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CONCEPTS & SYNTHESIS 
EMPHASIZING NEW IDEAS TO STIMULATE RESEARCH IN ECOLOGY 

Ecology, 88(10), 2007, pp. 2427-2439 
? 2007 by the Ecological Society of America 

PARTITIONING DIVERSITY INTO INDEPENDENT ALPHA 
AND BETA COMPONENTS 

Lou Jost1 

Ba?os, Tungurahua, Ecuador 

Abstract. Existing general definitions of beta diversity often produce a beta with a hidden 

dependence on alpha. Such a beta cannot be used to compare regions that differ in alpha 

diversity. To avoid misinterpretation, existing definitions of alpha and beta must be replaced 

by a definition that partitions diversity into independent alpha and beta components. Such a 

unique definition is derived here. When these new alpha and beta components are transformed 

into their numbers equivalents (effective numbers of elements), Whittaker's multiplicative law 

(alpha 
X beta = 

gamma) is necessarily true for all indices. The new beta gives the effective 

number of distinct communities. The most popular similarity and overlap measures of ecology 

(Jaccard, Sorensen, Horn, and Morisita-Horn indices) are monotonie transformations of the 

new beta diversity. Shannon measures follow deductively from this formalism and do not need 

to be borrowed from information theory; they are shown to be the only standard diversity 
measures which can be decomposed into meaningful independent alpha and beta components 

when community weights are unequal. 

Key words: alpha diversity; beta diversity; gamma diversity; Horn index; Morisita-Horn index; 

partitioning diversity; Shannon diversity measures. 

Introduction 

Alpha, beta, and gamma diversities are among the 

fundamental descriptive variables of ecology and 

conservation biology, but their quantitative definition 

has been controversial. Traditionally alpha, beta, and 

gamma diversities have been related either by the 

additive definition Ha + H$ 
= 

Hy 
or the multiplicative 

definition Ha X 
H$ 

= 
HT However, when these 

definitions are applied to most diversity indices, they 

produce a beta which depends on alpha. This hidden 

dependence on alpha can lead to spurious results when 

researchers compare beta values of regions with different 

alpha diversities. 

For example, suppose an ecologist applies the additive 

definition of beta to the Gini-Simpson index (Lande 

1996, Veech et al. 2002, Keylock 2005) to calculate the 

beta diversity between two samples of flowering plants 

from the Antarctic tundra. The only flowering plants in 

Antarctica are Colobanthus quitensis and Deschampsia 

ant?rctica. In the first tundra sample (a 50-ha plot) the 

Manuscript received 16 October 2006; revised 12 January 

2007; accepted 8 March 2007. Corresponding Editor: H. 

Hillebrand. 
1 
E-mail: loujost@yahoo.com 

proportions might be 60% C. quitensis, 40% D. 

ant?rctica. In the second tundra sample (another 50-ha 

plot), the proportions might be 80% C. quitensis, 20% D. 

ant?rctica. Ecologists would agree that these samples, 

which share all their species and differ only slightly in 

species frequencies, should exhibit a relatively low beta 

diversity. The beta diversity is 0.021 according to the 

additive definition used with the Gini-Simpson index. 

Now the same ecologist wants to compare this beta 

diversity to the beta diversity between two 50-ha samples 

of tropical rain forest trees > 1 cm diameter, one from 

Panama (Barro Colorado Island; Condit et al. 2005) and 

one from Malaysia (Pasoh; Gimaret-Carpentier et al. 

1998, He 2005; F. He, personal communication). These 

rain forest samples are on different continents and share 

no species of trees, and ecologists would agree that these 

samples should exhibit considerably higher beta diver 

sity (as this term is used in theoretical discussions) than 

the homogeneous Antarctic samples. However, the 

alpha Gini-Simpson index for the pair of rain forest 

samples is 0.9721, and the gamma Gini-Simpson index is 

0.9861; the beta diversity is 0.9861 
- 

0.9721 =0.014. This 

value of beta is 33% lower than the Antarctic beta 

diversity. The additive beta definition fails to rank these 

data sets correctly because the beta it produces is 

confounded with alpha. (When diversity is high, Gini 
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Simpson alpha and gamma both approach unity. 

Therefore, if beta is defined as gamma minus alpha, 

beta must approach 0 whenever alpha diversity is high, 

regardless of the turnover between samples.) The 

multiplicative definition also fails for many indices for 

the same reason. 

If beta diversity is to behave as ecologists expect, we 

must develop a new general expression relating alpha, 

beta, and gamma, and the new expression must ensure 

that beta is free to vary independently of alpha. In fact, 

this requirement and ecologists' other requirements for 

an intuitive measure of beta are sufficiently strong that 

I they can be taken as axioms, and a new general 

mathematical expression relating alpha, beta, and 

gamma can be logically derived from these axioms. This 

approach ensures that beta behaves as ecologists expect 

and measures what ecologists really want to measure. By 

removing the hidden alpha dependence often produced 

by the old definitions of beta, the new expression opens 

the way for researchers to focus on biologically 

meaningful aspects of beta. The new method of 

partitioning, derived directly from biologists' require 

ments, gives results that agree with standard practice in 

information theory and physics and leads to a unified 

mathematical framework, not only for diversity mea 

sures, but also for ecology's most popular similarity and 

overlap measures. The Sorensen, Jaccard, Morisita 

Horn, and Horn indices all turn out to be simple 

monotonie transformations of the new beta diversity. 

Basic Properties of Intuitive Alpha and Beta 

There is general agreement that alpha and beta should 

have the following properties, which I take as axioms in 

the derivations which follow: 

1) Alpha and beta should be free to vary independently; 

a high value of the alpha component should not, by itself, 

force the beta component to be high (or low), and vice 

versa. Alpha and beta decompose regional diversity into 

two orthogonal components: a measure of average 

single-location (or single-community) diversity and a 

measure of the relative change in species composition 

between locations (or communities). Since these com 

ponents measure completely different aspects of regional 

diversity, they must be free to vary independently; alpha 

should not put mathematical constraints on the possible 

values of beta, and vice versa. If beta depended on 

alpha, it would be impossible to compare beta diversities 

of regions whose alpha diversities differed. Wilson and 

Shmida (1984) were the first to make this an explicit 

requirement for beta. 

2) A given number should denote the same amount of 

diversity or uncertainty, whether it comes from the alpha 

component, the beta component, or the gamma compo 

nent, so that the within-community and among-community 

components could be directly compared. Lande (1996) 

proposed a weaker version of this useful property of 

beta, which is closely related to Property 1. 

3) Alpha is some type of average of the diversity indices 

of the communities or samples that make up the region. 

To avoid imposing any preconceptions on the kind of 

average to use, I make only the minimal assumption that 

if the diversity index has the same value H0 for all 

communities in a region, then alpha must also equal H0. 

4) Gamma must be completely determined by alpha and 

beta. I make no assumption about how alpha and beta 

determine gamma. 

5) Alpha can never be greater than gamma. Lande 

(1996), following Lewontin (1972), pointed out that the 

partitioning of gamma into alpha and beta only makes 

sense if alpha is always less than or equal to gamma for a 

given diversity index. From the viewpoint of informa 

tion theory, this property is a reasonable one. Most 

diversity indices may be considered generalized measures 

of uncertainty (Taneja 1989, Keylock 2005), and alpha 

may be considered the conditional uncertainty in species 

identity given that we know the location sampled. 

