121

Partitioning-Based Approach to Fast On-Chip Decap
Budgeting and Minimization

Hang Lif, Zhenyu Qit, Sheldon X.-D. Tanf, Lifeng Wu¢, Yici Cait and Xianlong Hong?
TDepartment of Electrical Engineering, University of California, Riverside, CA 92521
*Cadence Design Systems Inc., San Jose, CA 95134
$Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China

ABSTRACT

This paper proposes a fast decoupling capacitance (decap) alloca-
tion and budgeting algorithm for both early stage decap estima-
tion and later stage decap minimization in today’s VLSI physical
design. The new method is based on a sensitivity-based conju-
gate gradient (CG) approach. But it adopts several new techniques,
which significantly improve the efficiency of the optimization pro-
cess. First, the new approach applies the time-domain merged
adjoint network method for fast sensitivity calculation. Second,
an efficient search step scheme is proposed to replace the time-
consuming line search phase in conventional conjugate gradient
method for decap budget optimization. Third, instead of optimiz-
ing an entire large circuit, we partition the circuit into a number
of smaller sub-circuits and optimize them separately by exploiting
the locality of adding decaps. Experimental results show that the
proposed algorithm achieves at least 10X speed-up over the fastest
decap allocation method reported so far with similar or even bet-
ter budget quality and a power grid circuit with about one million
nodes can be optimized using the new method in half an hour on
the latest Linux workstations.

Categories and Subject Descriptors
T5.2 [Signal Integrity and Reliability Analysis]

General Terms

Simulation, Algorithm, Optimization

Keywords
Decoupling Capacitor, IR drop, On-Chip Power/Grid Networks

1. INTRODUCTION

Power integrity has become the most insidious issue in nowa-
days deep sub-micron and nanometer VLSI regime. IR drop is

*This work is funded by NSF CAREER Award CCF-0448534, UC
Micro #04-088 and Cadence Design System Inc. The work of Y.
Cai and X. Hong is funded by Hi-Tech Research & Development
(863) Program of China 2004AA 171460 and the National Natural
Science Foundation of China (NSFC) 60476014.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2005, June 13-17, 2005, Anaheim, California, USA.

Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

170

caused by device switching current flowing through the parasitic
power/ground network. A supply voltage (VDD/GND) variation
throughout the entire chip will occur, which will lead to adverse im-
pact on chip performance, longer path delay, or even logic failure.
With the reduced noise margin and increased switching frequency
as technology scales, it is required to confine the supply voltage
fluctuation within a certain range of the nominal VDD value to
guarantee the reliable power delivery. For removing dynamic IR
drop which arises from resistive and inductive effect, intentionally
adding decoupling capacitance (decap) between power and ground
buses or between power/ground buses and substrate is the most ef-
ficient way. As shown in Fig 1, decaps provide a reservoir of cur-
rent that is instantly available for the near switching components
to remove spikes and glitches in the power rail. Since on-chip de-
caps are typically manufactured using MOS transistors, and exces-
sive on-chip decaps could cause more leakage power, low yield and
lower resonant frequency [1], the total decap area should be added
in an area-efficient way.

VDD

—AAA~ Power Grid Resistance

@ Switching Current
-

VDD

Figure 1: Model of Power Grid Network

Budgeting decap in an area-efficient way, however, is a diffi-
cult task due to prohibitive analysis costs of P/G networks with
millions of nodes and extracted on-chip and off-chip RLC com-
ponents in modern VLSI design. Mathematically, optimal decap
allocation is a nonlinear optimization problem and many existing
approaches [11, 5] use sensitivity-based optimization methods to
solve the problem. To compute the sensitivity, transient simula-
tions of the whole P/G networks have to be carried out at every
optimization step. Given the fact that the transient simulation of
P/G networks with millions of nodes is already an extremely time-
consuming task, the CPU and memory cost of the optimization
method that uses transient simulations as the internal loops will be
prohibitive. Recent study [5] shows that allocating decaps for a P/G
grid with about one million nodes will take about 10 hours in mod-
ern workstations with improved simulation techniques. Given the

increasing sizes of P/G networks, existing decap budgeting tech-
niques do not scale well for future VLSI on-chip power distribution
network design and verification.

