
Partitioning Biological Networks into Highly
Connected Clusters with Maximum Edge Coverage

Falk Hüffner1, Christian Komusiewicz1, Adrian Liebtrau2, and Rolf Niedermeier1

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
{falk.hueffner,christian.komusiewicz,rolf.niedermeier}@tu-berlin.de

2 Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany

Abstract. We introduce the combinatorial optimization problem Highly
Connected Deletion, which asks for removing as few edges as possible
from a graph such that the resulting graph consists of highly connected
components. We show that Highly Connected Deletion is NP-hard
and provide a fixed-parameter algorithm and a kernelization. We propose
exact and heuristic solution strategies, based on polynomial-time data
reduction rules and integer linear programming with column generation.
The data reduction typically identifies 85% of the edges that need to be
deleted for an optimal solution; the column generation method can then
optimally solve protein interaction networks with up to 5 000 vertices and
12 000 edges.

1 Introduction

A key idea of graph-based data clustering is to identify densely connected sub-
graphs (clusters) that have many interactions within themselves and few with the
rest of the graph. Hartuv and Shamir [8] proposed a clustering algorithm produc-
ing so-called highly connected clusters. Their method has been successfully used
to cluster cDNA fingerprints [9], to find complexes in protein–protein interaction
(PPI) data [10], and to find families of regulatory RNA structures [15]. Hartuv
and Shamir [8] formalized the connectivity demand for a cluster as follows: the
edge connectivity λ(G) of a graph G is the minimum number of edges whose
deletion results in a disconnected graph, and a graph G with n vertices is called
highly connected if λ(G) > n/2. An equivalent characterization is that a graph is
highly connected if each vertex has degree at least bn/2c+ 1 [5]. Thus, highly
connected graphs are very similar to 0.5-quasi-complete graphs [11], that is,
graphs where every vertex has degree at least (n− 1)/2. Further, being highly
connected also ensures that the diameter of a cluster is at most two [8].

The algorithm by Hartuv and Shamir [8] partitions the vertex set of the
given graph such that each partition set is highly connected, thus guaranteeing
good intra-cluster density (including maximum cluster diameter two and the
presence of more than half of all possible edges). Moreover, the algorithm needs
no prespecified parameters (such as the number of clusters) and it naturally
extends to hierarchical clustering. Essentially, Hartuv and Shamir’s algorithm
iteratively deletes the edges of a minimum cut in a connected component that is

To appear in Proceedings of the 9th International Symposium on Bioinformatics
Research and Applications (ISBRA ’13), Charlotte, USA, May 2013. c© Springer.

not yet highly connected. While Hartuv and Shamir’s algorithm guarantees to
output a partitioning into highly connected subgraphs, it does not guarantee to
achieve this by minimizing inter-cluster connectivity. Thus, we propose a formally
defined combinatorial optimization problem that additionally specifies the goal
to minimize the number of edge deletions.

Highly Connected Deletion
Instance: An undirected graph G = (V,E).
Task: Find a minimum subset of edges E′ ⊆ E such that in G′ =
(V,E \ E′) all connected components are highly connected.

Note that, by definition, isolated edges are not highly connected. Hence, the
smallest clusters are triangles; we consider all singletons as unclustered. The
problem formulation resembles the Cluster Deletion problem [17], which asks
for a minimum number of edge deletions to make each connected component a
clique; thus, Cluster Deletion has a much stronger demand on intra-cluster
connectivity. Also related is the 2-Club Deletion problem [13], which asks for
a minimum number of edge deletions to make each connected component have
a diameter of at most two. Since highly connected clusters also have diameter
at most two [8], 2-Club Deletion poses a looser demand on intra-cluster
connectivity.

