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Abstract—In recent studies, using mobile elements (MEs) as
mechanical carriers of data has been shown to be an effective way
of prolonging sensor network life time and relaying information
in partitioned networks. As the data generation rates of sensors
may vary, some sensors need to be visited more frequently
than others. In this paper, a partitioning-based algorithm is
presented that schedules the movements of MEs in a sensor
network such that there is no data loss due to buffer overflow.
Simulation results show that the proposed Partitioning Based
Scheduling (PBS) algorithm performs well in terms of reducing
the minimum required ME speed to prevent data loss, providing
high predictability in inter-visit durations, and minimizing the
data loss rate for the cases when the ME is constrained to move
slower than the minimum required ME speed.

I. INTRODUCTION

Advances in VLSI and radio transceiver technologies as
well as evolution in power efficient methods have enabled real-
ization of wireless sensor networks, which especially find use
in critical areas such as battlefield surveillance, environmental
monitoring [1], nuclear, biological and chemical attack detec-
tion [2], and traffic monitoring [3]. The traditional approach
for data delivery in wireless sensor networks involves multi-
hop communication from data sources to sinks. However,
multi-hop communication may not always be possible due to
network partitioning. Furthermore, relaying data over a large
number of hops also reduces the life time of sensor nodes. As
the number of sinks in wireless sensor networks is relatively
small, the nodes close to the sinks may run out of energy
before the others since all traffic is funnelled through these
nodes. Although battery replenishment and power harvesting
techniques are under development, reducing energy consump-
tion of individual sensor nodes still plays the most important
role in maximizing the network lifetime.

Recently, mobile elements have been proposed as mechani-
cal carriers of data in wireless networks [4], [S]. Using mobile
elements, the battery life time of individual sensors can be
increased. Low density networks also benefit from utilization
of mobile elements. The ZebraNet project [6] and Manatee
project [7], [8] are among the first to explore the idea of using
mobility in sensor networks. In [9], a three-tier MULE (Mobile
Ubiquitous LAN Extensions) architecture has been proposed,
where the mobile elements are vehicles (cars, buses) outfitted
with transceivers and move randomly to collect data from the
sensor nodes as they approach them. As an application of

controlled mobility, Message Ferrying is introduced in [10],
[11], [12], where a set of special mobile elements (called
message ferries) provide communication service for nodes in
sparse ad-hoc networks. Since each node communicates only
with the message ferries, any long distance communication
is avoided, resulting in increased node lifetime. In Wireless
Sensor and Actor Networks (WSANSs) [13], a set of mobile
nodes, called Actors, are employed to perform appropriate
actions based on the data collected by sensor nodes.

A mobile element capable of short-range communication
can collect data from the nearby sensor nodes as it approaches
during its motion. Controlling the mobile element motion leads
to the Mobile Element Scheduling (MES) problem [14], which
is defined as the problem of scheduling the visits of a mobile
element to sensor nodes so that there is no data loss due to
sensor node buffer overflow. It is assumed that all sensors
have limited capacity buffer, and once a mobile element visits
a node, it transfers the data from the sensor to its own memory
and the sensor’s memory is freed.

The amount and frequency of data generation in sensor
nodes varies based on the event occurrence frequency, which
is generally a function of the sensor location. In the example
given in [14], sensor networks can be used to sense air
pollution levels in large urban areas. Since the variation of
pollution levels are expected to be higher in industrial areas
than in residential areas, sensors in industrial areas generate
data at higher rates than sensors in residential areas. As a
result, sensors must be visited at different frequencies, and
a sensor may need to be visited multiple times before all
other sensors are visited to avoid buffer overflow. As soon
as a node is visited and data is transferred, its visit deadline is
updated. Therefore, the deadlines are “dynamically” updated
as the mobile element performs its job as a data collector.

In this paper, we investigate the MES problem and propose a
Partition Based Scheduling (PBS) algorithm which tackles the
problem by dividing it into two sub-problems: Partitioning and
Scheduling. First, all nodes are partitioned into several groups
with respect to their data generation rate and location. Then,
within a single group, the scheduling algorithm generates node
visiting schedules for the ME by minimizing the overhead
of moving back and forth across far-away nodes. Finally, the
scheduling solutions of the groups are concatenated forming
the entire Mobile Element path so that all nodes can be
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visited at adequate frequencies to prevent buffer overflows.
In this paper, the investigated performance metrics are the
data loss rate for a given ME speed and the minimum speed
to completely avoid buffer overflow. We confirm through
simulations that our PBS algorithm performs well in terms of
both metrics as well as providing high predictability in nodes
inter-visit schedule.