In this paper, we propose a fast decap allocation and budgeting
algorithm in solving large power grid circuit, which is modeled
as RLC networks considering both on-chip and off-chip parasitics.
The new method is based on the sensitivity-based conjugate gra-
dient methods. Our contributions include: (1) The proposed al-
gorithm applies the time-domain merged adjoint network method
for sensitivity calculation, in which the computations of each in-
dividual node’s sensitivity can be combined together and the sen-
sitivity of the objective function with respect to every decap value
can be obtained by two transient simulations; (2) Instead of doing
line search at every step in conjugate gradient optimization, we de-
velop a new search step scheme to speed up the optimization pro-
cess; (3) Based on the local effect of adding decap to reduce IR
drops, we partition the whole circuit into a number of sub-circuits
and optimize them individually. A noise-aware partition scheme is
proposed to perform the required partitioning. The combination of
our new optimization algorithm and partition scheme significantly
improves the analysis speed for extremely large circuits even on a
single CPU workstation.

The rest of the paper is organized as follows: Section 2 briefly
reviews existing sensitivity-based decap budgeting algorithms. In
Section 3, we describe our new algorithm, with theoretical analysis
regarding to time efficiency. Section 4 gives description of a graph-
based partition algorithm in dealing with special decap situation.
The experimental results are summarized in section 5 to verify our
method, with conclusions in section 6.

2. REVIEW OF PREVIOUS DECAP
OPTIMIZATION ALGORITHMS

Existing on-chip decap budgeting algorithms basically fall into
two categories. In [2, 7, 10, 9], the current pattern around kot spots
(where violation of IR drop occurs) is derived and the amount of
electric charge needed to supply that current demand is estimated.
To obtain an optimal decap budget, a critical step for these meth-
ods is the precise estimation of voltage drops, which unfortunately
proves to be difficult for practical P/G networks without simulation.

Vt)

Vo
Vi Wl—

Figure 2: Illustration of IR drop violation

Another category is sensitivity-based approaches depended on
actual circuit simulation, which is the more accurate and well-accepted
method. Fig 2 gives an illustration of VDD fluctuation of a node
within one clock cycle [11]. The violation area at node j is defined
as:

T
gi(Ctyrcn) :/0 max(Vyuin —v;(1),0)dt (1)

which equals to the shaded area below a certain VDD threshold in
the graph. The sensitivity of decap added at node i in contributing

171

to remove this violation area at node j is:

A agj(C1,...,Cn)
51 = oc;

where ¢; is the decap value added at node i, and n the number of
nodes where decaps can be added. If we allow all circuit nodes to
be candidates for adding decaps, n equals to the number of circuit
nodes. The adjoint network method is the conventional way to cal-
culate this sensitivity, which requires two full circuit simulations,
one for the original network and the other for the adjoint network.
The sensitivity for capacitive elements can then be expressed as:

@

T
s,»,:/o Vi (T —1) xvi(t)dt, (i=1,2,...,n) 3)

where v;(t) is the derivative of voltage waveform at node i in the
original network, and v; ;(7 —1) is the waveform at node i in the
adjoint network under unit step current excitation at violation node
J-

In previous work [11], the total violation area is chosen as ob-
jective function, and optimized by a quadratic programming solver.
The iteration continues until all violations are eliminated. In order
to obtain the gradient value of the objective function to each de-
cap value, sensitivity of every violation node with respect to every
decap node is computed within each iteration. Therefore the time
complexity is approximately 0(2n1'51mh), where m is the number
of violation nodes, / the number of sampling time points, and &
the number of optimization iterations. The term 4 depends on the
convergence rate of the optimization method, and ' is the typical
time complexity for solving sparse matrices [12]. It is clear that the
speed of this algorithm depends on the number of violation nodes,
and will become intolerable for extremely large circuits. In addi-
tion, the decap area could be overestimated because it is not explic-
itly considered in the objective function. Recent work [5] improved
the sensitivity calculation by introducing the time domain merged
adjoint network method, and decap area is incorporated into the
objective function as:

(Y c)+oal Y gj) “

i€Ndeap JENio

where Nyecqp 18 the set of all the decap nodes and N, is the set
of all the violation nodes. The new objective function is solved by
traditional conjugate gradient (CG) method in each optimization
iteration. The weighting factor o in (4) is used to balance the two
terms, and will keep changing in each CG iteration. However, such
balance could be misleading since the optimization direction may
be decided by the value of o rather than the sensitivity of each
decap value to the objective function. Improper a will cause extra
line searches, or even optimization failure. What’s more, each line
search during CG optimization also requires the evaluation of the
objective function at the cost of a full transient simulation, which
renders the algorithm inefficient and unreliable.

In this paper, we present our improved conjugate gradient (iCG)
algorithm, which takes the advantage of the fast sensitivity compu-
tation in [5], while avoids the ambiguousness of the old optimiza-
tion objective and the inefficient line search phase.

3. IMPROVED CONJUGATE GRADIENT
ALGORITHM

In our new iCG algorithm, we formulate the optimization prob-
lem as:

Objective function:

m
min Zgj(cl,...,cn) (5)
j=1

subject to constraints:

(ci)<d;, di>0 (6)
where m is the number of violation nodes, and n the number of de-
cap nodes. d; is the maximum decap allowed at node i, a parameter
decided by the available layout white space around node i.

Note that the decap budgeting problem defined in Eq.(5) and
Eq.(6) can be used in early floor-planning stage for decap budget
estimation, where d; is the available white-space that can be used
for adding decaps. The same optimization formulation can also be
used in the later stage of physical design to minimize the existing
decap budget, since some decaps are placed heuristically in the pre-
vious design stage. The d; then represents the decap value already
allocated at node i.

As mentioned in section 2, the sensitivity of the objective func-
tion (5) with respect to each decap value can be computed by the
merged adjoint network method. In conventional adjoint network,
a unit step current source is placed at each violation node when cal-
culating the sensitivity described in Eq.(2). However, since all the
adjoint networks for each violation node share the same topology,
we may combine the step current sources together based on circuit
superposition. And the sum of all the decap sensitivities would turn
into:

m T
Zs,»,:/o Viat(T=0) xvi()dr (i=1,2,...,n) (7)
j=1

where v: (T —1) is calculated from the merged adjoint network

with combined step current sources. The merit of this method can
be observed immediately since

i o 937 gjcts .. cn)
= Y ac;

where the right-hand-side is just the sensitivity of the objective
function we need in our problem formulation. Therefore, all the de-
cap’s sensitivity to the objective function can be calculated in only
two transient simulations, which greatly improves the efficiency of
the algorithm.

Although the merged adjoint method can significantly reduce the
number of full circuit transient simulations, a number of simula-
tions are still needed at each step in the CG method. The reason is
that the direct application of the CG method in [5] requires evalua-
tions of the objective function at different points along the current
gradient direction to find the minimum cost in the objective func-
tion. But the cost of simulation in this line search phase is expen-
sive, and could offset the efficiency gained by the merged adjoint
method.

In order to avoid this, we develop a simple, yet efficient search
step computation method. The method is based on the observation
that the step size in each search direction can be simply determined
by computing the maximum decap value allowed on one or some
nodes under this search direction. In other words, we determine the
maximum step we can take in current direction, and set each decap
values according to this step. We will continue to do so until vio-
lation criterion has been met. One problem with such a maximum-
allowable-step scheme is that it may overestimate the decap areas.
To alleviate this problem, a binary search will be performed to find
the best step such that all violations are just removed and decap
areas are minimized. The main difference of our method from the
traditional CG method is that we only need to do binary search just
once in the entire optimization process, which is in contrast to the
traditional CG method, where the line search is carried out at every
CG step during optimization.