It could be expected that the algorithm by Hartuv and Shamir [8] yields a
good approximation for the optimization goal of Highly Connected Deletion.
However, we can observe that in the worst case, its result can have size Ω(k2),
where k := |E′| is the size of an optimal solution. For this, consider two cliques
with vertex sets u1, . . . , un and v1, . . . , vn, respectively, and the additional edges
{ui, vi} for 2 ≤ i ≤ n. Then these additional edges form a solution set of size
n − 1; however, Hartuv and Shamir’s algorithm will (with unlucky choice of
minimum cuts) transform one of the two cliques into an independent set by
repeatedly cutting off one vertex, thereby deleting n(n+1)/2− 1 edges. This also
illustrates the tendency of the algorithm to cut off size-1 clusters, which Hartuv
and Shamir counteract with postprocessing [8]. This tendency might introduce
systematic bias [12]. Hence, exact algorithms for solving Highly Connected
Deletion are desirable.

Preliminaries. We consider only undirected and simple graphs G = (V,E). We
use n and m to denote the number of vertices and edges in the input graph,
respectively, and k for the minimum size of an edge set whose deletion makes all
components highly connected. The order of a graph G is the number of vertices
in G. We use G[S] to denote the subgraph induced by S ⊆ V . Let N(v) := {u |
{u, v} ∈ E} denote the (open) neighborhood of v and N [v] := N(v) ∪ {v}. A
minimum cut of a graph G is a smallest edge set E′ such that deleting E′ increases
the number of connected components of G. For the notions of fixed-parameter
tractability and kernelization, see e. g. [14]. Due to the lack of space, we defer
some proofs and details to the full version of this paper.3

3 http://fpt.akt.tu-berlin.de/publications/hcd.pdf

2

http://fpt.akt.tu-berlin.de/publications/hcd.pdf

2 Computational Complexity

We can prove the hardness of Highly Connected Deletion by a reduction from
Partition Into Triangles on 4-regular neighborhood-restricted graphs [19].

Theorem 1. Highly Connected Deletion on 4-regular graphs is NP-hard
and cannot be solved in 2o(k) · nO(1), 2o(n) · nO(1), or 2o(m) · nO(1) time unless the
exponential-time hypothesis (ETH) is false.

Problem Kernel. We now present four data reduction rules that preserve optimal
solvability and whose exhaustive application results in an instance with at
most 10 · k1.5 vertices. The first data reduction rule is obvious.

Rule 1. Remove all connected components from G that are highly connected.

The following lemma can be proved by a simple counting argument.

Lemma 1. Let G be a highly connected graph and let u, v be two vertices in G. If
u and v are connected by an edge, then they have at least one common neighbor;
otherwise, they have at least three common neighbors.

A simple data reduction rule follows directly from Lemma 1.

Rule 2. If there are two vertices u and v with {u, v} ∈ E that have no common
neighbors, then delete {u, v} and decrease k by one.

Interestingly, Rules 1 and 2 yield a linear-time algorithm for Highly Con-
nected Deletion on graphs of maximum degree three, which together with
Theorem 1 shows a complexity dichotomy with respect to the maximum degree.

Theorem 2. Highly Connected Deletion can be solved in linear time when
the input graph has degree at most three.

The next two data reduction rules are concerned with finding vertex sets that
have a small edge cut. For S ⊆ V , we use D(S) := {{u, v} ∈ E | u ∈ S and v ∈
V \ S} to denote the set of edges outgoing from S, that is, the edge cut of S.

The idea behind the next reduction rule is to find vertex sets that cannot be
separated by at most k edge deletions. We call two vertices u and v inseparable
if the minimum edge cut between u and v is larger than k. Analogously, a vertex
set S is inseparable if all vertices in S are pairwise inseparable.

Rule 3. If G contains a maximal inseparable vertex set S of size at least 2k,
then do the following. If G[S] is not highly connected, then there is no solution
of size at most k. Otherwise, remove S from G and set k := k − |D(S)|.

Lemma 2. Rule 3 preserves optimal solvability and can be exhaustively applied
in O(n2 ·mk log n) time.

Note that a highly connected graph of size at least 2k is an inseparable vertex
set. Hence, after exhaustive application of Rule 3, every cluster has bounded size.
While Rule 3 identifies clusters that are large with respect to k, Rule 4 identifies
clusters that are large compared to their neighborhood.

3

Rule 4. If G contains a vertex set S such that |S| ≥ 4, G[S] is highly connected,
and |D(S)| ≤ 0.3 ·

√
|S|, then remove S from G and set k := k − |D(S)|.

