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Georgia Institute of Technology 

This article surveys fair-division or cake-cutting inequalities in probabil- 

ity and statistics, including bisection inequalities, basic fairness inequalities, 

convexity tools, superfairness inequalities, and partitioning inequalities in 

hypotheses testing and optimal stopping theory. The emphasis is measure 

theoretic, as opposed to game theoretic or economic, and a number of open 

problems in the area are mentioned. 

1. Introduction 

The main purpose of this article is to present a unified study of a class of 

partitioning inequalities in the theories of probability and statistics; it is not 

meant to be a complete review of the subject. The emphasis is measure theo- 

retic with emphasis on both constructive (algorithmic) and non-constructive 

techniques, including generalizations of classical "cake-cutting" inequalities, 

the ham sandwich theorem, and classical statistical problems such as Fisher's 

Problem of the Nile, the problem of smiliar regions, and the classification 

problem. 

The overall framework is as follows. There are a finite number of (count- 

ably additive) probability measures ? ? (??,...,??) defined on the same 

measurable space (O, J7), and a class ? of ^-measurable partitions of O is 

specified. (Recall that (A{)\ is an (ordered) .^-partition of O if \j\A{ = 

O, Ai ? Aj 
= 0 for i f j, and A? G T for all i.) From this collection of 

partitions ? a single partition is sought which will satisfy some objective 

such as bisection or minimax-risk property. It may help the reader to keep 

in mind either a cake-cutting or a hypotheses-testing interpretation of this 

setting throughout the following sections. 

In the cake-cutting interpretation, O is a cake which must be divided 

among ? people having values ??,... ,?? (that is, ?^{?) is the relative value 
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of piece (measurable subset) A to person j), and ? describes the permissible 

divisions (e.g., into parallel slices, or convex connected pieces, or general 

Borei sets). The basic measure-theoretic assumptions of nonnegativity and 

(countable) additivity seem natural in this setting: the value of any piece 

is at least zero (otherwise the piece could be discarded); and the value of 

the union of several disjoint pieces is the sum of the values of the individual 

pieces. 

In the hypotheses testing interpretation, a single observation is made 

of a random variable X taking values in O, and it must then be decided 

from which of ? known distributions ??,... ,?? the observation came; this is 

known as the classification problem. In this case, the decision rule "if X G A,?, 

guess that the distribution of X is ?,?" corresponds to a partition of O, and the 

expected risk associated with this decision given that the true distribution 

is ?{ is given by 1 - 
??(?{) 

= P(X $ A, | true distribution of X is ?;). 

The organization of this article is as follows: Section 2 addresses bisec- 

tion results including ham sandwich theorems and medians; Section 3 the 

basic fairness inequalities; Section 4 the convexity tools, with special empha- 

sis on Lyapounov's theorem and extensions; Section 5 various superfairness 

inequalities; Section 6 inequalities in statistical decision theory related to 

the classification problem; Section 7 partitioning inequalities in optimal- 

stopping theory; and Section 8 a list of open problems. 

It should be emphasized that the results in this article are focused on 

probabilistic and statistical partitioning inequalities, and do not include dis- 

cussion of related fair-division results in other areas such as combinatorics 

(cf. Al?n and West (1986)), economics (cf. Kirman (1981), Samuelson (1980), 

Svensson (1983), Weiler (1985), Young (1987)) or game theory (cf. Kuhn 

(1973), Legut (1990)). 

2. Bisection 

The Bisection Problem is the question of the existence of a single {T- 

measurable) subset ? of O which bisects O simultaneously with respect to 

each of the measures ??,..., ??, that is 

(1) ?{{?) = 1/2 for all i = 1,..., ?. 

In general such a set does not exist (e.g., if ?? = ?2 is a Dirac measure 

assigning mass 1 to a single point ? in O), but the ham sandwich theorem 

of Steinhaus (cf. Stone and Tukey (1942)) guarantees that there is even a 

half-space simultaneous bisection in certain cases, namely 

Partitioning Inequalities 117

of piece (measurable subset) A to person j), and II describes the permissible

divisions (e.g., into parallel slices, or convex connected pieces, or general

Borel sets). The basic measure-theoretic assumptions of nonnegativity and

(countable) additivity seem natural in this setting: the value of any piece

is at least zero (otherwise the piece could be discarded); and the value of

the union of several disjoint pieces is the sum of the values of the individual

pieces.

In the hypotheses testing interpretation, a single observation is made

of a random variable X taking values in {l, and it must then be decided

from which of n known distributions J.Lt, ••• ,J.Ln the observation came; this is

known as the classification problem. In this case, the decision rule "if X E Ai,

guess that the distribution of X is J.Li" corresponds to a partition of {l, and the

expected risk associated with this decision given that the true distribution

is J.Li is given by 1 - J.Li(Ai) = P(X ~ Ai I true distribution of X is J.Li).

