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Abstract

Evapotranspiration (ET) is dominated by transpiration (T) in the terrestrial 
water cycle. However, continuous measurement of transpiration is still 
difficult, and the effect of vegetation on ET partitioning is unclear. The 
concept of underlying water use efficiency (uWUE) was used to develop a 
new method for ET partitioning by assuming that the maximum, or the 
potential uWUE is related to T while the averaged or apparent uWUE is 
related to ET. T/ET was thus estimated as the ratio of the apparent over the 
potential uWUE using half‐hourly flux data from 17 AmeriFlux sites. The 
estimated potential uWUE was shown to be essentially constant for 14 of the 
17 sites, and was broadly consistent with the uWUE evaluated at the leaf 
scale. The annual T/ET was the highest for croplands, i.e., 0.69 for corn and 
0.62 for soybean, followed by grasslands (0.60) and evergreen needle leaf 
forests (0.56), and was the lowest for deciduous broadleaf forests (0.52). The
enhanced vegetation index (EVI) was shown to be significantly correlated 
with T/ET and could explain about 75% of the variation in T/ET among the 71 
site‐years. The coefficients of determination between EVI and T/ET were 0.84
and 0.82 for corn and soybean, respectively, and 0.77 for deciduous 
broadleaf forests and grasslands, but only 0.37 for evergreen needle leaf 
forests. This ET partitioning method is sound in principle and simple to apply 
in practice, and would enhance the value and role of global FLUXNET in 
estimating T/ET variations and monitoring ecosystem dynamics.

1 Introduction

Evapotranspiration (ET), consisting of evaporation from wet surfaces (E) and 
transpiration through plants (T), is critical for global water cycle and energy 
balance. Transpiration is coupled with carbon assimilation, and exchanges of 
water and carbon between the atmosphere and terrestrial ecosystems play 
an essential role in global hydrological and carbon cycles. To partition ET into
E and T and investigate the factors controlling ET partitioning would improve 
modeling of atmosphere‐land surface interactions and help understand the 
biophysical processes involved [Lawrence et al., 2007]. The global T/ET was 
estimated to be 61 ± 15% based on MODIS‐ET products, and the 



evapotranspiration is dominated by transpiration in most terrestrial 
ecosystems, varying from its highest value in tropical rainforests (70 ± 14%) 
to the lowest in steppes, shrublands, and deserts (51 ± 15%) based on a 
meta‐analysis of ET partitioning studies [Schlesinger and Jasechko, 2014]. 
Since transpiration accounts for a major portion of land surface 
evapotranspiration and is directly related to vegetation types and dynamics, 
terrestrial vegetation would thus have a strong influence on T/ET [Wang et 
al., 2014]. An increase in T/ET was reported as the vegetation cover was 
increased [Ashktorab et al., 1994; Young et al., 2009; Wang et al., 2010]. For
example, experimental results showed that the T/ET increased from 0.61 to 
0.83 when woody cover was increased from 25% to 100% using a stable 
isotopic technique [Wang et al., 2010]. However, the T/ET is difficult to 
measure in the field and it remains a challenge to continuously estimate T/ET
in terrestrial ecosystems [Kool et al., 2014; Schlesinger and Jasechko, 2014]. 
It is therefore important to undertake comprehensive analyses of variations 
in T/ET and investigate the controlling effect of vegetation over T/ET in 
different ecosystems.

The stable isotope technique is a commonly used method for ET partitioning 
in arid environments with sparse vegetation [Wang et al., 2010, 2013; Good 
et al., 2014]. However, the isotope partitioning technique is costly and 
laborious, and is not suitable for agricultural and forest ecosystems when soil
evaporation is small (<10%) [Griffis, 2013]. Eddy covariance is a widely used
technique to measure the biosphere‐atmosphere exchanges of carbon 
dioxide and water vapor, and the flux networks have been established 
globally [Baldocchi, 2014]. The flux data have been used to partition ET 
using different approaches. As a simple and intuitive method, the measured 
water fluxes from the canopy and understory were assumed to represent T 
and E, respectively [Baldocchi and Ryu, 2011]. This approach, however, 
ignores the evaporation due to rainfall interception by the canopy and the 
transpiration through understory plants, and is not applicable to nonforest 
ecosystems. The combined use of eddy covariance and sap flow techniques 
to estimate ET (and E) and T simultaneously provides a comprehensive 
method for ET partitioning [Cammalleri et al., 2013]. Nevertheless, the sap 
flow estimates are sensitive to the tower footprint, which may result in large 
discrepancy between the estimated E+T and ET, because species 
composition is not constant within the tower footprint which varies with wind 
direction and distance from the tower [Wilson et al., 2001]. The flux data 
were also used for ET partitioning using a correlation analysis method based 
on a flux‐variance similarity assumption [Scanlon and Sahu, 2008; Scanlon 
and Kustas, 2010, 2012]. In spite of the widespread flux towers, the 
correlation analysis method was only adopted at a few sites and had not 
been widely used because the method required high frequency (10 Hz) eddy 
covariance data which were only available to tower owners and not widely 
shared. A simple method using widely available half‐hourly flux data would 
contribute to ET partitioning for different ecosystems.