Lemma 3. Rule 4 preserves optimal solvability and can be exhaustively applied
in O(n2 ·mk log n) time.

Proof. We show that there is an optimal solution in which S is a cluster. To
this end, suppose that there is an optimal solution which produces some clus-
ters C1, . . . , Cq that contain vertices from S and vertices from V \ S. We show
how to transform this solution into one that has S as a cluster and needs at
most as many edge deletions. First, we bound the overall size of the Ci’s. Note
that deleting all edges between S and {Ci \ S | 1 ≤ i ≤ q} cuts each Ci. By the
condition of the rule, such a cut has at most 0.3

√
|S| edges. Since each G[Ci] is

highly connected, this implies that
∑

1≤i≤q |Ci| < 0.6
√
|S|.

Now, transform the solution at hand into another solution as follows. Make S
a cluster, that is, undo all edge deletions within S and delete all edges in D(S),
and for each Ci, delete all edges in G[Ci \ S]. This is indeed a valid solution
since G[S] is highly connected, and all other vertices that are in “new” clusters
are now in singleton clusters.

We now compare the number of edge modifications for both edge deletion
sets and show that the new solution needs less edge modifications. To this end,
we consider each vertex u ∈ S that is contained in some Ci. On the one hand,
since G[S] is highly connected, and since there is at least some v ∈ S that is not
contained in any Ci we undo at at least |S|/2 edge deletions between vertices

of S. On the other hand, an additional number of up to 0.3
√
|S|+

(b0.6√|S|c
2

)
edge deletions may be necessary to cut all the Ci’s from S and to delete all edges
in each G[Ci \ S]. By the preconditions of the rule we have

√
|S| ≤ |S|/2 and

thus the overall number of saved edge modifications for u is at least

|S|/2− 0.3
√
|S| −

(
b0.6

√
|S|c

2

)
> |S|/2− 0.6|S|/2− 0.36|S|/2 > 0. (1)

Hence, the number of undone edge modifications is larger than the number of
new edge modifications. Consequently, S is a cluster in every optimal solution.
The running time can be bounded analogously to the running time of Rule 3. ut

Theorem 3. Highly Connected Deletion can be reduced in O(n2 ·mk log n)
time to an equivalent instance, called problem kernel, with at most 10 · k1.5
vertices.

Proof. Let I = (G, k) be an instance that is reduced with respect to Rules 1, 3
and 4. We show that every yes-instance has at most 10 · k1.5 vertices. Hence, we
can answer no for all larger instances.

Assume that I is a yes-instance and let C1, . . . , Cq denote the clusters of
a solution. Since I is reduced with respect to Rule 3, we have |Ci| ≤ 2k for
each Ci. Furthermore, for every Ci we have D(Ci) ≥ 0.3

√
|Ci| since I is reduced

4

with respect to Rules 1 and 4. In other words, every cluster Ci “needs” at least
0.3
√
|Ci| edge deletions. Hence, the overall instance size is at most

max
(c1,...,cq)∈Nq

q∑
i=1

ci s. t. ∀i ∈ {1, . . . , q} : ci ≤ 2k,
∑

1≤i≤q

0.3 ·
√
ci ≤ 2k.

A simple calculation shows that there is an assignment to the ci’s maximizing the
sum such that at most one ci is smaller than 2k. Hence, the sum is maximized
when a maximum number of ci’s have value 2k. Each of the corresponding
clusters is incident with at least 0.3

√
2k edge deletions. Hence, there are at

most 2k/0.3
√
2k = 10

√
2k/3 such clusters. The overall instance size follows. ut

Fixed-Parameter Algorithm. We sketch a fixed-parameter algorithm for Highly
Connected Deletion. Since any highly connected graph has diameter at most
two, if there is a connected component with diameter three or more, we can find
a shortest path uvwx between two vertices u and x, and then branch into three
cases according to which edge of this path gets deleted. At the leaves of this
search tree, we have a graph where every connected component has diameter
at most two. Using Rule 3, we can ensure that each component has at most 4k
vertices. We can solve an arbitrary Highly Connected Deletion instance by
dynamic programming in O(3n ·m) time; applying this to each component yields
the following theorem.