The organization of this article is as follows: Section 2 addresses bisec

tion results including ham sandwich theorems and medians; Section 3 the

basic fairness inequalities; Section 4 the convexity tools, with special empha

sis on Lyapounov's theorem and extensions; Section 5 various superfairness

inequalities; Section 6 inequalities in statistical decision theory related to

the classification problem; Section 7 partitioning inequalities in optimal

stopping theory; and Section 8 a list of open problems.

It should be emphasized that the results in this article are focused on

probabilistic and statistical partitioning inequalities, and do not include dis

cussion of related fair-division results in other areas such as combinatorics

(cf. Alon and West (1986)), economics (cf. Kirman (1981), Samuelson (1980),

Svensson (1983), Weller (1985), Young (1987)) or game theory (cf. Kuhn

(1973), Legut (1990)).

2. Bisection

The Bisection Problem is the question of the existence of a single (:F
measurable) subset A of n which bisects n simultaneously with respect to

each of the measures J.Lt, ... ,J.Ln, that is

(1) J.Li(A) = 1/2 for all i = 1, ... ,n.

In general such a set does not exist (e.g., if J.Ll = J.L2 is a Dirac measure

assigning mass 1 to a single point w in {l), but the ham sandwich theorem

of Steinhaus (cf. Stone and Tukey (1942)) guarantees that there is even a

half-space simultaneous bisection in certain cases, namely



118 Theodore P. Hill 

(2) if ??,...,?? are uniformly distributed (probability measures) on 

bounded Borei subsets of O = ??tn, there is halfspace H+ satisfying 

?{(?+) = 1/2 for all i= l,...,n. 

The classical proof of (2) uses the Borsuk-Ulam fixed point theorem, 

and relies heavily on the fact that the number of measures is no more than 

the dimension of the space. The hypotheses of (2) can be weakened (Stone 

and Tukey (1942)) to "??,... ,?? are probability measures on Rn satisfying 

?%(?) = 0 for every hyperplane ? and all i," but the conclusion may fail if 

the measures have atoms. 

On the other hand, hyperplane bisection in a median sense is always 

possible for arbitrary (including atomic) probability measures in this setting. 

Say that a hyperplane ? = S?=? aix? ? ? in IRn is a hyperplane median for 

? if ?(?+) > 1/2 and ?(?~) > 1/2, where ?+ = {r = (ri,...,rn) G Hn : 

SG=? <W > b} and H~ = {r G Hn : ?G=? a^i < b}. Using the Borsuk- 

Ulam theorem applied to a "midpoint-median" function, it was shown in 

Hill (1988a) that 

(3) every collection ??,... ,?? of arbitrary Borei probability measures on 

O = Dtn always has a common hyperplane median. 

Using countable additivity, it can be seen that if ?-bisection of every 

measurable set is possible, then the range of ? is convex (and conversely); 

cf. Dubins and Spanier (1961) and Section 4 below. Stone and Tukey (1942) 

have shown that for any two nonatomic Borei measures on the closed unit 

circle 51 there is always an interval which bisects each of the measures 

simultaneously. For an interesting example of combinatorial bisection also 

based on the Borsuk-Ulam theorem, the reader is referred to Alon and West 

(1986). 

For general a G [0,1] the question of the existence of a set A satisfying 

?%(?) 
? a for all i (as opposed to the exact bisection in (1)), is called the 

Problem of Similar Regions (Feller (1938)), as such a set A is in some gross 

sense a smaller copy of O itself, and this question has been related to the 

efficiency of tests of statistical hypotheses by Neyman and Pearson (1933). 

In contrast to (2), it is not always possible to find a hyperplane ? satisfying 

?,(/?+) = a for a f 1/2, even if the measures are continuous (Hill (1988a)). 

On the other hand, it follows from convexity (Section 4 below) that if the 

measures are all nonatomic, then for each a G [0,1] there is a measurable 

set Aa satisfying ?^?a) ? a for all i < ?. 
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3. Basic Fairness Inequalities 

The basic question of the existence of a fair division is that of the exis- 

tence of an (^-measurable) ?-partition (A,)?^ of O satisfying 

(4) ??{??)>\/? for all i = 1,... ,n. 

The cake-cutting interpretation of (4) says that cutting the cake into 

pieces A\,..., An and distributing it so that the iih piece is given to person 

i guarantees that each person receives a portion which he considers, by his 

own measure, to be at least one nth of the total. The hypotheses-testing 

interpretation of (4) is that the decision rule corresponding to the partition 

(Ai)i has expected risk at most (n 
? 

l)/n. Just as bisections (1) do not exist 

in general, neither do fair divisions in the sense of (4). They do, however, if 

all the measures are nonatomic (Steinhaus (1949)), and more generally if at 

most one of the measures has atoms (Hill and Kennedy (1990)): 

(5) if ??,...,??_? are nonatomic, then there is a measurable partition 

(Ai)i with ?{(?{) > 1/n for all i < ?. 

For ? = 2, the demonstration of (5) is the classical "cut-and-choose" 

algorithm: the first person (the person with the nonatomic measure) iden- 

tifies a subset A which bisects his own measure of O (i.e., ?\(?) = 1/2), 

and the second person chooses between A and the complement of A. Kirby 

(1988) has recently applied this idea to obtain an algorithm for nuclear arms 

reduction. 