Using half‐hourly data from 42 AmeriFlux sites, Zhou et al. [2014b] showed 
that ET is related to gross primary productivity (GPP) and vapor pressure 
deficit (VPD), and proposed an underlying water use efficiency (uWUE = 
GPP·VPD0.5/ET) model, and argued that the relationship between GPP·VPD0.5 
and ET is nearly linear when soil evaporation is small and transpiration takes 
up a large portion of ET during the growing season. The effect of soil 
evaporation on the relationship between GPP·VPD0.5 and ET resulted in 
variations in uWUE both at half‐hourly and daily time scales [Zhou et al., 
2014b2015]. Since the variation in uWUE was attributed to the changes in T/
ET, the uWUE model could be used for ET partitioning when the variations in 
uWUE are related to the relative portion of ET as T. While there are models to
simulate ecosystem processes including primary bioproduction, and 
hydrologic balance such as Running and Coughlan [1988] to allow ET 
partitioning, and detailed examination of the complex relationships between 
GPP and water balance at a range of scales and in different regions [Beer et 
al., 2007; Jasechko et al., 2013], these approaches are not directly related to 
ET partitioning based on the concept of water use efficiency considered in 
the paper.

The fundamental difference between the processes of evaporation and 
transpiration is that transpiration is essentially associated with vegetation 
and evaporation only relies on the soil and environmental conditions, thus, 
vegetation is considered as the first‐order factor affecting ET partitioning 
[Scanlon and Kustas, 2012]. In previous studies, leaf area index (LAI) was 
used to analyze the relationship between vegetation cover and T/ET. Using a 
tow‐source model, Wang and Yamanaka [2014] suggested that LAI was the 
primary controlling factor of the seasonal variations in T/ET and there was a 
logarithmic relationship between LAI and T/ET. Wang et al. [2014] also 
showed that LAI and growing stage could explain 43% of the variations in 
T/ET using an exponential function based on 334 published global data sets. 
In addition to LAI, other vegetation indices, such as normalized difference 
vegetation index (NDVI), soil adjusted vegetation index (SAVI), and enhanced
vegetation index (EVI) derived from remote sensing data, were widely used 
to monitor continuous vegetation dynamics and ecosystem responses to 
environmental change [Ferreira et al., 2003; Zhang et al., 2003; Zhou et al., 
2014a]. It was shown that EVI was linearly correlated with SAVI [Gao et al., 
2000], and was superior to NDVI in vegetation monitoring, and was more 
closely correlated with ET than NDVI [Nagler et al., 2005a2005b], thus, EVI 
was widely used in estimating ET [Wang et al., 2007; Nagler et al., 2009; 
Murray et al., 2009]. In addition, SAVI and EVI were found to be linearly 
correlated with the crop coefficient (ETcrop/ETreference) and plant transpiration 
coefficient (i.e., T/ET) [Choudhury et al., 1994; Glenn et al., 2010, 2011]. An 
exploratory data analysis (results not shown) indicated that the correlation 
coefficient between EVI and our estimated T/ET was consistently higher than 
that between MODIS LAI and T/ET for a majority (>80%) of site‐years. 



Therefore, EVI as a surrogate variable could be used to develop a 
relationship between vegetation cover and T/ET.

This study has two broad objectives. The first was to develop a simple 
method to estimate T/ET using the concept of uWUE and the widely 
accessible half‐hourly flux tower measurements. To provide a rationale and 
support for the proposed method for ET partitioning, two auxiliary objectives 
of this study were to test whether the uWUE model of Zhou et al. [2014b] is 
broadly consistent at the leaf and ecosystem scales; and to test whether the 
maximum of uWUE for a growing season remains essentially constant over 
time for a given vegetation type. The second main objective of the study was
to estimate the effect of vegetation on T/ET using the EVI as an indicator of 
vegetation cover for different ecosystems. Results in relation to the first 
main objective and the two auxiliary objectives are presented in sections 3.1 
and 3.2. Results on the effect of vegetation on T/ET are presented in section 
3.3. With widely available flux data, our proposed and validated method for 
ET partitioning would allow estimation and characterization of T/ET and its 
temporal variations at the local, regional, and global scales.