Theorem 4. Highly Connected Deletion can be solved in O(34k · k2 +
n2mk · log n) time.

3 Further Data Reduction and ILP formulation

The fixed-parameter tractability results for Highly Connected Deletion
(Theorem 3) are currently mostly of theoretical nature. Hence, we follow an
algorithmic approach that consists of two main steps: First, apply a set of data
reduction rules that exploit the structure of biological networks and yield a new
instance that is significantly smaller than the original one. Second, solve the new,
smaller instance by devising an integer linear programming (ILP) formulation.

Further Data Reduction. As we demonstrate in the computational experiments
presented in Section 4, Rule 2 tremendously simplifies many real-world input
instances. In particular, as shown by Theorem 2, it is useful to reduce vertices of
small degree, as found in protein interaction networks. However, Rules 3 and 4
that produce a kernel have the downside of requiring relatively large substructures.
To improve performance in practice, we use the following two rules.

We try to identify triangles uvw that must form highly connected clusters.
For a triangle edge {x, y}, let Nxy := (N(x) ∪N(y)) \ {u, v, w} be the common
neighbors of the edge outside the triangle. Let the value of an edge e be 3 if
Ne 6= ∅ and 0 otherwise. Let the value of a vertex x be the size of the largest
connected component in G[N(x) \ {u, v, w}], or 0 if this size is 1.

5

Rule 5. Assume that for a triangle uvw the following conditions hold:
– for no two triangle edges {x, y}, {x, z} ({x, y, z} = {u, v, w}) there is an edge

in G between some vertex in Nxy and some vertex in Nxz;
– for no triangle edge e is there an edge in G[Ne];
– for any {x, y, z} = {u, v, w}, the value of {x, y} plus the value of z is at

most 3;
– the sum of the values of u, v, and w is at most three.

Then isolate the triangle by deleting all edges incident on u, v, and w except the
triangle edges.

Proof (preservation of optimality). By case distinction: if the triangle is not a
solution cluster, then it must be part of a larger cluster, or the vertices are divided
into two or three clusters. The conditions ensure that none of these situations
yield a better solution than isolating the triangle. ut

The following rule reduces some low-degree vertices.
Rule 6. Let u be a vertex and N2(u) be the neighbors of u that have degree 2.
If G[N2(u)] contains an edge, then isolate all vertices of degree 0 in G[N2(u)].
Otherwise, if there is a vertex v that is in G a neighbor of a vertex w in N2(u)
and has degree 3 in G, then delete the edge from v to the neighbor that is not u
or w.

Proof (preservation of optimality). The vertex u can be contained in at most one
triangle. Each of the deleted edges could only be part of a triangle with u, and
for each such triangle there is another triangle which destroys fewer opportunities
of using vertices for other clusters. ut

Integer Linear Programming with Column Generation. We now consider integer
linear programming (ILP) based approaches. With these, we can utilize the
decades of engineering that went into commercial solvers like CPLEX or Gurobi
to be able to tackle large instances. Our main approach is somewhat involved due
to the use of column generation. We additionally tried a more straightforward
approach based on a Clique Partitioning formulation and row generation. Our
experiments show that the extra complexity pays off and the column generation
approach can solve larger instances exactly.

We describe an ILP formulation of Highly Connected Deletion, which in
its basic scheme is similar to that of Aloise et al. [1] for modularity maximization;
however, we need a new approach for solving the column generation subproblem.
Let T be the set of all vertex sets that induce a highly connected subgraph. We
use binary variables zT to indicate that the cluster T ∈ T is part of the solution.
Then the model is

maximize
∑
T∈T

cT zT , (2)

s. t.
∑

{T∈T |u∈T}

zT = 1 ∀u ∈ V, (3)

zT ∈ {0, 1} ∀T ∈ T , (4)

6

where cT is the number of edges in the subgraph induced by t. The objective (2)
maximizes the number of edges within clusters, which equivalent to minimizing
the number of inter-cluster edges (deletions). The constraints of type (3) ensure
that each vertex is contained in exactly one cluster.