The remainder of the paper is organized as follows: The
related work is presented in Section II, followed by a detailed
description of the MES problem and our PBS scheduling
algorithm in Section III. Simulation results are presented and
discussed in Section IV. Finally, the paper is concluded in
Section V.

II. RELATED WORK

The use of mobile elements to carry data has recently
been considered in the literature. Data MULES [9] focuses
on utilization of mobile elements (called MULEs) in sparse
sensor networks. The MULEs move randomly and collect data
opportunistically from sensor nodes. The movement of data
gathering elements are not controlled in this framework. In the
message ferrying (MF) [10], [11] approach, message ferries
are used to route data from one node to another in a sparse
ad hoc network. Based on a given traffic matrix, the goal of
message ferrying approach is to find the optimal route of a
ferry so that the average delay from source to destination is
minimized while meeting the bandwidth requirement of flows.

Related to the MES problem are the Orienteering Problem
(OP) [15], the Prize Collecting Traveling Salesman Problem
(PC-TSP) [16], as well as the original TSP. These problems
deal with routing a vehicle to visit each city at most once.
However in our problem, a node may need to be visited
more than once before all other nodes are visited because
of the difference in buffer overflow deadlines. In OP and
Prize Collecting TSP, each city has an associated nonnegative
prize and the vehicle aims to collect the maximum total prize.
Although the mobile element in the MES problem also collects
data that can be considered as prize, the value of the prize is
dynamic and depends on the time of the visit.

The Vehicle Routing Problem (VRP) [17] is defined as
finding a route for a vehicle that minimizes the total travel
cost to deliver cargo between a depot and customers. Unlike
TSP, VRP considers more than one vehicle and nodes can be
visited more than once. Among many variants of VRP, VRP
with deadline [18], [19] and Periodic VRP (PVRP) [17] are
relevant to the MES problem. The goal of VRP with Deadline
is to schedule a vehicle to visit as many nodes as possible
by their deadlines. Different from our problem, each node
in Deadline VRP is visited at most once. Furthermore, the
deadline of the visit to a node in Deadline VRP is fixed,
whereas the deadline of a node changes periodically in our
case.

Periodic VRP is the problem of designing routes for delivery
vehicles for a given T-day period where not all customers
require delivery on every day in the period. Customers are
associated with a set of feasible schedules that are some

combinations of days they can be visited. In PVRP, the
feasible solution set consists of a finite number of possibilities.
However, in MES, the feasible solution set consists of an
infinite number of possibilities such that the time difference
between any two consecutive visits scheduled to the same node
is smaller than the associated buffer overflow time. Moreover,
in the MES problem, the vehicle does not need to go back to
a certain node at the end of every cycle whereas the vehicles
in PVRP go back to the depot every day. Although the MES
problem can be discretized in the time domain, the resulting
size of the feasible solution set does not scale well with the
range of data generation rates.

The MES problem in wireless sensor networks is proved to
be NP-complete and three heuristic algorithms are presented
in [14]. The first one is the Earliest Deadline First (EDF)
algorithm, where the node with the closest deadline is visited
first. To improve EDF, the second algorithm, EDF with k-
lookahead, is proposed. Instead of visiting a node whose dead-
line is the earliest, this algorithm considers the k! permutations
of the £ nodes with smallest deadlines, and chooses the next
node which leads to the earliest finish time. Consequently,
the EDF with k lookahead algorithm performs better than
pure EDF. The third algorithm is the Minimum Weight Sum
First (MWSF) algorithm, which accounts for the weights of
deadlines as well as distances between nodes in determining
the visiting schedule. The MWSF algorithm performs the best
among the three proposed algorithms.

Even though the MWSF solution considers both deadlines
as well as distances, “back and forth” movement between far
away nodes occurs frequently. In our proposed PBS algorithm,
we consider the deadline and distances of all nodes simulta-
neously and utilize a two-layer scheduling approach to reduce
the back-and-forth movement behavior. This is achieved by
partitioning the set of all nodes according to deadlines as
well as their geographic locations. The resulting schedules and
paths are usually shorter, which reduces the minimum required
speed of the ME to prevent buffer overflow.