For ? > 2, there are several well known algorithms to demonstrate (5). 

One algorithm, called a "sliding knife" solution, is a modification of an 

algorithm of Knaster and Steinhaus (1946, 1953) by Dubins and Spanier 

(1961). Although stated under the hypothesis that all ? measures axe con- 

tinuous (that is, absolutely continuous with respect to Lebesgue measure on 

O C lRn), the procedure also works if at most one of the measures has atoms. 

In this algorithm, a long knife is passed slowly parallel to itself over the cake 

O until one of the participants feels that the increasing portion under the 

knife is exactly one nth the total value, at which point he says "stop," and 

the cake is cut at that point and that slice is given to the person who said 

stop (ties are broken in any manner), and the remaining ? ? 1 participants 

continue the process. For continuous measures, any starting orientation of 

the knife will suffice, and for the more general nonatomic case, it follows 

from Jones (1989) that almost all starting angles will suffice (a "sufficient" 

starting angle is one in which at most one measure of the corresponding 

increasing slice at that angle is discontinuous). 

Fink (1964) has given an algorithm demonstrating (5) which general- 

izes the cut-and-choose algorithm and which has two advantages over the 
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sliding-knife solution: first, implementation of the algorithm does not re- 

quire a priori knowledge of the number of participants; and second, the al- 

gorithm is essentially finite, as opposed to the continuous-evaluation method 

of the sliding-knife solution. In Fink's algorithm the first person bisects the 

cake O according to his own measure. The second person arriving chooses 

between the two pieces cut by the first player, and if a third person ar- 

rives then each of these first two players trisects his own portion, and the 

third person selects one portion from each. The algorithm continues in this 

manner (e.g., quadrisection at the next stage), until no new arrivals appear 

and the algorithm termminates. (Note that the single measure with atoms 

must "arrive" last in order to guarantee the solution in (5).) A variation of 

this algorithm requiring at most O(nlogn) cuts for parallel slices in lRn is 

described in Even and Paz (1984). 

The bound 1/n in (5) is easily seen to be best possible (taking ?? = ?<? = 

... = ??), and the corresponding best possible bound for nonatomic finite 

(e.g., non-probability) measures is one-nth the harmonic mean of the total 

masses (Hill (1985)), a probabilistic analog of which is 

(6) if X\iX2j^' yXn are nonnegative continuous random variables on 

(O, T, P) with finite means, then there is a measurable partition (A,?)" 

of O satisfying fA. Xi > ((???)~? + ... + (EXn)-1)-1 for all i, and 

this bound is best possible. 

Although an algorithmic proof of (6) is possible in some special cases, 

such as when the {EXi} are all rational numbers, proofs of the general case 

seem to rely on non-constructive results such as the convexity conclusions 

in Section 4 below. 

If more than one of the measures ??,... ,?? has atoms, then the conclu- 

sion of (5) may fail, but if an upper bound is known for the maximum atom 

size of the measures, the following best possible fairness bound is known 

(Hill (1987a)); taking limits as a -* 0 yields (5) as a corollary. 

(7) If ??,...,?? each have atoms at most a > 0, then there exists a 

measurable partition (Ai)1} of O satisfying ??(?{) > Vn(a) for all 

i = ?,.,.,?, where Vn : [0,1] ?? [0,n_1] is the unique nonincreas- 

ing function satisfying Vn(a) = 1 - 
k(n 

- 
l)a for a G [(k + 1)?:"1((A; + 

l)n 
? 

l)""1, (Arn 
- 

l)-1]. Moreover, this bound is attained for all ? and 

a. 

The function Vn is piecewise linear and satisfies Vn(a) f ?~? as a \ 0; 

see Hill (1987a) for the graphs of V2 and V3. The proof of (7) is largely 

combinatorial and nonconstructive in nature. 

Analogs of the fairness inequalities in this section for game theory and 

economics can be found in Crawford (1977), Crawford and Heller (1979), 

Demko and Hill (1988), Kuhn (1973), and Legut (1985). 
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4. Convexity Tools 

For nonatomic measures, the basic partitioning-inequality tool is the cel- 

ebrated convexity theorem of Lyapounov (1940) which states that the range 

of every countably-additive, finite-dimensional, vector-valued measure is 

closed and convex. Many proofs of this theorem and various generalizations 

have appeared (e.g. Armstrong and Prikry (1981), Artstein (1990), Black- 

well (1951a), Dvoretzky, Wald and Wolfowitz (1951), Elton and Hill (1987), 

Gouweleeuw (1991), Halmos (1948), Karlin (1953), Lindenstrauss (1966), 

Margolies (1978)); that of Lindenstrauss (1966) based on the Krein-Milman 

Theorem being perhaps the shortest, and that of Artstein (1990) perhaps 

the most elementary. Since 0 = ?(0) and 1 = (1,1,..., 1) = ?(O) are in the 

range of ?, Lyapounov's theorem immediately guarantees that if the mea- 

sures are all nonatomic, measurable bisecting sets (1) and fair divisions ((4) 

with equality) always exist; a little extra effort yields (6) (also with equality). 

