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Hodges and Sargent (2001) have developed a measure of a hierarchical model’s complexity, degrees of
freedom (DF), that is consistent with definitions for scatterplot smoothers, is interpretable in terms of
simple models, and enables control of a fit’s complexity by means of a prior distribution on complexity.
But although DF describes the complexity of the whole fitted model, in general it remains unclear how
to allocate DF to individual effects. Here we present a new definition of DF for arbitrary normal-error
linear hierarchical models, consistent with that of Hodges and Sargent, that naturally partitions the n
observations into DF for individual effects and for error. The new conception of an effect’s DF is the ratio
of the effect’s modeled variance matrix to the total variance matrix. This provides a way to describe the
sizes of different parts of a model (e.g., spatial clustering vs. heterogeneity), to place DF-based priors on
smoothing parameters, and to describe how a smoothed effect competes with other effects. It also avoids
difficulties with the most common definition of DF for residuals. We conclude by comparing DF with the
effective number of parameters, pD, of Spiegelhalter et al. (2002). Technical appendices and a data set are
available online as supplemental materials.
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1. INTRODUCTION AND MOTIVATION

Hodges and Sargent (2001) developed a measure of a hier-
archical model’s complexity, degrees of freedom (DF), that is
consistent with the definition for scatterplot smoothers and in-
terpretable in terms of simple models. DF describes complexity
of the whole fitted model but in general it is unclear how to
allocate DF to individual parts of a model. Here we present an
example that introduces the problem of measuring the complex-
ity of a model’s components.

Example 1 (Periodontal measurements: clustering and het-
erogeneity). Periodontal attachment loss (AL)—the extent of a
tooth’s root (in millimeters) that is no longer attached to sur-
rounding bone by periodontal ligament—is used to diagnose
and monitor periodontal disease. We present analyses of AL
measurements for 12 research subjects, for each of whom AL
was measured on a quadrant of 7 teeth. On each tooth, 3 sites
(distal, direct, and mesial) on both the buccal (tongue) side and
lingual (cheek) side were measured, giving 7 × 3 × 2 = 42 sites
per subject. Figure 1 is a schematic of one subject’s measure-
ments. A site’s AL measurement is the sum of true loss and
measurement error, which is substantial. Spatial correlation in
true AL arises because if a person has poor hygiene in an area
of the mouth, sites in that area may be more prone to loss, and
because bacterial infection (the ultimate cause of periodontal
damage) is transmitted among the sites on a given tooth. Non-
spatial heterogeneity arises from local features of the dentition,
for example, tooth malalignments that predispose a site to gum
recession or features that make measurement difficult and affect
all examiners similarly.

Gilthorpe et al. (2003) used nonspatial random effects to
merge the “linear” and “burst” theories of progressive attach-
ment loss, while Reich and Hodges (2008a) used spatial random

effects to improve detection of disease progression. The preced-
ing paragraph suggests a model with both spatial clustering and
nonspatial heterogeneity in true AL, however. We consider a
model commonly used by epidemiologists (Besag, York, and
Mollie 1991). For simplicity, we model one subject and one
measurement at each site; Section 3.1 presents an analysis of
all 12 subjects. The data set is available online with the supple-
mental materials.

Let y ∈ RN be observations on N sites on a spatial lattice with
G islands (unconnected groups of sites); N = 42 and G = 1 in
our example. Model y as multivariate normal with mean δ + ξ
and error covariance σ 2IN . Nonspatial heterogeneity is cap-
tured by ξ = (ξ1, . . . , ξN)′, modeled as N(0, τ 2

h IN). Spatial clus-
tering is captured by δ as follows. Neighbor relations among
sites are summarized in an N × N matrix Q, with nondiagonal
entries qij = −1 if site i and j are neighbors and 0 otherwise,
while diagonal entry qii is the number of site i’s neighbors.
Figure 1 shows the neighbor pairs that we used; other choices
are possible (e.g., Reich, Hodges, and Carlin 2007). Then δ
is modeled with an intrinsic conditional autoregressive model,
CAR(Q, τ 2

c ). Conditional on τ 2
c , δ has (improper) joint density

f (δ|τ 2
c ) ∝ (τ 2

c )−(N−G)/2 exp
(

− 1
2τ 2

c
δ′Qδ

)
.

This density is always improper because 1N is an eigenvector
of Q with eigenvalue 0; the impropriety implicitly allows δ a
nonzero intercept, which we make explicit later. Also note that
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PARTITIONING DEGREES OF FREEDOM 125

Figure 1. Example 1, neighbor relations in periodontal data. “X” indicates a measurement site, lines indicate neighbor relations, teeth are
numbered from the central incisor (1) to the second molar (7); MES: mesial site, DIR: direct site, DIS: distal site.

δ′Qδ = ∑
j∼i(δi − δj)

2, where j ∼ i means that j is i’s neigh-
bor; thus Q’s specification has the effect of shrinking neighbors
toward each other.

The model’s components for clustering (δ) and heterogene-
ity (ξ ) are controlled by variances τ 2

c and τ 2
h . As τ 2

h is in-
creased, ξi’s magnitude increases but without a spatial pat-
tern. The effect of increasing τ 2

c is determined by the spatial
neighbor pairs. To see how, consider a simplified model with-
out ξ , so that y = δ + ε, where δ ∼ CAR(Q, τ 2

c ) as before, and
εi ∼ N(0,σ 2), and assume that G = 1. Given r = σ 2/τ 2

c , the
posterior mean and best linear unbiased predictor (BLUP) of δ

are δ̂ = (IN + rQ)−1y. Let Q have spectral decomposition Q =
VDV′, where D = diag(d1, . . . ,dN−1,0), d1 ≥ · · · ≥ dN−1 > 0,
and the orthonormal V partitions as V = (V1| 1√

N
1N) where V1

is N × (N − 1) (Hodges, Carlin, and Fan 2003). The single zero
eigenvalue and conforming partition of V arise because there
are G = 1 islands. Then δ̂ = Vφ̂, where φ̂ = (IN + rD)−1V′y.
Because dN = 0, φ̂N = 1√

N
ȳ regardless of r, whereas for i < N,

φ̂i = (V′
1y)i/(1 + rdi), which is shrunk toward 0 by rdi > 0.

For the lattice in Figure 1, the three smallest eigenvalues, dN−1,
dN−2, and dN−3, are smaller than the largest, d1, by factors of
248, 62, and 28, respectively; the corresponding columns of V1
describe roughly linear, quadratic, and cubic trends along the
long axis of Figure 1. Columns of V1 corresponding to increas-
ingly larger di describe increasingly higher-frequency variation
in the spatial structure, whose coefficients φ̂i are shrunk toward
0 to increasingly greater degrees for given r = σ 2/τ 2

c . Thus
for small τ 2

c , the fitted values δ̂ mostly reflect a damped large-
scale structure (Reich and Hodges 2008b), and as τ 2

c increases,
damping is reduced in all φ̂, and the fit becomes increasingly
wiggly.