The new proposed decap budgeting algorithm can be summa-
rized in Fig. 3, which has two stages. First, the existence of solution
is checked in the present direction computed by the CG method.
Then a solution is located by binary searches. Within each CG

®)

172

iteration, only two transient simulations are needed for gradient
computation. So the time complexity of the algorithm is about
0(2n'31(h+r)). Again, n is circuit node count, [is the number
of time points and / is optimization iteration number. r denotes the
number of steps in which binary search is attempted.

DECAPBUDGET ICG (P/G network)

1 Solve input circuit, establish violation node set;

2 while (violation node set is not empty){

3 Store waveform for all nodes;

4 Construct the merged adjoint network;

5 Solve the merged adjoint network, convolve for sensitivities;
6 Compute the next conjugate gradient direction;

7 Obtain the maximum step along the current direction;

8 Update all decaps with this step};

9 while (violation requirement satisfied) {

10 Halve the step to see if violation requirement is satisfied; }
11 Finalize budget with the smallest possible step obtained;

Figure 3: Proposed Decap Budgeting Algorithm

Time complexity of [5] is derived in the original paper and can
be expressed as O(n'1h(2+1")), where all variables are defined as
above except #/, which is the number of line searches in each itera-
tion. Usually h, ¥ and r are all within the same order of magnitude.
So the proposed algorithm can be expected to be much faster as
we only do the binary (line) search once and avoid the A7’ term in
the time complexity. Compared with decap algorithm in [11], the
proposed method also leads to a great run time reduction, as it is
independent with the number of violation nodes. Also, the faster
convergence and less computation cost of conjugate gradient than
quadratic programming contributes to the time efficiency as well.

4. PARTITIONING-BASED ANALYSIS
OF P/G NETWORK AND DECAP
BUDGETING

Accurate decap budgeting relies heavily on repeated transient
analysis of the entire power grid. With a full-chip power grid model
consisting of millions of nodes and elements, the burden on compu-
tation and memory storage during optimization is huge. Recently,
some new techniques are published to explore the efficient analysis
on huge P/G networks, such as model-reduction techniques in [4],
or random walk algorithm in [8]. However, they are either less ac-
curate or only efficient in DC analysis at a certain circuit topology.
For decap optimization, which asks for full circuit simulation at
each time point, it is desirable to reduce the problem size of analy-
sis by partitioning the large circuit into several smaller sub-circuits,
and optimize decap budget of each partition separately, or even in
parallel.

The partitioning-based strategy is also supported by the fact that
adding decap to remove IR drop violation is a local effect. Nor-
mally, the violation occurs in the center or a certain area on the
chip. For the emerging flip-chip packaging technology, this local
effect becomes more prominent [3]. The number of violation nodes
compared to the total circuit node number is also supposed to be
small. Otherwise, the entire power network should be re-designed.
For each violation node, the most effective decap locations are al-
ways the nodes close to it. Thus we should expect only a few good
decap candidate locations through the entire chip for each violation
node.

4.1 General Partition Algorithm

In our paper, we use the graph-based multilevel minimum cut al-
gorithm for partitioning task [6], which provides an extremely fast
speed on large graph sizes, under which a million vertices graph
can be processed within one minute. This ensures that the partition
phase will not bottleneck our entire partitioning-based optimization
flow.

Table 1: Decap Budget Comparison before/after Partition Table 2: Decap Budget Comparison under NAP
Subcircuit| Original w/ boundary w/0 boundary [Subcircuit Name | Original Budget | Partitioned Budget ||
Name Budget || budget [deviation || budget [deviation 7 17.25 13.84

1 7.48 8.32 11.2% 11.08 48.1% 5 7.16 4.55

2 3.38 2.61 -22.9% 5.55 64.0% 14 10.21 10.30

17 9.02 11.06 22.6% 11.06 22.6%

18 6.40 8.88 38.8% 10.99 71.7%

A direct use of partitioning without considering the IR drop vio-
lation could have adverse impacts on the entire decap optimization.
Because we should avoid putting violation nodes as the boundary
nodes, whose node voltage can’t be reduced by adding decaps,
since boundary node voltages are treated as independent voltage
sources as discussed below.