2 Data and Methods

2.1 Flux Tower Data

Flux tower data from 17 sites (71 site‐years) from the Ameriflux network 
(http://public.ornl.gov/ameriflux) were used in this study (Table 1). There 
were four vegetation types with relatively high vegetation coverage during 
the growing season, including croplands (CRO), deciduous broadleaf forests 
(DBF), evergreen needle leaf forests (ENF), and grasslands (GRA). Four of the
five sites for croplands were located on agricultural land with annual corn 
(C4)‐soybean (C3) rotation. Half‐hourly flux and meteorological data were 
used, including net solar radiation (Rn, W·m−2), air temperature (TA, °C), 
latent heat flux (LE, W·m−2), VPD (hPa), and estimates of GPP (g C·m−2·d−1). 
Using the TA and LE data, measurements of ET (kg H2O·m−2·d−1) were 
calculated at half‐hourly intervals [Donatelli et al., 2006]. The eddy 
covariance flux measurements were friction velocity (USTAR) filtered and 
gap‐filled using the Artificial Neural Network method, and were divided into 
four categories, i.e., the original, most reliable, medium and least reliable 
data according to data quality [Reichstein et al., 2005].



Data screening and quality control were performed to select half‐hourly 
observations following a similar process described in Zhou et al. 
[2014b2015]. First, defective entries were excluded and only daylight data (7
A.M. to 7 P.M.) with positive Rn, GPP, ET, and VPD were used. Second, data 
from rainy days and several days that followed rainy days were excluded 
using the method in Zhou et al. [2015]. Third, only the half‐hourly flux data 
with high confidence, i.e., original or most reliable data according to the 
quality flags were used. Fourth, data during the growing season were 
selected for each site, i.e., the data from days when the average half‐hourly 
GPP was at least 10% of the 95th percentile of all the half‐hourly GPP for the 
site. Finally, half‐hourly data were used for ET partitioning at three time 
scales, i.e., daily, 8 day and site‐year scales. Daily and 8 day T/ET values 
were estimated only for days when there were at least 10 effective entries 
and for 8 days when there were at least 80 effective entries, respectively.

2.2 Remote Sensing Data

To analyze the controlling effect of vegetation coverage over 
evapotranspiration partitioning, enhanced vegetation index (EVI) was used to
represent the green vegetation coverage at the 17 sites in this study. The 
Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra 
satellite has provided continuous observations of terrestrial vegetation since 
March 2000. The MODIS Land Surface Reflectance 8 day 500 m product 
(MOD09A1, Collection 5) was used to generate 8 day EVI at a 500 m 



resolution. Time series of the MOD09A1 data for each flux tower site were 
retrieved from the MODIS data portal at the Earth Observation and Modeling 
Facility (EOMF), University of Oklahoma 
(http://eomf.ou.edu/visualization/gmap/). The EVI was then calculated using 
the following equation [Huete et al., 2002]:

(1)

where , ,  are the surface reflectance at near‐infrared, red, and blue 
bands, respectively. According to the quality flags of MOD09A1, bad‐quality 
observations, i.e., data with cloud or aerosol contamination were eliminated 
and filled using a three‐step gap‐filling method [Jin et al., 2013]. Once 
processed, 8 day EVI values for the 71 site‐years were collated for 
comparison with the 8 day T/ET values estimated from the flux tower data. 
Linear regression between EVI and T/ET was attempted for each site‐year for 
the four vegetation types to evaluate the controlling effect of vegetation 
coverage on T/ET and evaluate the strength of EVI in predicting T/ET.

2.3 Evapotranspiration Partitioning

Evapotranspiration ( ) consists of two components, namely vegetation 
transpiration ( ) and soil evaporation ( ). The essential distinction between 
the two components is that the former is related to leaf stomatal 
conductance as well as CO2 assimilation ( ). Thus  (µmol·m−2·s−1) and  
(µmol·m−2·s−1) can be described following a stomatal conductance model 
[Beer et al., 2009; Zhou et al., 2014b]:

(2)

(3)

where  is the stomatal conductance of CO2 (µmol·m−2·s−1), and  the 
atmospheric pressure (hPa).  and  are the pressure difference 
between ambient air and inner leaf for CO2 and that between inner leaf and 
ambient air for water vapor (hPa), respectively. The factor 1.6 in equation 3 
exists because of a higher diffusion rate of water vapor than CO2.

Water use efficiency at the leaf scale, i.e., the ratio of  over  is shown in 
equation 4 when  is approximated by atmospheric vapor pressure deficit
( ).

(4)

 is linearly dependent on , and  is also affected by  since  (or
 in mole fraction) is proportional to the square root of  (or  in mole 

fraction), as shown in equation 5 [Lloyd, 1991; Lloyd and Farquhar, 1994]:



(5)

where  is the leaf CO2 compensation point,  represents the marginal water 
cost of carbon gain. The underlying water use efficiency at the leaf scale (

) was then proposed taking into account the effect of VPD on water use 
efficiency [Zhou et al., 2014b]:

(6)

Combining the equations 4-6,  is determined by  and  as follows:

(7)

Since changes in  are much smaller than those in other variables, and  
is almost constant within a certain vegetation type based on a model of 
optimal stomatal behavior [Cowan and Farquhar, 1977; Lloyd, 1991; Lloyd 
and Farquhar, 1994], thus  is linearly correlated with  and  is 
approximately constant at the leaf scale.

