of edges of 

~-- that can be crossed by a hyperplane h. Chazelle and Welzl [CW] (see also [W]) 

have proved that, for any set of n points in R a, there exists a spanning tree with 

stabbing number O(n 1- i/a), and that this bound is tight in the worst case. For a 

family T of trees, the stabbing number tr(T) is s if for every hyperplane h there is a 

tree J ~ T such that h intersects at most s edges of ~'.  

Edelsbrunner et al. [EGH*] gave a randomized algorithm with expected 

running time O(n 3/2 log 2 n) to compute a family T = {51 . . . . .  ~-k} of k = O(Iog n) 

spanning trees with the property that, for any line d, there exists at least one tree 

such that d intersects O(x/~ log 2 n) edges of ~ .  They also showed that a spanning 

tree on S with stabbing number O(v/n) can be deterministically constructed in time 

O(n 3 log n). Recently Matou~ek [Mal l  has improved the running time of these 

algorithms. He has given a randomized algorithm with expected running time 
O(n */3 log 2 n) to construct a family of O(log n) spanning trees with the above 

property; this algorithm can be converted into a deterministic one with 
O(n 7/4 log 2 n) running time. He has also given an O(n s/2 log n) deterministic 

algorithm (or a randomized algorithm with expected running time O(n~'*+6), for 

any ~ > 0) to construct a single spanning tree with stabbing number O(x/~). His 

algorithms actually compute spanning paths of S. 
In this section we describe a deterministic algorithm for constructing a family T 

of O(log n) spanning trees with tr(T) = O(v/n). The crux of Matou~ek's algorithms 

lies in the following lemma. 

Lemma 9.1 I-Mall. Given a set S of n points in the plane, we can find a set .~e of  O(n) 

lines with the property that,for any spanning path ~" on S and for every line : ,  there is 

a line : ' ~  .~  such that if  d" intersects s edges of ~,, then d intersects at most 

s + O(v/n log n) edges of  : .  

Matou~ek describes an O(n ~/4 log 2 n) deterministic algorithm to compute this 

set of lines. Using Theorem 1.1 we can strengthen Lemma 9.1 as follows: 
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L e m m a  9.2. Given a set S of  n points in the plane, we can deterministically construct 

a set ~q~ of O(n) lines in time O(n 3/2 log °+ i n) with the property that,for any spanning 

path ~q- on S and for every line f ,  there is a line f '  ~ ~ such that i f  f '  intersects s edges 

of  ~,, then f intersects at most s + O(~/nn) edges of  J-.  

Proof Dualize the points of S; we obtain a set S* of n lines. By Theorem 1.1, 

choosing r = x/-n, we can partition the plane into O(n) triangles in time 

0(n3/2 logO>+ 1 n), so that no triangle meets more than 0 (x /n  ) lines of S. Pick up a 

point d* from each triangle, let .L, o* denote the set of these points, and let £f be the 

set of their dual lines in the primal plane. 

Arguing as in [Mal l ,  let ( be an arbitrary line in the primal plane. By 

construction, there exists a line d ~ .~a such that the segment e = (*~* does not 

cross more than 0(x/~)  lines of S*. Going back to the primal plane, if an edge g of 

oa- intersects ~ but not f,  then one endpoint of g must lie in the double wedge e* 

dual to e, but our construction implies that e* contains at most 0(x/~) points 

of S. Thus, there are 0(x/~)  edges of 3 that intersect ( but not E, and the temma 

follows. []  

We construct a family of O(log n) spanning paths with low stabbing number 

only for the lines in .W. Although the basic approach is the same as in IMa l ]  or 

I-EGH*], we need some additional techniques to improve the running time. Here 

we briefly sketch the main idea, and refer the reader to [Ma l ]  or [EGH*]  for more 

details. 

Suppose we have constructed oq- 1 . . . . .  oq]_ 1, and have obtained a set .W i c .La 

such that mi = I-~1 < m~ 2~- 1 (where m = I~1 = 0(n)) and Lfi is "bad"  for all paths 

constructed so far, that is, a line in £a~ intersects every tree at more than Cx//n edges, 

for some constant C to be specified below. We show how to construct ~ and .W~+ 1. 