Due to the large number of variables, this model cannot be solved directly
except for tiny instances. Thus, the idea is to only consider “relevant” variables.
More precisely, we start with an initial set of zT variables that yields a feasible so-
lution (e. g., all singleton clusters). Then we successively add variables (“columns”)
that improve the objective, until this is no longer possible. Due to the structure
of real-world instance, typically only a small subset of possible variables needs to
be added.

Now the improvement of adding a column for cluster T is cT minus the
contribution of the vertices in T to the objective function. This contribution
for some vertex u can be calculated as the value of the dual variable λu for the
corresponding constraint of type (3) in the continuous relaxation of the problem
(2)–(4) (see e. g. Aloise et al. [1] for details). The values of the dual variables
can be easily calculated by a linear programming solver. Thus, we need to find a
cluster T that maximizes cT −

∑
u∈T λu. In other words, we need to find a highly

connected cluster that maximizes the number of edges minus vertex weights.
For this, we again use an ILP formulation, using binary edge variables euv and
binary vertex variables vu to describe the cluster selected, and a positive integral
variable d to describe the cluster size:

maximize
∑

{u,v}∈E

euv −
∑
u∈t

λuvu, (5)

s. t. d =
∑
u∈V

vu, (6)

euv ≤ vu, evu ≤ vv ∀{u, v} ∈ E, (7)

if vu then
∑

v∈N(u)

euv > d/2 ∀u ∈ V, (8)

where the constraint (8) can be linearized using the big-M method (that is, by
adding M(1 − vu) on the left-hand side with a sufficiently large constant M);
in our implementation, we instead use indicator constraints as supported by
CPLEX.

We can make use of the fact that it is not necessary to find a maximally
improving column. Therefore, we can solve the column generation problem
heuristically, and only solve it optimally using the ILP when no improving
solution was found. As heuristic, we use a simple greedy method that starting
from each vertex repeatedly adds the vertex that maximizes the value of the
cluster, and records the best cluster that was highly connected. Further, we abort
solving the column generation ILP as soon as an improving solution is found.

7

Table 1. Instance properties and data reduction results. Here, K is the number of
connected components, n′ and m′ are the number of vertices and edges in the largest
connected component, respectively, ∆k is the number of edges deleted during data
reduction, K′ is the number of connected components after data reduction, and n′′

and m′′ are the number of vertices and edges in the largest connected component after
data reduction, respectively.

n m K n′ m′ ∆k ∆k [%] K′ n′′ m′′

CE phys. 157 153 39 23 24 100 92.6 137 11 38
CE all 3613 6828 73 3434 6721 5204 80.1 3202 373 1562
MM phys. 4146 7097 114 3844 6907 5659 85.3 3656 426 1339
MM all 5252 9640 135 4890 9407 7609 84.8 4566 595 1893
AT phys. 1872 2828 82 1625 2635 2057 83.1 1605 187 619
AT all 5704 12627 128 5393 12429 8797 79.5 4579 866 3323
SP all 2698 16089 17 2661 16065 2936 ≥ 18.2 1299 1372 13111

4 Experimental Evaluation

We implemented the data reduction in OCaml and the ILPs in C++ using
the CPLEX 12.4 ILP solver. For the minimum cut subroutine of the algorithm
of Hartuv and Shamir [8] (called min-cut method below), a highly optimized
implementation in C was used [6]. Our source code and sample instances are
available at http://www.user.tu-berlin.de/hueffner/hcd/. The test machine is a
3.6GHz Intel Xeon E5-1620 with 10MB L3 cache and 64GB main memory,
running under Debian GNU/Linux 7.0. Only a single thread was used.

We used protein interaction networks available at the BIOGRID reposi-
tory [18]. The three species for which we illustrate our results are A. thaliana,
C. elegans, and M. musculus. For each species, we extracted one network with
physical interactions only, and one with all interactions. In Fig. 2, we also consider
the network of all interactions of S. pombe. Table 1 shows some basic properties
of these networks. For the computation of the enrichment of annotation terms, we
used the GO:TermFinder tool [3] with A. thaliana annotation data from the TAIR
database [2]. The computed p-values are corrected for multiple hypothesis testing.
We used a significance threshold of p ≤ 0.01.