After this model is fitted, any of several measures can be used
to describe the whole model’s complexity, but the distinct con-
tributions of the heterogeneity and clustering components are
not well understood. In this article we propose a partition of a
readily interpretable measure of complexity (Hodges and Sar-
gent 2001; henceforth H&S). H&S used a model in which ob-
served data y ∈ Rd are assumed to be multinormal with mean
X1θ and covariance matrix &0, with X1 known and θ con-
strained by a model or prior distribution, Zθ ∼ N(0,&1), with
Z known. &0 and &1 are usually functions of a few unknowns.
H&S reformulated this as a linear model,

y =
(

y
0

)
=

(
X1
Z

)
θ +

(
ε
δ

)
= Xθ + e, (1)

where e = (ε, δ)′ ∼ N(0,&) for & = diag(&0,&1), so ε and δ
are independent a priori conditional on unknowns in &. (This
formulation is equivalent to that of H&S, but we are about
to discard it, so we will not belabor the equivalence.) Define
X = (X′

1Z′)′; then, given &, X1θ has posterior mean or BLUP
X1(X′&−1X)−1X′

1&
−1
0 y. H&S used linear model theory to ra-

tionalize defining the complexity or DF of this model fit given
& as

ρ = tr[X1(X′&−1X)−1X′
1&

−1
0 ],

and showed ρ is the same as other measures of complexity
when both are defined. Lu, Hodges, and Carlin (2007) extended
this definition to generalized linear hierarchical models.

H&S’s DF can be used for several purposes. Model complex-
ity is used in model-comparison criteria, although (for reasons
discussed later) we do not consider such criteria here. The orig-
inal aims of H&S were to describe the complexity of a fitted
hierarchical model and to control that complexity by putting
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126 Y. CUI ET AL.

a prior distribution on it, inducing a prior on unknowns in &.
(In Sec. 2.6 we present an accessible introduction to this idea.)
Several authors have specified priors this way, for example,
Paciorek and Schervish (2006), Hodges et al. (2007), and Lu,
Hodges, and Carlin (2007), who extended uniform shrinkage
priors (Daniels 1999; Natarajan and Kass 2000).

H&S’s approach has some limitations that restrict its use.
Except for special cases, such as balanced single-error term
ANOVA (Hodges et al. 2007), it is unclear how to allocate DF
to individual effects. We use examples to illustrate this limita-
tion and later show the advantage of removing it.

Example 1 (Revisited). The model for δ can be reexpressed
as V′

1δ ∼ N(0, τ 2
c D−1

1 ), where D1 = diag(d1, . . . ,dN−1). The
models for δ and ξ are then combined as in (1),

(y
0
0

)

=




I I

−V′
1 0

0 −I




(

δ
ξ

)
+




ε
φc

φh





for ε ∼ N(0,σ 2I),φc ∼ N(0, τ 2
c D−1

1 ), and φh ∼ N(0, τ 2
h IN).

H&S’s DF is then (Lu, Hodges, and Carlin 2007)

ρ = tr

((
IN IN
IN IN

)(
IN + σ 2

τ 2
c

Q IN

IN (1 + σ 2

τ 2
h
)IN

)−1)

.

We have assumed that Q describes a connected map, so G = 1.
After some labor, ρ becomes

ρ = 1 +
N−1∑

i=1

(τ 2
c /σ 2)/di + (τ 2

h /σ 2)

(τ 2
c /σ 2)/di + (τ 2

h /σ 2) + 1
.

While this suggests how total DF in the fit might be attributed
to δ and ξ , any such partition must be rigorously justified. We
do this in Section 2.5.

Example 2 (Global mean surface temperature: dynamic lin-
ear growth model). Summary measures of the earth’s surface
temperature are used to describe global climate. Consider the
series yt, t = 0, . . . ,124, of global average temperature devi-
ations (units 0.01 degrees Celsius) from 1881 to 2005. Fig-
ure 2 plots yt, available at http://data.giss.nasa.gov/gistemp/
tabledata/GLB.Ts.txt; Section 3.2 explains the rest of the plot.
We smooth yt using the linear growth model, which captures
variation using time-varying mean and trend and independent
noise (West and Harrison 1997, chap. 2). This model has equa-
tions for observation error, variation in local mean, and varia-
tion in trend,

yt = µt + nt, t = 0, . . . ,T,

µt = µt−1 + βt−1 + w1,t, t = 1, . . . ,T,

βt = βt−1 + w2,t, t = 1, . . . ,T − 1.

Let µ,β,n,w1, and w2 be the vectors of µt,βt,nt,w1t, and w2t,
respectively. Assume that n, w1, and w2 are mutually inde-
pendent and assume n ∼ N(0,σ 2

n IT+1),w1 ∼ N(0,σ 2
1 IT), and

w2 ∼ N(0,σ 2
2 IT−1), so σ 2

n , σ 2
1 , and σ 2

2 describe the size of ob-
servational error nt and the smoothness of level µt and trend βt.
The equation for βt is the simplest CAR model, and the model
for updating µt is similar; thus the variances σ 2

1 and σ 2
2 play

roles like those of the variances in Example 1.

Figure 2. Example 2, global mean surface data, data and fitted smooths for gamma priors.
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Following H&S, combine the three equations and reformu-
late them as a linear model:



y(T+1)×1

0T×1

0(T−1)×1



 =




IT+1 0(T+1)×T

Z1 −IT

0(T−1)×(T+1) Z2




(

µ
β

)
+

( n
w1
w2

)

,

where Z1 = [0T×1; IT ] − [IT ;0T×1],Z2 = [0(T−1)×1; IT−1] −
[IT−1;0(T−1)×1]. Then

ρ = tr

[(
IT+1 0

0 0

)

×




IT+1 + σ 2

n
σ 2

1
Z′

1Z1 −σ 2
n

σ 2
1

Z′
1

−σ 2
n

σ 2
1

Z1
σ 2

n
σ 2

1
IT + σ 2

n
σ 2

2
Z′

2Z2




−1]

.

This is difficult to simplify and thus offers little intuition about
how to attribute DF separately to the local mean and the local
linear trend (but again, see Sec. 2.5).

Usually, as in these examples, hierarchical models specify
multiple sources of variation in the data. The first example
has three: spatial clustering, local heterogeneity, and error. In
the second example, variation comes from perturbations in the
trend and local mean and from observation error. In these exam-
ples, it would be desirable to attribute DF to these meaningful
effects. Such a partition of DF has at least two uses. First, it is
an interpretable measure of each effect’s share of the fit’s com-
plexity. Effects compete to explain variation when their design
matrices are not orthogonal. In the absence of smoothing, this
produces well-known collinearity effects; smoothing compli-
cates the situation. Smoothed effects compete with unsmoothed
effects (e.g., Reich, Hodges, and Zadnik 2006) and with one
another, which influences the severity of collinearity effects
and the degree to which smoothed effects are made smooth.
Allocating a fit’s DF to effects provides a view of this com-
petition. For the model in Example 1, Best et al. (1999) used
SD(δi)/(SD(ξi) + SD(δi)) as a measure of clustering’s contri-
bution to model fit, where “SD” refers to the standard deviation
of the δi and ξi themselves, not to τe or τs. In a Markov chain
Monte Carlo (MCMC), this quantity’s posterior distribution is
estimated by computing the above ratio at each cycle of the
MCMC using the current draws of the δi and ξi. This ratio is
odd and hard to interpret; it would be more natural if variances
were used instead of standard deviations, as in the intra-class
correlation. Even then, however, it would depend on the scaling
of the design matrices for the δi and ξi. [In defense of Best et
al. (1999), it appears they merely intended to describe an as-
pect of their simulation results, and that this measure has taken
on a life of its own.] In contrast, DF is independent of scal-
ing (see Sec. 2.4) and directly describes complexity in the fitted
values arising from the two parts of the model, with separate
DF for clustering (DFc) and heterogeneity (DFh). The change
from prior to posterior in the distribution of DFc/(DFc + DFh)

demonstrates the data’s evidence regarding the proportion of
variation explained by clustering. Section 3.1 explores this.