Initially =W 1 = £e. 
The spanning path ~ is constructed in O(log n) phases. In the beginning of the 

j th phase we have a current collection S~ of vertex-disjoint paths on S (in the 

beginning of the first phase the collection St consists of all singleton paths on the 

points of S). Our algorithm ensures that nj = IS i I < n.(2) j-1. If nj _< ~/n, we 

connect the endpoints of the paths in Sj to form a single spanning path on S, and we 

are done (see Fig. 9). Otherwise, if n i > ~/r~, we proceed as follows. Choose 

r = c~ ~ and partition the plane into n /3  triangles so that no triangle meets more 

Fig. 9. Spanning path ~r~; connecting the endpoints of $1. 
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Fig. 10. Maximal matching of endpoints within A~; solid circles denote the selected endpoints of S i. 

than c2(m.v/~/ni) lines of &a s, for appropriate constants c 1, c2, which exist by 

Theorem 1.1. If a triangle contains endpoints of several paths in S j, we obtain a 
maximal matching of these endpoints and connect each pair of matched points by 

an edge (see Fig. 10), thereby combining two paths in S~ into a new path. To avoid 

creating cycles, we only choose one endpoint of each path of Sj. The endpoints of 

the resulting paths form the set S j+ 1. It can be easily proved that we add at least 

n/3 new edges to the current set of paths, which implies that nj+ 1 < 2n/3. 

Lemma 9.3. There are at least re.J2 lines of  ~ i  that intersect ~ in < Cx/rn edges, 

for  some constant C > O. 

Proof. We bound the total number of intersection points between edges o f ~  and 

L,e i. In the j th  phase we add at least n t - n j÷ 1 edges, and each edge intersects at 

most c2(mdv/~j)  lines of ~ .  In the final phase we add at most ~ edges, each 

crossed by at most m~ lines. Therefore the total number of intersections I between 

and ~ is at most 

O(logn) ml /~-- ,  
I <  ~ (nj - nj+ l)c2 + x / n  ra i 

j = l  ~ j j  

O(logn) 

< c 2 ml 2 x ~ i  + ~4/-~'m, 
j = l  

O(logn) 

<_ c,m,  X ÷ 
j = l  

c,m,  , / ; .  

= ((3 + + 1). m, , / - i .  

(because nj < n. (2)j- 1) 

Now it follows immediately that at least half of the lines in L~ai intersect ~ in at 

most Cx/~ edges, for C = (6 + 2x//6)c2 + 2. [] 

Lemma 9.3 implies that at most half of the lines are "bad." For every line g e ~i ,  

we count the number of intersections between d and ~ ,  using our red-blue 
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intersection algorithm given in Section 6. We pick up those lines of ~e i that intersect 

at more than Cv/n points. The resulting set is .~ai+ 1- 

Next we analyze the running time of our algorithm. We first bound the time to 

compute L~ for i < k. Since m~ < n and there are only n edges in ~-~, it follows from 

Theorem 6.1 that we can compute &a i in O(n 4/a log ('~+2)/3 n) time. Moreover, 

k = O(log n), so the total time spent in computing the incidences between ~ and 
Aai, over all k phases, is O(n 4/3 log ~+ 5)/3 n). 

As for the time spent in computing ~"i, we choose r = clx//~j in the jth phase, 

therefore it requires O(miv/~j log mi log ° n~ + nj log n j) time. (It is easily checked 

that this also bounds the time needed to distribute the path endpoints among the 

triangles, and to match them to obtain the new set of paths.) Hence the total time 

spent in computing ~ is at most 

O(logn) 

Z 
j = l  

O(mix/~j log mi log '° nj + nj log nj) 

O(Iogn) 

= Z O(mix/~l'(~3) (j-l)/2 log m i log ~ n + (~)j-1 n log n) 
j = l  

= O(mix/~ log m~ log ° n + n log n). 