4.2 Boundary Condition for Sub-circuits

For each sub-circuit, we need to consider the influence of other
sub-circuits on its decap budget optimization. We call this bound-
ary condition of the sub-circuit. If boundary condition for each
individual partition is not considered, the decap budget will be con-
servative compared to the one presented in the original netlist. The
reason is that the sub-circuit, as opposed to the full circuit, con-
fines currents to flow in a smaller area, instead of the global P/G
network. As consequence, more currents (due to smaller resistance
to true ground) occur in the same area after partitioning. These
over-estimated currents will cause greater IR drop than it actually
is.

To solve this problem, we keep the boundary node waveforms
in piece wise linear (PWL) form derived from a full circuit tran-
sient simulation at the beginning of the optimization. In this way,
the voltage waveforms are the same even when each sub-circuit is
simulated independently.

In Table 1!, a circuit with 240K nodes is partitioned into 20
pieces. Decap budgets are compared between several sub-circuits
with PWL boundary conditions and the ones without. Deviation is
calculated as the difference between the budget of each sub-circuit
and the budget of the same sub-circuit in the original circuit opti-
mization. We notice that there are only 4 sub-circuits containing
violation nodes, and the deviation of the simple partition budget
without the boundary conditions is much greater than the one with
boundary conditions.

4.3 Noise-Aware Partitioning (NAP)

Keeping boundary node voltage as independent voltage sources
introduces another problem. The violation nodes may appear as
the boundary node in each partition, and there is no way to reduce
voltage drop of the PWL voltage source at the violation node by
adding decaps. Therefore we should explicitly avoid putting vio-
lation nodes into the boundary node set during partitioning. This
can be easily implemented by assigning a relatively heavy edge
weight between each violation node, as well as the nodes adjacent
to them. Since the partition algorithm attempts to minimize the
total cut weights on the boundary, those weighted violation node
edges have a very low possibility to be cut.

Another issue is that we should keep the good decap candidate
nodes for violation in the same sub-circuit. Otherwise, it will be
more expensive to reduce the IR drops of the violation nodes by
using less effective nodes available in a sub-circuit. As a result, we
need to consider adding decap range for violation nodes during par-
titioning. The current sources at the violation nodes typically are
the cause of IR drop violation, and will be assigned into one sub-
circuit along with all the nodes they are directly connected to or in

The decap budget values in this table, as well as in other tables
in this paper, are all normalized to the same order for comparison
without units.

173

nearby locations. To achieve this, we can assign a relatively small
vertex weight to each violation node containing current source, as
well as a pre-defined radius, within which the nearest non-violation
nodes close to it are also given the same weight. Given the fact that
the partitions should be balanced in terms of each partition’s total
vertex weight, the violation nodes will be aggregated with a host of
good non-violation decap candidate nodes.

1 2 3 " 4 5 6

,..

@ tonoviol ating Mode Blind Partition

. Violating Node

Fartition with weighted edges

Fartition with weighted edges & vertices

Figure 4: Example of noise-aware partition scheme

Fig 4 gives a simple example of above proposed partition scheme.
We observe that the violation nodes 16 and 21 are easily separated
into two partitions without any differentiation between them and
the non-violating ones. After we add larger weights on the edges
around them, they are captured into one partition. If we further
assign a smaller vertex weight (as compared to other vertices) to
them, as well as the ones in adjacent to them, which are node 10,
15, 17,20 and 22, more surrounding nodes will go with node 16 and
21 into the same sub-circuit, which is exactly what we expected.

By using this noise-aware partition (NAP) scheme, we did the
test on previous 240K circuit again. Results in Table 2 demonstrate
that the new partition budget is very close to or even smaller than
the one from the original circuit. Further discussions on the quality
of the partitioned decap budget is given in section 5.