Running time evaluation. Table 1 shows the effect of data reduction. Knowing the
optimal k (see Table 2) allows us to state that typically 85% of the edges that need
to be deleted are identified. Since connected components can be treated separately,
the most important time factor is the size of the largest connected component.
Here, the number of edges is reduced to typically 23%. This demonstrates the
effectivity of the data reduction, which preserves exact solvability, and suggests
it should be applied regardless of the actual solution method.

Table 2 shows the clustering results and running times. Doing data reduction
before running the min-cut method actually improves the running time, since
it reduces the number of costly min-cut calls. The column generation method
is able to solve all six test instances, although the hardest one takes more than
9 hours. However, it is not able to solve e. g. the network of all interactions of

8

http://www.user.tu-berlin.de/hueffner/hcd/

Table 2. Results for the instances of Table 1. Here, k is the number of edges deleted, s
and K are the number of singleton and nonsingleton clusters, respectively, n and m
are the number of vertices and edges in the largest cluster, respectively, and t is the
running time in seconds.

min-cut without DR min-cut with DR column generation with DR

k s K n m t k s K n m t k s K n m t

CE-p 111 136 5 9 30 0.01 108 133 6 9 30 0.01 108 133 6 9 30 0.06
CE-a 6714 3589 2 17 94 86.46 6630 3521 22 17 94 6.36 6499 3436 45 19 113 2088.35
MM-p 7004 4116 5 12 57 126.30 6882 4003 41 12 57 7.42 6638 3845 80 11 41 898.13
MM-a 9563 5227 5 13 65 267.63 9336 5044 61 13 65 17.84 8978 4812 120 13 65 3858.62
AT-p 2671 1796 19 14 76 5.82 2567 1723 39 14 76 0.68 2476 1675 49 14 76 60.34
AT-a 12096 5559 23 23 190 434.52 11590 5213 122 23 190 32.09 11069 4944 180 23 190 34121.23

S. pombe with 1541 vertices and 3036 edges; this is probably because this is a
denser network, making data reduction less effective.

2 4 6 8 10 12 14 16 18 20 22
cluster size

0

20

40

60

80

100

to
ta

l n
um

be
r

min-cut without DR
min-cut with DR
column generation

Fig. 1. Clusters in the A. thaliana network
with all interactions. The brighter part of
each bar shows the fraction of clusters with-
out significant enrichment of biological pro-
cess annotation terms.

Biological evaluation. For the bio-
logical evaluation, we studied the
A. thaliana network with all interac-
tions in more detail since it was the
largest instance for which the exact al-
gorithm finished. Our findings are sum-
marized in Figure 1. Solving Highly
Connected Deletion exactly pro-
duces more clusters than using the
min-cut algorithm with data reduction
which in turn produces more clusters
than the min-cut algorithm without
data reduction. This behavior can be
observed for small and for larger clus-
ters.

To assess the biological relevance
of these clusters, we determined for
each cluster whether the correspond-

ing protein set has a statistically significant enrichment of annotations describing
processes in which the protein take part. As shown in Fig. 1, for all three methods
a large portion of clusters shows such an enrichment. The min-cut algorithm with
data reduction clearly outperforms the min-cut algorithm without data reduction:
it produces more clusters without producing a larger fraction of nonenriched
clusters. For the exact algorithm the results are less clear: it produces even
more clusters, but a larger fraction is nonenriched. This behavior is particularly
pronounced for small clusters of size at most three, but also for some larger
cluster sizes.