Summing over all i, we obtain 

k 

O(mix//n log mi log ° n + n log n) 
i = l  

k 

= ~, O(mix/~ logO+ 1 n + n log n) 
i=1 

) = O ~ x/~ logO,+ 1 n (because mi < m/2 i- 1 and m = O(n)) 
i 

= 0(n3/2 logO+ 1 n). 

Hence, we have 

Theorem 9.4. Given a set S of n points in the plane, we can deterministically 

construct, in time O(n 3/2. log ~'+1 n), a family T of  k = O(log n) spanning paths on S 

with the property that,for any line ~, there exists a path J" ~ T, such that f intersects 

at most O(x/~ ) edges of ~-. 

Moreover, we have 

Lemma 9.5. The set of O(log n) spanning paths computed by the above algorithm 

have the property that, for any query line f, we can determine, in O(log n) time, a 

path that E intersects in at most O(x/~ ) edges. This requires an additional linear 

preprocessing time and storaoe. 
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Proof. Let A be the set of triangles computed in the proof of Lemma 9.2. Suppose 
the dual of d* lies in Ak e A, and let d* be the point selected from A k. Then dk is a 

good line for at least one path ~ ,  i.e., it meets O(x/~ ) edges of ~'~. By Lemma 9.2, E 

also meets only O(x/~) edges of that path. Moreover, for any given ~, we can find fk 
(and thus the corresponding path ~ )  in O(log n) time, using an efficient point- 

location algorithm; since the map formed by A has only O(n) faces, linear 
preprocessing time and storage suffices [EGSt]). Hence, the lemma follows. [] 

Remark 9.6. (i) Note that the best-known deterministic algorithm for construct- 

ing a single spanning path with O(x/~) stabbing number has O(n 5/2 log 2 n) time 

complexity. Therefore it follows from Theorem 9.4 and Lemma 9.5 that the 

multitree structure is better than the single path structure for all purposes except 
that the storage requirement is worse by a factor of O(log n). In some applications, 
however, it may not be possible to use a multitree structure (e.g., reporting version 
of the simplex range searching problem [CW] and also the counting version if 

subtraction is not allowed). 
(ii) The spanning path obtained by our algorithm may have intersecting edges. 

However, if the application requires the paths to be non-self-intersecting, we can 
apply a technique of [EGH*] that converts a polygonal path ~- with n edges into 

another, non-self-intersecting path ~-', in time O(n log n), with the property that a 
line intersects 3-' in at most twice as many edges as it intersects ~.. 

(iii) If we use the randomized version of our red-blue intersection algorithm, to 
count the intersections between the edges of ~ and .~, in Matou~ek's randomized 

algorithm [Mal l  for constructing T, then a(T) can be improved to O(v/n log n) 
without increasing the time complexity of his algorithm. 

Chazelle and Welzl [CW] have shown that spanning trees with low stabbing 
number can be used to develop an almost optimal algorithm for answering simplex 
range queries. Other applications of spanning trees with low stabbing number 

include computing a face in an arrangement of lines [EGH*], ray shooting in 
nonsimple polygons [A1] and implicit point location [A1]. Our algorithm 
improves the preprocessing time as well as query time of most of these applications. 
For example, Edelsbrunner et al. [EGH*] have shown that given a set .~ of n lines, 
it can be preprocessed in O(n 3/2 log 2 n) (randomized expected) time, into a data 

structure of size O(n log n), using a family T of O(log n) spanning trees with 
a(T) = s, so that, for a query point p, the face in ~ ( -~)  containing p can be 
computed in time O(s log 2 n + K), where K is the number of edges bounding the 

desired face. The result of Matou~ek [Mal l  implies that the preprocessing can be 
done deterministically in O(n 7/4 log 2 n) time. However, if we use our algorithm for 

constructing the spanning trees, we obtain 

Corollary 9.7. Given a set .~ of n lines, we can preprocess it deterministically in 