In non-probabilistic applications, the convexity theorem has had wide- 

spread application (see Akemann and Anderson (1990)) in combinatorics, 

control theory (to prove the basic bang-bang principle; LaSalle (I960)) dif- 

ferential equations, economics, functional analysis, graph theory, and logic. 

Another curious probabilistic implication of the convexity theorem appar- 

ently first obtained by Blackwell (1951b) is: given any finite collection of 

continuous (Borei) probability distributions on the real line, there is a sub- 

(7-algebra G of the Borels with the property that, restricted to {/, those 

measures are identical non-atomic probability measures. 

A generalization of Lyapounov's convexity theorem due to Dvoretzky, 

Wald, and Wolfowitz (1951) (see also Dubins and Spanier (1961)) which is 

particularly useful in the present setting is the following: 

(8) if ??,... ,?? are nonatomic, then for each fc, 

{(??(??))?=? j=i 
: (Aj)i is a measurable Ar-partition of O} 

is a compact and convex subset ofnxfc real matrices. 

The proof of (8) is based upon Lyapounov's theorem and an idea of 

stringing together measures attributed to Blackwell (1951a). Application of 

(8) yields an affirmative solution to R. A. Fisher's "Problem of the Nile" 

(1936) for nonatomic measures ??,...,??; namely, the existence for each 

natural number k of a measurable ?-partition (Aj)* satisfying 

??(?^) 
= l/k for all i < ? and all j < fc, 

and more generally, for each k and each set of positive numbers oti,..., a* 

with S ai = 1> a ^-partition satisfying ?,(?^) 
= 

a? for all i < ? and all 
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well (1951a), Dvoretzky, Wald and Wolfowitz (1951), Elton and Hill (1987),

Gouweleeuw (1991), Halmos (1948), Karlin (1953), Lindenstrauss (1966),

Margolies (1978)); that of Lindenstrauss (1966) based on the Krein-Milman

Theorem being perhaps the shortest, and that of Artstein (1990) perhaps

the most elementary. Since 0 =p(0) and 1 = (1,1, ... ,1) =p(n) are in the

range of p, Lyapounov's theorem immediately guarantees that if the mea

sures are all nonatomic, measurable bisecting sets (1) and fair divisions «4)

with equality) always exist; a little extra effort yields (6) (also with equality).

In non-probabilistic applications, the convexity theorem has had wide

spread application (see Akemann and Anderson (1990)) in combinatorics,

control theory (to prove the basic bang-bang principle; LaSalle (1960)) dif

ferential equations, economics, functional analysis, graph theory, and logic.

Another curious probabilistic implication of the convexity theorem appar

ently first obtained by Blackwell (1951b) is: given any finite collection of

continuous (Borel) probability distributions on the real line, there is a sub

u-algebra 9 of the Borels with the property that, restricted to g, those

measures are identical non-atomic probability measures.

A generalization of Lyapounov's convexity theorem due to Dvoretzky,

Wald, and Wolfowitz (1951) (see also Dubins and Spanier (1961)) which is

particularly useful in the present setting is the following:

(8) if 1-£1, ••• ,JLn are nonatomic, then for each k,

is a compact and convex subset of n X k real matrices.

The proof of (8) is based upon Lyapounov's theorem and an idea of

stringing together measures attributed to Blackwell (1951a). Application of

(8) yields an affirmative solution to R. A. Fisher's "Problem of the Nile"

(1936) for nonatomic measures JLl, ... ,J-Ln; namely, the existence for each

natural number k of a measurable k-partition ( A j ) ~ satisfying

Jli(Aj) = 11k for all i ~ n and all j ~ k,

and more generally, for each k and each set of positive numbers 01, ... , Ok

with E OJ = 1, a k-partition satisfying J-Li( Aj) = OJ for all i ~ n and all
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j < k. Some information concerning the minimal number of "cuts" required 

to obtain such a partition (in the case k = n; qj 
= 1/k) is contained in 

Legut (1991) and in Stromquist and Woodall (1985); Legut (1991) gives a 

qualitative characterization of the partitions for continuous measures. 

The "closed" conclusion of Lyapounov's theorem holds even if the mea- 

sures have atoms, but the "convexity" conclusion fails in general. On the 

other hand, if a bound on the maximum atom size is known, then the follow- 

ing generalization by Elton and Hill (1987) of the convexity theorem gives 

a bound on how non-convex the range may be; intuitively, if the atoms are 

all very small, the range of ? will be close to convex: 

(9) if ??,... ,?? each have atoms at most a > 0, then the Hausdorff dis- 

tance from the range ? to its convex hull is at most an/2. 

(Recall that the range of ? is the subset of lRn given by {?(?) : A G ?}, 

and the Hausdorff distance between S\ C ?2 *s d(S\,S2) ? 

supx?52 infy?5l k-y|.) 