Gamma is the uncertainty in species identity when we do 

not know the location sampled. Knowledge can never 

increase uncertainty, so alpha can never be greater than 

gamma. 

These five relatively uncontroversial properties are 

strong enough to completely determine the new general 

index-independent expression that defines beta. This in 

turn permits the derivation of explicit expressions for 

alpha and beta for almost any diversity index. To 

develop this new picture of alpha and beta diversity, it is 

necessary to deal with diversity indices in a more general 

way than is customary. The next section provides the 

vocabulary and tools needed for this. 

The "Numbers Equivalents" of Diversity Indices 

The mathematical tool that permits the derivation of a 

general definition of beta is the concept of the "numbers 

equivalent" or "effective number of elements" of a 

diversity index. The concept is often used in economics, 

where the term originated (Adelman 1969, Patil and 

Taillie 1982), and in physics, where it is called the 

"number of states," but since it is unfamiliar to many 

ecologists, it will be briefly reviewed here. 

The numbers equivalent of a diversity index is the 

number of equally likely elements needed to produce the 

given value of the diversity index. Hill (1973) and Jost 

(2006) showed that the notion of diversity in ecology 

corresponds not to the value of the diversity index itself 

but to its numbers equivalent. (The derivations in the 

following sections do not depend on this interpretation 

of the numbers equivalent as the true diversity; the 

skeptical reader may treat numbers equivalents merely 

as useful mathematical tools for deriving the alpha, beta, 

and gamma components of traditional diversity indices.) 

To see the contrast between a raw index and its 

numbers equivalent, suppose a continent with 30 million 

equally common species is hit by a plague that kills half 

the species. How do some popular diversity indices judge 

this drop in diversity? Species richness drops from 30 
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Table 1. Conversion of common indices to true diversities (modified from Jost [2006]). 

Index H Diversity in terms of H Diversity in terms of p? 

Species richness H = 
S/=1 p) 

Shannon entropy H = 

Simpson concentration H = 
2^=1/7 

Gini-Simpson index H = 1 

s 

2tiP? 
HCDT entropy H = 

(1 
- 

S/=i />*)/(<? 
~ 

x) 

Renyi entropy H = 
(-In Ef=l pf)/(q 

- 
1) 

H 

exp(H) 
l/H 
1/(1 

- 
H) 

[(1 -{q- \)H)]il{i-"> 

exp(//) 

^i P? 

exp(-lf= PfaPi] 
i P? 1/4 

VSL.pL 
Pt.P?) , , 
(?i,p?)1/(1-?) 

?) 

million to 15 million; according to this index, the post 

plague continent has half the diversity it had before the 

plague. This accords well with our biological intuition 

about the magnitude of the drop. However, the Shannon 

entropy only drops from 17.2 to 16.5; according to this 

index, the plague caused a drop of only 4% in the 

"diversity" of the continent. This does not agree well 

with our intuition that the loss of half the species and 

half the individuals is a large drop in diversity. The Gini 

Simpson index drops from 0.99999997 to 0.99999993; if 

this index is equated with "diversity," the continent has 

lost practically no "diversity" when half its species and 

individuals disappeared. 

Converting the diversity indices in the preceding 

paragraph to their numbers equivalents makes them all 

behave as biologists would intuitively expect of a 

diversity. (See Table 1 for the conversion formulas.) 

Species richness is its own numbers equivalent, so the 

numbers equivalent of species richness drops by 50% 

when the plague kills half the continent's species. The 

Shannon entropy is converted to its numbers equivalent 

by taking its exponential (MacArthur 1965); this gives a 

post-plague to pre-plague diversity ratio of exp(16.5)/ 

exp(17.2), which is exactly 50%, compared to the 

counterintuitive drop of 4% shown by the raw index. 

The Gini-Simpson index is converted to its numbers 

equivalent by subtracting from unity and taking the 

reciprocal (Jost 2006); this gives a post-plague to pre 

plague diversity ratio of [1/(1 
- 

0.99999993)]/[l/(l 
- 

0.99999997)] 
= 

50%, again the intuitive number rather 

than the 0.000003% shown by the ratio of the raw 

indices. This example does not depend on all the species 

being equally common; if these 30 million species had 

any smoothly varying frequency distribution and half 

the species were randomly deleted, the numbers equiv 

alents of these diversity indices would still drop by 

approximately half. 

The numbers equivalents of all standard diversity 

indices behave in this intuitive way because they all have 

the "doubling" property (Hill 1973): if two equally large, 

completely distinct communities (no shared species) each 

have diversity X, and if these communities are com 

bined, then the diversity of the combined communities 

should be 2X. This natural, semi-additive property is at 

the core of the intuitive ecological concept of diversity. 

Most raw diversity indices do not obey this property, 

but their numbers equivalents do. It is also this property 

which makes ratios of numbers equivalents behave 

reasonably (in sharp contrast to ratios of most raw 

diversity indices; see Jost 2006). 
Some new notation and definitions are needed to 

work efficiently with numbers equivalents. Almost all 

diversity indices used in the sciences, such as species 

richness, Shannon entropy, exponential of Shannon 

entropy, Simpson concentration, inverse Simpson con 

centration, the Gini-Simpson index, Renyi entropies 

(Renyi 1970), Tsallis entropies (Keylock 2005), the 

Berger-Parker index, the Hurlbert-Smith-Grassle index 

for a sample size of 2 (Smith and Grassle 1977), and 

others, are functions of the basic sum 
Z?=1 pq, with q 

nonnegative, or limits of such functions as q approaches 

unity. All such measures will be called "standard 

diversity indices" and will be symbolized by the letter 

H; the results of this paper apply to all such measures. 

The sums 
Zf=1 pc[, 

which are at the heart of these 

measures, will be symbolized by qX: 

^ = 
I> (!) 

/=i 

The order q is placed as a superscript in front of X to 

avoid confusion with exponents and with any subscripts 

that may be necessary. This is a generalization of the 

notation for Simpson concentration X = 
?f=1 pf (in this 

notation, Simpson concentration is 2X). 

Every diversity measure H has a numbers equivalent, 

which will be symbolized qD or qD(H) or D(qX). There is 

an unexpected unity underlying all standard diversity 

indices; their numbers equivalents are all given by a 

single formula: 

/ s \ i/O-*) 

qD=\YiPqi\ 
=(^)1/(1-'>. (2) 

This expression was first discovered by Hill (1973) in 

connection with the Renyi entropies; Jost (2006) showed 

that it gives the numbers equivalents of all standard 

diversity indices. It is this unity which permits the 

derivation of general index-independent formulas in 

volving diversity. The number q, the value of the 

exponent in the basic sum underlying a diversity index, 

is called the "order" of the diversity measure. Species 

richness is a diversity index of order 0, Shannon entropy 

is a diversity index of order one, and all Simpson 

measures are diversity indices of order two. The order q 

Is 

1 
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0.75 

S 0-50 
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C? 

0.25 

0.25 0.50 0.75 1.00 1.25 

Alpha 

Fig. 1. Beta vs. alpha for two equally weighted communi 

ties with no species in common. The additive definition Hy 
= 

Ha 

+ //? yields a beta component (dashed line) that is strongly 

dependent on the alpha component when it is applied to the 

Gini-Simpson index. The new beta component derived here for 

the Gini-Simpson index, defined by the relation Hy 
= 

Ha + Hp 
? 