III. PARTITIONING-BASED SCHEDULING ALGORITHM

Algorithm 1. PBS({w;; }.{o: })
1: Partition the nodes {n;} into M bins according to the
buffer overflow times {o;}.
2: Geographically partition each bin B; into 27~ sub-bins
using partitioning algorithm.
3: Calculated a TSP path for each sub bin.
4: Concatenate all TSP paths to build the overall schedule.

Our proposed Partitioning-Based Scheduling (PBS) algo-
rithm is designed to solve the Mobile Element Scheduling
problem, which aims to schedule the visits of the mobile
element to each sensor to avoid data loss due to sensor buffer
overflow. With the PBS algorithm, we first partition all nodes
into several groups, called bins, such that nodes in the same
bin have similar deadlines and are geographically close to each



other. Then, to solve the scheduling problem of the mobile
element within a single bin, we solve the Traveling Salesman
Problem, which calculates a minimum cost tour that visits each
node exactly once. Finally, the schedules for individual groups
are concatenated to form the entire schedule. In this section,
we first outline our notation and problem formulation. Then,
we present a detailed description of our solution to the MES
problem.

A. Problem Formulation and Notation

In this paper, wireless sensor networks composed of homo-
geneous sensor nodes are considered. The nodes are equipped
with wireless communication interfaces with limited ranges.
Sensor nodes capture the events in their surroundings and
record them to their buffers. The following assumptions are
also made regarding the sensor nodes and the mobile element.

o The physical sizes of sensor nodes and mobile elements
are negligible.

« Mobile elements can move in any direction without any
latency of making any turns.

o Data transfer time between sensor nodes and mobile
elements is negligible compared to the delay due to ME
movement.

o All sensors have the same finite buffer size, and at time
t = 0, all sensor node buffers start in an empty state.
Mobile elements have infinite data buffers and do not
suffer from buffer overflow.

We denote the number of nodes in the network by /N and the
set of nodes by {n;}, where i = 1,..., N. Let w;; denote the
distance between nodes n; and n;. The buffer overflow time
and data generation rate of each node are denoted by o; and
fi, respectively. For a buffer of size b, 0; = 2,i=1,...,N.
We assume that the data generation rate f; isldirectly related
to event occurrence rate.

The MES problem ({w;;},{o;}) is to find a sequence of
visits to nodes {n;}, for ¢ = 1,..., N, and calculate the
minimum speed v.,,;, of the ME so that no node buffers
overflows.

B. The Proposed PBS Algorithm

Let B;, j = 1,..., M, denote bin j, where M is the total
number of bins. In PBS, nodes are first partitioned into bins
in such a way that overflow times of the nodes in bin B; is
smaller than those in B, for j > ¢ > 0. Moreover, the range
of overflow times for nodes in B, is twice that of B;. This
allows the nodes in B; to be visited twice more frequently than
the nodes in B;y; during generation of the visit schedules.
Then, each bin again is partitioned into sub-bins so that nodes
in the same sub-bin are geographically close to each other.
This two level partitioning results in groups of nodes with
similar deadlines and locations. Therefore, in each sub-bin,
node visits can be scheduled using a solution for the Traveling
Salesman Problem. Finally, the schedule for individual groups
are concatenated to form the entire schedule that guarantees all
deadline constraints are satisfied. In the following, we describe
the details of PBS algorithm outlined in Algorithm 1.

Tmin  2Tmin 4Tmin Tmax

Fig. 1. The diagram of step 1: Partition according to overflow times.

1) Bin Partitioning according to overflow times: Let 0.,in
and 0,,,, denote the minimum and maximum overflow time
of all nodes. Nodes are assigned to bins according to the
following equation:

n; € B, if2j710min§0i§2j0minaj:17"'vM71;
* 7 if 2j710min < 0; < Omaz,j = M.