Thus (9) affords approximate solutions to the bisection and fair-division 

problems (as well as the Problem of the Nile), in the case of measures with 

atoms no bigger than a. For example, it implies that if ??,?2,?3 each 

have atoms no larger than 1/100, then there is an "almost bisecting" set A 

satisfying 97/200 < ?{(?) < 103/200 for all i < 3. 

The convexity conclusion of Lyapounov's theorem may fail if the number 

of measures is infinite (Feller (1938)). If the hypothesis of countable addi- 

tivity is weakened to finite additivity, the convexity conclusion still holds 

(Margolies (1978), Armstrong and Prikry (1981)). 

5. Superfairness Inequalities 

If ??,...,?? are identical measures, then any partition (Ai)1} satisfying 

the fairness inequality (4) necessarily holds with equality for all i. On the 

other hand, 

(10) if ??,... ,?? are nonatomic and ?,? f ?^ for some i f j, then there is a 

measurable partition (??)\ of O satisfying ?%(??) > 1/n for all i < ?. 

The result (10) was apparently first stated by Knaster and Steinhaus 

(1953), proved by Urbanik (1955) for the case the measures all have the same 

null sets, and proved independently by Dubins and Spanier (1961) for the 

general nonatomic case. Although both these proofs used Lyapounov's Con- 

vexity Theorem (note that the strict inequality conclusion > 1/n requires 

a much more subtle argument than the weak inequality > 1/n), Woodall 
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(1953), proved by Urbanik (1955) for the case the measures all have the same

null sets, and proved independently by Dubins and Spanier (1961) for the

general nonatomic case. Although both these proofs used Lyapounov's Con
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(1980) has modified Fink's (1964) fair-division algorithm to yield an al- 

gorithm to generate the superfair partition appearing in (10). Woodall's 

algorithm, however, requires more information than just ?, f ?^ for some 

i f j; it requires knowledge of a set A, real numbers a f ?, and exact 

indices i and j satisfying ??(?) 
= a f ? = 

?^(?). 

Woodall's algorithm proving (10) does not give any bound strictly greater 

than 1/n, but such bounds are possible if the total masses of the supremum 
? 

or infimum of the ?,?'s are known. (Here V ?? is the smallest measure 
t=l 

? 

dominating each ?,, and [\ ?? is the largest measure dominated by each ?,; 
?=1 

it is an easy exercise to show that such measures always exist.) The superfair 

inequality of Elton, Hill and Kertz (1986) 

(11) if ??,..., ?? are nonatomic, then there is a measurable partition (Ai)? 

of O satisfying ?%(?%) > (? 
? M + l)"1, where M is the total mass of 

? 

V m, 
t=l 

is best possible, and improves (10) since M > 1, with equality if and only 

if ?? = ... = ??. The proof in Elton, Hill and Kertz (1986) is partly 

constructive, and Legut (1988) contains an easy non construct! ve proof based 

on Lyapounov's convexity theorem. Using the convexity theorem and an 

"inversion principle," an analog of (11) for the infimum was obtained by Hill 

(1987b): 

(12) if ??,... ,?? are nonatomic, then there exists a measurable partition 

(Ai)1} of O satisfying ??(??) > (? + m - 
l)""1, where m is the total 

? 
mass of /\ ?,. 

t=l 

The bound in (12) is also best possible, and improves (10) since m < 1, 

with equality if and only if ?? = ... = ??. If ? = 2, (11) and (12) are 

equivalent since m + M = 2, but for ? > 2 neither (11) nor (12) implies the 

other. 

The superfairness inequality (10) can also be generalized in another di- 

rection. If {at}i are nonnegative numbers with a? + ... + an = 1, then the 

same hypothesis as in (10) guarantees the existence of measurable partition 

(Ai)1} of O satisfying ??(?%) > at for all i < n (cf. Dubins and Spanier 

(1961)). The weights {at} can be viewed in the cake-cutting framework as 

representing non-uniform shares to which each participant is entitled and in 

the hypotheses-testing framework as non-uniform loss functions. 

Partitioning Inequalities 123

(1980) has modified Fink's (1964) fair-division algorithm to yield an al

gorithm to generate the superfair partition appearing in (10). Woodall's

algorithm, however, requires more information than just J.Li ;f J.Li for some

i :I j; it requires knowledge of a set A, real numbers a :I (3, and exact

indices i and j satisfying J.Li(A) = a ;f (3 = J.Lj(A).