4.4 Partitioning-based Decap
Optimization Flow

The whole partitioning-based optimization flow is given in Fig 5.
It performs only two full circuit transient simulations, one at the
very beginning to report all the violation nodes and record the orig-
inal boundary node waveform, another at the very last to verify the
optimization result. Compared to many simulations carried out in
a flat run mode, the time overhead from these two full circuit sim-

PARTITIONING-BASED DECAP OPTIMIZATION

Solve input circuit, identify all the violation nodes;
Transfer netlist into graph, feed into partition solver;
Find all the boundary nodes, extract their PWL form;
Generate each partition netlist with PWL information;
For each partition{

Call iCG solver to do the individual optimization; }
Combine all the decap values, generate new netlist file;
Solve the new circuit netlist with decaps
if(violation criterion met){optimization successful;}

else{decrease previous partition number, and go back to 2;}

O 0O\ B W —

Figure 5: Partitioning-Based Optimization Algorithm

ulations becomes less significant. The rest of simulations will be
conducted on sub-circuits only, which are faster than full circuit
simulation even done sequentially.

We assume a number of N partitions (sub-circuits) with approxi-
mately the same amount of nodes in each partition. Since the parti-
tions are processed sequentially in our experiment, and parameters
I, h, and r won’t change too much with partitioning, the new time
complexity becomes

n LS5

[2n'31(h+7)]
VN

Therefore, the time complexity of partitioning-based optimization
algorithm will decrease with the square root of the number of par-
titions. However, the number should not be very large either. Be-
cause a very small sub-circuit could result in no solution of op-
timization due to reduced decap candidate positions. In case of
no solution is found in the sub-circuits, we will halve the partition
number, and re-run the whole algorithm again for a relaxed par-
tition area. Since we snapshot the IR drop violation by defining
an effective area for adding decap in partitioning, the optimization
effect is supposed to be guaranteed when all the partitions are com-
bined together.

If parallel computing is allowed, the time complexity can be fur-
ther reduced to

I(h+7)] ©)

[2n1'51(h+r)]
i

since there is no communication needed between different parti-
tions during decap optimization.

10)

S. EXPERIMENTAL RESULTS

We implement our proposed algorithm in C++. All experiments
are carried out on a Linux PC with dual 3.0Ghz Xeon CPUs and
2GB memory. All test circuits are generated by the authors with
realistic parameters for R, C and current sources based on industry
designs. The off-chip inductive parasitic effects are also consid-
ered. Some figures are exaggerated in order to test the versatility
of our algorithm. For each test case, we artificially set the power
noise level such that the number of violation nodes presented in the
circuit is within 20% range of the total node count. Keep in mind
that we can not count solely on adding decaps to eliminate all IR
drop violations, and a huge amount of violation is not reasonable
for decap solution.

We first compare our method with [5] for small circuits with-
out partitioning. To make comparison possible, we implement [5]
in such a way that before each line search, an explicit attempt to
bracket the minimum is made, and if the minimum is found to lie at
the start of the line, o is augmented. In this way we avoid the prob-
lem mentioned in section 2 and make the algorithm robust enough
for all our tests.

Table 3 summarizes the comparison, where CG1 denotes the
method in [5] and CG2 denotes our iCG method. Columns 1, 2,
3 represent circuit names, total node numbers, and violation node
numbers respectively. Parameters including voltage drop tolerance,

174

the maximum decap at each node can be specified by users and
are the same for both methods. The last column compares total
optimization CPU time for the two algorithms. For all these cir-
cuits, violation elimination requirement is successfully achieved
after both decap optimization. The CPU time efficiency of the pro-
posed method is usually more than 10 times faster than the method
in [5].