From the leaf scale to the ecosystem scale,  is almost the same within a 
uniform environment, and the accumulation of carbon assimilation is 
represented by gross primary productivity ( ), which is derived from the 
net ecosystem exchange and ecosystem respiration using the eddy 
covariance technique. However, it is not easy to observe  directly at the 
ecosystem scale and  could be estimated from latent heat flux 
measurements, thus,  was used to calculate uWUE at the ecosystem scale 
[Zhou et al., 2014b2015]. Here, we define a potential uWUE,  and an 
apparent uWUE,  at the ecosystem scale as follows:

(8)

(9)

 is identical to  when applying the coupled carbon‐water relationship 
in equation 6 to all the leaves, and they are nearly constant under steady 
state conditions within a uniform ecosystem, as shown in equation 7. Testing
the broad consistency in the underlying water use efficiency at leaf and 
ecosystem scales was the first auxiliary objective of the study.  is the 
observed uWUE which is affected by soil evaporation and has been called 
simply as the underlying water use efficiency (uWUE) in previous research 
[Zhou et al., 2014b2015]. Thus, the ratio of transpiration over 
evapotranspiration, i.e.,  can be determined by the ratio of  over  
as follows:

(10)



or

(11)

When soil evaporation is negligible and  is close to , i.e., ,  is 
approximately equal to . Though  could be derived from latent heat 
observations using the eddy covariance technique, we cannot measure  or

 directly, thus,  and  can provide a novel method to estimate  
hence  at the ecosystem scale.  was widely shown to follow a single‐peak
diurnal pattern and the diurnal peak value would reach unity when 
vegetation coverage is high and soil evaporation is negligible [Villegas et al., 
2014; Wang and Yamanaka, 2014; Zhu et al., 2015]. Here we assume that

 is constant for each flux site, and  reaches its maximum value, 
namely , when  is equal to  for terrestrial ecosystems with high 
vegetation coverage during the growing season. Thus, both  and , 
and hence  can be estimated from half‐hourly ,  and  
measurements. Testing the constancy of the , for a given vegetation 
type was the second auxiliary objective of the research.

2.4 Estimation of the Potential and Apparent uWUE

The  and  were estimated with half‐hourly GPP, ET, and VPD data 
using the quantile regression and the linear regression methods, 
respectively. The linear regression technique was used extensively to 
develop the uWUE model and to evaluate alternative model formulations 
[Zhou et al., 2014b2015]. The least square, unbiased estimate of the slope of
the regression line was in fact a flux‐weighted estimate of , hence , 
with the weight being the flux squared (  The quantile regression method 
is appropriate for estimating multiple change rates from minimum to 
maximum responses, and can provide the regression slopes between the 
response and predictor variables on a series of quantiles [Cade and Noon, 
2003]. The extreme quantiles, i.e., 5th and 95th quantiles were widely used 
to capture the lower and upper limits for the regression slopes [Yu and 
Moyeed, 2001; Bremnes, 2004; Wang et al., 2014]. In this study, quantile 
regression for the 95th percentile was used to estimate the upper bound of 
the ratio of GPP·VPD0.5 over ET, i.e., the  for each site. Both of the 
quantile regression and the linear regression passed through the origin to be 
consistent with the condition of zero GPP when stomata were totally closed. 
The long‐term average  for each site was estimated using all the half‐
hourly flux data. For the four corn‐soybean rotation site, the long‐term 
average  was estimated separately for corn and soybean. For each site, 
an annual  for each site‐year was also estimated for comparison with the
long‐term average  in order to test the assumption that  is 
essentially constant for a given vegetation type at each flux site. The  
was estimated using the linear regression technique at three time scales, 
i.e., daily, 8 day, and site‐year scales using half‐hourly data at the 
corresponding time periods. For example, a time series of 8 day  would 



be obtained by applying the linear regression to the half‐hourly data from 
each non‐overlapping 8 day period.

With the site US‐ARc as an example, the long‐term average was 
estimated as the regression slope for the 95th quantile regression using all 
the half‐hourly data for the site and the regression slope using half‐hourly 
data for a particular 8 day period was estimated to represent a typical 8 day