Woodall's algorithm proving (10) does not give any bound strictly greater

than lin, but such bounds are possible if the total masses of the supremum
n

or infimum of the J.Li'S are known. (Here V J.li is the smallest measure
i=1

n

dominating each J.li, and 1\ J..Li is the largest measure dominated by each J.Li;
i=1

it is an easy exercise to show that such measures always exist.) The superfair

inequality of Elton, Hill and Kertz (1986)

(11) if J..Ll, •.. ,J..Ln are nonatomic, then there is a measurable partition (Ai)!

of n satisfying J..Li(Ai) ~ (n - M + 1)-1, where M is the total mass of
n

V J.Li,
i=1

is best possible, and improves (10) since M ~ 1, with equality if and only

if J.Ll = ... = J..Ln. The proof in Elton, Hill and Kertz (1986) is partly

constructive, and Legut (1988) contains an easy nonconstructive proof based

on Lyapounov's convexity theorem. Using the convexity theorem and an

"inversion principle," an analog of (11) for the infimum was obtained by Hill

(1987b):

(12) if J..Ll, • •• ,J..Ln are nonatomic, then there exists a measurable partition

(Ai)! of n satisfying J..Li(Ai) ~ (n + m - 1)-1, where m is the total
n

mass of 1\ J..Li·
i=l

The bound in (12) is also best possible, and improves (10) since m ::; 1,

with equality if and only if J.ll = ... = J.Ln. If n = 2, (11) and (12) are

equivalent since m +M = 2, but for n > 2 neither (11) nor (12) implies the

other.

The superfairness inequality (10) can also be generalized in another di

rection. If {ail! are nonnegative numbers with at + ... + On = 1, then the

same hypothesis as in (10) guarantees the existence of measurable partition

(Ai)i of n satisfying J.li( Ai) > OJ for all i $ n (cf. Dubins and Spanier

(1961)). The weights {Oi} can be viewed in the cake-cutting framework as

representing non-uniform shares to which each participant is entitled and in

the hypotheses-testing framework as non-uniform loss functions.



124 Theodore P. Hill 

6. Inequalities in Hypotheses Testing 

In the classification problem setting, using decision rule (partition) (Ai)1} 

against ??,... ,?? results in a maximum expected risk of maxt<n P(X $ Ai \ 

dist(X) = ?,), and the objective is to minimize this risk. That is, a partition 

(Ai)? of O is sought which will attain the minimax risk 

?(?) = inf{maxP(X ? At | dist(X) = ?%) : (Ai)1} is an /"-partition of O). 
?<n 

Since infmaxP(X ^ Ai | distX = ?,) = infmax(l 
? 

?^??)) = 1 - 

supmh^t'(A|), it follows that R(p) = 1 ? 
ma^min^^^A,?) : (Ai)" is an 

/"-partition of O}, so the fairness and superfairness inequalities above can 

all be translated immediately into minimax risk inequalities. For example, 

the analog of (11) (cf. Elton, Hill and Kertz (1986)) is 

(13) if ??,... ,?? are nonatomic, then the minimax risk R satisfies n~~*(n 
? 

M) < ?(?) < (? 
- M + l)""1(n 

- 
Af), where M is the total mass of 

t=l 

Both bounds in (13) are sharp (the lower bound is easy, and the upper 

bound follows from (11)), and are attained. 

In a similar application of the convexity theorem to the classification 

problem, Dvoretzky, Wald, and Wolfowitz (1951) showed that if ??,...,?? 

are nonatomic, then given any randomized decision function and loss func- 

tions Lij there exists a non-randomized decision function (i.e., partition) 

with exactly the same expected risks for each i. 

In a special case of the classification problem called the location- 

parameter problem, O = IR1 and the measures ?, are translates of one an- 

other (for example ?,? is iV(at, 1) for each ?), and the classification problem 

is now that of guessing which parameter was underlying the observation 

X. Based on concentration parameters of the (location-parameter) distri- 

butions, sharp bounds for the minimax risk were obtained by Hill and Tong 

(1989) using the convexity theorem. For example, letting ?(?\,?) denote the 

tail-d concentration of ?? (see Hill and Tong (1989)), 

(14) if ?? is continuous and ?,(?) = ??(? 
? 

(i 
? 

l)d) for all A and i ? 

1,... ,n, then ?(/?) < 
[?^?? Qj) ? (S"=? 9j)' 

where q = l ~ 
p^ud)- 

Moreover this bound is best possible and is attained for all n, all d and 

all q < 1. 

And, letting ?(?, d) denote the Levy d-concentration supx ?([?, x + d]) of 

?, 
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(15) if ?? is continuous and ?2(?) 
= 

??(?-?) for all A, then there is a test 

for testing H\ : dist(X) = ?? versus H2 : dist(X) 
= ?2 which satifies 

max{a,/?} <(1-?)/(2-?) 

(where a and ? are the type I and type II errors, respectively, and 

? = ?(??,?).) Moreover, this bound is attained for all d and all ?. 

Again, a key element in the proof of (15) is the convexity theorem; Legut 

and Wilczynski (1991) have found improvements of (14) using a similar ar- 

gument. 

The convexity theorem was also used by Hill (1987a) to establish a pro- 

portionality principle for partitioning problems, which essentially says that in 

a general class of partitioning problems, the worst case is when the measures 

are proportional. One corollary of that principle related to the classification 

problem is 

(16) if X\,X2,-- -,Xn are independent continuous random variables on 

(O,/", P), then for each positive integer k < ? and each set of k dis- 

tinct integers ? = {1 < i\ < ... < i* < n}, there is a real Borei set ? 

satisfying 

P(Xi ? ? if and only if i G ?) > (-} (?-Y , 

and this bound is best possible. 