Comparison with Markov Clustering. Next, we compare our clustering algorithm
with a popular clustering algorithm for protein interaction networks. As compari-

9

4 6
cluster size

0

50

100

150

200

250

to
ta

l n
um

be
r

mcl I3.0
mcl I2.0
hcd

8 10 12 14 16 18 20
cluster size

0

5

10

15

20

25

to
ta

l n
um

be
r

mcl I3.0
mcl I2.0
hcd

Fig. 2. Clusters in the A. thaliana networks produced by the MCL algorithm and our
algorithm (HCD) for small clusters (left) and medium-size clusters (right).

son, we choose the so-called Markov Clustering Algorithm (MCL). For details
concerning MCL refer to [7]; in the experiments, we used the MCL-implementation
available at http://micans.org. One parameter that can be set when using MCL
is the “inflation” I. We performed experiments with the default value of I = 2.0
and with I = 3.0 which produces a more fine-grained clustering (as does our
algorithm). Unless stated otherwise, we use MCL to refer to the algorithm with
default setting.

When comparing the two algorithms, our exact approach (in the following
referred to as HCD) and the MCL algorithm, there are some clear advantages
of the MCL algorithm: MCL finishes within less than a second, MCL assigns
almost all proteins to nonsingleton clusters, and MCL produces more clusters
than HCD. MCL also produces larger clusters than HCD. For instance, it finds
30 clusters of size more than 20, and the largest cluster has size 280. As shown
in Figure 2, the number of produced clusters is higher across all cluster sizes. The
fraction of clusters whose proteins share a significantly enriched GO annotation
term, however, is for small and medium-size clusters much lower in the clustering
produced by MCL than in the clustering produced by HCD. For large clusters
(not shown), 85% of the clusters produced by MCL show a significant enrichment
of some annotation term.

To provide a more systematic analysis of the similarity of annotation terms
for the clusters, we computed for each protein pair in the same cluster the
semantic similarity score for the GO annotations proposed by Wang et al. [20].
The computed scores lie in [0, 1]; a higher score indicates higher similarity between
the two considered proteins. The average semantic similarity score for a protein
pair in the same cluster is 0.410 for HCD and 0.192 for MCL. This pure numeric
score, however, could be skewed in favor of HCD. We therefore further examined
the effect of the cluster size on the average semantic score for protein pairs in
the same cluster. We found that across all cluster sizes, the clusters produced
by HCD show better similarity than those produced by MCL. Summarizing, our

10

http://micans.org

results for the A. thaliana network indicate that HCD outperforms MCL in terms
of quality of the reported clusters while MCL shows better coverage and a better
running time.

Variants & Extensions. The comparison of HCD with the MCL clustering
algorithm showed that two drawbacks of HCD are the running time explosion and
the fact that a large fraction of proteins remains unclustered in the optimal HCD
solution. We discuss here two strategies to lessen both drawbacks. First, the exact
column generation approach is not able to solve the hardest instances. Therefore,
we consider a heuristic variant, where we stop the column generation process
after a time limit is exceeded. Comparisons with the min-cut algorithm show
that with a time limit of one hour, this heuristic variant can find 120 additional
clusters compared to the min-cut algorithm.

Another intrinsic problem of demanding highly-connected clusters is the fact
that biological networks contain many low-degree vertices: these vertices cannot
be contained in any highly connected cluster and HCD computes a clustering of
the dense core of the network. Similar to a post-processing suggested by Hartuv
and Shamir [8], we used the following simple post-processing to “readd” the
proteins not included in any cluster returned by HCD: add each unclustered
protein to some cluster if its interactions are exclusively with proteins of this
cluster. A first examination of the enrichment statistics indicates that this version
of HCD produces better clusters than MCL concerning cluster quality while
clustering a significantly larger number of proteins than the pure HCD approach.

5 Outlook

We conclude with a few promising directions for future work. We plan to perform
further evaluation of the quality of the clusters found by our approach. First, we
plan to evaluate the column-generation-based heuristic on larger standard protein
interaction networks such as S. cerevisiae and perform comparisons with further
clustering algorithms, for example the RN algorithm [16]. Second, a main feature of
Highly Connected Deletion is that the cluster definition is easy to interpret.
This makes it easy to modify the produced clustering as shown in Section 4.
There, the presented post-processing is just a first step, more sophisticated
approaches are conceivable and should be explored to further increase clustering
quality. Finally, it seems useful to consider edge-weighted Highly Connected
Deletion, that is, to maximize the sum of edge weights in the clustering. This
could be useful to model different degrees of reliability in the data [4]. Our ILP
can be adapted to solve this problem as well.