HaH$, is independent of alpha (modified from Jost [2006]). 

determines a diversity measure's sensitivity to rare or 

common species (Keylock 2005); orders higher than 1 

are disproportionately sensitive to the most common 

species, while orders lower than 1 are disproportionately 

sensitive to the rare species. The critical point that 

weighs all species by their frequency, without favoring 

either common or rare species, occurs when q?\\ Eq. 2 

is undefined at q 
= 

1, but its limit exists and equals 

1D = 

exp?-?p/lnp/j 
(3) 

which is the exponential of Shannon entropy. This 

special quality of Shannon measures gives them a 

privileged place as measures of complexity and diversity 

in all of the sciences. It is striking that Shannon 

measures do not need to be borrowed from information 

theory but arise naturally from this formalism of 

numbers equivalents. 

It is important to distinguish a diversity index H from 

its numbers equivalent qD. Since the numbers equivalent 

of an index, not the index itself, has the properties 

biologists expect of a true diversity, the numbers 

equivalent qD of a diversity index of order q will be 

called the true diversity of order q. All diversity indices 

of a given order q have the same true diversity qD. 

The alpha, beta, and gamma components of a diversity 

index, //a, H$, 
and 

Hy, 
can be individually converted to 

true alpha, beta, and gamma diversities by taking their 

numbers equivalents qD(Ha), qD(H$), 
and 

qD(Hy). 
The 

reverse transformation from true alpha and beta diver 

sities to alpha and beta components of particular indices 

is also sometimes useful. Any general expression based on 

the properties of numbers equivalents can be transformed 

into index-specific relations by simple algebra using the 

transformations in Table 1. The derivations in the 

following sections are based on this idea. 

New beta component of Gini-Simpson index 

_,_^1? 

Decomposing a Diversity Index 

into Independent Components 

Numbers equivalents permit the decomposition of any 

diversity index H into two independent components, 

which we may symbolize as HA and HB. These 

components may be alpha and beta diversity, or they 

may be any other pair of orthogonal qualities, like 

evenness and richness (Buzas and Hayek 1996). Suppose 

HA has a numbers equivalent of x equally likely 

outcomes, and orthogonal HB has a numbers equivalent 

of y equally likely outcomes. Then if HA and HB are 

independent and completely determine the total diver 

sity, the diversity index of the combined system must 

have a numbers equivalent of exactly xy equally likely 

outcomes; if it did not, some other factor besides those 

measured by HA and HB would be present, contrary to 

our assumption that those two components completely 

determined the total diversity. Thus, 

D(HA)D(HB) =D(Htot). (4) 

Working backward from this simple mathematical 

relation between numbers equivalents, we can discover 

the correct decomposition of any standard diversity 

index into two independent components. The numbers 

equivalent of the Gini-Simpson index is 

"D(H) 
= 

l/{l-H) (5) 

(Table 1) so Eq. 4 becomes 

1/(1 -//A) X 1/(1 -HB) 
= 

1/(1 -Htot). (6) 

Simplifying yields 

Htot 
= 

HA-\-HB -HAXHB 

or 

HB = 
(Htot-HA)/(\-HA). (7) 

This, not the additive rule, defines the relationship 

between independent components of the Gini-Simpson 

index (Fig. 1). This is a well-known equation in 

information theory (Aczel and Daroczy 1975) and 

physics (Tsallis and Brigatti 2004, Keylock 2005). 
The same technique yields the decomposition of any 

other standard diversity index into two independent 

components, HA and HB. The results for some common 

indices are 

Species richness: 

HAXHB=Htot (8a) 

Shannon entropy: 

HA+HB=Htot (8b) 

Exponential of Shannon entropy: 

HA X HB 
? H i (8c) 
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Gini-Simpson index: 

HA + HB-(HAXHB)=Htot (8d) 

Simpson concentration: 

HAXHB=Htot (8e) 

HCDT entropies: 

HA+HB-(q- l)(HA){HB) 
= Hm (8f) 

Renyi entropies: 

HA+HB=Htot. (8g) 

Many of these results are known in ecology, information 

theory, or physics, though they have never before been 

derived in a unified way. Eq. 8a is Whittaker's original 

definition of beta; 8b follows from Shannon's (1948) 
information theory; 8c was proposed in ecology by 

MacArthur (1965); 8e was introduced by Olszewski 

(2004) in the context of beta diversity and by Buzas and 

Hayek (1996) in the context of richness/evenness; 8d, 8f, 
and 8g are well known in generalized information 

theory. The derivation of these formulas is unique; no 

other decomposition of these indices can yield indepen 

dent components. The decomposition varies between 

indices, so there is no universal multiplicative or additive 

rule at the level of individual indices. This explains why 
the traditional additive and multiplicative definitions 

have both been popular; each does work well for certain 

indices. The universal rule only appears at the level of 

the true diversities (qDtot 
= 

qDA X qDB% showing that 

these are actually the more useful quantities for diversity 

analysis. 

Alpha and Beta 

The previous section showed how to decompose any 

diversity measure into two independent components. 

Thus, if alpha and beta are to be independent (Property 

1; see Basic properties of intuitive alpha and beta) the 

numbers equivalents of the alpha, beta, and gamma 

components of a diversity index must be related by 

D(Hy)=D(Ha)D(H$). (9) 

This is Whittaker's law, here shown to be valid for the 

numbers equivalents of any diversity index. True beta 

diversity (the numbers equivalent of the beta component 

of any diversity index) thus has a uniform interpretation 

regardless of the diversity index used: it is the effective 

number of distinct communities or samples in the 

region. 

Under what circumstances can these components Ha 

and 
H? satisfy all the requirements for an intuitive alpha 

and beta (Properties 1-5; see Basic properties of intuitive 

alpha and beta)! Let us set aside Property 5 (Lande's 

requirement that alpha never exceed gamma) for the 

moment. Properties 1-4 are strong enough not only to 

give the decomposition equation above but also to give 

an explicit expression for the alpha and beta compo 

nents of any standard diversity index. For q ^ 1, 

s \ is 

Ha^H(qXa)=H 

\ ?/* 
/=i 

?? 
1=1 

w\ + w\ 

(10) 

where w? is the statistical weight of Community j (usually 
the number of individuals in Community j divided by the 

total number of individuals in the region) (see Appendix: 
Proof 1). The true alpha diversity of order q is the 

numbers equivalent of that alpha component: 

???s?W 

fc?i+4^ + 

w\ + wl 

1/(1-*) 

(lia) 

This is undefined at q 
= 

1, but the limit as q approaches 1 

exists and equals 

Da 
= 

exp 

s s 

-wi]P (p/ilnp/i-) + 
-w2]T (pnlnpn) 

(lib) 

which is the exponential of the standard alpha Shannon 

entropy. 

For any standard diversity index, alpha must take this 

form and beta must be given by Eq. 9 if they are to 

satisfy Properties 1-4. Now let us turn to Property 5, the 

requirement that alpha must never exceed gamma. The 

general expressions for alpha, Eqs. 11 and 12, are only 

consistent with Property 5 for certain combinations of q 

(the order of the diversity index) and w? (the statistical 

weights of the communities or samples). For other 

values of these variables, alpha may exceed gamma. This 

means that under some conditions, some diversity 

indices cannot be decomposed into independent alpha 

and beta components satisfying all of Properties 1-5. 

