
Partitioning Attacks: Or How to Rapidly Clone Some GSM Cards

Josyula R. Rao, Pankaj Rohatgi and Helmut Scherzer
IBM Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

fjrrao@us, rohatgi@us, scherzer@deg.ibm.com

Stephane Tinguely
Communications Systems Division

Swiss Federal Institute of Technology
1015 Lausanne

Switzerland
stephane.tinguely@epfl.ch

Abstract

In this paper, we introduce a new class of side–channel
attacks called partitioning attacks. We have successfully
launched a version of the attack on several implementa-
tions of COMP128, the popular GSM authentication algo-
rithm that has been deployed by different service providers
in several types of SIM cards, to retrieve the 128 bit key
using as few as 8 chosen plaintexts. We show how parti-
tioning attacks can be used effectively to attack implemen-
tations that have been equipped with ad hoc and inade-
quate countermeasures against side–channel attacks. Such
ad hoc countermeasures are systemic in implementations
of cryptographic algorithms, such as COMP128, which re-
quire the use of large tables since there has been a mistaken
belief that sound countermeasures require more resources
than are available. To address this problem, we describe
a new resource–efficient countermeasure for protecting ta-
ble lookups in cryptographic implementations and justify its
correctness rigorously.
Keywords: smartcards, authentication, security protocols,
commercial and industrial security, side channel attacks,
GSM, COMP128.

1. Introduction

Side–channel attacks [6, 8, 2, 10] have recently gained
prominence as an effective and practical means for attack-
ing cryptographic systems. Cryptographic algorithms are
traditionally designed to withstand attacks that treat the im-
plementation as a black box, focusing instead on exploiting
subtle relationships between inputs and outputs. In prac-
tice, the black box model may be unrealistic, since any im-
plementation provides more information to a determined
adversary than just the inputs and outputs. For instance,
an adversary can obtain sensitive information from side–
channels such as timing of operations[5], power consump-

tion [6], electromagnetic emanations [9] etc. In fact, in con-
strained devices such as chip–cards, straightforward imple-
mentations of any cryptographic algorithm can be compro-
mised with minimal work [6, 3].

In view of these exposures, vendors of cryptographic
systems employ a variety of software and hardware counter-
measures to “harden” their implementations against side–
channel attacks. Popular software countermeasures are
based on generic principles described outlined [6, 2, 4]. Im-
plementing these principles typically requires either proto-
col changes [6] or additional resources [2, 4]. In fact, the
authors of [2] enunciate a cardinal principle, outlined in the
next section, that must be followed for implementations to
resist first–order differential side–channel attacks. Realiz-
ing an implementation that conforms to this principle, es-
pecially on devices with resource and cost limitations, is a
challenging and error–prone task which several implemen-
tors fail to perform correctly. In addition, many implemen-
tors erroneously believe resources limitations prevent effec-
tive application of this principle and therefore apply some
ad–hoc and partly effective countermeasures.

As a consequence, many supposedly “hardened” imple-
mentations remain vulnerable. This is especially true for
algorithms that employ large table lookups since obtaining
side–channel attack resistance for table lookups is tricky
and appears to be highly resource intensive. For exam-
ple, the commonly used authentication/session-key gener-
ation algorithm in existing GSM phone networks, i.e, the
COMP128 algorithm, requires lookup of five tables of sizes
512, 256, 128, 64 and 32 bytes each.

In this paper, we develop a new class of side–channel
attacks, called partitioning attacks, which can be used to
attack implementations which may otherwise resist some
side–channel attacks. We introduce the concepts underlying
this new class of attacks by showing how an implementation
of the COMP128 algorithm on the SIM cards of a popu-
lar GSM network, that is resistant to some side–channel at-

Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P�02)
1081-6011/02 $17.00 © 2002 IEEE

tacks, can be broken1. The partitioning attack on the imple-
mentation is extremely effective. The entire 128 bit key of
COMP128 can be recovered from a SIM card with less than
1000 invocations with random inputs, or 255 chosen inputs,
or only 8 adaptively chosen inputs! Thus, an adversary who
has possession of a SIM card for a minute can easily extract
the key. In contrast, the previously best technique to attack
GSM SIM cards was to employ a cryptanalytic attack on
the COMP128 algorithm with 150,000 chosen inputs. This
entails access to a SIM card for around 8 hours and a card
reader capable of performing around 6 invocations/second
[1].

Next, we generalize the ideas underlying the attack on
COMP128 attack to develop a methodology for launching a
partitioning attack on any implementation of any algorithm
which violates the cardinal principle. Whereas, the specifics
and effectiveness of the attack would depend on the partic-
ular algorithm, platform and the manner of violation of the
cardinal principle, nevertheless the proposed methodology
will reduce the amount of entropy in the sensitive informa-
tion at the very least.

The partitioning attack on COMP128 exploits weak-
nesses and vulnerabilities in the implementation of ta-
ble lookups. In general, protecting table lookup opera-
tions, while conforming to the cardinal principle, appears to
be very tricky, especially in resource constrained devices.
Since table lookup is a basic cryptographic primitive for in-
troducing non–linearity, the same problem also exists, to
a lesser extent, with many other cryptographic algorithms
such as DES and AES. In view of the importance of this
primitive, we feel that it is necessary to have a specific pro-
tection mechanism for this operation. We, therefore, de-
scribe a new and resource efficient table lookup mechanism
which can be employed in a wide variety of devices to de-
fend against side–channel attacks. This mechanism is based
on a space–time tradeoff: it allows the implementation of
table lookups using substantially less RAM than the cumu-
lative sizes of the tables being protected at the cost of ad-
ditional operations. We believe that with the adoption of
this mechanism, table lookups will cease to be avenues for
side–channel attacks.