7. Partitioning Inequalities in Optimal-Stopping Theory 

The classical problem in optimal-stopping theory is: given a sequence 

of integrable random variables X = (XiyX2y... jXn) on (O,.?7, P), find a 

stopping time t which maximizes EXt. Here the stopping times are required 

to be adapted to an increasing filtration of s-algebras T\ ? T2 Q ? ? ? Q 

Fn ? F, where typically Tj is the s-algebra o(Xiy... ,Xj) generated by 

X\y... ,Xj. In other words, a stopping time t corresponds to an n-partition 

(Ai)1} of O satisfying Aj G Tj for each j < 1; the correspondence is simply 

{t = j} = 
Aj. Thus the set ? of allowable partitions of O for optimal 

stopping is more restricted, by these s-algebra constraints, than for the 

above fair-division problems. Still, many of the convexity tools apply in 

optimal stopping, where for example it was shown by Hill and Pestien (1983) 

using Lyapounov's theorem and an idea of Blackwell (1951a) that even in 

a finitely additive setting, the function t ?-? EXt has convex range on the 

nonatomic components of the distributions. 
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A useful analog to the Lyapounov convexity result for optimal stopping 

is (Hill and Kennedy (1990)) 

(17) if Ai,... , An are integrable random variables on (O,^",P), and X\ is 

continuous, then the stopping time range of X 

< ? / ??,..., / An j 
: / is a stopping time for X > 

is a closed convex subset of IRn. 

With no restrictions on ??, the stopping time range may fail to be con- 

vex, although the randomizer-stopping rule range is always convex. Note 

the contrast between (17), where the nonatomic assumption is only required 

for the first distribution, and (5), where nonatomicity is required for all but 

one of the distributions. 

Using (17), the separating hyperplane theorem and the classical prophet 

inequality of Krengel and Sucheston (1978), the following sharp minimax 

partitioning inequality (18) in a prophet problem (optimal stopping) setting 

was proved in Hill and Kennedy (1990). Here ? is the set of stopping 

times for Ai,..., An, and <S is the set of stopping functions which are Tn 

measurable, that is, s G S has the property that the decision to stop at time 

j may depend on the whole sequence ??,..., An as opposed to just the first 

j variables. In this sense, a player allowed to use stopping times from S 

is like a prophet, in that he can use information about future variables to 

decide when to stop (cf. Hill and Kennedy (1990) for the formal definition 

of S). 

(18) If Ai,A2,...,An are integrable nonnegative random variables on 

(O,.77, ?) and ?? is continuous, then 

sup min / A, < 2 sup min / At, 
ses i Js=i ter i Jt-i 

and the bound 2 is best possible. If ?? is not continuous, the inequality 

may fail, but does hold (and is best possible) if ? is replaced with the 

collection of randomized stopping times. 

A probabilistic interpretation of (18) is that if the objective is to max- 

imize the minimum expected reward of stopping at i = ?,.,.,? then a 

prophet (or player with complete foresight) may never do better than twice 

that of an ordinary player restricted to using non-anticipatory stopping 

times. The convexity result (17) is also used in Hill and Kennedy (1990) 

to prove a stopping time analog of the partitioning principle in Hill (1988b); 

typical corollaries of which are (6) and 
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( 19) if ??,..., An are integrable nonnegative random variables on (O, ?, ?), 

then there is a randomized stopping time t satisfying 

? / Xi>n-nf[EXu 
i=lJt=i i=l 

and this bound is best possible. 

8. Open Problems 

The main purpose of this section is to record a number of open problems 

related to the partitioning inequalities mentioned above. 

Problem 1. Find a finite algorithm for generating a hyperplane median 

guaranteed by (3) for general distributions. 

Problem 2. Find an efficient algorithm for generating a hyperplane median 

based on a finite set of data points. (If there are k ?-dimensional data points 

in IRn, then it is easy to see that at least one of the (*) hyperplanes will be 

a median, but checking all possible hyperplanes is certainly not optimal.) 

The algorithms of Steinhaus, Banach and Knaster and of Fink guarantee 

a fair solution (i.e., ?,(?,) > 1/n for all i), but do not guarantee a first- 

choice solution in which each participant gets the piece he values most highly, 

i.e., satisfying 

(20) ???(??) > ??(?^) for all i < ? and j < n. 

Of course convexity (e.g., (8)) guarantees the existence of a partition 

satisfying ?%(?^) 
= 1/n for all i < ? and all j < ? (and hence satisfying 

(20)) but Gamow and Stern (1958) raised the question of finding an algorithm 

generating a first-choice solution. Stromquist (1980) and Woodall (1980) 

independently found an algorithm for ? = 3. 

PROBLEM 3. Find (or demonstrate non-existence of) a finite algorithm 

yielding a first-choice partition (20) for ? > 4. 

Problem 4. Find the best possible inequality generalizing (6) and (7), 
that is, find the largest constant k = fc(n,a, ||??||,..., ||??||) so that if 

??,... ,?? have atoms at most a, then there is a partition (Ai)1} of O satis- 

fying min,? ?,?(A,?) > k. 