Property 5 acts as a filter on the permissible diversity 

indices for a given application. There are two distinct 

cases, which are treated separately. 

Case 1: Alpha and beta when community weights 

are all equal 

Biologists often compare communities in the abstract, 

using alpha and beta and associated similarity measures 

to quantify differences in species compositions. In these 

kinds of comparisons, the actual sizes of the communi 

ties are immaterial; the only things that matter are the 

species frequencies, and the community weights are 

therefore all taken to be equal. Weights will also be 
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equal when some ecological dimension is divided into 

equal parts (each part contributing equally to the total 

pooled population) and in some other applications. 

When the N community weights Wj 
are all equal, wj 

= 

l/N and the alpha component of any diversity index (for 
q 7^ 1), Eq. 10, simplifies to 

Ha=H 

-H 

?ril + E^ + - + ? Pm 

iiy?xl+<x2+...+ixN) 
(12) 

and the true alpha diversity of order q (for q =? \), Eq. 
11a, simplifies to 

Erf. + E? 

Erf* 

/(i-?) 

(13) 

For q 
= 1 (Shannon measures), the traditional definitions 

are correct. The alpha Shannon entropy is the average of 

the Shannon entropies of the samples, and the true alpha 

diversity of order 1 (the numbers equivalent of Shannon 

alpha entropy) is, for this case, 

lDa 
= 

exp{ 
- 

$^(P/ilnpn 

-^(Paln/ta) 

^O/A/ln^Tv) (14) 

When community weights are equal, Eqs. 13 and 14 for 

alpha always satisfy Property 5, Lande's condition that 

alpha never exceed gamma (Appendix: Proof 2). 

Therefore, in this case 
(w?= l/N) there is no restriction 

on the allowable values of q, and all standard diversity 

indices are valid. 

Eq. 12 differs slightly from the traditional definition 

of alpha. The alpha component of a diversity index is 

not the average of the diversity indices of the individual 

communities, as previously thought. Rather, we must 

average the basic sums q% of the individual communities 

and then calculate the diversity index of that average. 

For indices that are linear in the qX (e.g., the Gini 

Simpson index or species richness), the end result is the 

same as the traditional definition. For nonlinear 

diversity indices such as the Renyi entropy, however, 

the difference is important. As in all these new results, 

there is no choice about it; the new expression follows 

mathematically from the conditions on beta (see Basic 

properties of intuitive alpha and beta), and the traditional 

definition of alpha is logically inconsistent with these 

principles. 

The true alpha diversities are the numbers equivalents 

of the alpha components of these indices. The numbers 

equivalents of all alpha diversities of a given order q are 

equal; this was not true under the traditional definition 

of alpha. This leads to the surprising simplification 

discussed below (see Traditional diversity indices are 

superfluous). 

The beta components of some common diversity 

indices are (from Eqs. 8a-g): 

Species richness: 

H^=Hy/Ha (15a) 

Shannon entropy: 

//?=//Y+//a (15b) 

Exponential of Shannon entropy: 

Hp=Hy/Ha (15c) 

Gini-Simpson index: 

Hi 
= 

(Hy-Ha)/(l-HaL) (15d) 

Simpson concentration: 

Hp=Hy/Ha (15e) 

HCDT entropies: 

Hi 
= 

(Hy-Ha)/[l-{q-l)(Ha)] (15f) 

Renyi entropies: 

Hp=Hy-Ha. (15g) 

The true beta diversities are the numbers equivalents of 

these components. The true beta diversities can also be 

calculated directly from the generalized Whittaker's law 

by converting the diversity index's gamma and alpha 

components to numbers equivalents (true diversities) 

and dividing, as Whittaker (1972) and MacArthur 

(1965) suggested for species richness and Shannon 

entropy. 

Case 2: Alpha and beta when community weights 

may be unequal 

Ecologists commonly need to calculate the alpha and 

beta diversity of a landscape. The community or sample 

weights will usually be unequal in this application. In 

this kind of application, the unequal sizes of the 

different communities play an essential role in the 

outcome; for a given set of distinct communities, beta 

diversity is smallest when one community dominates the 

landscape and largest when all communities share the 

landscape equally. When weights may be unequal, most 

diversity indices cannot be decomposed into indepen 

dent alpha and beta components which satisfy Lande's 
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condition that alpha never exceed gamma (Property 5). 

If alpha is not to exceed gamma when weights are 

unequal, only two values of q are permissible, q 
= 0 and 

q = 1 (Appendix: Proof 3). 
When q 

= 
0, the diversity index is species richness or 

its monotonie transformations. Its alpha diversity (Eq. 

11a) reduces to ?Da 
= 

(l/JV)(Si + S2 + + SN), which is 

always less than or equal to the gamma diversity Stot. 

However, this expression weighs each community 

equally regardless of its true weight, so it is not a 

satisfactory measure when community weights are 

important. 

When q 
= 

1, the diversity index is Shannon entropy 

(or any monotonie transformation of it). This always 

satisfies Lande's condition that alpha not exceed gamma 

because it is a concave function (Lande 1996). Its 

numbers equivalent, the true alpha diversity, is given by 

Eq. lib, the exponential of the traditional alpha 

Shannon entropy. Therefore, when weights may be 

unequal, Shannon measures (q=l) are the only diversity 

measures that can be decomposed into independent 

alpha and beta components satisfying Properties 1-5. 

"One expects that deductions made from any other 

information measure, if carried far enough, will eventu 

ally lead to contradictions" (Jaynes 1957). 

Traditional Diversity Indices Are Superfluous 

Jost (2006) showed that for diversity analyses of single 

communities, most traditional diversity indices are 

superfluous. Their numbers equivalents are the true 

diversities, and these could be expressed more simply 

and directly in terms of q and the basic sums gX, rather 

than calculating indices and then converting these to 

their numbers equivalents. This conclusion can now be 

extended to multiple-community diversity analyses when 

the communities have equal weights (the only case for 

which there is a choice of diversity measures other than 

Shannon measures). In fact the unifying mathematics 

works even when weights are unequal, but non-Shannon 

measures are prohibited in this case because alpha could 

exceed gamma. 

The new expression for true alpha diversity, Eq. 11 

(the numbers equivalent of the properly defined alpha 

component of a diversity index), is a function only of the 

species frequencies, the community weights, and the 

exponent q\ for a given value of q it is independent of the 

diversity index used. The same applies to true gamma 

diversity (the numbers equivalent of the diversity index 

of the pooled samples), and since true beta diversity (the 
numbers equivalent of the beta component of a diversity 

index) equals true gamma diversity divided by true alpha 

diversity for all standard diversity indices, true beta 

diversity also depends only on the species frequencies, 

the community weights, and q. Diversity indices are 

therefore superfluous; for a given value of q, all standard 

diversity indices give the same final numbers equivalents. 

For example, the Gini-Simpson index, the Simpson 

concentration, the inverse Simpson concentration, the 

Renyi entropy of degree 2, and the Hurlbert-Smith 

Grassle index with m = 2 all give exactly the same true 

alpha, beta, and gamma diversities for any given set of 

communities. These indices can therefore be bypassed 

and the final numbers equivalents can be formulated 

more simply in terms of q and the sums qX. For the 

purpose of calculating true alpha, beta, and gamma 

diversities (numbers equivalents), indices add nothing 

except unnecessary calculations. 