()]

Fig. 1 shows an example of partitioning all nodes into three
bins. The overflow times of nodes in B; range from 0,,;, to
20min, the overflow times of nodes in By range from 20,,;,
to 40,in, and the overflow times of nodes in B3 range from
40ymin 10 Omaz. Therefore, all nodes in a bin I; are considered
as if they are assigned an overflow time of 2/~10,,;,. Every
bin is then visited at different frequencies: All nodes in B;
are visited every cycle, nodes in By are visited every other
cycle, and nodes in B3 are visited every four cycles, where
we define a cycle as a closed path among a set of nodes,
such that no node is included more than once in the same
cycle. We also define a supercycle as a closed path composed
of concatenated cycles such that every node is included at
least once in a supercycle. In our algorithm, a supercycle is
equivalent to the period of the ME schedule.

2) Sub-bin partitioning according to locations: Each bin
obtained in Step 1 is then partitioned into sub-bins according
to the node locations such that the nodes in the same sub-bin
are geographically close to each other. The number of sub-bins
of a bin B; is calculated based on the index j. As an example,
the nodes in B; need to be visited only half as frequently as the
nodes in B;. Hence, B, is partitioned into two sub-bins: le
and B3, where B is visited every even cycle, and B3 is visited
every odd cycle. Following the same rule, B3 is partitioned
into four sub-bins: B, BZ, B3 and B3, and in general, bin B;
is partitioned into 2! sub-bins: B!, ..., B?" . The KD-tree
algorithm [20] is utilized to realize this partitioning. KD-tree
is a k-dimensional binary search tree for information retrieval
by associative searches. In our case, we use the 2D-tree where
the two dimensions are the length and width of the sensor
deployed field.

An example of 2D-tree partitioning is shown in Fig. 2 for
N randomly deployed nodes in a given region. As shown in
the figure, the nodes are first geometrically divided into two
balanced parts by the cut A with respect to their x-coordinates.
The nodes having x coordinates smaller than the average of
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Fig. 2. Nodes in a 2 dimension space cut by KD-tree.

Algorithm 2.

if d=depth then

return
end if
if cutonx then

sort S according to x coordinate
else

sort S according to y coordinate
end if
split S into S1 and S2
cutonx «— !cutonx
KD-tree(S1, cutonx, depth, d+1)
KD-tree(S2, cutonx, depth, d+1)

2D-tree(S, cutonx, depth, d)
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the other.

As the cut A partitions the region vertically, cut B and C
horizontally partition the resulting two parts considering the y-
coordinates of the nodes. This process is repeated alternatingly
until the desired number of partitions is obtained. The number
of partitions, which is also the number of sub-bins in our
problem, decides the depth of the 2D-tree. In our PBS solution,
bin Bj is partitioned into 2/~! sub-bins. Therefore, the depth
of 2D-tree for Bj is:

is assigned to one part and rest to

depth; = log227 "' = j — 1. )

The pseudo-code of the 2D-tree partitioning algorithm is
shown in Algorithm 2. The input S is the set of nodes in the
bin to be partitioned. cutonz is a boolean flag showing the
cut criteria: x coordinate (true) or y coordinate (false). d is
the current cut level and depth is the depth of the KD-tree,
which is determined by the desired number of sub-bins. In
each procedure call, the nodes are first sorted with respect to
x or y coordinates and partitioned into two based on value
of cutonz. Then, cutonz flag is changed and the procedure
is called recursively on resulting partitions until the desired
2D-tree depth is reached.
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Fig. 3.  An example of the visiting sequence of sub-bins in a ‘supercycle’

3) Forming a TSP solution on each sub-bin: The two level
partitioning results in groups of nodes with similar deadlines
and locations. Therefore, the ME scheduling problem is re-
duced to the Traveling Salesman Problem (TSP) for each sub-
bin. In the literature, several algorithms to calculate the TSP
paths are proposed such as the nearest neighbor, LKH [21],
and Prim’s algorithm [22]. In our solution, we adopt the Prim’s
algorithm to first calculate the minimum spanning tree and
then make a pre-order tree walk. In PBS, the path of the ME
differs from the TSP path by not returning back to the first
visited node after visiting the last node in the sub-bin. Instead,
the ME visits the first node of the next sub-bin. Then, it follows
the ME path in that sub-bin and proceeds to the following sub-
bin. As a special case, in B, which is the first bin in every
cycle, the node with the minimum overflow time is taken as
the start node.