PROBLEM 5. Find necessary and sufficient geometric conditions on a set S C 

]Rn so that 5 is the range of a nonatomic vector (probability) measure. (By 
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(19) if Xl, ... ,Xn are integrable nonnegative random variables on (n,:F, P),

then there is a randomized stopping time t satisfying

and this bound is best possible.

8. Open Problems

The main purpose of this section is to record a number of open problems

related to the partitioning inequalities mentioned above.

PROBLEM 1. Find a finite algorithm for generating a hyperplane median

guaranteed by (3) for general distributions.

PROBLEM 2. Find an efficient algorithm for generating a hyperplane median

based on a finite set of data points. (If there are k n-dimensional data points

in ntn
, then it is easy to see that at least one of the ( ~ ) hyperplanes will be

a median, but checking all possible hyperplanes is certainly not optimal.)

The algorithms of Steinhaus, Banach and Knaster and of Fink guarantee

a fair solution (Le., J.Li(Ai) ~ lin for all i), but do not guarantee a first

choice solution in which each participant gets the piece he values most highly,

i.e., satisfying

(20)

Of course convexity (e.g., (8)) guarantees the existence of a partition

satisfying J.Li(Aj) = lin for all i ~ n and all j ~ n (and hence satisfying

(20)) but Gamow and Stern (1958) raised the question of finding an algorithm

generating a first-choice solution. Stromquist (1980) and Woodall (1980)

independently found an algorithm for n = 3.

PROBLEM 3. Find (or demonstrate non--existence of) a finite algorithm

yielding a first-choice partition (20) for n ~ 4.

PROBLEM 4. Find the best possible inequality generalizing (6) and (7),

that is, find the largest constant k = k( n, Q, IIJ.LIII, ... , lIJ.Ln II) so that if

J.LI, ... ,JLn have atoms at most Q, then there is a partition (Ai)} of n satis

fying mini J.Li (Ai) ~ k.

PROBLEM 5. Find necessary and sufficient geometric conditions on a set S C

R n so that S is the range of a nonatomic vector (probability) measure. (By
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Lyapounov's theorem, S must be convex and compact; by general principles, 

S must be centrally symmetric, contain the origin, and lie in the positive 

orthant. For ? = 2, these five conditions are also sufficient, but they are not 

sufficient for ? > 2. Bolker (1969, 1971) attributes this question to Blaschke, 

and proves non-geometric characterizations.) 

Problem 6. Find necessary and sufficient conditions on ? = (??,...,??) 

so that the range of ? is convex. (By Lyapounov's theorem, nonatomicity 

of the {?,} suffices, but even for ? = 1 it is not necessary, as can be seen 

by looking at a purely atomic measure with atoms of size 
^ 

for all k > 1. 

Gouweleeuw (1991) has partial results in this direction.) 

Problem 7. Find natural topological and geometric generalizations of the 

convexity theorem; for example, if O is a polyhedron in IRn, is the range of 

nonatomic measures over subpolyhedra convex? What about open simply 

connected sets? (The problem seems to be that taking limits is not always 

possible here; the limit of polygons need not be a polygon, nor must the limit 

of connected sets be connected. Approximate convexity is known in some 

cases, such as the fair-border results in Hill (1983) and Beck (1987), and 

Samuelson (1980) has a geometric fair-division scheme for coastal water- 

ways. Note that if O is a convex subset of Rn, the sliding-knife fair-division 

algorithm, as well as algorithms of Stromquist (1980) and Woodall (1980) 

generate partitions consisting of convex pieces. Gardner's problem (1978) is 

purely geometric.) 

Problem 8. Find the best possible constant in the generalization of Lya- 

pounov's theorem to measures with atoms (9). (The bound an/2 is not 

sharp for small n, but is known to be of the correct order in n; the best 

possible bound is at least n/8 for general ? and at least n/4 if ? is a power 

of 2 (Elton and Hill (1987).) 

Problem 9. Find the best possible bound generalizing both superfairness 

inequalities (11) and (12); that is, find the largest k = Ar(n,m, M) depending 

on the number of measures n, and the masses m and M of the infimum and 

supremum, respectively, so that if ??,... ,?? are nonatomic with || V ?,|| = 

M and || ? ?,?|| = m, then there is a partition (Ai)1} satisfying ?;(?,?) > 

k(n^Tn^M). 

Problem 10. Find finite algorithms for generating the superfair partitions 

guaranteed by (11) and (12). 

PROBLEM 11. Prove (or give a counterexample) that the minimax risk result 

(14) holds if ? is replaced by the Levy concentration ?. 

Problem 12. For a general class of problems, find a proportionality prin- 

ciple for general measures (the proportionality principle in Hill (1988b) was 
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ciple for general measures (the proportionality principle in Hill (1988b) was



Partitioning Inequalities 129 

for nonatomic measures, but in many partitioning problems for general mea- 

sures (e.g., Hill (1987a)), the worst case is also known to be when all the 

measures are proportional, i.e., equal, in the case of probability measures. A 

basic superfairness property generalizing (10) should hold.) 
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