Second, a partition of DF can be useful for specifying a
prior distribution on variance parameters. For the linear growth
model, West and Harrison (1997, chap. 2) and Prado, West,
and Krystal (2001) assumed fixed σ 2

1 /σ 2
n and σ 2

2 /σ 2
n to control

complexity in the fit. It would be handy to avoid fixing these
ratios, but because they are hard to conceptualize, specifying
priors for them is difficult. A prior on interpretable DF avoids
this difficulty.

In this article we propose a new definition of DF, consis-
tent with that of H&S, which attributes a fit’s total DF to in-
dividual effects. This definition involves a novel conception of
an effect’s DF as, loosely speaking, the effect’s fraction of the
model’s total variance. The new definition applies to any model
with a mixed-effect form and normal distributions for random
effects and errors, for example, penalized splines in the mixed-
model representation (Ruppert, Wand, and Carroll 2003) and
at least some Gaussian process models. Section 2 defines the
class of models, then gives and rationalizes the new definition.
Section 3 applies this definition to the examples and explores
its uses. The new definition is consistent with that given by
Ruppert, Wand, and Carroll (2003, sec. 8.3) except for DF for
residuals (Ruppert, Wand, and Carroll 2003, sec. 3.14). Rup-
pert, Wand, and Carroll (2003) also gave an approximation to an
effect’s DF, noting that “for all examples we have observed . . .
there is practically no difference between the approximate and
exact degrees-of-freedom values” (p. 176). Section 3 gives an
example in which the approximation differs substantially from
the exact DF. Section 4 considers DF for residuals, in particu-
lar why the most common formula (Ruppert, Wand, and Carroll
2003, sec. 3.14), when added to the DF in the fitted model, gives
a total less than the sample size, an oddity avoided by the new
definition. Section 5 concludes. Technical results are provided
in the Appendix, which is available online with the supplemen-
tal materials.

Model comparison criteria generally penalize a measure of
model fit with a measure of model complexity. For example,
Vaida and Blanchard (2005) derived a penalty based on ρ for
a conditional Akaike information criterion for linear mixed
models. In defining the deviance information criterion (DIC),
Spiegelhalter et al. (2002) defined their penalty, the effective
number of parameters pD, in terms of a measure of model fit.
However, in the light of Plummer (2008), it is not clear that
the “right” penalty for using the same data to fit and evaluate
a model is a simple function of any measure of model com-
plexity, and thus describing model complexity and comparing
models are distinct problems. We defer further consideration of
model comparison, DIC, and pD to Section 5.

2. THE NEW DEFINITION OF DF

2.1 Model Specification and Notation

Consider a linear model, which we call “the standard model,”
written as

y = X1θ1 + X2θ2 + ε, (2)

where y ∈ Rn contains the observations, X1 ∈ Rn×p is the de-
sign matrix for fixed effects (FE) that are not smoothed, and
X2 ∈ Rn×L is the design matrix for smoothed effects, including
random effects, effects representing spatial clustering, and so
on. Vectors θ1 ∈ Rp and θ2 ∈ RL are mean-structure parame-
ters. Partition X2’s columns as X2 = [X21, . . . ,X2l], l ≤ L, and
conformably partition θ2 = (θ ′

21, . . . , θ
′
2l)

′. Model the jth clus-
ter of smoothed parameters θ2j as θ2j|&2j ∼ N(0,&2j), with the
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128 Y. CUI ET AL.

θ2j|&2j mutually independent; define &2 as the block diagonal
matrix with the &2j being the blocks on the diagonal. The nor-
mally distributed error ε has mean 0 and covariance &0. &0 and
&2j are nonnegative definite and not necessarily proportional
to the identity matrix or even diagonal. As the examples indi-
cate, this is a large class of models. It includes Gaussian process
models that can be written as y = X1θ1 + S + ε, where X1θ1
represents regressors, X2 = In, θ2 = S ∈ Rn with &2 = cov(S)
nondiagonal and usually a function of unknowns, and cov(ε) is
diagonal.

Further notation includes R(X) and N(X) for the column and
null spaces of the matrix X and PX for the orthogonal projec-
tion onto R(X). Appendix (a) gives necessary facts about the
Moore–Penrose generalized inverse, denoted by X+.

2.2 Motivation for the New Definition

First, consider a linear model that is simpler than the standard
model (2),

y = X2θ + ε, (3)

where θ is smoothed using the model or prior θ ∼ N(0,&2),
and ε ∼ N(0,&0), for positive definite &0, &2. H&S wrote the
model on θ as “constraint cases,” and combined it with (3) to
give

y =
(

y
0

)
= Xθ + ε∗ =

(
X2
I

)
θ +

(
ε
ξ

)
,

where ε∗ is multinormal with mean 0 and block diagonal co-
variance & = diag(&0,&2). H&S’s DF is

ρ = tr[X2(X′&−1X)−1X′
2&

−1
0 ]

= tr[X2(X′
2&

−1
0 X2 + &−1

2 )−1X′
2&

−1
0 ]. (4)

Rewrite the matrix inverse in (4) as (Schott 1997, thm. 1.7)

(X′
2&

−1
0 X2 + &−1

2 )−1 = &2 − &2X′
2(X2&2X′

2 + &0)
−1X2&2.

(5)

The left side of (5) is familiar from Bayesian linear models as
the conditional posterior covariance of θ |y,&, while the right
side is familiar as the conditional covariance of θ given y from
the joint multivariate normal distribution of θ and y. Use (5) to
rewrite (4),

ρ = tr[X2&2X′
2&

−1
0

− X2&2X′
2(X2&2X′

2 + &0)
−1X2&2X′

2&
−1
0 ]

= tr[X2&2X′
2(X2&2X′

2 + &0)
−1

× (X2&2X′
2 + &0 − X2&2X′

2)&
−1
0 ]

= tr[X2&2X′
2(X2&2X′

2 + &0)
−1],

which has the form trace [ratio of {modeled variance matrix}
to {total variance matrix}]. This suggests defining an effect-
specific DF as that effect’s contribution of variance to total vari-
ance. In the standard model (2), the mean-structure parameters
θ2j are independent of each other conditional on their covari-
ances &2j, and the variance in y arising from the effect repre-
sented by θ2j is X2j&2jX′

2j. Along with variation from the er-
ror ε, the total modeled variance for y is

∑l
1 X2j&2jX′

2j + &0 =

X2&2X′
2 + &0. Thus, in this special case when all effects are

smoothed (θ1 is null) and all &j are positive definite, the refor-
mulated DF for X2j is tr[X2j&2jX′

2j(X2&2X′
2 + &0)

−1].
Green (2002) used a different approach to derive an equiv-

alent decomposition of the effective number of parameters pD
when &0 and &2 are completely specified, in which case pD is
identical to H&S’s DF. But Green’s derivation does not appear
to extend to cases in which &0 or &2 are functions of unknowns.
The development above and below is reminiscent of that of Gel-
man and Pardoe (2006), who developed measures of explained
variance and pooling for each of the effects in a model (which
they call “levels”), although their intent and results were rather
different.

2.3 Definition of DF

Section 2.2’s reformulation of ρ for model (3), with all ef-
fects smoothed, suggests a way to rewrite H&S’s DF as a sum of
meaningful quantities. However, for the standard model (2), the
new formulation must accommodate nonsmoothed effects X1.
A nonsmoothed effect can be viewed as the limit of a smoothed
effect, for which the prior covariance goes to infinity and im-
poses no constraint. The new definition uses λ&1 ∈ Rn×n as θ1’s
covariance matrix, where &1 is unspecified but positive defi-
nite and λ is a positive scalar. In the limit, as λ goes to +∞,
&1 disappears. For the standard model (2), then, define DF for
nonsmoothed effects, denoted by DF(X1), as

DF(X1) = lim
λ→+∞

tr[X1λ&1X′
1

× (X1λ&1X′
1 + X2&2X′

2 + &0)
+]

= tr[PX1] = rank(X1).