The paper is organized as follows: first, we provide re-
quired background on side–channel exposures, attacks and
the cardinal principle for countermeasures in Section 2. In
Section 3 the attack on the COMP128 implementation on a
GSM SIM card is described. The methodology for devel-
oping general partitioning attacks is described in Section 4.
Finally, in Section 5, we describe a technique which can
protect against side–channel attacks on table lookup opera-
tions in resource constrained devices.

1Partitioning attacks have been validated on SIM cards deployed on
several international networks. We have contacted the affected vendors
whose identities will not be disclosed here.

2. Background

All equipment leaks information via several side–
channels in the course of performing any computation. Ex-
amples of side–channels include timing of externally visible
operations, instantaneous power consumption, electromag-
netic (EM) emissions, etc [5, 6, 7, 9].

The timing side–channel is the easiest to describe and
protect. The timing side–channel is exploitable if the tim-
ing of an externally observable operation is affected by sen-
sitive information. Timing channels are easily addressed by
ensuring that sensitive operations take the same amount of
time or the timing depends only on other non–sensitive pa-
rameters. If that is not possible, then another effective coun-
termeasure is to limit the information leaked via the timing
side–channel.

The power and EM side–channels are significantly more
powerful and consequently harder to defend against. These
side–channels arise due to current flows within a device.
The exposure is especially pronounced in CMOS devices,
where current flows only when some change occurs in the
logic state at each clock cycle: this linkage provides an un-
obstructed view into the logic state and transitions in the un-
derlying device at each clock cycle via the power and EM
side–channels. At each clock cycle, the signals carried by
these side–channels are therefore statistically correlated to
those bits in the logic state of the device which either de-
termine the events that will occur in the clock cycle or are
affected by events occurring within the cycle. These bits
are known as relevant bits [2]. For example, for a cycle
which loads a word of data from a memory location into a
register, the relevant bits include the (binary) contents of all
bus lines and circuits on which the data will flow, the initial
contents of the register to which the data will be transferred
and the bits of the specific data in the accessed memory
location. While the number of relevant bits appears to be
large, it should be noted that they constitute a tiny fraction
of the overall state of device. It is also known that each of
the relevant bits contributes to the side–channel signals in
somewhat different ways; the effect of one relevant bit is
not identical to that of another even though the bits may be
similar in function (such as two bus lines). Of these two
side–channels, the EM side–channel is more powerful as it
can provide multiple views of the events unfolding within
the device [9] due to different types of emanations from dif-
ferent parts of the device whereas the power consumption
channel provides only a single aggregated view of the net
current flow into the device.

Power and EM attacks on CMOS devices and counter-
measures against them can be derived from this basic un-
derstanding of information leakage. Simple power analysis
and EM attacks (SPA and SEMA) [6, 7] exploit the fact
that if an implementation follows different execution paths

Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P�02)
1081-6011/02 $17.00 © 2002 IEEE

based on the value of sensitive information, this dependence
shows up as large differences in the side–channel signals
since both the relevant bits and their values are quite dif-
ferent for different execution paths. Thus, the side–channel
for a single execution could be used to determine the execu-
tion path taken and hence obtain sensitive information. For
example, in a square and multiply based implementation of
RSA exponentiation, the sequence of squares and multiplies
performed uniquely determines the secret key; moreover,
this sequence is readily visible in the side–channel since the
code for squaring big–integers is quite different from the
code to multiply big–integers. A countermeasure for these
simple attacks is to have all operations take the same execu-
tion path.

Differential (or more precisely the first–order differen-
tial) side–channel attacks such as DPA and DEMA [6, 7],
are a class of powerful attacks which work even when the
execution sequence is identical for all inputs and values of
the sensitive information. These attacks are based on the
fact that even though the execution path is always the same,
the values of the relevant bits at intermediate clock cycles
are determined by values of inputs and sensitive informa-
tion, since the device has to compute some function of these
quantities. Since the side–channel signals are statistically
correlated to the values of these relevant bits and hence de-
pend on the sensitive information, it is possible to extract
sensitive information by performing statistical analysis on
these signals. For example, an adversary can do hypothe-
sis testing, by forming a hypothesis on the value of some
part of the sensitive information and predicting the value of
some relevant bit in some cycle based on the hypothesis and
known or chosen inputs/outputs. The hypothesis can then
be verified by checking whether or not the signals correlate
with the predicted value of the relevant bit [6].

The only way to completely eliminate differential
attacks is to strictly adhere to the following Cardinal
Principle [2]:

Cardinal Principle: Relevant bits of all intermediate
cycles and their values should be statistically independent
of the inputs, outputs and sensitive information.