We apply our partitioning-based optimization algorithm for larger
power grid circuits. As shown in Table 4, comparisons are made
between the budget and CPU time of the flat CG1, CG2, and the
partitioning-based CG2 algorithm. The circuit sizes range from
240K to 1M. While CGl1 is still capable of solving ckt6 and ckt7, it
fails to work on 800K and 1M cases. The main reason arises from
the memory limitation (we have 2G memory in our Linux work-
station) for LU decomposition and waveform storage in sensitivity
calculation during each transient simulation. CG2 suffers the same
problem when doing the optimization flatly. The partitioning-based
algorithm, on the other hand, can handle these cases very easily.

As can be seen from Table 4, the partitioning-based algorithm
optimizes all circuits successfully, and the budget achieved is com-
parable, or even smaller than the flat optimization runs. The time
advantage is also impressive. The circuit with one-million nodes
can be optimized in about half a hour, as opposed to a 10-hour run
time in [5] for the same circuit volume 2. Another thing that needs
to be pointed out is that we simulate the circuits based on direct
LU decomposition, while a structure level reduction technique is
applied in [5] for the simulation on an actually smaller circuit size.
The time efficiency of the algorithm is therefore more obvious.

4 1600
—#-Decap Budget - 1400
—4—CPU Time 1 1200
4 1000 2
-1 800
1 600
1 400
41 200

N w
o w o
T T T

Relative Decap Budget
N
(s) awL NdO

-
o
T

-
o

20
Partition Number

Figure 6: Comparison of Decap Budget and CPU Time between
different partition sizes

We also notice that the difference among various partition sizes.
For each example, the larger the partition number, the faster the
speed as we projected. However, the decap budget experiences a
variation. As an example of the 400K circuit illustrated in Fig 6, at
small partition numbers, the budget is overestimated compared to
flat run result. This is due to the reduced sensitivity of each node
in a partitioned area, therefore a larger decap value added in each
optimization iteration.

As partition number increases, the decap budget drops. A even
smaller decap budget than flat run can also be achieved by using
the new partitioning-based algorithm, which demonstrates the ad-
vantage of our partitioning optimization scheme. The reason could
be explained as follows. In a flat run, the sensitivity computed re-
flects the contribution of each decap node to the sum of all violation
areas, instead of to a specific violation node. Each decap node that
has sensitivity calculated will be added decap values. This gives
rise to conservative decap estimation because the real sensitivities
of each decap node to each violation node are different. And the
expected decap value at each decap node should be based on these
more accurate individual sensitivities, not the sum of all the sen-

2The CPUs used in two papers are different (Intel Xeon versus Sun
UltraSparc). It is difficult to scale the CPU times in terms of raw
clock speeds.

Table 3: Comparison with the existing CG method for P/G decap optimization

- #Vio CGT (existing) CG2 (proposed) speedup
Circuit #Nodes Nodes decap | iter | time(s) |[decap [iter | time(s) ratio
cktl 88 29 1.82 8 23 2.12 I 0.1 23
ckt2 336 63 3.15 10 15.2 4.16 2 0.8 19
ckt3 1,233 143 243 10 132 2.62 1 24 55
ckt4 12,673 1,083 3.09 8 1,995 3.67 1 54 37
ckt5 89,496 592 1.94 5 7,241 3.10 1 394 18
Table 4: Comparison between flat and partitioning-based decap optimization
Circuit #Nodes #Vio CGI CG2 Partitioned CG2
Nodes budget | time(s) || budget | time(s) || partition no. | budget [time(s) [speedup ratio
ckt6 242,600 49,626 391 9,592 5.04 1,746 5 6.09 744 13
- - - - - - 10 4.46 713 13
— — - — - - 20 4.05 438 22
ckt7 421,320 26,843 1.7 15,555 1.94 1,370 10 3.56 1,077 14
- - - - - - 20 3.19 1,034 15
— — - — - - 40 1.86 765 20
ckt8 827,025 87,903 N/A N/A N/A N/A 20 3.58 2,619 N/A
- - - - - - 40 2.19 1,711 N/A
— — — — — — 80 2.15 1,705 N/A
ckt9 1,004,960 | 67,105 N/A N/A N/A N/A 25 4.17 2,812 N/A
- - - - - - 50 2.25 2,675 N/A
— — — — — — 100 2.05 2,093 N/A

sitivities. On the other hand, with an estimation of the effective
decap range for a partition, we can prevent from adding decap for a
less-sensitive violation node in another partition. This effect some-
how alleviates the problem suffered in a flat mode. However, the
partition number should not be too large either. Otherwise inaccu-
racy and non-solution will occur due to a large number of violation
nodes with limited decap nodes. In such cases, more partition iter-
ation will be conducted as mentioned in Fig 5, leading to a longer
run time.