The proof is provided in Appendix (b), which, like all other
Appendices given later, is available online as supplemental ma-
terial. For the smoothed effect θ2j, DF is defined analogously,

DF(X2j) = lim
λ→+∞

tr[X2j&2jX′
2j(X1λ&1X′

1 + X2&2X′
2 + &0)

+]

= tr
{
X2j&2jX′

2j

× [(I − PX1)(X2&2X′
2 + &0)(I − PX1)]+

}
.

The proof is provided in Appendix (c). Similarly, for the error
term ε,

DF(ε) = lim
λ→+∞

tr[I&0I′(X1λ&1X′
1 + X2&2X′

2 + &0)
+]

= tr
{
&0[(I − PX1)(X2&2X′

2 + &0)(I − PX1)]+
}
.

This follows by the argument given in Appendix (c). In gen-
eral, this differs from residual DF as defined by Ruppert, Wand,
and Carroll (2003, sec. 3.14) or Hastie and Tibshirani (1990,
sec. 3.5).

Based on this definition, the DF of a smoothed effect X2j
or error ε is the fraction of variation contributed by X2j or ε
out of variation not accounted for by the unsmoothed effects
X1. Because computing DF(X2j) can be laborious, Cui (2008,
p. 79) derived the approximation DFp(X2j) = tr{X2j&2jX′

2j[(I−
PX1)(X2j&2jX′

2j + &0)(I − PX1)]+}, which is equivalent to the
approximation of Ruppert, Wand, and Carroll (2003, pp. 175–
176) when both are defined. In Section 3.2 we briefly consider
this approximation’s accuracy.
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PARTITIONING DEGREES OF FREEDOM 129

2.4 Properties of the Definition

We argue for the new definition’s validity by presenting four
of its properties:

(DF.a) The new definition is consistent with H&S’s DF; the
sum of DF over all effects equals H&S’s ρ for the whole model.
Appendix (d) gives a proof.

(DF.b) The sum of DF in the model fit and error is fixed.
When &0 is positive definite, DF(X1)+

∑J
1 DF(X2j)+DF(ε) =

dim(y), the dimension of y. Appendix (e) gives a proof. For
the definition of DF in residuals given by Ruppert, Wand, and
Carroll (2003) and Hastie and Tibshirani (1990), DF(X1) +∑J

1 DF(X2j) + DF(residuals) < dim(y), with the deficiency
arising from DF(residuals).

(DF.c) The DF of an effect has a reasonable upper bound,
DF(X2j) ≤ rank((I−PX1)X2j) = rank([X1,X2j])− rank(X1) ≤
rank(X2j) for j = 1, . . . , J. Appendix (f) gives a proof.

(DF.d) Scale-invariance property. DF, and particularly pri-
ors on DF, avoid problems arising from scaling of columns
of the design matrix. (We discuss prior distribution on DF in
Sec. 2.6.) Suppose that in the standard model (2), the covariance
of each smoothed effect θ2j and the covariance of the error term
ε are both characterized by a single parameter, &2j = σ 2

j &0
2j

and &0 = σ 2
0 &0

0, where the σ 2
j are unknown scalars and &0

2j,&
0
0

are known and positive definite. Let B ∈ Rp×p be nonsingular,
and let Hj be a matrix such that Hj&

0
2jH

′
j = &0

2j, for example,

&0
2j is the identity and Hj is orthogonal. Then the posterior of

Xθ arising from independent priors on (DF(X21), . . . ,DF(X2l))

and σ 2
0 is the same when X1 is transformed to X∗

1 = X1B, and
X2 is transformed so that X∗

2j = tjX2jHj for nonzero scalars tj.
Appendix (g) gives a proof.

2.5 The New Definition Applied to the Examples

Example 1 (Model with clustering and heterogeneity). As-
sume that the spatial map represented by Q is connected, so
G = 1. (This is not necessary.) The CAR model for the spa-
tial clustering effects δ models V′

1δ as N(0, τ 2
c D−1

1 ), while
1′

Nδ is not smoothed; thus reexpress this model in the standard
form (2) by taking X1 = 1N,X21 = V1,X22 = IN , and θ1 =
1′

Nδ/N, θ21 = V′
1δ, θ22 = ξ , &21 = τ 2

c D−1
1 ,&22 = τ 2

h IN, and
&0 = σ 2IN . The constraint cases become θ21 ∼ N(0, τ 2

c D−1
1 )

and θ22 ∼ N(0, τ 2
h IN). Appendix (h) derives these expressions

for DF(δ) and DF(ξ):

DF(δ) = rank(X1) + tr
{
X21&21X′

21[(IN − PX1)

× (X21&21X′
21 + X22&22X′

22 + &0)(IN − PX1)]+
}

= 1 +
N−1∑

i=1

(τ 2
c /σ 2)/di

(τ 2
c /σ 2)/di + (τ 2

h /σ 2) + 1
;

DF(ξ ) = tr
{
X22&22X′

22[(IN − PX1)

× (X21&21X′
21 + X22&22X′

22 + &0)(IN − PX1N
)]+

}

=
N−1∑

i=1

(τ 2
h /σ 2)

(τ 2
c /σ 2)/di + (τ 2

h /σ 2) + 1
.

Thus DF(δ) + DF(ξ) is H&S’s DF. The DF of each compo-
nent is a function of both variance ratios (τ 2

c /σ 2, τ 2
h /σ 2), which

sheds light on how the effects compete. If τ 2
c /σ 2 increases for

fixed τ 2
h /σ 2, then DF(δ) increases and DF(ξ) decreases. When

there is more than one island (G > 1), it is easy to show that the
DF for clustering and heterogeneity are the sums of the respec-
tive DF for each island.

Example 2 (Linear growth model). Write this model as a
linear model in µ0, the initial local mean; β0, the initial local
trend; w1, noise in the local mean; and w2, noise in the trend:





y0
y1
y2
y3
...

yT




=





1 0
1 1
1 2
1 3
...

...

1 T





(
µ0
β0

)

+





0 0 · · · 0
1 0 · · · 0
1 1 0 · · · 0
1 1 1 0 · · · 0
...

...
. . .

...

1 1 1 1 · · · 1









w11
w12
...

w1T





+





0 0 · · · 0
0 0 · · · 0
1 0 0 · · · 0
2 1 0 0 · · · 0
...

...
. . .

...

T − 1 T − 2 T − 3 T − 4 · · · 1





×





w21
w22
...

w2T−1



 +





n0
n1
...

nT



 .

In terms of the standard model, the unsmoothed effects are
θ1 = (µ0,β0)

′, the smoothed effects are θ2 = (w′
1,w′

2)
′, the

smoothing covariances are &21 = σ 2
1 IT and &22 = σ 2

2 IT−1, and
the error covariance is &0 = σ 2

n IT+1. DF(w1),DF(w2), and
DF(n) follow straightforwardly, but the expressions do not sim-
plify, and thus we omit them and illustrate their properties with
some special cases.