Acknowledgments. We are indebted to Nadja Betzler and Johannes Uhlmann for
their early contributions in the theoretical part of this research.

11

References

[1] D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, S. Perron, and L. Liberti. Column
generation algorithms for exact modularity maximization in networks. Physical
Review E, 82:046112(046112), 2010.

[2] T. Z. Berardini, S. Mundodi, R. Reiser, E. Huala, M. Garcia-Hernandez, et al.
Functional annotation of the Arabidopsis genome using controlled vocabularies.
Plant Physiology, 135(2):1–11, 2004.

[3] E. I. Boyle, S. Weng, J. Gollub, H. Jin, D. Botstein, J. M. Cherry, and G. Sherlock.
GO::TermFinder–open source software for accessing gene ontology information
and finding significantly enriched gene ontology terms associated with a list of
genes. Bioinformatics, 20(18):3710–3715, 2004.

[4] W.-C. Chang, S. Vakati, R. Krause, and O. Eulenstein. Exploring biological
interaction networks with tailored weighted quasi-bicliques. BMC Bioinformatics,
13(S-10):S16, 2012.

[5] G. Chartrand. A graph-theoretic approach to a communications problem. SIAM
Journal on Applied Mathematics, 14(4):778–781, 1966.

[6] C. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine, and C. Stein. Experimental
study of minimum cut algorithms. In Proc. 8th SODA, pages 324–333, 1997.

[7] S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of
Utrecht, 2000.

[8] E. Hartuv and R. Shamir. A clustering algorithm based on graph connectivity.
Information Processing Letters, 76(4–6):175–181, 2000.

[9] E. Hartuv, A. O. Schmitt, J. Lange, S. Meier-Ewert, H. Lehrach, and R. Shamir.
An algorithm for clustering cDNA fingerprints. Genomics, 66(3):249–256, 2000.

[10] W. Hayes, K. Sun, and N. Pržulj. Graphlet-based measures are suitable for
biological network comparison. Bioinformatics, 2013. To appear.

[11] D. Jiang and J. Pei. Mining frequent cross-graph quasi-cliques. ACM Transactions
on Knowledge Discovery from Data, 2(4):16:1–16:42, 2009.

[12] M. Koyutürk, W. Szpankowski, and A. Grama. Assessing significance of connectivity
and conservation in protein interaction networks. Journal of Computational Biology,
14(6):747–764, 2007.

[13] H. Liu, P. Zhang, and D. Zhu. On editing graphs into 2-club clusters. In Proc. FAW-
AAIM ’12, volume 7285 of LNCS, pages 235–246. Springer, 2012.

[14] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. OUP, 2006.
[15] B. J. Parker, I. Moltke, A. Roth, S. Washietl, J. Wen, M. Kellis, R. Breaker, and

J. S. Pedersen. New families of human regulatory RNA structures identified by
comparative analysis of vertebrate genomes. Genome Research, 21(11):1929–1943,
2011.

[16] P. Ronhovde and Z. Nussinov. Local resolution-limit-free Potts model for commu-
nity detection. Physical Review E, 81(4):046114, 2010.

[17] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1–2):173–182, 2004.

[18] C. Stark, B.-J. Breitkreutz, A. Chatr-aryamontri, L. Boucher, R. Oughtred, et al.
The BioGRID interaction database: 2011 update. Nucleic Acids Research, 39
(Database-Issue):698–704, 2011.

[19] J. M. M. van Rooij, M. E. van Kooten Niekerk, and H. L. Bodlaender. Partition
into triangles on bounded degree graphs. Theory of Computing Systems, 2013. To
appear.

[20] J. Z. Wang, Z. Du, R. Payattakool, P. S. Yu, and C.-F. Chen. A new method to
measure the semantic similarity of GO terms. Bioinformatics, 23(10):1274–1281,
2007.

12

	=-1Partitioning Biological Networks into Highly Connected Clusters with Maximum Edge Coverage