6. CONCLUSIONS AND FUTURE WORKS

This paper gives an extremely fast decap optimization solution
targeting at very large circuit sizes. The combination of our pro-
posed improved conjugate gradient algorithm and partitioning-based
optimization scheme can efficiently optimize power grid circuits
with million nodes in a short time. Our theoretical analysis on the
time complexity shows that new algorithm outperforms the exist-
ing decap allocation algorithms. Experimental results on a num-
ber of power grid circuits demonstrate that the proposed algorithm
achieves at least 10X speed-up over the fastest decap allocation
method reported so far with similar or even better decap budget
quality, and a power grid circuit with about one million nodes can
be optimized in about half an hour on the latest Linux workstation.
In the future, parallel simulation will be explored to further improve
the efficiency of the decap budgeting algorithm.

7. REFERENCES

[1] S. Bobba, T. Thorp, K. Aingaran, and D. Liu, “IC power
distribution challeges,” in Proc. Int. Conf. on Computer
Aided Design (ICCAD), 2001, pp. 643-650.

[2] H. H. Chen and D. D. Ling, “Power supply noise analysis
methodology for deep-submicron VLSI chip design,” in
Proc. Design Automation Conf. (DAC), 1997, pp. 638-643.

[3] E. Chiprout, “Fast flip-chip power grid analysis via locality
and grid shells,” in Proc. Int. Conf. on Computer Aided
Design (ICCAD), Nov. 2004, pp. 485-488.

[4] E. Chiprout and T. Nguyen, “Power analysis of large
interconnect grids with multiple sources using model
reduction,” in Proc. European Conference on Circuit Theory
and Design, Sept. 1999.

175

[5] J. Fu, Z. Luo, X. Hong, Y. Cai, S. X.-D. Tan, and Z. Pan, “A
fast decoupling capacitor budgeting algorithm for robust
on-chip power delivery,” in Proc. Asia South Pacific Design
Automation Conf. (ASPDAC), Jan. 2004, pp. 505-510.

G. Karypis, R. Aggarwal, and V. K. S. Shekhar, “Multilevel
hypergraph partitioning: application in VLSI domain,” IEEE
Trans. on Very Large Scale Integration (VLSI) Systems,

vol. 7, no. 1, pp. 6979, March 1999.

M. Pant, P. Pant, and D. Wills, “On-chip decoupling
capacitor optimization using architectural level current
signature prediction,” in Proc. IEEE Midwest Symp. Circuits
and Systems, 2000, pp. 772-775.

H. F. Qian, S. R. Nassif, and S. S. Sapatnekar, “Random
walks in a supply network,” in Proc. Design Automation
Conf. (DAC), 2003, pp. 93-98.

C. K. S. Zhao, K. Roy, “Decoupling capacitance allocation
and its application to power-supply noise-aware
floorplanning,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 21, no. 1, pp. 81-92,
Jan. 2002.

L. Smith, “Decoupling capacitor calculations for cmos
circuits,” in Proc. IEEE Topical Meeting of Electrical
Performance of Electronic Packaging, 1994, pp. 101-105.
H. Su, S. S. Sapatnekar, and S. R. Nassif, “Optimal
decoupling capacitor sizing and placement for standard cell
layout designs,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 22, no. 4, April 2003.
J. Vlach and K. Singhal, Computer Methods for Circuit
Analysis and Design. New York, NY: Van Nostrand
Reinhold, 1995.

(6]

[7

—

(8]

(9]

(10]

(11]

(12]