O(na/2 logO,+ 1 n) time into a data structure of size O(n log n) so that, for a query point 

p, we can compute the face in ~ ( . ~ )  containino the point p in O(~j-n log 3 n + K) time, 

where K is the number of edges bounding the desired face. 
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Another result of [EGH*] ,  combined with our algorithm, implies that 

Corollary 9.8. Given a set .~ of n lines, we can preprocess it in O(n 3/2 log '~ +1 n) 

time, into a data structure of size O(n log 2 n) so that, for any ray p emanating from a 

point p in direction d, we can compute, in time O(v/n log n), the intersection point, 

between p and the lines of .~, that lies nearest to p. 

Similarly, using the result of [CW], 2 we obtain 

Corollary 9.9. Given a set S of n points in the plane, we can preprocess it 

deterministically, in O(n 3/2 log ~'+ 1 n) time, into a data structure of size O(n log n) so 

that, for a query line/~, we can compute the number of points of S lying above ~ in 

O(x/~ log n) time. 

Remark 9.10. Recently Matou~ek and Welzl [MW] gave an alternative determin- 

istic algorithm to perform such half-plane range queries. Their algorithm has the 

same storage and query-time bounds, and its preprocessing time is only 
O(n 3/2 log n). 

10. Space-Query-Time Tradeoff in Triangle Range Search 

Finally we consider the following problem: 

Given a set S of n points in the plane, preprocess S so that, for a query triangle A, 

we can quickly count the number of points of S lying in A. 

As just noted, the problem has been solved by Chazelle and Welzl [CW], using a 

spanning tree with low stabbing number, in O(n) space and O(x,/n log n) query 

time. In this section we study the issue of tradeoff between the allowed space and 

query time. Chazelle [Ch2] has proved that if we allow O(m) space, then the query 

time is at least f l(n/x/~).  (However, this lower bound applies to an arithmetic 

model involving operations in a semigroup; in particular no subtractions are 

allowed.) For  m = n 2, a query can be easily answered in O(log n) time, so the 

interesting case is when n < m < n 2. In this section we show that our partitioning 

algorithm in conjunction with ChazeUe and Welzl's technique yields an algorithm 

that counts the number of points lying in a query triangle in O((n/x//-m) log 3/2 n) 

time using O(m) space, where n 1 +~° < m < n 2-~', for some constants Co, ~1 > 0. The 

preprocessing time of our algorithm is bounded by O(nv/-m log '°+ 1/2 n), which is 

faster than that of any previously known algorithm. 

The half-plane range-searching algorithm of Chazelle and Welz! uses a single spanning tree, but it 
works even if we use a family of O(log n) spanning trees instead of a single tree structure, though the 

space complexity rises to O(n log n). 
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pl 

p3 

P2 

Fig. i l .  A triangle A and its dual A*. 

We first establish this tradeoff for the half-plane range-search problem: "Given a 
set S of n points, preprocess S so that, for any query line ~, we can quickly count the 

number of points lying below f." 
Dualize S to a set of n lines, S*, and partition the plane into M = O(r 2) triangles 

A1 . . . . .  Au so that no triangle meets more than O(n/r) lines of S*. The dual of a 
triangle A is a 3-corridor, namely the region lying between the upper and the lower 
envelopes of the three lines dual to the vertices of  A (see [HW] and Fig. 11). Let A* 

denote the dual ofA. A line p* fully lies in A* if and only ifp lies in A, and a point E* 
is in A* if and only i f f  meets A. Let St c S denote the points orS contained in A*; 
by construction I S~'l = O(n/r). For each A*, construct a family T t of O(log (n/r)) 
spanning paths on the set St with the property that, for every line ~, there exists a 

path f~.  e T t such that E intersects O ( x / ~  ) edges of .~-~ (see Section 9). We 
preprocess every 5-~ e T t into a data structure of size O(n/r) for half-plane range 

searching, as described in [CW], so that a query can be answered in 

O(v/~/r log (n/r)) time. 
To answer a query, we first find the 3-corridor A* containing the query line E. 