Clearly, these intermediate cycles do not include the ini-
tial cycles that manipulate only the input and the final clock
cycles that manipulate only the output. Techniques that
achieve this while still being able to perform computations
have been described in [2]. Whereas incomplete, improper
or inadequate implementation of this basic principle may
provide partial resistance to hypothesis testing attacks, it
will result in susceptibilities to the partitioning attack that
is described later in this paper.

An even more powerful class of attacks, known as the
higher–order differential side–channel attacks [6], are based

on multivariate statistical analysis of multiple signals from
multiple sections of the computation. Although, these at-
tacks can be used to overcome countermeasures against
differential side–channel attacks, effective countermeasures
against these attacks are extensions of the countermeasures
against first order attacks[2]. We will not focus on these
attacks and countermeasures against them in this paper.

3. Attacks on a GSM SIM card

The main authentication and session key generation
mechanism for many GSM networks, specified by the ab-
stract algorithms A3 and A8, are often realized in practice
using a single algorithm known as COMP128. While the ac-
tual specification of COMP128 was never made public, the
algorithm has been reverse engineered and cryptanalyzed
[1]. Since, the GSM specification for SIM cards is widely
available, all that is needed to clone a SIM card is the 128–
bit COMP128 secret key that is embedded in the card.

3.1. COMP128 Algorithm

COMP128 is a keyed hash function. It takes a 16 byte
(128 bits) key, K, and 16 byte (128 bits) of data, R, to out-
put a 12 byte (96 bits) hash. The key K, as used in the
GSM protocol, is unique to each subscriber and is stored
in the SIM card. The input data R is a random challenge
supplied by the base station. The first 32 bits of the hash are
used as a response to the challenge and sent back to the base
station. The remaining 64 bits are used as a session key for
voice encryption using the A5 algorithm.

The algorithm first loads K and R in a 32–byte vector
X[]. K is stored in X[0..15] and R is stored in X[16..31].
Then, eight iterative loops are applied on X[]. Each itera-
tion starts with a butterfly–structure like compression. The
compression consists of five levels of table lookups using
T0[512], T1[256], T2[128], T3[64] and T4[32] respec-
tively. In all iterations except the last, a permutation follows
the compression. Each T i contains only (8-i)–bit values.
Thus, compression results in 32 4–bit values, that are then
assembled into 16 bytes before the permutation is applied.
These 16 bytes are stored into X[16..31] and K is loaded
into X[0..15] before a new iteration begins. The resulting
128 bits after the eight iterations are further compressed to
12 bytes, which form the output of the algorithm.
Pseudo–code of the compression in COMP128 is listed be-
low:

for j = 0 to 4 do f
for k = 0 to 2j-1 do f

for l=0 to 2(4�j)-1 do f
m = l + k*2(5�j);
n = m + 2(4�j);

Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P�02)
1081-6011/02 $17.00 © 2002 IEEE

. . .

. . .

. . .

. . .

. . .

Level 0

Level 1

Level 2

Level 4

. . .

..

..

310 15

7 23

113 2719

. . .

.

.

. .

Figure 1. Butterfly structure of a compression
in COMP128

y = (X[m] + 2*X[n]) mod 2(9�j);
z = (2*X[m] + X[n]) mod 2(9�j);
X[m] = Tj[y];
X[n] = Tj[z]

g
g

g

For each level, the compression works on pairs of equal
sized sections ofX[]. In level 0, (j = 0),X[] is split into two
sectionsX[0..15] andX[16..31]. The value of each right el-
ement, X[i+16], (i = 0..15) is combined with that of the left
element,X[i], to compute y=(X[i] + 2*X[i+16])mod 512.
Similarly, the value of the left element, X[i] is combined
with the corresponding right element to compute z=(2*X[i]
+ X[i+16]) mod (512). X[i] and X[i+16] are then replaced
by T0[y] and T0[z] before the next level starts. This cross-
wise substitution, as shown in Figure 1, is referred as a
butterfly–structure. On every new level, a section gets di-
vided into a pair of sections in which the same scheme is
applied. Note that the size of the table decreases in suc-
ceeding levels. Accordingly, level 1 computes y=(X[i] +
2*X[i+8]) mod 256 and z=(2*X[i] + X[i+8]) mod 256 for
i=0..7, 16..23. In level 2, y=(X[i] + 2*X[i+4]) mod 128
and z=(2*X[i] + X[i+4]) mod 128 for i=0..3, 8..11, 16..19,
24..27 and so on.

3.2. Failed DPA Attacks

The GSM SIM card specification defines a command
that invokes the COMP128 algorithm with any input data.

This invocation can be performed any number of times.
This enables us to assemble an experimental setup for in-
voking COMP128 on any chosen input and collecting the
power and EM side–channel signals.

We began our analysis of the card by attempting a differ-
ential power analysis (DPA) attack using randomly chosen
inputs. From the COMP128 specification, there appears a
very simple and obvious avenue for attack.

Initially, X[0..15] = K and X[16..31] = R. In the first
level of the first compression round, X[0] is replaced by
T0[y] where y = (K[0] + 2*R[0]) mod (512). To extract
the first byte of the key, K[0], we make a hypothesis on
its value and use it to predict the value of T0[y] since the
first byte of input data R[0] is known. If the hypothesis is
correct, then the predicted value of T0[y] will be identical
to the actual value in the computation. Therefore, any bit
of the predicted value T0[y] will correlate with the signal.
If the hypothesis is incorrect, since the table T0 is random,
hardly any correlation will be seen. Therefore, of all possi-
ble 256 hypotheses for K[0], the hypothesis with the high-
est absolute correlation with the signal, is most likely to be
the key. The same method should work for the remaining
key bytes.