When the local mean and trend do not vary (σ 2
1 = σ 2

2 = 0),
the model reduces to a linear regression with intercept µ0 and
slope β0, with 2 DF. Thus when σ 2

1 > 0 or σ 2
2 > 0, DF(w1) and

DF(w2) describe complexity in the fit, beyond a linear trend,
attributable to these two sources. Note that the matrix (X1|X21)

is saturated, and X22 = X21B for a specific B. Thus if σ 2
1 > 0

and σ 2
2 > 0, then w1 and w2 compete with each other. Tables 1a

and 1b show how they compete for various (σ 2
1 ,σ 2

2 ); noise vari-
ance σ 2

n is fixed at 1, and T is fixed at 124. When σ2 = 0 (Ta-
ble 1a), DF(w1) increases as σ1 grows, with analogous results
when σ1 = 0 and σ2 grows. As for the clustering and hetero-
geneity model, for fixed σ1 > 0 (Table 1b), DF(w1) is reduced
as σ2 grows, because a larger σ2 allows w2 to compete more ag-
gressively, and so DF(w2) grows. The analogous result occurs
when σ1 increases for fixed σ2.
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130 Y. CUI ET AL.

Table 1a. DF for w1 and w2 in the linear growth model in different
scenarios (σn = 1): Assuming σj = 0 for j = 1 or 2

DF(w1) DF(w2)

φ if σ1 = φ,σ2 = 0 if σ1 = 0, σ2 = φ

0.01 0.1 3.4
0.1 4.8 13.1
1 54.3 47.4

10 120.6 116.4

Table 1b. DF for w1 and w2 in the linear growth model in different
scenarios (σn = 1): Assuming various values of σ2 for fixed σ1

σ1 = 0.1 σ1 = 1

σ2 DF(w1) DF(w2) DF(w1) DF(w2)

0.01 3.3 2.8 54.1 0.2
0.1 1.3 12.8 49.5 5.2
1 0.4 47.2 27.6 38.1

10 0.02 116.4 2.2 114.4

2.6 Using Priors on DF to Induce Priors on
Smoothing Parameters

The most familiar notion of DF is for linear models with one
error term (e.g., Weisberg 1985), in which a model’s DF is the
fixed, known rank of its design matrix. As extended to scatter-
plot smoothers (e.g., Hastie and Tibshirani 1990), a fit’s DF is
not fixed and known before the model is fit, but rather is a func-
tion of tuning constants chosen to control the fit’s smoothness.
For DF as redefined here (e.g., in the model of Example 1),
the vector of the effect-specific DF, (DF(δ),DF(ξ)), is a one-
to-one function of the vector of variance ratios (τ 2

c /σ 2, τ 2
h /σ 2)

and again is not fixed or known before the model is fit. Be-
cause of this one-to-one function, placing a prior distribution on
(τ 2

c /σ 2, τ 2
h /σ 2) induces a prior on (DF(δ),DF(ξ)). But placing

a prior on (DF(δ),DF(ξ)) to induce a prior on the unknown
variance ratios (τ 2

c /σ 2, τ 2
h /σ 2) is equally legitimate. Such a

prior has the advantage of being specified on the interpretable
complexity measure instead of the usually more obscure vari-
ances or variance ratios. We can state this more precisely. In
the standard model (2), suppose that each smoothed effect θ2j
and the error term ε have covariances characterized by one pa-
rameter, say &2j = σ 2

j &0
2j and &0 = σ 2

0 &0
0, where the σ 2

j are

unknown scalars and &0
2j,&

0
0 are known and positive definite.

Further assume that X2j ! R(X1). Then DF(·) is a one-to-one
mapping between q = (DF(X21), . . . ,DF(X2l))

′ on q’s range
and s = (log(σ 2

1 /σ 2
0 ), . . . , log(σ 2

l /σ 2
0 )) ∈ Rl, and thus a prior

on q induces a unique prior on s. Appendix (i) gives a proof
and the Jacobian. By property (DF.d) in Section 2.4, under
these assumptions, the posterior distribution of X2jθ2j using
a prior on q is invariant under certain transformations of X2j.
Sometimes it is desirable to put a prior on functions of q, e.g.,
DF(δ)/(DF(δ) + DF(ξ)) in Example 1 (discussed later). If an
l-variate function of q, u = (u1(q), . . . ,ul(q)) is a one-to-one
mapping, then a prior on u induces a unique prior on s.

When &2j’s form is more complex than that assumed so
far, a prior on DF partially specifies a prior on &2j, and a

complete prior specification requires a prior on other func-
tions of &2j. For example, if &2j = diag(σ 2

j1,σ
2
j2), then a uni-

form prior on DF(X2j) induces a prior on a scalar function of
(σ 2

j1/σ
2
0 ,σ 2

j2/σ
2
0 ). A complete specification requires a prior on

another function of (σ 2
j1/σ

2
0 ,σ 2

j2/σ
2
0 ), for example, on σ 2

j1/σ
2
j2 .

3. EXAMPLES: PRIORS ON DF, PARTITIONING DF,
COMPETING EFFECTS

3.1 Periodontal Measurements: Clustering and
Heterogeneity Model

Here we analyze AL data as described in Section 1 for 12
subjects without missing measurements taken from a larger data
set of 410 subjects. The data set is available on line with the
supplemental materials. Each site in each subject was measured
once by each of two examiners; thus each subject provided 84
AL measurements on 42 sites. Zhao (1999) investigated dif-
ferences between examiners using all 410 subjects and found
tiny systematic differences between examiners. For each pair
of examiners, the differences between the examiners’ measure-
ments showed small spatial correlation, and the standard devi-
ation of the differences was similar for the different examiner
pairs. Thus for our purposes here, we simply treat the two ex-
aminations on each patient as providing two iid measurements
at each site.

Let yijk be the kth measurement of site j for subject i, i =
1, . . . ,12, j = 1, . . . ,42, k = 1,2. Model yijk as yijk = µ + αi +
δij + ξij + εijk, where µ is the grand mean and αi is subject
i’s random effect, modeled as an independent N(0,σ 2

α ) draw.
The vector δi = (δi1, . . . , δi42) captures spatial clustering for
subject i. We assume that these are independent across i and
model each δi as CAR(Q,σ 2

c,i), with neighbor pairs as in Fig-
ure 1. We model heterogeneity effects, ξij as N(0,σ 2

h,i), as-
sumed to be iid within subject. The εijk capture unsystematic
measurement error and are modeled as independent N(0,σ 2

0 ),
with σ 2

0 being common to all subjects.
Subject i has smoothing variances σ 2

c,i and σ 2
h,i, and thus

DF(δi) and DF(ξ i), allowing subject-specific inferences about
the relative contribution to the fit of clustering and hetero-
geneity. An obvious prior for this purpose is a prior on fi =
DF(δi)/(DF(δi) + DF(ξ i)), the fraction, for subject i, of the
fitted complexity attributed to clustering. A flat prior on fi
demonstrates no preference between clustering and heterogene-
ity without constraining the total DF in subject i’s fit, DF(δi) +
DF(ξ i), so it can be considered natural. We used independent
flat priors on fi, DF(δi) + DF(ξ i), and DF(α). Table 2 gives the
posterior means of the fi; the posterior medians are similar.