That is, we locate the triangle At containing the dual point Y*. Let ~t denote the 
number of points in S - St lying below g, which we will have precomputed for each 
i. We thus only need to count the number of points of St lying below f. By Lemma 
9.5, we can find, in O(log (n/r)) time, a path .~'~ a T i that intersects C in at most 

0 ( ~ / ~ )  edges. Moreover, the number of points of Si lying below Y can be counted 

in O ( x / ~  log (n/r)) time using J~ ,  as in Corollary 9.9. Hence, the total query time 

is bounded by O ( x / ~  log (n/r)). Since each T i requires O((n/r) log (n/r)) space, the 

total space used is O(nr log (n/r)). We choose 

to achieve O(m) space, and the query time is therefore O((n/x/~) log 3/2 (n/v/m) + 
log n). 

As for the preprocessing time, we spend O(nr log n log '~ r) time in partitioning 
the plane into M triangles. Let W~ c S* denote the set of lines lying below the 

triangle At, so ~t = I W~l. It is easily seen that for two adjacent triangles At, A t, 
Wi ~) W~ c S* u Sj ~. Therefore, ~t, for each Ai, can be computed in time O(nr), 
spending O(n) time at the first triangle plus O(n/r) time at each of the remaining 
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triangles. We can compute ~ ,  for each triangle A i, in O(nr log n) time, and, by 
Theorem 9.4, we can construct T i in O((n/r) 3/2 log °+ l(n/r)) time. It follows from 

[CW] that J-~ can be preprocessed in O((n/r)log (n/r)) time for answering 

half-plane range searching. Therefore the total time spent in preprocessing is 

n) 
P(n) = O(nr log n log ° r) + O . r 2 log ° + 1 

( ° L ° 2 )  
= O n logn log°r  + n 3/2 log °+1 

n log log 

= O ( m l o g ° + ' n + n ~ l o g ° + ' / 2 ~ ) .  

By Chazelle's lower bound mentioned above, we obtain 

Theorem 10.1. Given a set S of  n points in the plane and n log n <_ m <__ n 2 storage, 

we can preprocess S, in O(m log°~+l n + nx/~log °+t/2 (n/x/~))  time, so that, for 

any query line :, we can count the number of points of S lying below : in time 

O((n/~/-m) log 3/2 (n/x,/m) + log n), using O(m) space. This is optimal up to a polylog 

factor. 

Remark 10.2. (i) Matou~ek's original algorithm [Ma2] can also be used to 

obtain the same tradeoff. However, since we use large values oft, our preprocessing 
is faster than that obtainable by Matou~ek's algorithm. We have recently learnt 

that Chazelle [Ch3] has also independently obtained a similar result. 

(ii) We can reduce a logl/2(n/x/m) factor in the query time, if we compute a 
single spanning path instead of O(log n) paths. But then the (deterministic) time 

complexity of computing one such path rises to O((n3/r 3) log (n/r)). 

(iii) Notice that the counting version of the half-plane range-query problem is 

more difficult than the reporting version; for the latter version, Chazelle et al. 

[CGL] have given an O(log n + K) algorithm to report all K points lying below 

the query line, using only O(n) space and O(n log n) preprocessing. 

Next, we extend the above algorithm to obtain a similar tradeoff for the slanted 

range-search problem: "Given a set S of n points, preprocess S so that, for a query 
segment e, we can count efficiently the number of points that lie in the semi-infinite 

trapezoidal strip lying directly below e." Let us denote the number of such points 

by W(e) (see Fig. 12). 
Chazelle and Guibas [CG] have given an optimal algorithm for the reporting 

version of the slanted range-query problem, which reports all K such points in 
O(log n + K) time, using O(n) space and O(n log n) preprocessing. Since the 

half-plane range-search problem is a special case of the slanted range-search 

problem, the lower bound on the query time for the slanted range-search problem, 

with O(m) storage, is also D.(n/v/m). Our tradeoff is obtained as follows. 
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Fig. 12. Instance of a slanted range searching; ~P(e) = 9. 