For our attack, we collected 1000 signals of the power
consumption during the COMP128 encryption with random
input data. However, in the attack on K[0], none of the bits
of the predicted value T0[y] resulted in a distinguishing cor-
relation value for any hypothesis. Figure 2 summarizes the
results obtained for the prediction of the third bit of T0[y]
for all the 256 hypotheses of K[0]. For each prediction
(on the x–axis), the figure shows the absolute value of the
maximum difference between the mean signals for a pre-
diction of 0 and a prediction of 1. We call this the zero–one
difference. This is a measure of the absolute value of the
correlation between the predicted bit and the signals. The
correlation is more or less the same for all the values of the
hypotheses and cannot serve to distinguish the actual key
byte from several other wrong hypotheses. The same be-
havior was observed for all the 8 bits of T0[y] and also for
other key bytes.

From these results, it is clear that the card had some
countermeasures in place to thwart the obvious DPA at-
tacks. At this stage, we can only speculate on the nature
of the countermeasures. One possibility could be that the
table values were masked in some deterministic way.

3.3. Input Data Correlation

Since the DPA attack failed, we decided to probe the im-
plementation further for other statistical weaknesses. We
started by computing the correlation of the signals with each
of the bits of the input. Such an analysis highlights all the
places where the input bit affects the computation.

Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P�02)
1081-6011/02 $17.00 © 2002 IEEE

0 50 100 150 200 250 300
400

600

800

1000

1200

1400

1600

Key Hypothesis

M
ax

im
um

 D
iff

er
en

ce

ACTUAL KEY: 203

Figure 2. DPA results for bit 3

First, we computed the input correlation of the least sig-
nificant bit of R[0] and found small correlations in a few
places presumably where the bit was accessed, as shown in
Figure 3, where the zero–one difference is plotted against
time. The same was observed for the next few bits. Sur-
prisingly, for the most significant bit (MSB) we observed a
huge correlation in the beginning of the first compression,
as shown in Figure 4, where once again the zer–one differ-
ence is plotted against time. A similar, phenomenon was
also observed for all bytes of R; in some cases, the second
most significant bit also had a somewhat high correlation at
another place in the first compression.

These experiments indicated a statistical anomaly with
respect to the MSB of the data bytes, which could poten-
tially be exploited as an avenue for attack.

3.4. Formulating a Partitioning Attack

As a prerequisite for converting an observed statistical
anomaly into a viable attack, one needs to formulate an ex-
planation for the anomaly, consistent with the observations.
This requires knowledge of the algorithm, typical imple-
mentation techniques used by programmers for such plat-
forms and some ingenuity on the part of the attacker.

As can be observed from the specification of COMP128,
its usage of 9-bit quantities (in table indices, etc) makes its
implementation on an 8-bit SIM card challenging even for
an experienced programmer. Notice that, in the first level
of compression, the quantities y and z are 9–bit values and
the corresponding table T0 has a 9–bit index. Since it is not
possible to directly address such a table on an 8-bit address-
ing architecture, it is highly likely that a programmer will
split T0 into two tables T00 and T01, of sizes 256 each,

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−200

−100

0

100

200

300

400

500

Figure 3. Input correlation for LSB of R[0]

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−200

−100

0

100

200

300

400

500

Figure 4. Input correlation for MSB of R[0]

Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P�02)
1081-6011/02 $17.00 © 2002 IEEE

which can be addressed by 8–bit indices. Furthermore, the
easiest way to split T0 is to store the first 256 elements of
T0 in T00 and the last 256 elements in T01.

Assuming that this type of table split was done by the
implementors, we now have to explain why the observed
anomaly arises in this case. Since the relevant bits and val-
ues are different for accessing different parts of memory,
looking up a random element of T00 will result in a some-
what different power signal than looking up a random ele-
ment of T01. Let s0(t) be the average power signal of the
encryption when T00 is looked up at a random index and let
s1(t) be the average signal in the case of a random lookup
in T01. Let m(i) be the number of distinct values of R[i]
with MSB = 1, for which y will be in T01, i.e. (K[i] +
2*R[i]) mod (512) will be in the range [256,511]. Corre-
spondingly let n(i) be the number of bytes R[i] with MSB
= 0, for which y will be in T01.

We now claim that the observed correlation of the sig-
nals with the MSB of R[i] will be proportional to (m(i)-
n(i))*(s0(t)-s1(t)), i.e., the observed correlation will be pro-
portional to the quantity (m(i)-n(i)). This claim is quite easy
to prove, once the reader observes a symmetry property of
T0 lookups in COMP128: independent of the key K[i],
exactly half of the R[i] result in values of y which lie in
T00 and the other half in T01. Moreover, the values of
R[i] which fall into T00 and T01 are contiguous modulo
256. The results of these two different contiguous equipar-
titions of the space of 256 possible values of R[i], based on
MSB and table accessed is depicted in Figure 5. From this it
can be observed that the average signal for MSB=0 should
be proportional to (m(i)*s0(t) + n(i)*s1(t)). The average
signal for MSB=1 should be proportional to (m(i)*s1(t) +
n(i)*s0(t)). This indicated that the input correlation to the
MSB should be proportional to the differences of the aver-
age signals, i.e., (m(i)-n(i))*(s0(t)-s1(t)).