 value for the site. As shown in Figure 1a, the slope of the 95th quantile 
regression line, i.e., the long‐term average  was 11.57 g C·hPa0.5/kg H2O 
for this site (US‐ARc). The linear regression slope was 6.57 g C·hPa0.5/kg H2O 
for day of year 161–168 in 2005. Thus, the  ratio was estimated to be 
0.57 (=6.57/11.57) for the 8 day period (Figure 1b). It is clearly seen from 
Figure 1a that there is a linear upper bound between GPP·VPD0.5 and ET, and 
the 95th quantile slope can effectively represent the largest marginal change
in GPP·VPD0.5 when ET is changed. Thus, the quantile regression could be 
used to estimate  using half‐hourly data for flux sites. As is shown in 
equations 6 and 8,  at the ecosystem scale was assumed to be identical 
to  at the leaf scale. Since  can be calculated with  and , 
equation 7 can be used to test whether the  estimated using the quantile
regression technique was broadly consistent with .  derived from leaf 
gas exchange studies for different biomes of C3 plants in Lloyd and Farquhar
[1994] was used to calculate  in this study. As there was no  data for 
corn,  was compared with  for C3 plants only, namely croplands, 
forests, and grasslands. The atmospheric CO2 concentrations in the 2000s 
were about 380 ppm according to NOAA Mauna Loa CO2 measurements, and 
the CO2 compensation point was about 50 ppm for C3 plants [Tans, 2015; 
Vogan and Sage, 2012].



3 Results and Discussion

3.1 Estimation and Validation of the Potential uWUE

The long‐term average  for the 17 sites is shown in Table 1. At the five 
sites for croplands, corn (C4) years present much higher long‐term average

 than soybean (C3) years because C4 plants have intrinsically higher 
photosynthetic capacity and water use efficiency than C3 plants [Ehleringer 
and Bjorkman, 1977; Furbank and Taylor, 1995]. The long‐term average 
was 20.11 g C·hPa0.5/kg H2O for the five corn sites and 12.97 g C·hPa0.5/kg 
H2O for the four soybean sites. For natural vegetation, deciduous broadleaf 
forests (16.05 g C·hPa0.5/kg H2O) have a higher long‐term average  than 
grasslands (12.93 g C·hPa0.5/kg H2O) and evergreen needle leaf forests 
(12.48 g C·hPa0.5/kg H2O). Figure 2 shows a comparison of the long‐term 
average and annual  within a site. The annual  values were 
expressed in term of their departures from the long‐term mean in percent 
(Figure 2a). The departure from the mean was less than 10% for a majority 
of the site‐years (48 out of 71). The standard deviation of annual  was 
less than 1.0 g C·hPa0.5/kg H2O for 9 of the 17 sites, and the coefficient of 
variation was less than 0.1 for 13 sites (Figure 2b). However, the standard 
deviation of annual  was more than 2.0 g C·hPa0.5/kg H2O for three sites, 
i.e., US‐Ha1 (DBF), US‐Bo1 (CRO), and US‐WCr (DBF), and the departure from
the mean was more than 20% for several site‐years at these three sites. A 
commercial harvest took place 300 m to the south‐southeast of the tower in 
the summer of 2000 at the US‐Ha1 site, and 42.8 m3·ha−1 of the timber and 
22.5 Mg C·ha−1 of aboveground woody biomass were removed from an area 
of 43 ha [Urbanski et al., 2007]. Thus, the biomass at the site was greatly 



decreased in 2000 and this was gradually recovered since, resulting in a 
large variation in the estimated annual  from 2000 to 2006. The standard
deviation of annual  for the site has markedly reduced in later years, 
from 4.46 g C·hPa0.5/kg H2O for the period 2000–2006 to only 1.1 g 
C·hPa0.5/kg H2O over the period 2003–2006. For the US‐Bo1 site, corn and 
soybean rotation was within 50 m of the tower location, however, corn and 
soybean each occupied half of the area within 500 m of the tower location 
[Meyers and Hollinger, 2004]. Since the  was much larger for corn than 
soybean (Table 1), the mixed composition of corn and soybean may lead to 
great variations in annual  at the US‐Bo1 site. The large standard 
deviation for the US‐WCr site was attributed to the abnormally high  
value of 20.81 g C·hPa0.5/kg H2O in 2003, which was much higher than what 
is expected for C3 plants, i.e., 11.77 ± 0.99 g C·hPa0.5/kg H2O for other 3 
years. Desai et al. [2005] reported that ET declined greatly from 2002 to 
2003 when precipitation decreased from 995 to 625 mm, however, the GPP 
increased for the same period from 2002 to 2003. The reason for the 
increased GPP during dry conditions in 2003 is not clear [Desai et al., 2005]. 
Since  was relatively stable for the remaining sites, it is reasonable to 
assume that the long‐term average  is essentially constant for each site 
in order to estimate  using the concept of the underlying water use 
efficiency.