Construct  a binary tree ~ on the x-projections of  the points in S as follows. Sort 

the points of  S in increasing x order. Decompose  the sorted set into n/c blocks, each 

containing at most  c points, for some fixed constant  c > 0, and associate each block 

with a leaf of  ~ .  Each node v of  ~ is thus associated with the set S~ _ S of  points 

stored in the leaves of  the subtree of  ~ rooted at v. For  each node v of  ~ we 

preprocess the points in Sv for answering half-plane range queries, using the above 

algorithm, with r = r~, where r~ is a parameter  depending on the level i of  v in ~ .  A 

segment e is called a canonical se#ment if there is a node v e ~ such that the x- 

projection of  e covers the x-projections of  all the points in S o, and of  no other  point 

in S -  So. Observe that, for a canonical segment e, W(e) can be computed  by 

solving a half-plane range query at the corresponding node. In general, a query 

segment e can be decomposed into k < 2 log n canonical subsegments e 1 . . . . .  e k, 

such that at most  two of them correspond to nodes at the same level of  ~ (see 

[PS]). Thus ~P(e)= ~ = l  ~stt(ei), which implies that tP(e) can be computed  by 

answering at most  2 log n half-plane range queries. 

Since the nodes of  the same level are associated with pairwise disjoint sets of 

points, and we are choosing the same value of r for all nodes of the same level, the 

space s(n) used by our  algorithm is 

/log n / 
s(n)--- O~i__~l nrt log n .  

Let m = n y, where 1 + e o < 7 < 2 -- e t,  for some constants %, ~1 • 0. If we 

choose r i = n~- X/(log n), where n~ = n/2 ~- 1 is the size of  each set So at level i, we 

have 

t log n ~y - t t tt f 
s(.) -- o n log n 

i 

/ tog , , /  n \~-i\ 

--Oln Z ) 
\ i = 1 \  / / 

= O(nO (because ~, > 1 + %) 

= O ( m ) .  
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Next,  the total time spent in answering a query is 

,,i = 1 y r i  :1 

/logn ) 
= O~i_~ t x//n/2-' 10g3/2 n 

P. K. Agarwal 

= O(n I -~/2 10g3/2 n) (because),  _< 2 -- el) 

- - 0 ( ~  log 3/2 n ) .  

As for the time required in preprocessing, we spend O((n:i + n3/2 ~ / )  log '~+ 1 n) 

at a node of the ith level. Since there are 2 i nodes at level i, the overall preprocessing 

time is bounded by 

logn ) 
Pin) = ~. O(2'(nir, + n3/2x//~i)" log °~+1 n 

i=1 

= 0 n.rl +-~i~" . log ~+1 n 
i=1 

-- n3]2 n~ -1 o_tO+ 1 

= 0 ( (  n!..~ + log,,,+ . 
\ \ l o g  n l x / / i ~ , /  

= O(nxfm log~, + 1/2 n) (because m _< n2). 

Therefore,  we have 

Theorem 10.3. Given a set S of n points in the plane and n 1+~° <_ m <_ n2-~', for 

some constants e o, e 1 > 0, we can preprocess S, in O ( n ~  log ~+ 1/2 n) time, into a 

data structure of  size O(m) so that, for a query segment e, ~F(e) can be computed in 

O((n/x//-m) log 3/2 n) time. This is optimal up to a polylog factor. 

Remark 10.4. (i) The remarks following Theorem 10.1 apply here as well. 

(ii) If n log 2 n _< m ~ n 1 +~ for all e > o, then 

Q(n) = O((n/x/-m) log 2 n). 

Similarly, i fm > n 2 -~ for all e > O, then a more  careful analysis shows that  

Q(n) = O((n/w/-m) log s:2 (n/,,/~) + log n). 
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P t  

Pa ~ 2 

i I 

Fig. 13. Two types of triangles. 