In the index-free description of diversity with all 

community weights equal (the only case in which non 

Shannon measures are valid), for q ^ 1 the alpha sum 

qX0L is the mean of the individual community sums, 

E/Li (MN)qXj. 
The gamma sum 

qXy 
is calculated from 

the pooled samples (as Y?i=x[(\?N)(pn + pi2 + + 

P?nY])- These are transformed into true alpha, beta, 

and gamma diversities of order q (for q ^ 1) using 

Eq. 2, and Whittaker's law is used to find the true beta 

diversity: 

alpha diversity of order q: 

qDa = 
qXlJ^ (16a) 

gamma diversity of order q: 

qDy 
= 

iX\/{l-q) (16b) 

beta diversity of order q: 

qD$ 
= 

qDy/qDa 
= 

{qXy/qXa)l/{l-q) 
- 

qXl/{l~q). (16c) 

These are undefined when q=l, but their limits exist as q 

approaches 1, yielding the exponential of Shannon 

alpha, beta, and gamma entropies. The index-free 

description of diversity is therefore continuous in q. In 

fact, the precursors to Eqs. 16a-c are all mathematically 

valid even when weights are unequal, and their limits as 

q approaches unity give 

lDa 
= 

exp 

Dy 
= 

exp 

5 S 

-w\^2 (P/iln/7/i) + 
-w2^2 (palnpa) 

=i 

(17a) 

5^ -(wipn +wipn H-) 
7=1 

Xln(wip,-i +W2P/2 H-) (17b) 

!DP 
- 

lDy/lDa (17c) 

(see Eq. lib). It is remarkable that all of Shannon's 

information functions come out of this theory automat 

ically without reference to information theory. As shown 

earlier, these Shannon measures, Eqs.l7a-c, are the only 

meaningful diversity measures (the only ones satisfying 

the requisite properties (see Basic properties of intuitive 

alpha and beta) when community weights are unequal. 
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Relation between the New Beta Diversity and 

Indices of Community Similarity and Overlap 

Beta diversity is inversely related to most concepts of 

community similarity. Suppose we are comparing the 

compositional similarity of a set of N communities. The 

sizes of the communities are irrelevant to this compar 

ison and so their statistical weights are taken to be equal. 

If the equally weighted communities have a high 

compositional similarity, then the set of communities 

must have a low beta diversity. Conversely, if the 

communities have low similarity, their beta diversity 

must be high. The relation can be made rigorous: if 

I conclusions based on a similarity, overlap, or homoge 

neity measure are to be logically consistent with (not 

contradict) conclusions based on a given diversity 

measure, then the similarity measure must be a 

monotonie transformation of the diversity measure's 

beta diversity (Appendix: Proof 4). Different kinds of 

transformations of beta diversity will illuminate differ 

ent aspects of its behavior. Each transformation 

generates an infinite family of similarity measures 

parameterized by q, which controls the sensitivity of 

the measures to rare or common species. The most 

popular similarity and overlap measures of ecology are 

in fact transformations of the new beta diversity qD$. 

The true beta diversity of order 1, the numbers 

equivalent of beta Shannon entropy, can be transformed 

into MacArthur's (1965) homogeneity measure: 

M = 
l/^p 

= 
exp(//aShan)/exp(//Yshan). (18) 

It answers the question, "What proportion of total 

diversity is found within the average community or 

sample?" For N equally weighted communities, it can be 

generalized to other values of q: 

which ranges from l/N (when all communities are 

completely distinct) to unity (when all communities are 

The lower limit of this simple homogeneity measure 

depends on the number of samples or communities. It 

would be easier to interpret and more useful in 

comparisons if its lower limit were 0. For N equally 

weighted communities the measure 

qS=(l/qDp-l/N)/(l-l/N) (20) 

is the simplest linear transformation of 
\/qD$ 

that has 

this property. It is 0 when all N communities in the 

region are completely distinct from each other and is 

unity when all N communities are identical in species 

composition. It is linear in the proportion of regional 

diversity contained in the average community. Jost 

(2006) shows that when this measure is applied to a pair 
of equally weighted communities, it produces the 

Jaccard index when q 
= 0 and the Morisita-Horn index 

when q 
= 2. Eq. 20 may be considered the generalization 

of these similarity measures to N communities and to 

arbitrary values of q. 

Shannon measures (and only Shannon measures) are 

valid not only when statistical weights are equal but also 

when they are unequal, and in that case MacArthur's 

measure, Eq. 18, is still a valid measure of regional 

homogeneity. Its minimum value is 

1/exp 
y=i 

= 
l/lDw (21) 

which is the reciprocal of the numbers equivalent of the 

Shannon entropy of the weights. It takes this value when 

all communities are completely distinct. Its maximum 

value is unity when all communities are identical. This 

homogeneity measure can therefore be converted into a 

relative index of homogeneity that goes from 0 (all 
communities distinct) to unity (all communities identi 

cal), like Eq. 20: 

relative homogeneity =-?:-. 22 

l-l/'A, 

This measure, like Eq. 18, is useful in the interpretation 

of the results of additive partitioning using Shannon 

measures. 

A direct measure of pairwise community overlap is 

often the most easily interpreted similarity measure. For 

this purpose, the weights of the two communities are 

irrelevant and are taken to be equal. The new beta 

diversity can be transformed into such a measure of 

overlap: 

jl/qD^-[-(l/2)q 
1 - (1/2)* 

overlap (of order q) 
= V/ 

/ ,, ^\li? (23) 

Jost (2006) shows that when this measure is applied to a 

pair of equally weighted communities, it produces the 

S0rensen index when q 
= 0 and the Morisita-Horn index 

when q 
= 2.ln the limit as q approaches unity it becomes 

overlap of order 1 = 
(In 2 ? 

H$ shan)/ln 2 (24) 

which is the Horn index of overlap, the only measure of 

overlap that does not disproportionately favor either 

rare or common species. For all values of q, Eqs. 23 and 

24 are true overlap measures in the sense of Wolda 

(1981): when applied to two communities each consist 

ing of S equally common species, with C species shared 

between the communities, they give C/S, the proportion 

of a community's species which are shared. 

Alternatively, for multiple equally weighted commu 

nities, true beta diversity can be transformed into the 

turnover rate per sample (generalizing Harrison et al. 

1992) by taking 

(?Di-1)/(N-1) (25) 

where N is the number of samples. This ranges from 0 

(no turnover between samples) to unity (each sample is 

completely different from every other sample). 
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All similarity measures based on the new beta 

diversity inherit its independence from alpha, a desirable 

property (Wolda 1981, Magurran 2004). A very large 
number of similarity indices are inconsistent with the 

beta diversity of any standard diversity index. These 

include the Bray-Curtis index (Bray and Curtis 1957), 
Canberra metric (Lance and Williams 1967), Renkonen 

index (Renkonen 1938), and many others. Conclusions 

based on such measures can contradict conclusions 

based on valid diversity indices, and their possible 

dependence on alpha make it difficult to disentangle 

mathematical artifacts from biologically meaningful 

effects. 

Traditional similarity measures have a strong negative 

bias when sample size is small; even two samples from 

the same population will often appear to be dissimilar 

according to these measures (Lande 1996). Expressing a 

similarity measure as a transformation of beta helps 

solve this problem, since beta is a simple function of 

alpha and gamma, and almost unbiased estimators of 

alpha and gamma exist for many diversity measures 

(e.g., Chao and Shen 2003). 