Clearly, the values of m(i) and n(i) depend on the key
byte K[i]. The exact values of the absolute difference of
m(i) and n(i) for all possible key bytes K[i] is shown in
Figure 6. It is clear from this figure that (m(i)-n(i)) is large
for almost all values of K[i], with m(i) and n(i) being equal
only in the special cases where K[i] is 128 or 129. This ex-
plains the observed large correlations seen with the MSBs
of the input bytes. In addition, the explanation based on ta-
ble splitting, is also consistent with observations about the
other bits. For the other bits, the indexing of a split table
with y = (K[i] + 2*R[i]) mod (512), does not introduce
any correlation. However, indexing with z=(2*K[i] + R[i])
mod (512), introduces correlation which diminishes expo-
nentially as the bit position moves from MSB to LSB.

We therefore accept the table split explanation for the
anomaly and focus on how this knowledge can be use to
formulate an attack (that we term as a “partitioning” attack)
on this and similar implementations of COMP128.

ACCESS T00

ACCESS T01

MSB=0

n(i)

MSB=1
R[i]

m(i)

m(i)
n(i)

Figure 5. Partitioning of R[i]

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

ab
s(

m
−n

)

K[i]

Figure 6. Absolute value of (m(i)-n(i)) for vari-
ous values of key byte K[i]

Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P�02)
1081-6011/02 $17.00 © 2002 IEEE

2.685 2.69 2.695 2.7 2.705 2.71 2.715 2.72 2.725 2.73

x 10
4

−400

−200

0

200

400

600

800

1000

1200

Figure 7. Power signals: T00 access versus
T01 access

3.5. Partitioning Attack on COMP128

Assuming that the table split mechanism was employed,
we started comparing signals to see whether it was possible
to distinguish between the use of tables T00 and T01. By
focusing on the regions where input correlation was found,
we discovered that in each such region, one could directly
classify each power signal into one of two categories, based
on its shape in the region. We assumed that these two cate-
gories correspond to accessing T00 vs accessing T01, even
though we could not decide which category corresponded to
which table. Figure 7, which plots strengths of two signals
drawn from two different categories against time, shows the
distinctions between a signal in one category and a signal
in the other. This distinguishability could be further en-
hanced by signal processing, as shown in Figure 8 which
plots strengths of the processed signals against time. Simi-
lar results were also obtained for signals obtained from elec-
tromagnetic emanations from the card.

Moreover, there were 32 regions during the first level of
compression where such distinctions existed, which in turn
were organized into 16 pairs. This is consistent with the fact
that the first level of compression in COMP128 requires two
table lookups into T0 with indices y and z, for each of the
16 bytes of input.

We then focussed on the first region in the first pair and
classified 1000 signals we had earlier collected with ran-
dom inputs into the two categories. This yielded some very
interesting but not entirely unexpected results; all signals
with R[0] in the range [0,..,26] and [155,...,255] fell in one

490 492 494 496 498 500 502 504 506 508 510
0.5

1

1.5

2

2.5

3

x 10
4

Figure 8. Processed power signals: T00 ac-
cess versus T01 access

category and all signals with R[0] in the range [27,..,154]
fell into the other. This contiguous equipartitioning (mod-
ulo 256) is consistent with the behavior expected while per-
forming a lookup of T0[y] for y =(K[0] + 2*R[0]) mod
(512), using split tables T00 and T01. When R[0] is 0,
T00 will be accessed independent of K[0]. The transition
when R[0] goes from 26 to 27 has to be caused by the value
of y crossing 256 for the first time. Similarly the transition
when R[0] goes from 154 to 155 must be caused by the
value (K[0] + 2*R[0]) crossing 512 for the first time. From
this it follows that K[0] can only be 202 or 203. Next, the
same classification was performed with the second region
in the first pair, which would correspond to accessing T0
at index z = (2*K[0]+R[0]) mod (512). Values of R[0] in
the range [0,..,105] were in one category and values in the
range [106,..,255] in the other. Since K[0] is either 202 or
203, the transition when R[0] goes from 105 to 106 must
be caused by (2*K[0]+R[0]) crossing 512 for the first time.
This only occurs for K[0]=203 and hence we obtained the
first byte of the key.

Similar analysis performed on the remaining pairs of re-
gions yielded the remaining the key bytes 2. In fact, the key
byte is always uniquely determined from partitioning infor-

2This was confirmed by comparing the output of the card with the out-
put of COMP128 code [1] with the obtained key.

Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P�02)
1081-6011/02 $17.00 © 2002 IEEE

mation about accesses with indices y and z. Even when the
transition from one partition to the other is approximately
known due to noisy signals, this technique cuts down the
possible values of each key byte to a very small number,
permitting feasible brute force search.