4) Forming the supercycle: After the ME paths within the
sub-bins are calculated, the visit order of the sub-bins should
be decided to form the complete ME path. At the end of
partitioning, there are 2! sub-bins of bin B;, each composed
of nodes with deadlines at least twice the deadlines of the
nodes in sub-bins of B; 1, ¢ = 1,..., M. Therefore, in a
reasonable ME schedule, sub-bins in the same bin should
be visited with the same frequency and a sub-bin in B;_;
should be visited twice more frequently than a sub-bin of
bin B;. This heuristic choice results in a sub-bin of B; to
be visited 2M—% times for each visit to a sub-bin of bin Bj,.
Recall that in a supercycle each sub-bin, hence each node, is
visited at least once. In other words, each sub-bin in the least
frequently visited bin B), is visited at least once. Without loss
of generality, let the ME visit each sub-bin in Bj; exactly
once in a supercycle. As a result, a sub-bin of bin B; should
be visited exactly 2/~ times in a supercycle according to our
heuristic choice.

Let I; ; be defined as the maximum duration between two
consecutive visits to a node in sub-bin Bg . Then, the sufficient
condition to avoid buffer overflow for all nodes of By is given
as

I j < Opmin x 2071 3)



Let L; ; denote the longest ME path between two consecutive
visits to a node of sub-bin B, ie., L;; = I; ; X v, where
v is the speed of the ME. Hence, to avoid buffer overflow in
Bg, v > # should be satisfied. This can be achieved
by either increasing the ME speed or decreasing L; ;. Our
objective of minimizing the ME speed for a lossless schedule
can be achieved by minimizing L;; for each sub-bin and
setting v to the largest required value to satisfy Inequality
3 for every sub-bin.

Since all sub-bins are formed according to geographical
proximity as well as overflow deadlines, the TSP tours of
sub-bins B/ of a bin B; are approximately the same length.
In order to have a predictable visiting schedule of sub-bins,
we form cycles such that only one sub-bin from each bin is
contained in a cycle. Furthermore, all cycles preserve the order
of bins B; from which sub-bins are selected. In particular, sub-
bins are visited starting from B; in increasing bin number
order and a sub-bin in B; is always visited after the same
sub-bin in B; 1. This ensures that in every cycle that a sub-
bin B] is visited, the nodes in B] are visited at exactly the
same time as they were visited in the previous cycle relative to
the start times of the cycles. The rationale behind this choice
will be discussed in more detail in the following subsection.

There are two times more sub-bins in bin B; than B; 1
and each sub-bin in B; is always visited after the same sub-
bin in B;_;. As a result, exactly two sub-bins in B; follow
each sub-bin in B; 1 for i =2,..., M. In PBS, the two sub-
bins to follow a particular sub-bin is decided by considering
the geographic locations of the sub-bins. We use the center of
gravities of sub-bins to measure the distances between sub-
bins. For each sub-bin of B;_;, we greedily schedule the
closest two sub-bins from B; to follow it. Note that more
complicated partitioning algorithms can be used to further
minimize the distances between consecutively visited sub-bins.

In Fig. 3, a visiting sequence example of sub-bins in a
supercycle is given for M = 3. The supercycle in this case
consists of four cycles and the visit schedules of the sub-bins
are as follows: B is visited every cycle, B3 is visited in cycles
1 and 3, and B% is visited in cycles 2 and 4 and the sub-bins
of the last bin, B3, are visited in cycles 1, 2, 3, and 4, one at
a time.

C. Discussion of Minimum Required Speed

In order to minimize the power consumption of the ME, its
speed should be minimized by a MES solution. In this paper,
we calculate a lower bound for the PBS solutions on the ME
speed, denoted as v.,;n, such that no buffer overflow occurs
in the network nodes. In PBS algorithm, although the length
of the paths that the ME traverses in different cycles are tried
to be made close to each other, they are still not exactly the
same. Let L,,q, and T,,,, denote the path length and total
visit duration of the maximum length cycle, respectively.