Examples 

Tundra and rain forest revisited 

The new measures give very different results than the 

traditional measures when applied to the examples in the 

Introduction. The traditional Gini-Simpson "beta" for 

the two intercontinental rain forest samples was 0.9861 
- 

0.9721 = 
0.014, paradoxically lower than the "beta" 

diversity of the homogeneous Antarctic tundra. This 

"beta" does not, by itself, tell the amount of turnover 

between samples because of its dependence on alpha 

(Fig. 1). Depending on alpha, a "beta" value of 0.014 

can mean that the samples are nearly identical, 

somewhat similar, or completely different. The similarity 

measure commonly used with the additive definition, 

HJHy or 1 - (H$/Hy) (Lande 1996), does not resolve 

this ambiguity. For the intercontinental rain forest data 

set, using the Gini-Simpson index, this "similarity" 

between samples is 0.99, even though the samples share 

no species. (The measure would have a value of 1.00 if 

both communities were identical in species composition 

and frequency.) This "similarity" between completely 

distinct intercontinental rain forests is even greater than 

the "similarity" between the homogeneous tundra 

samples (0.95). 

The new Gini-Simpson beta component is, by Eq. 

15d, (Hy 
- 

Ha)/(l 
- 

Ha) 
= 

(0.9861 
- 

0.9721)/(1 
- 

0.9721) 
= 0.50. This new beta has a different character than the 

traditional "beta." Using this method, which is standard 

in most sciences (Aczel and Daroczy 1975, Tsallis and 

Brigatti 2004, Keylock 2005), a Gini-Simpson index of 

0.5 has the same absolute and invariable interpretation 

whether it comes from the alpha, beta, or gamma 

component of the index. The interpretation is given by 

its numbers equivalent, which is 1/(1 
- 

0.50) 
= 2.0 (Table 

1). Thus a Gini-Simpson index of 0.50 is always, in any 

context, the amount of diversity produced by 2.0 equally 

likely, completely distinct alternatives. In the context of 

this beta diversity calculation, it correctly indicates that 

there are two equally weighted completely distinct 

intercontinental rain forest samples in the data set. 

The calculation of true beta diversity of the rain forest 

samples using Shannon entropy (the order 1 diversity 

measure) is similar to the calculation using the Gini 

Simpson index. The beta component of the Shannon 

entropy is (by Eq. 15b) Hy 
- 

Ha, which is 0.6931. A 

Shannon entropy of 0.6931 has the same interpretation 

no matter where it came from. As always, this 

interpretation is given by its numbers equivalent, which 
^^M 

is exp(0.6931) = 2.0 (Table 1). A Shannon entropy of 
?|l|Il|lf|ll 

0.6931 is always the amount of diversity produced by 2.0 
lllSll 

equally likely, completely distinct alternatives. Here it 
lllll 

indicates that there are two equally weighted, completely ^^1 
distinct intercontinental rain forest samples in the data 

I???? 
set. The agreement with the Gini-Simpson result is not 

111111 
an accident; the numbers equivalent of the correctly ^^1 
calculated beta component of any standard diversity lilil? 
index will be 2.0 for this data set because the data set 

??1111 
consists of two equally large completely distinct samples. liPV 

In the new approach, the Antarctic tundra samples RSI 
always have a lower beta diversity than the interconti- 

H^l 
nental rain forest samples, in contrast to the traditional 

ufl 

approach which ranks them in reverse when using the 
? 

Gini-Simpson index. The new beta component of the 
IEI 

Gini-Simpson index for the Antarctic samples is (0.4199 ^^B - 
0.400)/(l 

- 
0.400) 

= 
0.03, and its numbers equivalent, 

the true beta diversity of order 2, is 1.03. By this measure, ^^H 
there are effectively only 1.03 distinct communities in this 

lllll 
data set, meaning that the two samples are almost 

1^1 
identical. The beta Shannon entropy is 0.02 and its 

Hil 
numbers equivalent, the true beta diversity of order 1, is 

^^H 
exp(0.02) 

= 1.02. By this measure, also, the samples are 
???1111 

almost identical. The beta component of species richness 
I1I1S 

is 1.0, which is its own numbers equivalent. By this 
lllll 

measure the communities are truly identical (since they ?1?|?I 
share all species and this measure ignores frequencies). illlll? 

As shown above (see Traditional diversity indices are 
li??l?S?|| 

superfluous), traditional diversity indices are superfluous 11111 
and the true diversities of any order q can be calculated 

?lllll 
directly from the basic sums qX (or, for q 

= 
1, from Eqs. l?illj 

17a-c). For example, instead of using the Gini-Simpson ???|?||?? 
index to calculate alpha, beta, and gamma diversities of 

order 2 for the rain forest samples, we can calculate 

them more simply as follows: 

2X\ (Panamanian rain forest sample) 
= 0.049171219 

2X2 (Malaysian rain forest sample) 
= 0.00656619 

2Xa (average of the basic sums of the samples) 
= 0.0278839 

\ (pooled samples) 
= 0.013941. 

The true beta diversity of order 2 is therefore 

fqXy\l/{l-q) ( 0.013941 \l/(1~2) 
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(see Eq. 16), in agreement with the Gini-Simpson result. 

For any data set, all order 2 diversity indices will always 

give the same true beta diversity (the numbers equivalent 

of its beta component) as this direct index-free 

calculation. In general, the results will depend on the 

order q, but if the samples are completely distinct (as in 

this case), or if they are identical, the results will be the 

same for all q. 

The similarity measures given above (see Relation 

between the new beta diversity and indices of community 

similarity and overlap), are helpful in interpreting the 

new beta diversity. For the intercontinental rain forest 

I 
samples, for any standard diversity index, the propor 

tion of regional diversity contained in the average 

community (Eq. 19) is one half, the similarity measure 

(Eq. 20) is 0, and the overlap between communities (Eq. 

23) is also 0. The turnover rate per community (Eq. 25) 

is 1.00 for any index, indicating complete turnover 

between communities. 

These same measures clearly show that the Antarctic 

communities are homogeneous. For the true diversity of 

order 2, the beta diversity equals 1.03, so the proportion 

of regional diversity contained in the average commu 

nity (Eq. 19) is 0.97; the similarity measure Eq. 20 is 

0.94, and the overlap between communities (Eq. 23) is 

also 0.94. The community turnover rate (Eq. 25) is 0.03, 

indicating that there is almost no turnover between these 

communities. 

Beta diversity of a landscape, and analysis of hierarchical 

diversity components 

In the previous example, the statistical weights of the 

two communities in each data set were taken to be equal; 

this meant we could legitimately use the full range of 

diversity indices rather than just Shannon measures 

(Case 1; see Alpha and beta). This is not the case when 

calculating the alpha, beta, and gamma diversities of a 

landscape, where population density is not uniform, 

resulting in unequal statistical weights for different 

samples or communities (Case 2; see Alpha and beta). 