This attack was performed with 1000 samples with ran-
dom inputs. This ensured that with high probability, each
input byte adequately covered the range of values [0,..,255]
so that the transitions in the partitions could be determined
with good accuracy. In practice, one could work with fewer
random inputs (say 500). This problem also disappears if
the inputs could be chosen, in which case 256 different in-
puts with each input byte covering all the 256 possibilities
suffices. If one is satisfied with 2 possibilities per key byte,
i.e., 216 possibilities for a 16-byte key, only 128 inputs with
covering byte values [1,128] suffice, since these can deter-
mine the first y transitions. If in addition, one could adap-
tively choose the inputs, then exploiting the fact that for
each input byte, the partitions consist of contiguous values,
one can perform a binary search to determine the transition
from one partition to another. This binary search could be
performed simultaneously for all 16 input bytes and thus
entire 16-byte key can be obtained using only 8 adaptively
chosen inputs. In fact, seven adaptively chosen inputs are
sufficient to determine all the first y transitions thus restrict-
ing each key byte to two possibilities. A final carefully cho-
sen input targeted towards all the z accesses then uniquely
determines the key.

4. General Partitioning Attacks

We now generalize the ideas used in the preceding
COMP128 attack to show how Partitioning Attacks can
be formulated on any implementation of any algorithm
in which countermeasures against differential side-channel
analysis have not been properly applied. Clearly, the actual
attack would be very dependent on the algorithm being im-
plemented, the architecture being used and would require
some guesswork on the part of the attacker as to the types
of software countermeasures being used. Therefore the ap-
proach can only be described at an abstract level.

Assume there is an implementation that violates the Car-
dinal Principle, that is, the relevant bits or their values
thereof in some intermediate cycle are not statistically in-
dependent of the input, output and sensitive information.
Since the side–channel signals obtained during that inter-
mediate cycle are affected by and correlated to these rele-
vant bits and the contribution of each of these relevant bits
is somewhat different, this means that the side–channel sig-
nals will also not be statistically independent of inputs, out-
puts and sensitive information. General Partitioning attacks
try to exploit this statistical dependence in the signals to
extract the sensitive information.

Without loss of generality, assume that the values of the
relevant bits at that intermediate cycle depend on some parts
of the input and the sensitive information 3. Since sensi-
tive information such as keys is usually fixed for a device,
this dependence will show up as a dependence on the in-
puts. The statistical distribution of the side channel signal
for each of the intermediate cycles for any input can be es-
timated with reasonable accuracy by sampling. This can be
done by repeatedly invoking the operation on the same input
and extracting the resulting signals. By performing these
estimates on several inputs, the intermediate cycles where
the statistical distribution is input dependent can be identi-
fied. In practice, estimation of the statistical distribution is
likely to be unnecessary; an estimation of a parameter of the
distribution (such as the mean signal) should suffice.

Once the input dependent intermediate cycles are iden-
tified, attention should be focussed on the first such cycle;
the others can be revisited after the analysis of the first such
cycle is complete. From the known information about the
abstract algorithm being implemented, the characteristics of
the device, guesswork about the implementation approach
and by experiments with different inputs, it should be pos-
sible to isolate a small valued function of the input which
affects this intermediate cycle. This is because, the cycle
can be dealing with at most one machine word of informa-
tion. In some cases this could directly be a word of the
input or a word derived from the input and possibly some
secret information during the initial processing stage of the
algorithm. A good heuristic to isolate this function would
be to vary a few bits of the input while keeping the rest of
the bits the same, to see whether or not the distribution is
affected. Another heuristic is to compute correlations be-
tween the input bits and the signal to identify how far these
input bits are directly manipulated in the computation and
whether or not these bits correlate at this cycle. If there is
no input correlation at this cycle, then one can still estimate
how far this cycle is from the other cycles which manipu-
lated inputs. Some algorithms perform some form of input
mixing operation before performing sensitive operations; in
those cases, the heuristic should compute correlations with
the bits resulting from the mixing operation rather than in-
put bits.

After the small valued function has been reasonably well
isolated, the next step is to perform statistical characteri-
zation of the signal distributions for all possible values of
the function, using chosen or known inputs that affect the
function. For example, if the function is the first byte of in-
put, statistical characterization should be performed with all
possible values for the first byte of input (with other bytes

3It is easy to attack implementation in which the signals depend on
just the sensitive information; after some initial training on signals with
different values of the sensitive information, a “best match” approach can
be used to recover sensitive information used in a specific device.

Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P�02)
1081-6011/02 $17.00 © 2002 IEEE

kept the same). Based on this analysis, it should be pos-
sible to cluster the various values of the function into dif-
ferent partitions based on statistical similarities of the side–
channel signals created by these values.

The gist of the partitioning attack is the following:
Knowledge of the partitions and the values that fall into
each partition provides information as to the processing that
has occurred thus far. If this processing involves secret in-
formation then given knowledge of the algorithm being im-
plemented, guesswork on how the implementation has been
done and limitations of the device, one can come up with
an hypothesis for the observed partitioning behavior. This
hypothesis together with the actual values that fall into each
partition puts constraints on the sensitive information was
involved in the computation thus far; which in turn implies
a leakage of sensitive information in information theoretic
terms.

Similarly, each intermediate cycle where a different par-
titioning behavior is observed, provides an avenue for infor-
mation leakage about the sensitive information employed in
the algorithm. If enough such cycles can be found and ex-
ploited then the sensitive information may be completely
disclosed. Even if this is not the case, it is quite possible
that the entropy of the sensitive information could be so re-
duced that exhaustive search based attacks become feasible.