As mentioned in the previous subsection, in every cycle
a particular node is visited, it is always visited at the same
time relative to the start time of the cycle. Since each sub-
bin, therefore node, in B; is visited every 2¢~! cycles, the

maximum inter-visit time for a node in bin B; is upper
bounded by 2¢~! x T),4.. In order to avoid buffer overflow,
maximum inter-visit time to a node in B; should be less than
or equal to 0,5, X 2°1, resulting in

Lmam
“4)

< Omyin

where v is the speed of the ME. By letting % = Omin
in order to solve for the minimum ME speed for no buffer
overflow, v,,,;, is calculated as

Lmam
. &)

Umin =
Omin
In general, L,,,, cannot be approximated easily except for
certain special deployments of sensor nodes. Once an ME
schedule is generated by the PBS algorithm, L,,,,, therefore
Umin, can be computed numerically. If the ME is constrained
to move at a smaller speed than v,,,;,,, there will be data losses
due to buffer overflow. Besides trying to minimize v.,;, for
a lossless schedule, the proposed algorithm is also designed
to minimize the data loss rate in such cases. Although not
discussed in this paper, further optimizations can be done for
the latter objective by trading off performance of the former
one. In the performance analysis section, we also present the
performance of our PBS algorithm as a function of the ME
speed.

D. Time Complexity Analysis

Assume that N and M denote the number of sensor nodes
and number of bins, respectively. Then, the complexity for
each step of the PBS algorithm is as follows:

e Step 1: The bin partitioning in Step 1 is dominated by
sorting of the nodes with respect to the buffer overflow
times resulting in O(NlogN) complexity.

e Step 2: In the geographical partitioning step, 2D-tree
algorithm has a time complexity of DNlogN where D is
the depth of the tree. Since 2D-tree algorithm is applied
on all bins and D is equal to ¢ — 1 for bin B;, the overall
complexity of this step is O(M?2NlogN).

e Step 3: The complexity of calculating the TSP path for
S nodes is O(S?) . Since there are a total of 2M — 1
sub-bins, the time complexity of this step is O(N?22)
in the worst case. Note that 2 is O(0mmqx)-

o Step 4: Time complexity of Step 4 is O(NlogN).

As a result, the PBS algorithm have an overall time com-

plexity of O(M2NlogN + N22M),

IV. PERFORMANCE EVALUATION

To evaluate the performance of our proposed PBS algorithm,
we have run an extensive set of simulations. In this simulation
study, the following scenarios are considered for performance
evaluation.

o Simulation I: We observe the data loss rates as a function
of the mobile element speed.

o Simulation II: We observe the effect of the node density
on the minimum required speed to avoid data loss.
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(a) Topology of type A

(b) Topology of type B

(c) Topology of type C

Fig. 4. Three types of topologies considered in simulation. Each topology A, B, and C have one, four, and nine eyes, respectively.

o Simulation III: The effect of number of bins on the PBS
performance is evaluated for different network sizes and
properties.

o Simulation IV: Sensor visit predictability is investigated
as a function of overflow time and node density through
inspection of the standard deviation of inter-visit times.

Simulations I, II, and IV are also run for the MWSF [14]
algorithm to compare the performance of our PBS algorithm.
The details of the simulation setup as well as the detailed
discussion of the simulation results are presented in the
following sections.

A. Metrics and Methodology

We observe the following metrics to evaluate the perfor-
mance of the PBS algorithm.

e Data loss occurrence rate is defined as the ratio of
number of sensors missing their deadlines to the total
number of nodes visited. It presents the performance in
terms of the number of sensors missing their deadlines
rather than the amount of data lost.

o Data loss rate is defined as the ratio of the data lost due
to buffer overflow to the total amount of data generated.

o Minimum required speed is defined as the minimum speed
of the mobile element to guarantee no sensor buffer
overflow.

o Predictability is defined as the standard deviation of the
inter-visit duration which is the duration between two
visits to the same node.