Finally, we show how to solve the triangle range-query problem using Theorem 

10.3. Let A denote a triangle with vertices Pl, P2, and P3- Assume that Pl is the 

leftmost vertex and PlP2 lies above PlP3 (see Fig. t3). If x(p2) < x(p3), then the 

number of points in A is 

W(p~ P2) + ~P(P'2P3) -- W(PlPa), 

and if x(p2) > x(p3), then the number is 

W(Pl P2) - W(Pt P3) - W(PzPa). 

It thus follows from Theorem 10.3 that 

Theorem 10.5. Given a set S of  n points in the plane and n 1 +~o < m <_ n 2 -~lfor some 

constants eo, e 1 > O, we can preprocess S, in O(nx/m log °'+ 1/2 n) time, into a data 

structure of  size O(m) so that, for a query triangle A, we can count the number of  

points contained in A in O ( ( n / x ~  ) log 3/z n) time. 

Remark 10.6. (i) If n log2n _< m < n 1÷' for any e > 0, then the query time 

becomes O((n /x /~  ) log 2 n). Similarly, if m > n 2-~ for all e > 0, then Q(n)= 

O((n /x /~  ) log 5/2 (n /x /~)  + log n). 

(ii) Notice that we use subtraction to count the number of points lying inside a 

triangle. It is not known whether Chazelle's lower bound [Ch2] can be extended to 

the case where we use subtraction, that is to the group model. Therefore, we do not 

know how sharp our bounds are in that model. 

11. Conclusions 

In this paper we have presented various applications of our partitioning algorithm, 

described in a companion paper [A3]. Most of the algorithms described in this 

paper have a similar flavor. In particular, we first give a simple but slower 

algorithm with running time roughly mx/~ or nxfm, and then combine it with our 

partitioning algorithm to obtain a faster algorithm. As mentioned in the Introduc- 

tion, we do not need the second phase of our partitioning algorithm in several 
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applications, because the number of triangles produced in the first phase is 
sufficiently small to imply the asserted running time. For example, consider the 

problem of computing incidences between a given set ofm points and a set ofn lines 
in the plane, and suppose we perform only the first phase of our partitioning 
algorithm. Equation (2.2) implies that the running time of the algorithm is 

M 

T(m, n) < ~ O(m~x/~ I log 1/2 nl + ni log ni) 
i=1 

+ O((m + nr log °' r) log n), 

where ~ 1 mi = m, n i = O(n/r), and M = O(r z log °' r). Therefore, 

T(m, n )=  O ( :  1°gl/2 t mi)+O((nr logo ' r+ m)log n) 

ofm~:n 1ogl/2 n ) = - + nr logo" r log n + O(m log n). 

Again, if we choose 

r =  maX{n1/3 log 1/3 m2/3 ), 21 
n log 2o'/3 (m/,,/~ ' 

we get 

( ° ) T(m, n) = 0 m213n2/3 log 2/3 n log 0"/3 ~ n  + (m + n) log n . 

Similarly, we can show that we do not need the second phase of the partitioning 
procedure for the algorithms presented in Sections 3-7. However, we do need if for 
approximate half-plane range searching, constructing spanning trees with low 
stabbing number, and simplex range searching. 

Although this paper describes algorithms for several problems, which improve 

previous, often randomized, techniques, there is no reason to believe that all the 
algorithms presented here are close to optimal. Some of these problems that 
deserve further attention are Hopcroft's problem, counting segment intersections, 

red-blue intersection, and constructing spanning trees with low stabbing number. 

One of the most intriguing open problems is whether there exists an O(n log n) 
algorithm (or for that matter any algorithm faster than those given above) for 

counting segment intersections, or for counting (or just detecting) red-blue 
segment intersections. The "red-blue" version of such an algorithm would also be 

able to detect an incidence between points and lines (Hopcroft's problem) in the 

same time. Another interesting open problem is to obtain a faster algorithm for 
constructing a spanning tree (or a family of spanning trees) with low stabbing 
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number, because that will improve the 

problems (as in [EGH*] and [A1]). 

preprocessing time of various 
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other 
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