The proofs (see Decomposing a diversity index into 

independent components and Alpha and beta) show that, 

under these circumstances, only Shannon measures can 

be decomposed into meaningful independent alpha and 

beta components. The additive definition of beta is valid 

for Shannon entropy (Eq. 8b), so the standard 

techniques of additive partitioning can be used with this 

index (but only with this index) to study the hierarchical 

partitioning of diversity (within samples, between 

samples, within communities, between communities, 

and so on). One modification is necessary; the final 

results need to be converted to their numbers equiva 

lents, the exponentials of Shannon alpha, beta, and 

gamma entropies, before they can be properly interpret 

ed. Thus Lande's similarity or homogeneity measure 

HJHy 
must be replaced by MacArthur's measure, 

exp(//a)/exp(//y), 
otherwise the "similarity" value will 

be inflated as in the intercontinental rain forest example 

above. MacArthur's measure correctly gives the pro 

portion of regional diversity contained in the average 

sample. The relative homogeneity, Eq. 22, is also useful 

in analyzing the results. (Alternatively, the entire 

partitioning could have been done multiplicatively using 

the numbers equivalents from the beginning. The results 

are the same.) 

Conclusions 

Limitations of additive partitioning of diversity 

Additive partitioning of diversity into hierarchical 

components (Lande 1996; see Veech et al." 2002 for a 

complete review of its history) is a popular method of 

diversity analysis, in which beta is compared between 

different hierarchical levels. However, the technique 

only makes sense if the beta it produces is independent 

of alpha; if beta depends on alpha, the beta values 

between different hierarchical levels cannot be compared 

with each other (since each level has a higher alpha than 

the preceding level) nor with the beta values of other 

ecosystems with different alpha values. 

The proofs (see Decomposing a diversity index into 

independent components and Alpha and beta) show that, 

when community statistical weights differ, the only 

index which can be additively partitioned into indepen 

dent alpha and beta components is the Shannon 

entropy. The frequently recommended Gini-Simpson 

index cannot be used; its decomposition into indepen 

dent alpha and beta components is only possible when 

the statistical weights of all samples are equal, and even 

then the decomposition is not additive. 

Also, for many diversity indices (including Shannon 

entropy and the Gini-Simpson index), the similarity 

measure used with additive partitioning, HJHy, 
neces 

sarily approaches unity for high-diversity ecosystems, 

regardless of the amount of differentiation between 

samples. If the Gini-Simpson index is used as the 

diversity measure, it is mathematically impossible for the 

"similarity" to be lower than the alpha "diversity." This 

happens because 
Hy 

for this index is strictly less than 

unity; therefore the quotient HJHy 
must always be 

greater than Ha. Since Ha for this index often exceeds 

0.95 in tropical ecosystems, a set of tropical samples will 

often have a Gini-Simpson "similarity" greater than 

0.95, even if they have nothing in common (i.e., even 

when they are completely distinct in species composition 

and frequencies). This measure should not be used to 

draw conclusions about differences in composition 

between samples (contrary to the recommendations of 

Veech et al. [2002] and contrary to the practices of most 

of the studies cited therein). 

The importance of numbers equivalents 

Many biologists think of diversity indices simply as 

intermediate steps in the calculation of statistical 

significance. In this view, one measure of diversity is as 

good as another, as long as it can be used to calculate 

the statistical significance of the effect under study. A 
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moment's reflection, however, shows that this is not 

reasonable. A very tiny bias in a coin can be detected at 

any desired significance level if enough trials are made, 

but it is still an insignificant bias in practice. The 

statistical significance of an effect has little to do with 

the actual magnitude or biological significance of the 

effect, which is the really important scientific question. 

We therefore need measures that behave intuitively so 

that we can judge changes in their magnitudes. 

Ecologists' intuitive theoretical concept of diversity 

corresponds not to the raw values of diversity indices 

but to their numbers equivalents (Hill 1973, Peet 1974, 
Jost 2006). Converting diversity indices to their numbers 

equivalents allows us to judge changes in their magni 

tude, because numbers equivalents possess the "dou 

bling" property (see The "numbers equivalents" of 

diversity indices) that characterizes our intuitive concept 

of diversity. When alpha, beta, and gamma are 

expressed as numbers equivalents, their magnitudes 

have simple intuitive interpretations in terms of the 

number of equally common species or the number of 

distinct, equally large communities; it is easy to visualize 

these and easy to judge the importance of changes in 

their magnitudes. Numbers equivalents let us move 

beyond mere statistical conclusions. 

Numbers equivalents correct the anomalous behavior 

of the "similarity" measure 
HJHy 

described above; 

converting the raw alpha and gamma indices in this ratio 

to their numbers equivalents produces a similarity or 

homogeneity measure, qDJqDy, 
that accurately reflects 

the proportion of regional diversity contained in the 

average sample. This measure equals l/N when applied 

to N equally weighted, completely distinct samples, no 

matter which diversity index is used and no matter what 

the species frequencies, so it provides an absolute 

benchmark from which to judge the distinctness of a 

set of samples. Eq. 20 transforms this onto the interval 

[0, 1]. 
All standard diversity indices of a given order group 

communities into the same "level surfaces" and differ 

only in the way they label these level surfaces. It is 

therefore reasonable to standardize on the labeling' 

system that gives the most intuitive results, the numbers 

equivalents; in doing so we are not ignoring the many 

other aspects of compositional complexity but rather 

converting them all to common and intuitive units. 

Numbers equivalents also provide a powerful math 

ematical tool for proving index-independent theorems of 

great generality. The most interesting of these theorems 

is the main result of this paper, a generalization of 

Whittaker's law: if alpha and beta components of a 

diversity index are independent, their numbers equiva 

lents must be multiplicative. That is, the product of their 

numbers equivalents must give the numbers equivalent 

of the gamma diversity index. 

Numbers equivalents reveal a deep unity between all 

standard diversity indices. The numbers equivalents of 

all of them are given by a single equation (Eq. 2). The 

numbers equivalents of standard diversity indices also 

generate and unify the standard similarity and overlap 

indices of ecology (see Relation between the new beta 

diversity and indices of community similarity and overlap). 

New alpha and beta vs. old 

For most non-Shannon indices, the traditional 

additive beta component was not independent of the 

alpha component and had no special value when all 

communities were distinct. The "numbers equivalent" of 

the beta component of an index bore no relation to the 

"numbers equivalents" of the alpha and gamma 

components of that index. The beta component often 
m??I? 

did not use the same metric as the alpha component, in . 
|||||||1; 

the sense that a given number denoted different amounts 
11111 

of diversity or uncertainty depending on which compo- lll 
nent it came from. ??llll 

These anomalies are corrected by the new alpha and 
W?m 

beta components of diversity indices. For N equally ??llll 
weighted communities (the only case for which non- lilil? 

Shannon indices are valid), the new alpha components llsll 
of all non-Shannon standard diversity indices are given W??? 
by Eq. 12 (the alpha Shannon entropy is the same as the 

Wsm 
traditional one); the new beta components of the most 

W?? 
common diversity indices are given by Eqs. 15a-g. These 

WEE 
alpha and beta now use exactly the same metric as 

Hpl 

gamma, and beta provides complete information about 
Wtw 

the relative degree of community complementarity 111?! 
without confounding this with alpha. Warn 

Converting these new alpha and beta components of a 
J^S? 

diversity index to their numbers equivalents makes them 
W?? 

easily interpretable. For N equally weighted communi- 
H3| 

ties (the only case for which non-Shannon indices are 
BU 

valid), the numbers equivalent of H$ for any standard 
lllil 

diversity index has a uniform interpretation, indicating WEm 
the effective number of distinct communities in the 

l||lli 
region, which ranges from 1 to N. When there are N 

?llll 
distinct equally weighted communities, this true beta 

lilil? 
diversity is always N, regardless of the index used and 

??SIS 
regardless of the species frequencies. lilil? 