5. Countermeasures

Table lookup is a fundamental primitive used by sev-
eral cryptographic algorithms such as DES, AES and
COMP128. Implementing this primitive in a side–channel
attack resistant manner on constrained devices poses spe-
cial challenges since straightforward application of coun-
termeasures seem to require the creation and use of large
random tables which may take up much more RAM than is
available. In addition, the use of the tables requiring large
indices poses problems for devices with limited addressing
capabilities, e.g., many chip–card devices only support an
8–bit index into a byte table. Due to these complications,
several implementations of table lookup based algorithms
on limited devices remain susceptible to side–channel at-
tacks.

We now propose a methodology to create efficient, first–
order differential side–channel attack resistant implementa-
tion of table lookups using substantially less RAM than the
cumulative size of the tables being accessed. In addition,
for most practical cases, this solution also takes care of the
problem of large indices. This methodology is based on us-
ing a combination of three basic building blocks, the “Table
Mask” operation, the “Table Split” operation and the “Ta-
ble Aggregate” operation. The Table Mask operation pro-
vides the main defense against side–channel analysis but
does not address the problem of RAM or addressing con-

straints. However, in combination with the Table Split and
Table Aggregate operations the problem can be solved for
most situations arising in practice. For illustrative purposes,
in this paper, we focus on table lookups for tables with in-
dices a power of 2.

5.1. Table Mask Operation

Let T : 0; 1n ! 0; 1b be an n–bit to b–bit table to be
accessed, i.e., T consists of 2n elements of size b–bits each.
The size of T is b � 2n bits. Any implementation which di-
rectly looks up T is vulnerable to differential side–channel
attacks since the side–channel signals at the time of table
lookup will correlate with each bit of the index accessed
and with each bit of the value retrieved. To remove this cor-
relation, the Table Mask operation is performed as follows:

Definition 1 Let IP (index permutation) be a class of n–bit
to n–bit permutations with the property that for any n–bit
value i, if a permutation ip is chosen uniformly at random
from the class IP , then the value ip(i) is statistically inde-
pendent of i.

A simple example for IP would be the class of n–bit
XOR permutations. For any fixed n–bit number r and input
i, the function i � r is a n–bit to n–bit permutation, which
we term as an XOR–permutation. The class of n–bit XOR
permutations is the collection of XOR–permutations for all
possible values of r.

Definition 2 Let OP (output permutation) be a class of b–
bit to b–bit permutations with the property that for any b–bit
value o, if a permutation op is chosen uniformly at random
from the class OP , then the value op(o) is statistically in-
dependent of o.

A simple example for OP would be the class of b–bit XOR
permutations.

For each instance of a cryptographic operation requiring
one or multiple lookups of a table T , a fresh random looking
“masked” table T 0 is computed and placed in RAM. This is
done as follows:

� Select a permutation ip 2 IP uniformly at random.

� Select a permutation op 2 OP uniformly at random.

� Define the masked table T’ as: 8i; 0 <= i <

2n; T 0[ip(i)] = op(T [i]):

The table lookups work with a masked values of the index
(ip(i) instead of i) and result in masked values of the output.
By working throughout with appropriately masked values,
one can perform the entire algorithm without ever exposing
any intermediate result in the clear and preventing a differ-
ential side–channel attack [2, 4]. The properties of IP and

Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P�02)
1081-6011/02 $17.00 © 2002 IEEE

OP ensure that the side–channel during table lookups has a
statistical distribution which is independent of the index and
the corresponding value of T (not T 0) that is being accessed.

The main problem with the Table Mask operation de-
scribed above is that it requires the table T 0 to be in RAM
and the size of T 0 is the same as that of T . Moreover, if
many such tables have to be examined multiple times within
the algorithm, then for efficiency purposes, masked versions
of all tables must be simultaneously kept in RAM. Also if n
is large, then T 0 can have the same indexing problem as T .
The solution to these problems, is to use the Table Mask op-
eration in conjunction with Table Split and Table Aggregate
operations described below.

5.2. Table Split Operation

This operation is useful in cases where the size of a ta-
ble is greater than the available RAM or the index is too
large for the addressing capabilities of the device. The ba-
sic idea is that an unmasked n–bit to b–bit table T can be
split into multiple tables T1; T2; : : : ; Tk such that each table
Ti takes an n–bit index and produces a bi bit output where
the the bi’s (for i=1 to k) sum up to b. For example, a n–bit
to b–bit table T could be split into b, n–bit to 1–bit tables
T1; T2; : : : ; Tb where Ti gives the i’th bit of the output of T .
By packing multiple entries into a single addressable mem-
ory unit (such as a byte or word), the actual index needed to
access some value into any one of these split tables could be
less than n–bits and also the size of each of these tables is
smaller. For example, an n–bit to b–bit table T is split into
b, n–bit to 1–bit tables, T1; : : : ; Tb as described above by
packing 8 output bits into a single byte, the size of the index
into any table Ti becomes n�3 bits and the individual table
sizes are smaller by a factor of b.

5.3. Table Aggregate Operation

Suppose we have k, equal sized tables T1; T2; : : : ; Tk
each of size no more than M bytes. By combining the ta-
bles in various algebraic ways, one can create an aggregate
table T of size M bytes, with the property that given T and
all but one of the tables Ti, one can recover the table Ti.