The long‐term average  was further compared with  calculated using 
equation 7 and values for ,  and . As reviewed in Lloyd and Farquhar 
[1994],  estimated from leaf gas exchange studies ranged from 400 to 900 
mol/mol for croplands, from 250 to 1250 mol/mol for nontropical forests, and 
from 500 to 700 mol/mol for grasslands. The corresponding  derived from

 ranged from 10.01 to 15.14 g C·hPa0.5/kg H2O for croplands, and the range 
of  values among forests was large, from 8.56 to 19.15 g C·hPa0.5/kg H2O,
and for grasslands the range was much smaller, only from 11.44 to 13.54 g 
C·hPa0.5/kg H2O. Comparing the long‐term average  with the upper and 
lower estimates of the  noted above, the distribution of the long‐term 



average  is broadly consistent with the range of  values for these C3 
plants at the 16 of 17 sites examined (Figure 3). Excluding the US‐Ha1 site 
due to the biomass removal, the long‐term average  ranged from 11.5 to
15.1 g C·hPa0.5/kg H2O for the 15 remaining sites and the difference in the 
mean  among the four vegetation types was less than 1.0 g C·hPa0.5/kg 
H2O, which was much smaller than the difference among sites of the same 
vegetation type, of about 2.7–3.5 g C·hPa0.5/kg H2O. Similarly, the difference 
in the estimated mean  values among the three vegetation types was 
less than 1.4 g C·hPa0.5/kg H2O and the difference in the upper and lower 
estimates was larger, from 2.1 g C·hPa0.5/kg H2O for grasslands to 10.6 g 
C·hPa0.5/kg H2O for forests. Table 2 shows a comparison of the mean  and

 values for the four vegetation types excluding the US‐Ha1 site. The 
difference between  and  varied from 0.35 to 1.38 g C·hPa0.5/kg H2O. 
The relative difference is no more than 4% for three of the four vegetation 
types, and the largest relative difference between the two is 10.5% for 
evergreen needle leaf forests (Table 2). The broad consistency between  
and  and their similar values for C3 plants lend considerable additional 
support for using the quantile regression technique to estimate the long‐
term average , and hence ET partitioning, for sites where flux data are 
readily available.





3.2 Estimation of the Apparent uWUE and T/ET

The annual  and  varied greatly among the 71 site‐years with 
different vegetation types, as shown in Figure 4.  was higher for croplands
(corn and soybean) than other vegetation types on average. Because of the 
mixed C3/C4 vegetation at the US‐Bo1 site, the annual  and  had 
higher interannual variations. Except for the US‐Bo1 site, the  ranged 
from 11.83 to 14.61 g C·hPa0.5/kg H2O and the  ranged from 0.62 to 0.75 
and was 0.69 on average for corn site‐years, which were much higher than 
other vegetation types. For the soybean site‐years, the  was much lower 
than corn site‐years, ranging from 7.18 to 8.41 g C·hPa0.5/kg H2O and  was
from 0.53 to 0.69 and the average  was 0.62. Though the  of 
deciduous broadleaf forests was relatively high, about 8.50 g C·hPa0.5/kg H2O,
the corresponding  was the smallest, only 0.52 on average, especially for 
US‐Ha1, which ranged from only 0.34 to 0.52 during the recovery period 
from 2000 to 2006. Among evergreen needle leaf forests, US‐NC2 showed 
higher  (8.68 g C·hPa0.5/kg H2O) and  (0.64) than other two sites, and 
the average  and  were 6.91 g C·hPa0.5/kg H2O and 0.56, respectively. 
The variation in  among grasslands was small, and  varied from 0.46 
to 0.71 with an average of 0.59 among all the site‐years for grasslands. 
Apart from the difference in the long‐term average  among all the sites, 
climatic and biotic factors, such as water and energy availability, contributed
to the variation in the annual  and .



The estimated annual T/ET was further compared with the reported annual T/
ET values from a compilation of previous ET partitioning studies in 
Schlesinger and Jasechko [2014]. Our estimated annual T/ET (0.52 ± 0.08) is 
lower than that reported (0.67 ± 0.14) for deciduous broadleaf forests. The 
range in T/ET (0.41–0.68) in this study, however, is within the range for this 
vegetation type (0.4–0.86) reported in Schlesinger and Jasechko [2014], 
except for the year 2000 at the US‐Ha1 site (T/ET = 0.34), for reasons given 
in section 3.1. The difference in the annual T/ET between evergreen needle 
leaf forests and grasslands is small in this study (0.59 ± 0.06 and 0.56 ± 
0.05) in comparison to that reported in Schlesinger and Jasechko [2014] 
(0.55 ± 0.15 and 0.57 ± 0.19). Thus, our estimated annual T/ET is fairly 
similar in value when compared to that reported in the literature for the 
three different vegetation types (DBF, ENF, and GRA). This broad comparison



in terms of T/ET lends support to this new method for ET partitioning, 
although additional validation of this method is required when synchronized 
measurements of T and ET are available for these and other flux sites.