Diversity is most easily analyzed by bypassing ?IS?1? 
traditional diversity indices and calculating the alpha, ?1111 
beta, and gamma numbers equivalents directly, using illlll 
Eqs. 16 and 17. The numbers equivalents deserve to be 

Slllllllll 
considered "the true alpha, beta, and gamma diversities 

(of order q) of the system under study. The order q 

determines the emphasis on the dominant species (with q 

> 1 emphasizing dominant species). 

Importance of Shannon measures 

Shannon measures are the only standard diversity 

indices that can be decomposed into meaningful 

independent alpha and beta components when commu 

nity weights are unequal. Shannon measures do not need 

to be borrowed from information theory; the exponen 

tial of Shannon entropy and related functions are 

derived here from the natural conditions on beta 
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discussed in the second section (Basic properties of 

intuitive alpha and beta). 

An often-repeated criticism of Shannon measures is 

that they have no clear biological interpretation. 

Shannon entropy does in fact have an interpretation in 

terms of interspecific encounters (Patil and Taillie 1982), 
and both //shan an<3 exp(//Shan) can be related to 

characteristics of maximally efficient species keys (Jost 

2006) and to biologically reasonable notions of uncer 

tainty (Shannon 1948) and average rarity (Patil and 

Taillie 1982). 
Some authors (e.g., Lande 1996, Magurran 2004) 

I recommend the Gini-Simpson index over Shannon 

entropy on the grounds that the former converges more 

rapidly to its final value and has an unbiased estimator. 

However, the Gini-Simpson index and all other order 2 

indices emphasize dominant species (which is why it 

converges more rapidly to its final value), and this may 

not always be desirable. Furthermore, since the Gini 

Simpson index cannot generally be decomposed into 

independent alpha and beta components that satisfy 

Lande's condition that alpha never exceed gamma, it 

cannot be used for studies that involve landscape alpha 

or beta. (It, or rather its numbers equivalent, is fine for 

studies comparing communities directly, using equal 

statistical weights, when it is desired to emphasize the 

dominant species.) The recent development of a nearly 

unbiased nonparametric estimator for Shannon entropy 

(Chao and Shen 2003) makes sampling criticisms less 

relevant. This nonparametric estimator for Shannon 

entropy converges rapidly with little bias even when 

applied to small samples. 

Some authors who are critical of Shannon measures 

because of their sampling properties (e.g., Magurran 

2004) recommend species richness and its associated 

similarity and overlap measures, the Jaccard and 

Sorensen indices. These measures have worse sampling 

properties than Shannon measures (Lande 1996, Ma 

gurran 2004). Since they are completely insensitive to 

differences in species frequencies, they are poor choices 

for distinguishing communities or 
comparing pre- and 

post-treatment diversities, and they converge more 

slowly than any other measure as sample size increases. 

They are also not ecologically realistic; ecologically 

meaningful differences between communities are matters 

of differences in species frequencies, not in their mere 

presence or absence. Communities almost always have 

rare vagrants, but presence-absence measures give them 

the same weight as shared dominant species in 

calculating the similarity or overlap of two communities. 

Frequency data provide important information that 

should be used when available. The new expressions for 

alpha and beta remove the anomalies of the traditional 

definitions, and the conversion of properly defined 

frequency-based measures to their numbers equivalents 

makes them linear with respect to our intuitive ideas of 

diversity. They are now almost as easy to interpret as 

species richness and much more reliable and informa 

tive. The same is true for similarity and overlap 

measures; the Horn index of overlap (Eq. 24) is more 

informative, discriminating, and reliable than either the 

Jaccard or Sorensen indices. 

Species richness beta 

Much landscape data consists only of presence/ab 

sence records, which force us to use species richness as 

our diversity measure. The proofs of the fifth section 

(Alpha and beta) show that species richness can only be 

partitioned into independent alpha and beta compo 

nents if we treat each sample with equal statistical 

weight and use Whittaker's multiplicative formula. Only 

then will alpha, beta, and gamma satisfy the essential 

Properties 1-5 described in the second section, Basic 

properties of intuitive alpha and beta. This beta diversity 

is not really a characteristic of the landscape but rather a 

direct measure of compositional similarity between N 

samples (without regard to their relative sizes). As such 

it is equivalent to the A-community generalization of the 

Sorensen or Jaccard indices, which are independent of 

alpha. The turnover rate 
(?D? 

- 
\)/(N 

- 
1) (Harrison et 

al. 1992) is also independent of alpha and is a useful 

measure of regional heterogeneity. 

Scope of these results 

The proof that Shannon measures are the only ones 

that can always be decomposed into meaningful 

independent alpha and beta components applies only 

to the class of standard diversity indices, as defined 

above (see The "numbers equivalent" of diversity indices). 

A few nonparametric diversity measures used in biology 

are excluded from this proof because they do not belong 

to this class. The Hurlbert-Smith-Grassle index for m > 

2 is such a measure since it cannot generally be written in 

terms of qX. Although nothing in the present paper 

excludes the possibility that this index may be decom 

posable into meaningful independent alpha and beta 

components when m is greater than 2, the index does fail 

to decompose when m = 
2, and it seems unlikely that 

higher values of m would change this property. 

While Fisher's alpha is not strictly a nonparametric 

index, it is sometimes used as if it were (Magurran 2004). 

The results presented here do not exclude the possibility 

that it could be decomposed into meaningful indepen 

dent alpha and beta components for data from a log 

series distribution. However there are strong reasons to 

avoid this index for general use. When the data are not 

log-series distributed, this index is difficult to interpret, 

and as it is usually calculated (Magurran 2004), it throws 

away almost all the information in the sample (since it 

depends only on the sample size and the number of 

species in the sample, not the actual species frequencies). 

For example, a sample containing 10 species with 

abundances [91, 1, 1, 1, 1, 1, 1, 1, 1, 1] has the same 

diversity, according to this method of calculating 

Fisher's alpha, as a sample containing 10 species with 

abundances [10, 10, 10, 10, 10, 10, 10, 10, 10, 10], 
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whereas ecologically and functionally the second com 

munity is much more diverse than the first. 

Relation of the new alpha and beta to results 

in other sciences 

Since 1988, physicists have begun to use new measures 

of entropy such as the HCDT or Tsallis entropy, which 

includes as special cases the standard diversity indices of 

biology: Shannon entropy, the Gini-Simpson index, and 

species richness minus one (Keylock 2005). Physicists have 

recently proposed a new definition of alpha or conditional 

HCDT entropy (Tsallis et al. 1998, Abe and Rajagopal 
2001; in physics and information theory, the ecologists' 

alpha is called the "conditional entropy"), which is 

identical to the expression that I have derived here (Eq. 

10) from very different premises. They were led to this new 

definition of conditional or alpha entropy by thinking 
about theoretical issues in nonextensive thermodynamics, 

such as the thermodynamics of black holes and quantum 

mechanical systems. Jizba and Arimitsu (2004) have 

proposed a definition of Renyi conditional entropy for 

thermodynamics, and this also turns out to be the same 

definition of alpha entropy that I have derived here. It is 

remarkable that studies of stars, electrons, and butterflies 

converge on these same expressions. 
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APPENDIX 

Proofs 1-4 (Ecological Archives E088-145-A1). 
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