For example, T could be created by padding all tables
with 0–valued bytes to make their sizes exactly M bytes
each and then doing a byte–wise XOR4 of the correspond-
ing bytes in all the K padded tables. Clearly, any table Ti
can be recovered from T and T1; : : : ; Ti�1; Ti+1; : : : ; Tk by
XORing all these tables. An advantage of using the byte–
wise XOR5 to create the aggregate table T is that, if the ta-
bles T1; : : : ; Tk can be created one or a few bytes at a time,

4Addition modulo 256 could also be used instead of XOR
5or addition modulo 256

then the table T can be created using only slightly more than
M bytes of memory.

5.4. Combining Building Blocks for a Solution

Suppose one only had M bytes of RAM to spare for ta-
ble lookup on a device and a restriction on the memory ad-
dressing mechanism which limited any index to within n–
bits. Suppose one had several tables to be looked up. In
the first stage, one would use the Table Split mechanism on
all tables whose size is more than M and/or whose index
requirements exceed the bounds. One can now rewrite the
algorithm to work with these split tables and these split ta-
bles could be in ROM. At this stage, we have eliminated the
large index problem but are still vulnerable to differential
side–channel attacks. In the next stage we would “concep-
tually” apply the “Table Mask” operation on all the tables
we now have and then apply the “Table Aggregate” oper-
ation on all the resulting masked tables. In practice, one
would not actually create the full masked tables, since this
would take too much RAM, one would create one or a few
bytes of these tables at a time and update the Aggregate
table being computed. Thus at this stage our main RAM
usage would be the M bytes needed to store the Aggregate
table. We also put copies of all the original tables in ROM.

We then modify the algorithm code we wrote for split
tables to work with masked values and use the Aggregated
Masked table for the table lookup for any table. The prob-
lem with this approach is that table lookup into the Aggre-
gated Masked table gives us not just the Masked entry of
the table we are interested in but instead some combination
of the Masked entry of interest and contributions of entries
from other Masked tables. However since the masking in-
formation, i.e., the index and output permutations are avail-
able for all the tables, one can use direct ROM lookups in
the actual tables to remove the contributions from the other
entries so that we are left with only the masked entry we are
interested in. Moreover, given the way masking works, i.e.,
the masked index being independent of the real index, the
indices looked up in the other ROM tables would be ran-
dom, i.e., statistically independent, of the real index in the
table of interest. Thus, we get a differential side–channel
resistant implementation involving table lookups within the
resource/addressing bounds.

6 Acknowledgements

We would like to thank Arvind Krishna for challenging
us to devise power and EM side–channel attacks on GSM
cards (in the short span of four days!) and Charles Palmer
for his encouragement and support during that time.

Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P�02)
1081-6011/02 $17.00 © 2002 IEEE

References

[1] Mark Briceno, Ian Goldberg and David Wagner. See
http://www.isaac.cs.berkeley.edu/
isaac/gsm--faq.html

[2] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao
and Pankaj Rohatgi. Towards Sound Countermeasures
to Counteract Power–Analysis Attacks. Advances in
Cryptology — Proceedings of Crypto ’99, Springer–
Verlag, LNCS 1666, August 1999, pages 398–412.

[3] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao and
Pankaj Rohatgi. A Cautionary Note Regarding the
Evaluation of AES Candidates on Smart Cards. Pro-
ceedings of the Second Advanced Encryption Stan-
dard Candidate Conference, Rome, Italy, March 1999.

[4] L. Goubin and J. Patarin. DES and Differential Power
Analysis. Proceedings of the Workshop on Crypto-
graphic Hardware and Embedded Systems, CHES ’99,
August 12–13, 1999, Worcester, MA, pages 158–172.

[5] P. Kocher. Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS and Other Systems. Ad-
vances in Cryptology-Crypto ’96, Lecture Notes in
Computer Science # 1109, pp 104–113.

[6] P. Kocher, J. Jaffe and B. Jun. Differential
Power Analysis: Leaking Secrets. Advances
in Cryptology — Proceedings of Crypto ’99,
Springer Verlag, LNCS 1666, pages 388–397.
One version of the paper is available online at
http://www.cryptography.com/dpa/
technical/index.html.

[7] Jean–Jacques Quisquater and David Samyde. Simple
electromagnetic analysis for smart cards: new results.
Rump session talk at Cyrpto 2000.

[8] J. Kelsey, Bruce Schneier, D. Wagner and C. Hall.
Side Channel Cryptanalysis of Product Ciphers. Jour-
nal of Computer Security, Volume 8, Number 2–3,
2000, pages 141–158.

[9] Josyula R. Rao and Pankaj Rohatgi. EMpowering
Side–Channel Attacks. IACR Crypto e-print archive
at http://eprint.iacr.org, paper 2001/037.

[10] Dawn Xiaodong Song, David Wagner and Xuqing
Tim. Timing Analysis of Keystrokes and Timing At-
tacks on SSH. Proceedings of the 10th USENIX Se-
curity Symposium, Washington, DC, August 2001,
pages 337–352.

Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P�02)
1081-6011/02 $17.00 © 2002 IEEE