Seasonal and interannual variations in  were estimated at the daily scale. 
For example, the daily time series of  at the US‐Ne3 site are shown in 
Figure 5. The vegetation at this site was an annual rotation between corn 
(2001, 2003, and 2005) and soybean (2002 and 2004). The seasonal pattern 
of  for corn and soybean is noticeably different. For soybean, there 
appears to be high‐frequency fluctuations when  is less than 0.4 and its 
growth rate is slower than that for corn; for corn, the fluctuations are much 
smaller at the beginning of the growing season. The rate of decrease in  is
quite similar for both soybean and corn toward the end of the growing 
season though. Daily variation in  follows a single‐peak pattern for US‐
Ne3 within a year, from about 0.05–0.2 in the early growing season to more 
than 0.8 during the mature period, and these results were similar to those 
reported by Scanlon and Kustas [2012], which estimated daily  for a corn 
site using high‐frequency flux data based on the correlation analysis method 
[Scanlon and Kustas, 2010]. The estimated  showed variation from day to 
day and this high‐frequency variation may be attributed to the effect of 
climatic or biotic factors, and data uncertainty can also lead to high variation
in the estimated daily . Similarly, the estimated daily T and ET based on 
scaled sap flux and eddy covariance measurements also show high‐
frequency variations at the Duke Forest Hardwoods site [Oishi et al., 2008]. 
During the mature period of dense corn, daily T/ET was more than 0.8, which
was consistent with the values reported by sap flow measurements for corn 
[Bethenod et al., 2000]. The daily  among the 17 sites was greater than 
0.9 and close to unity for several days during the growing season, and this 
resulted from the assumption that soil evaporation was negligible and 
transpiration was equal to evapotranspiration sometimes during the growing 
season.



3.3 Effect of Vegetation on T/ET

Based on the uWUE method, the  and  were estimated for each 8 day 
period and  was related to the 8 day EVI for each site‐year. Both EVI and

 range from 0 to 1 for most terrestrial ecosystems, and there is a linear 
relationship between EVI and . For example, R2 between EVI and  in 
2005 at the US‐Ne3 site was 0.85 (Figure 6). Thus, linear relationships 
between EVI and  could be used to assess the controlling effect of 
vegetation coverage over ET partitioning for the 71 site‐years. The linear 
regression showed that R2 between 8 day EVI and  was about 0.75 on 
average, and it was larger than 0.8 for more than 50% of the 71 site‐years 
(Figure 7). EVI could explain about 83% of the variation in  for croplands, 
and explain more than 90% for 9 of the 25 site‐years. R2 between EVI and

 for the deciduous broadleaf forests and grasslands was about 0.77, and 
only 0.37 for evergreen needle leaf forests (Figure 7). The linear relationship 
between EVI and  was much weaker for evergreen needle leaf forests 
than for other vegetation types, indicating that the change in  is more 
strongly related to vegetation coverage for deciduous plants, grass, and 
crops than evergreen plants. In addition, the lower R2 value for the 
evergreen needle leaf forests may be related to the comparatively small 
seasonal amplitude in EVI. The magnitude of variation in EVI and  was 
large, and the seasonal variations in EVI and  were more consistent for 
croplands than other vegetation types, resulting in a strong relationship 
between vegetation coverage and ET partitioning. Irrigated site (US‐Ne2) 
showed higher annual  (0.70) and stronger vegetation controlling effect 
(R2 = 0.81) than the rainfed site (US‐Ne3) because of better water utilization. 
Annual  was 0.67 and R2 was 0.73 on average for the US‐Ne3 site.





The seasonal and interannual variations in 8 day EVI and  are shown in 
Figure 8 for four sites, namely US‐Ne3 (CRO), US‐Ha1 (DBF), US‐Arc (GRA), 
and CA‐NS3 (ENF). US‐Ne3 is a corn‐soybean rotation site, and R2 value 
ranged from 0.52 to 0.87 for the 5 site‐years and was 0.74 overall for the 
site. The peak value of  was about 0.89 and that of EVI was about 0.64 in 
the corn years, i.e., 2001, 2003, and 2005 (Figure 8a). However,  and EVI 
changed greatly between soybean years, and the differences in peak values 
of  and EVI were more than 0.10 between 2002 and 2004, because 2002 
was a severe drought year and had great impact on this rainfed site 
[Svoboda et al., 2002]. Although the shape and range of EVI changed only 
slightly from 2000 to 2006 for the US‐Ha1 site, the peak values of  
increased from about 0.4 in 2000 to more than 0.8 in 2005 and 2006 (Figure 
8b). The low  from 2000 to 2004 may be a result of the commercial 
harvest in the summer of 2000 when a large amount of aboveground woody 
biomass was removed [Urbanski et al., 2007]. However, the seasonal pattern
and peak values of EVI hardly changed during the period from 2000 to 2006 
because the EVI at the 500 m resolution (about 250 m around the tower) was
not sensitive to the harvest which occurred 300 m to the S‐SE of the tower. 
Estimated  was sensitive to the removal of biomass and was subsequently
increased with plant recovery from 2000 to 2006 since forest flux tower has 
large footprints of flux measurements, ranging from hundreds of meters to 1 
km in radius [Kljun et al., 2002]. As for the site US‐ARc in Figure 8c, the 
decrease in  was related to the decline in EVI from 2005 to 2006, and the 
dual‐peak pattern of  was consistent with that of EVI, resulting from low 
occurrence of precipitation during the late summer in 2006 [Wagle et al., 
2014]. For the three deciduous sites,  showed a good linear relationship 
with EVI and vegetation played a dominant role in  during the growing 
season. However, the linear relationship between EVI and  was weak at 
the CA‐NS3 site because the vegetation cover changed slightly within a year 



(Figure 8d), while  was largely driven by other climatic and biotic factors, 
such as temperature, solar radiation, and soil water content [Zhu et al., 
2015].