In our simulations, we use the following default settings
unless specified otherwise. Each simulation is run on a network
with 150 sensor nodes randomly placed following the uniform
distribution on a 100 x 100 unit?> area. Each sensor node
is equipped with same size buffers. The overflow time of
each sensor differs due to different events occurrence rate of
different regions. To simulate the different event occurrence
rates based on regions, we assume that events are concentrated
at certain locations, which we call Eyes. The nodes in the eye
centers have highest data generation rate, which drops radially

outwards. Four topologies', A, B, C, and D, are considered in
our simulations. Topologies A, B, and C have one, four, and
nine eyes, respectively. Topology D correspond to uniformly
distributed data generation rates over the sensor network. It can
also be considered as having infinite number of eyes. As shown
in Figure 4(a), to model topology A, a sequence of concentric
circles divides the given area into several ring shaped regions;
Region 1 to Region n. The radius of each concentric circle is
denoted by R;, Rs, Rs,..., R,, where Ry = 2 units. The
value of each radius is calculated as:

R, =1- Ry,

The nodes in the innermost region are assigned the smallest
overflow time, which is called the base_time, and overflow
times for nodes in regions radially outwards are calculated as:

i=1,...,n

over flowTime; = base_time + (i — 1) - step, i =1,...,n

where over flowTime; is the overflow time assigned to nodes
in Region ¢ and step is the size of the increments. Through
the simulations, we take 20 units for base_time and 20 units
for step. Similarly, we consider the grids with four eyes and
nine eyes as shown in Figure 4(b) and Figure 4(c), respec-
tively. In order to ensure that all topologies have the same
over flowTime distribution, overflow times are distributed as
follows: In Topology B with four eyes, the smallest circle has
a radius of 1unit, and radius increases by %step. Similarly, in
Topology C, the smallest radius is %um‘ts and radius increases
by %step. In Topology D, nodes are first generated in the same
way as in topology A and then deployed randomly in a space.

Each run of simulations lasts 100000 time units. A mobile
element with a speed of one unit covers one unit length in one
time unit. For each simulation presented, results are average
values for 100 independent runs. We run the experiments for
both PBS and MWSF algorithms on all four topologies in
order to make the comparisons. The MWSF algorithm is run
with weight oo = 0.1, where « is the weight of deadline, and
1 —« is the weight of distance. According to the experimental

I‘Topologies’ A, B, C, D refer to the distribution of data generation rates
over the sensor field, where all nodes are placed randomly.
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results in [14], MWSF algorithm yields the best performance
when the value of « is around 0.1. We considered PBS with
the default bin number M = 3 unless specified otherwise.

B. Impact of the Speed of the Mobile Element

Figures 5(a) and 5(b) show data loss occurrence rates
and data loss rates for simulations run with both PBS and
MWSF algorithms on the four topologies A, B, C, and D.
We have collected experimental results for different speeds
of the mobile element ranging from 0 to 20. Loss rates range
from O to 1, which correspond to the no loss and complete loss
cases, respectively. In both figures, loss rates decrease with the
increased speed. Furthermore, the performances on topology
A, B, C, and D are in a decreasing order. This behavior is
expected since the ME covers larger distances when nodes
with similar overflow times are not located closely together.
The simulation results shown in Fig. 5(a) and Fig. 5(b) also
match in the sense that the data loss occurrence rate and data
loss rate drop to zero at the same ME speeds. The loss rate
of PBS scheduling algorithm decreases at a higher rate as the
speed increases. We can conclude that our PBS algorithm is
more effective in terms of reducing the loss rate, and provides
a better performance than MWSF algorithm in general.

C. Impact of Node Density

In this section, the impact of the node density is evaluated
to observe the scalability of PBS algorithm. In this simulation
the number of nodes deployed on a 100 x 100 area is varied
between 10 and 150. With the increasing node density, we
measure the minimum speed of mobile elements to avoid data
loss. Figure 6 shows the results of running this simulation on
four topologies. The minimum required speed increases with
the increasing node density. This is expected because when
the node density increases, the path length in a supercycle
increases, as well. This leads to increased minimum speed
of mobile elements to avoid buffer overflows. With the same

25 I PBS A |
[ PBS B
— [ IPBSC
[ 1PBSD

Minimum speed to avoid data loss

2 3 4
Number of bins

Fig. 8. Impact of number of bins and node density on minimum speed to
avoid data loss with PBS algorithm.

node density, the minimum required speed for Topology A is
lower than B, which is lower than C. Minimum required speed
for Topology D is the highest. This behavior also matches
previous results in Section IV.B. The path the mobile element
covers in a supercycle is longer when the eye number is larger.
The minimum required speeds in Fig.6 also match results in
Fig. 5(a) and Fig. 5(b) which is evaluated when node density
is 150.