In Table 2, the overall DF for spatial clustering has a posterior
mean of 82.00 out of 492, and subject-specific values are 1.66–
16.75 out of 41. Overall DF for heterogeneity has a posterior
mean of 158.26 out of 503; subject-specific values are 1.60–
28.12 out of 42. The posterior mean of fi ranges from 0.18 to
0.52, with a median of 0.36, compared with the prior mean of
0.50; thus for most subjects, the data indicate that heterogene-
ity should receive more fitted complexity than clustering. Com-
pared with σc,i/(σc,i + σh,i) (Eberly and Carlin 2000), fi has a
direct interpretation and accounts for all other sources of varia-
tion; that is, because measurement error variance σ 2

0 is common
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PARTITIONING DEGREES OF FREEDOM 131

Table 2. Periodontal data: posterior mean DF for spatial clustering
and site heterogeneity and posterior mean of fi, the

fraction of DF for spatial clustering

Source DF(δi) DF(ξ i) E(fi|y)

Sum of subjects 82.00 158.26 0.34
Subject #11 6.32 28.12 0.18
Subject #3 7.74 27.24 0.22
Subject #9 1.88 4.15 0.31
Subject #2 1.66 3.44 0.33
Subject #5 10.10 20.14 0.33
Subject #6 10.34 19.06 0.35
Subject #12 11.53 20.29 0.36
Subject #8 5.52 8.08 0.41
Subject #4 16.75 18.07 0.48
Subject #1 1.84 1.89 0.49
Subject #10 1.76 1.60 0.52
Subject #7 6.57 6.18 0.52

NOTE: The maximum possible DF for δi and ξ i are 41 and 42 for individual subjects
and 492 and 503 for all subjects combined.

to all subjects, fi depends indirectly on σ 2
c,j/σ

2
0 and σ 2

h,j/σ
2
0 for

j -= i.
Are these results reasonable? Figure 3 shows the data and the

posterior of fi for subjects 11, 7, and 10, who have the smallest
(subject 11) and the largest (subjects 7 and 10) E(fi|y). Based
on Section 1’s interpretation, when the DF are low for both
clustering and heterogeneity, the data should have little large-
scale trend or unpatterned noise respectively. When the DF are
large for both, we should see large differences in the local level
between different parts of the mouth, as well as sizeable unpat-
terned variation around that large-scale trend. When DF is large
for heterogeneity but small for clustering, we should see little
large-scale trend but much unpatterned variation. Subjects 11
and 7 have a similar posterior DF for clustering (about 6 DF),
while subject 11 has a much larger DF for heterogeneity (about
28 DF). The data in Figure 3 indicate a similarly modest large-
scale trend for these two subjects, but with much greater unpat-
terned variation for subject 11. Now compare subjects 7 and 10,
who have the same E(fi|y), but subject 10 has a smaller poste-
rior expected DF for both components by a factor of about 4.
As expected, the data for subject 10 show much less trend and
variation than the data for subject 7.

The random effects α, δ, and ξ compete with one another;
the column spaces for α and δ are orthogonal to each other, but
both are contained in the column space for ξ . To give a taste
of how this affects partitioning of DF, Table 3 shows results
from simulated data like the periodontal data set analyzed ear-
lier. For simplicity, all 12 simulated subjects have the same σ 2

c
and σ 2

h in both the data and the model. We fixed σ 2
0 at 1 and

sampled 100 artificial data sets from each of 6 sets of true vari-
ance ratios (σ 2

α/σ 2
0 ,σ 2

c /σ 2
0 ,σ 2

h /σ 2
0 ), drawing new αi, δi, and

ξ i for each artificial data set. The analyses used a flat prior on
(DF(α),DF(δ),DF(ξ)); flat priors on DF(α),DF(δ) + DF(ξ),
and DF(δ)/(DF(δ) + DF(ξ)) give similar results. The DF al-
located to subjects, DF(α), are similar in all cases considered,
and we do not discuss this further here.

In Table 3, consider the columns labeled “True DF”; these
values are DF as a function of the true variances. The model
with both clustering and heterogeneity [rows (1, 1, 1) and (0.25,

0.25, 0.25)] allocates less complexity to clustering than the
model with only clustering [rows (1, 1, 0) and (0.25, 0.25, 0)].
The presence of heterogeneity reduces the true DF for clus-
tering to a proportionally greater extent when the true vari-
ances are 1 (42% reduction) than when they are 0.25 (21%).
The presence of clustering has a similar effect on the true DF
for heterogeneity (29% and 19% reduction, respectively). In
other words, the two effects compete but to a lesser degree
when each is constrained more by a smaller true variance. Now
consider the columns labeled “Est[imated] DF,” which for each
row in the table is the posterior median DF for each artifi-
cial data set, averaged over the 100 artificial data sets. When
heterogeneity is truly absent [rows (1, 1, 0) and (0.25, 0.25,
0)], the analysis nonetheless allocates some DF to heterogene-
ity, (35 and 32 when the variances are 1 and 0.25, respec-
tively), and the estimated DF for the competing clustering ef-
fect are below the true values by 23 and 10 DF respectively.
That is, some of heterogeneity’s DF are “stolen” from cluster-
ing, about 2/3 when the variances are 1 (and competition is
more fierce) and about 1/3 when the variances are 0.25. An
analogous but less pronounced effect occurs when clustering is
truly absent. We discuss the implications of this finding in Sec-
tion 5.

3.2 Global Mean Surface Temperature:
Linear Growth Model

Using the linear growth model to smooth the global mean
surface temperature series, we consider two types of priors on
(σ 2

n ,σ 2
1 ,σ 2

2 ): independent Gamma(0.001,0.001) on each 1/σ 2
j

and DF-induced priors. Figure 2 plots the data and three fits
(posterior means) arising from gamma priors. For one fit, the
analysis used the design matrix’s original scaling; for the other
two fits, the columns of the design matrix were multiplied by
50 and 100. All smooths capture the increase from 1881 to
1940, the decrease from 1940 to 1970, and the increase af-
ter 1970. The fit with the original scaling smooths the most,
with DF(w1)+DF(w2) having posterior mean 5.6. The gamma
prior’s effect is not invariant to the scaling of X’s columns, so
the posteriors differ noticeably when the same gamma prior
is used with rescaled design matrixes. When X’s columns are
multiplied by 100, the posterior means of DF(w1) and DF(w2)

sum to 21.5. It was simply luck that in the “natural” scaling,
the gamma prior gave a reasonable result. In contrast, priors
specified on DF avoid the problem of scaling. Instead, they
control the fit’s smoothness directly by constraining DF in the
fit. Figure 4 plots fits from flat priors on (DF(w1), DF(w2))

with five different constraints on total DF in the smoothed ef-
fects. The fit becomes smoother as the constraint on total DF
is reduced. Figure 5 shows histograms of 10,000 draws from
the posterior of DF(w1) and DF(w2) arising from flat priors
on them that are constrained so that the total smoothed DF
is <6. Both posteriors are skewed, but in different directions.
For the local mean, E(DF(w1)|y) = 0.86, while for the local
slope, E(DF(w2)|y) = 4.58.

This example also presents an instance in which the approx-
imate DF (Sec. 2.3; Ruppert, Wand, and Carroll 2003, sec. 8.3)
performs poorly. For the flat priors on (DF(w1),DF(w2)) with
total DF constrained to be <6, the posterior mean of exact and
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132 Y. CUI ET AL.

Figure 3. Example 1, AL data and histograms of draws from the posterior of fi, the fraction of model complexity attributed to spatial
clustering. The top two panels are for subject 11, the middle two panels are for subject 7, and the bottom two panels are for subject 10, who had
E(fi|y) = 0.18, 0.52, and 0.52 respectively.

approximate DF for w1 are 0.86 and 1.87 respectively, differ-
ing by more than 1 DF, while the posterior mean of exact and
approximate DF for w2 are closer, 4.58 and 4.76, respectively.