3.4 Implications and Limitations of This Study

This study shows that the  ratio at different scales can be estimated 
based on the  and  inferred from half‐hourly flux data. This method 
can be easily used at other flux sites to estimate the  and  for these 
sites. Thus, temporal and spatial variations in  based on the FluxNet 
observations can be continuously estimated to monitor ecosystem dynamics 
and hydrological responses to climatic change. In addition, the spatially 
distributed  products could be further enhanced from the  and  
data sets at the global scale. Moreover, the linear relationship between EVI 
and  for deciduous vegetation showed that the majority of the variation in

 could be explained by EVI and this relationship could be used to develop 
an empirical ET partitioning model and to interpret the variation in  for 
deciduous vegetation.



However, there are some limitations in this study. First, the ET partitioning 
method has not been validated with direct observations of E and T because 
of the lack of in situ measurements in these sites. Second, the uncertainty in 
GPP measurements was not considered in this study. Since GPP was not 
observed directly and was estimated from net ecosystem exchange and 
respiration, the uncertainty in GPP (less than 10%) would result in some 
uncertainty in the  and hence . Third, possible violation of the two 
assumptions that underpin the proposed method could lead to uncertainty in
the estimated , although we have provided some empirical support for 
these two assumptions in this paper. The first one was that the  is 
constant for each site, and this assumption may be violated when the site 
has several vegetation types, as explained in section 3.1. The  may also 
change when atmospheric CO2 concentrations vary greatly because equation
7 showed that the  was proportional to the square root of CO2 
concentrations. More specifically, if we assume the mean CO2 concentrations
is 380 ppm and the CO2 compensation point is 50 ppm, and the seasonal 
variation in the CO2 concentrations is about 13.8 ± 0.7 ppm, as reported in 
Graven et al. [2013], the uncertainty in the  would be less than 3%. 
Thus, the seasonal variation in atmospheric CO2 could lead to some variation
in the  and the CO2 fertilization effect should be taken into account when
CO2 concentrations changed considerably over a long period. The second 
assumption that  would be equal to  sometimes during the growing season
may be violated where vegetation is sparse and soil evaporation cannot be 
ignored even during the peak growing season, and the  may be 
underestimated and  is overestimated. Thus, the estimated  should 
be revised for these ecosystems by adjusting the estimated  using other 
methods, such as the isotope technique or in situ measurement techniques.

4 Conclusions

This study used half‐hourly flux tower measurements from 17 AmeriFlux 
sites to develop a new ET partitioning method based on the concept of the 
underlying water use efficiency. The ratio of  over  was proposed for 
estimating  for four vegetation types. This method was sound in principle 
and easy to apply in practice, and could be widely implemented using data 
from global flux tower networks.

The  was stable for sites with a single vegetation type, and was broadly 
consistent with the uWUE at the leaf scale for the four C3 vegetation types, 
indicating that the 95th quantile regression technique was effective in 
estimating the . The difference in the mean  among different 
vegetation types was smaller than the variation in the  within a given 
vegetation type. C4 plants have much larger  and  than C3 plants 
because of their higher photosynthetic capacity and water use efficiency. 
The annual  and  varied among different vegetation types, and 
croplands (except for the C3/C4 mixed site US‐Bo1) showed higher  than 
other vegetation types. The  ratio was 0.69 for corn and 0.62 for soybean,
followed by grasslands (0.60) and evergreen needle leaf forests (0.56), and



 of deciduous broadleaf forests was only 0.52, which was the lowest of the
four vegetation types considered. Time series of 8 day  and EVI showed 
similar and consistent seasonal and interannual variations and there is a 
strong linear relationship between EVI and  (R2 = 0.75). EVI could explain 
84% and 82% of the variations in  for corn and soybean, respectively, and
77% for deciduous broadleaf forests and grasslands, and only 37% for 
evergreen needle leaf forests, indicating a strong controlling effect of 
vegetation coverage over ET partitioning for deciduous vegetation.

As the ET partitioning method provided a simple way to estimate , it could
be further used for producing continuous  data sets and monitoring 
ecosystem dynamics at the regional and global scales. Since EVI was closely 
related to  ratio in deciduous ecosystems, the linear relationship between 
EVI and  could be used to interpret the variation in .
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