D. Impact of Number of Bins

In this section, we study how the number of bins M affects
the performance of the PBS algorithm. M = 1 corresponds to
the case where all the nodes are contained in one bin and are
visited every cycle. No geographical partitioning is used in this
case. When the bin number is larger than one, nodes are first
partitioned according to overflow times and then partitioned
geographically. According to Fig. 7, in lower speed regions,
small number of bins delivers lower loss rates. In higher
speed regions, higher bin numbers are favored. This is due
to the fact that the TSP path in the one bin case traverses all
nodes, favoring nodes with large overflow times and sacrificing
performance in low overflow time nodes. The effect of nodes
with low overflow times will dominate the overall performance
when the ME speed is not very low.

It can also be observed that a large number of bins provides
much smaller minimum speed to avoid buffer overflows. As
an example, in Fig. 7(d), when the data loss rate of the
four bins case drops to zero, the curve of one bin case still
asymptotically approaches x axis. Scheduling with small bin
numbers sacrifices performance on nodes with low overflow
time severely. Therefore, although the performance of schedul-
ing with one bin scheme has smaller data loss when mobile
element moves at lower speed, its advantage disappears for
moderate and high speeds.

Fig. 8 shows the minimum required speed for simulations
run with the PBS algorithm on four topologies with bin
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number ranging from one to four. With same number of bins,
the minimum required speed of mobile element increases with
the increased eye number. Furthermore, minimum required
speed decreases when number of bins increases on same
topology.

E. Sensor Visit Predictability

In Section III, we claim that our PBS algorithm provides
periodic supercycle scheduling. Furthermore, cycles in a super-
cycle are almost periodic, as well. To analyze this periodicity,
we consider the variation of the duration between visits to a
given sensor node. The standard deviation of inter-visit dura-
tions is used to measure the predictability of visits to sensor
nodes, which shows the periodical feature of our scheduling
scheme. We first observe the predictability of sensor node visit
times as a function of different data generation rates. We focus
on the standard deviations of inter-visit durations and group
the results according to overflow times. Fig. 9(a) shows the
results of running PBS and MWSF algorithms on the four
Topologies A, B, C and D. We choose 6 units as the speed
of the mobile element, where buffer overflows still occur. As
shown in Fig. 9(a), the standard deviation of inter-visit times
for PBS is much smaller than MWSF for all overflow time
values. For Topology A with one eye, while MWSF sacrifices
the performance in data generation rate nodes, PBS provides
very high predictability in these areas.

Note that the standard deviation of inter-visit times of PBS
decreases as the overflow time of sensor nodes increases.
Especially for nodes with very high overflow times, the
standard deviation is nearly zero. This is due to the fact that
the nodes with high overflow times mostly belong to the last
bin, which is visited once every supercycle. Since the period
of the supercycle is always the same, they are visited exactly
periodically. Thus, the standard deviation of inter-visit times
for these nodes is zero.

To observe the impact of the node density on sensor visit
predictability, we sampled three set of nodes with overflow
times A1=150, A2=250 and A3=350. The number of nodes
in the network ranges from 10 to 150, with an increment
of 10. In Fig. 9(b), the six curves are grouped in two: The
upper three for MWSF algorithm and the lower three for our
PBS algorithm. It can be observed that our PBS algorithm
have much smaller standard deviation for inter-visit duration,
which shows better predictability. Moreover, although both
MWSF and PBS have a decreasing predictability as sensor
node density increases, PBS shows better scalability. Another
observation is that the standard deviation values increase for
the MWSF algorithm as the overflow times increase for all
sensor node densities. For our PBS algorithm, the opposite
behavior is observed: As the node density increases, the
standard deviation decreases.

V. CONCLUSION AND FUTURE WORK

Using a controlled mobile element is a promising approach
to collect data from sparsely deployed sensor nodes. The
sensor nodes may have different data generation rates, which

leads to the Mobile Element Scheduling Problem. In this paper,
we propose a Partitioning-Based Scheduling (PBS) algorithm
to address this problem. We compare our algorithm with
Minimum Weighted Sum First algorithm and showed that
our PBS algorithm provides higher performance in terms of
decreasing loss rate, reducing the minimum required speed,
and providing high predictability. Our future work includes
investigation of methods to utilize more than one mobile
element for data collection and to cater to the needs of urgent
real-time communication events.
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