When total DF is constrained to be <10, the posterior mean of
exact and approximate DF are 2.97 and 5.13 for w1—differing
by more than 2 DF—and 5.14 and 5.75 for w2.
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PARTITIONING DEGREES OF FREEDOM 133

Table 3. True DF and average posterior median DF for clustering and
heterogeneity, for various true (σ 2

α/σ 2
0 ,σ 2

c /σ 2
0 ,σ 2

h /σ 2
0 ),

with 100 simulated data sets per scenario

True DF Est DF MC SE

(σ 2
α

σ 2
0

, σ 2
c

σ 2
0

,
σ 2

h
σ 2

0
) δ ξ δ ξ δ ξ

(1, 1, 0) 245 0 222 35 20 19
(1, 1, 1) 143 233 143 233 24 29
(1, 0, 1) 0 328 7 323 3 15

(0.25, 0.25, 0) 121 0 111 32 15 17
(0.25, 0.25, 0.25) 95 133 97 132 18 33
(0.25, 0, 0.25) 0 164 7 160 3 28

NOTE: Est DF is the average of the 100 posterior medians, and MC SE is the Monte
Carlo standard error of that estimate.

Other choices are possible for DF-based priors. For example,
West and Harrison (1997) usually fix the signal-to-noise ratio
for smoothing variances, which amounts to point priors on the
corresponding DF. This could be relaxed by specifying priors
on DF with the same centers as these point priors, but with pos-
itive variances.

The Gamma(0.001, 0.001) prior has been criticized on vari-
ous grounds. Alternative priors on variances or standard devia-
tions have been proposed; Gelman (2006) has provided an in-
fluential critique and some alternatives. These alternatives are
all scale-dependent, like the gamma prior. We do not propose a
flat prior on DF as a default, however; for this model and data
set, a flat prior on (DF(w1),DF(w2)) without a constraint on
total DF gives a grossly undersmoothed fit. It is still true that
overparameterized models often need strong prior information.

4. DEGREES OF FREEDOM FOR RESIDUALS

The standard model (2), with &0 set to σ 2
ε I, can be reex-

pressed as

y = f + ε,

ε ∼ N(0,σ 2
ε I),

f ∼ N(X1θ1,X2&2X′
2),

where f is a true but unknown function that we want to esti-
mate, evaluated at the design values corresponding to the rows
of X1. This notation is most familiar for penalized splines repre-
sented as mixed linear models (as in Ruppert, Wand, and Carroll
2003), where f is the true smooth function relating a predictor x
and dependent variable y. It appears that the approach of Rup-
pert, Wand, and Carroll (2003) requires that X1 have full rank;
in this section we assume that X1 has full rank.

Treating σ 2
ε and &2 as known, the fitted values from this

model—the BLUPs or conditional posterior means—are ŷ =
Sy for

S = [ X1 X2 ]
[[

X′
1

X′
2

]
[ X1 X2 ]

+ σ 2
ε

[
0 0
0 &2

−1

]]−1 [
X′

1
X′

2

]
.

Here S is a linear smoother. The DF in the fitted values ŷ is tr(S)

under all published definitions. The most common definition for
residual DF in linear mixed models is derived as follows (Hastie
and Tibshirani 1990, sec. 3.5; Ruppert, Wand, and Carroll 2003,

Figure 4. Example 2, global mean surface data, DF prior with different sum constraints on total smoothed DF.
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134 Y. CUI ET AL.

Figure 5. Example 2, global mean surface data, histograms of pos-
terior DF for local mean (top) and local trend (bottom), for the flat
prior on DF with sum of total smoothed DF constrained to <6.

sec. 3.14). Assuming that f is fixed, the mean squared error—
the expectation of the residual sum of squares given &2, &0—
is

MSE(y|&2,&0, f)

= Eε[(ŷ − y)′(ŷ − y)|&2,&0, f]
= Eε[y′(S − I)′(S − I)y|&2,&0, f]
= σ 2

ε tr((S − I)′(S − I)) + f′(S − I)′(S − I)f

= σ 2
ε (n + tr(S′S) − 2 tr(S)) + f′(S − I)′(S − I)f. (6)

The term f′(S − I)′(S − I)f arises from bias. “Assuming the
bias term . . . is negligible” (Ruppert, Wand, and Carroll 2003,
p. 83), by analogy with ordinary linear models, the DF in
the residuals is n + tr(S′S) − 2 tr(S), and {residual sum of
squares}/(n + tr(S′S) − 2 tr(S)) is an unbiased estimate of σ 2

ε .
Because DF in the fit is tr(S),

(DF in fit) + (DF in residuals)

= tr(S) + n + tr(S′S) − 2 tr(S)

= n + tr(S′S) − tr(S) < n.

The inequality holds because S is symmetric with eigenvalues
in [0,1] and at least one eigenvalue < 1, so tr(S′S) < tr(S).
This raises the question: where are the missing degrees of free-
dom?

Taking the mixed-effects model (2) literally, f is random, so
we can remove the conditioning on f in (6). To do so, we need

the claim, proved in Appendix (j), that if f is distributed as nor-
mal with mean X1θ1 and covariance X2&2X′

2, then

Ef[f′(S − I)′(S − I)f|&2,&0]
= tr

(
(S − I)′(X2&2X′

2 + X1θ1(X1θ1)
′)(S − I)

)

= tr((S − I)′(−σ 2
ε S)).

We can now remove the conditioning on f. By the foregoing
claim,

MSE(y|&2,&0)

= Ef[MSE(y|&2,&0, f)]
= σ 2

ε (n + tr(S′S) − 2 tr(S)) + Ef[f′(S − I)′(S − I)f|&2,&0]
= σ 2

ε (n + tr(S′S) − 2 tr(S)) + tr((S − I)′(−σ 2
ε S))

= σ 2
ε (n − tr(S)).

By the same rationale used to define the usual residual DF, we
can now define residual DF as n − tr(S), the same as the new
definition of DF in Section 2.3. Therefore,

(DF in fit) + (DF in residuals) = tr(S) + n − tr(S) = n,

as defined in Section 2; the missing DF are in the bias term of
mean squared error. The difference between the two definitions
can be small or large. For the global mean surface temperature
dataset, using the prior with total DF constrained to be <6 and
fixing the variance ratios at their posterior medians, the residual
DF is 115.7 under the widely used definition and 117.6 under
the new definition. But for the AL data, with the variance ratios
fixed at their posterior medians, the residual DF is 699.6 under
the widely used definition and 764.4 under the new definition.

The foregoing highlights an awkward element of contempo-
rary non-Bayesian theory for mixed-effects models, specifically
those with random effects that do not meet the definition of, say,
Scheffé (1959, p. 238), that a random effect’s levels can “be re-
garded as a random sample from some population about which
we wish to make our statistical inferences, rather than making
them about the particular [levels] in the experiment.” Penal-
ized splines (as in Ruppert, Wand, and Carroll 2003, sec. 4.9)
present the clearest example of this difficulty. The theory of pe-
nalized splines presumes that the smooth function f is fixed but
unknown (e.g., Ruppert, Wand, and Carroll 2003, p. 58); the
spline is fit using a random-effects model because this gives a
minimization problem formally identical to the minimization
problem in the original definition of penalized splines, and also
allows us to use all the usual mixed linear model tools. For pe-
nalized splines, it seems meaningless outside a Bayesian frame-
work to take an expectation over the distribution of f, which is
presumed to be fixed if unknown and is formally represented as
a random effect for convenience only. Thus the mean squared
error given &0, &2, and f is (6), a quantity that is fixed but un-
known because f is unknown. Although in expectation over f,
total DF in the model and residuals add to the sample size n, for
a given f this equality fails in general, and so “the books do not
balance” as they do in conventional linear models.

The standard derivation of residual DF is intended to produce
denominator DF for F-tests and is rationalized by the assump-
tion that the squared length of the bias is small. For uses of this
machinery described by Ruppert, Wand, and Carroll (2003) and
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PARTITIONING DEGREES OF FREEDOM 135

Hastie and Tibshirani (1990), in which the functions f are quite
smooth, bias is likely small, and this presumption seems reason-
able as it indeed was for the global mean surface temperature
example. However, methods tend to outgrow their inventors’
intentions, inevitably so for a scheme as inclusive as the one in
Ruppert, Wand, and Carroll (2003), so this standard derivation
will be extended to cases where bias is not necessarily small.
Thus a theoretically more tidy treatment would seem desirable;
our new definition of DF may provide such a treatment.

From a Bayesian standpoint, &2 can describe either variation
in θ2 for old-fashioned random effects or uncertainty about θ2
for new-fangled random effects, and no problem arises because
a probability distribution, once specified, obeys the same rules
regardless of its rationale. But except when designing exper-
iments, a Bayesian viewpoint does not consider expectations
over varying y, so the usual derivation of residual DF is of no
interest. Thus a Bayesian interpretation cannot justify removing
the conditioning on f in the usual derivation of residual DF.

The new definition given in Section 2, while not explicitly
Bayesian, does treat the covariance matrixes &2j as Bayesians
do, irrespective of their rationale. In the new definition, an ef-
fect’s DF describes that effect’s proportion of total variance,
partitioning the sample size n naturally (property DF.b) while
treating all sources of variation in the same manner, that is,
without singling out error variation for distinctive treatment as
is done in the usual derivation of residual DF.

5. DISCUSSION

We have presented a new conception of DF for models using
random effects and normal probability distributions, which was
anticipated in part by Green (2002). Although the resulting de-
finition of DF arises from linear model theory, it defines a scale
for complexity in the space of covariance structures and can be
loosely interpreted as the fraction of variation attributed to in-
dividual effects. The new definition rationalizes partitioning the
total DF in the data set into pieces for effects in the model and
for error. The latter avoids difficulties in the most common def-
inition of residual DF (Section 4). Conceiving an effect’s DF as
the fraction of variance attributed to the effect suggests a way
of defining DF for nonnormal random-effects models, possibly
avoiding the linear and normal approximations explicit in the
approach of Lu, Hodges, and Carlin (2007) and implicit in the
approach of Ruppert, Wand, and Carroll (2003, p. 212).

Our examples illustrate two uses of the new definition.
The first use is to induce prior distributions on smoothing vari-
ances. In some cases, such variances are meaningful quantities,
but priors on them are often nonintuitive and depend on the
scale of the design matrix, as illustrated in Section 3.2. The ex-
amples show how to put scale-invariant priors on interpretable
quantities like DF or DF(δ)/(DF(δ) + DF(ξ)), inducing priors
on the less intuitive smoothing parameters. The global mean
surface temperature example shows how a prior on DF can con-
trol smoothness directly.

The new definition’s second use is as an interpretable mea-
sure of each effect’s contribution to the fit’s complexity. This
sheds light on competition between effects, which is especially
acute in cases where the competing effects have design matrixes

with column spaces that overlap substantially, as in both exam-
ples. Competition of this sort is a broad topic that is only now
being noticed (e.g., Reich, Hodges, and Zadnik 2006); tools like
DF can help us describe and understand this phenomenon.

As a byproduct, the AL example presents an instance in
which the approximate DF of an effect (Ruppert, Wand, and
Carroll 2003, sec. 8.3; Cui 2008, p. 79) performs poorly. It al-
most certainly is not an accident that this arose in a model with
highly collinear effects, in contrast with the examples of Rup-
pert, Wand, and Carroll (2003). If the approximation fails only
with severe collinearity, then it may be possible to develop a
diagnostic that indicates when the approximation is accurate,
which would be useful given that it computes much faster than
exact DF.

The simulation described in Section 3.1 demonstrates a ten-
dency to allocate DF to an effect that was, in fact, absent. In
practice, this may not be important, because our methods would
be used in the context of a larger effort of model building, and
before fitting this model, one would probably drop the hetero-
geneity term if the data indicated its absence. Moreover, if the
purpose of the analysis is better estimation of AL at individ-
ual sites, then this is almost certainly not important. Nonethe-
less, from a theoretical standpoint, this problem needs to be
explained. The proximate cause is that smoothers tend not to
shrink effects to zero even when they should. (This is the sole
virtue of the zero variance estimates that are frequently pro-
duced by maximizing the restricted likelihood.) The extent of
undershrinkage depends on the prior and would be reduced by,
say, a scaled Beta(0.1,0.1) prior on the relevant DF, which
pushes the posterior more toward the extremes of complete or
no shrinkage. Perhaps the larger implication is the need to re-
think these extravagantly overparameterized models, which are
the problem’s ultimate cause. The difficulty almost certainly
arises because of the extreme collinearity of the clustering and
heterogeneity effects; partitioning degrees of freedom merely
describes the consequence of this collinearity.

Finally, how does DF compare with the popular effective
number of parameters pD? Recall that in view of Plummer
(2008), we distinguish the problems of model complexity and
model comparison. Thus DF’s purpose is to describe a model’s
complexity in terms drawn from simple, well-understood mod-
els, making it possible to control complexity in fitting the model
to a data set by means of a prior distribution on complex-
ity. Regarding pD’s interpretability, its definition (Spiegelhal-
ter et al. 2002, sec. 2.3) is opaque, and the only concrete in-
terpretation that Spiegelhalter et al. (2002) offer is that in sim-
ple cases—where complexity measures already exist—pD takes
values that people generally like. Second, our approach implic-
itly presumes that a model exists independently of any realized
outcome y, so its complexity can be defined without a real-
ized y. This is true of DF and of most complexity measures
(e.g., Hastie and Tibshirani 1990; Ye 1998), but not pD, the def-
inition of which requires a realized y through the point estimate
θ̃ and the posterior mean of the deviance D(θ). In special cases,
such as normal hierarchical models with all covariances known,
pD does not depend on y, and in these cases pD agrees with DF
(Green 2002; Spiegelhalter et al. 2002, secs. 2 and 4). But with
unknown variances (i.e., in practical situations), pD and DF di-
verge.
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A complexity measure defined independently of the outcome
y will in general be a function of unknowns. This is acceptable;
statisticians routinely specify models as functions of unknowns
(in Bayesian terms, conditional on unknowns), and describing
a model’s complexity as a function of its unknowns creates no
difficulties. The DF of a fitted model is obviously a function of
the data, through either plug-in estimates or posterior distrib-
utions of the unknown parameters in the covariance matrixes.
But a complexity measure defined independently of y, like DF,
allows a prior distribution on complexity to softly control the
complexity of the fit. This is not possible with pD, because in
general it is defined in terms of a specific realized y.

It is not clear that pD can be partitioned corresponding to
components of the model, as DF can. Spiegelhalter et al. (2002,
secs. 6.3 and 8.1) did partition pD corresponding to subdivi-
sions of the deviance to create an outlier diagnostic from DIC,
and in problems where the likelihood factors, DIC and pD par-
tition analogously (e.g., for errors-in-covariates models). Green
(2002) gives a partition of pD identical to ours in the special
case where all covariance matrices are known, but it is not
clear this can be extended to the case where covariances are
unknown.

Thus, while the relatively easy computation of pD is certainly
desirable, for our purposes this seems to be outweighed by its
conceptual and practical disadvantages.

SUPPLEMENTAL MATERIALS

Appendixes and Periodontal Data: This archive file contains
Appendixes (a)–(j) and the periodontal data analyzed in Sec-
tion 3.1, along with R code to read it and construct the
neighbor-pair matrix Q used for the analyses. (TECHMS08-
161 Supplementary Materials.zip; zip archive)
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