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Abstract

Mahalanobis D^ is in common use to quantify habitat suitability in maps prepared
by GIS techniques. This paper demonstrates the utility of partitioning D^ into a
sum of orthogonal components. Geometrically each component is identified as
the squared distance, in standard measure, from a plane of closest fit, as
originally defined by K. Pearson. Thus, for some small k and any vector
measurement, the sum of the k components corresponding to the k smallest,
nonzero eigenvalues of the covariance matrix reflects the squared distance of the
measurement from the intersection of k hyperplanes in the p-dimensional
measurement space. Species requirements, rather than being defined in terms of
individual measured variables, are instead defined in terms of combinations of
variables which satisfy the equations of these k planes. As a result, species
requirements admit to a trade-off among habitat variables so long as overall
utility is maintained.

1 Introduction

Increasingly, GIS methodology is used to determine the value of an index for the
likelihood of occurrence of a species at each grid point within a study area, based
on a multivariate configuration of habitat variables at those points. The resulting
maps then depict spatial variation in potential use by that species. References [1]
and [2] provide examples, as do several of the citations which they contain.
Logistic regression, Bayes discriminant functions, and Mahalanobis D^ provide
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196 Management Information Systems

familiar indices of habitat suitability. More recently, Dettmers et al [1] have
introduced use of regression trees for classification. However, the first, second
and fourth approaches are disadvantaged by the fact that they require two
calibration data sets, one being examples of suitable habitat, as determined by the
observed presence of the species, and the second representing habitats where the
species could not occur. Clearly, if the latter is equated to those habitats where
the species has not been observed, as is often the case, then its reliability cannot
be guaranteed because of the potential presence of false negatives. By contrast,
Clark, Dunn, and Smith [3] pointed out that D^ utilizes only the first of the two
data sets, graduating any potential habitat in terms of its standard measure from
the centroid of the target data set of occupied habitats. Based on empirical
comparisons of the effectiveness of the four methods, Dettmers, et al. [1]
remarked "The Mahalanobis distance method ... lacks well-defined procedures
for model assessment and determination of significant variables in a given
model". This partly motivated the results presented here.

A search for "significant variables" reflects an implicit belief that the species
and humans agree on what constitutes "variables". In their expository paper,
Rotenberry, Knick and Dunn [4] challenged this, arguing that instead of seeking
constancy of variables in species requirements, one should seek constant
relationships. Their approach consists of partitioning D into a sum of orthogonal
components, identified as squared distances from a collection of hyperplanes,
then identifying certain of these components as functional requirements of the
species. Section 2 amplifies the mathematical details of this concept. Section 3
explores confirmatory factor analysis as a means of sharpening requirements
defined in this way, and the methodology is illustrated with an example drawn
from ecology.

In what follows, upper case letters, including Greek, refer to matrices, e.g., S,
Z. Lower case boldface letters are column vectors, e.g., y, u. The methodology is
described in ecological terms such as species, habitat requirements, etc. because
this is our chief area of experience. However, nothing seems to prevent us from
identifying observations with customers pushing their shopping carts down the
aisles of a typical WalMart Supercenter.

2 Orthogonal decomposition of Mahalanobis D^

Suppose that p random variables, yi,...,Vp, describe habitat. Define y = [yi,...,Vp]%
and let^ be the set of all habitats which are suitable for the species. Let 5[y] = JJ,,

var[y] = Z for y e ̂ . Mahalanobis D\ as commonly used in GIS mapping, is

defined by

D" = (y-^ r'(y-ii), (1)

interpreted as the squared, standardized distance separating y and |i. However, if
the spectral decomposition (Johnson [5]) of Z is
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Management Information Systems 197

Z = tV*,a; (2)j=l
where K\ > ... > Xp are the eigenvalues of Z with associated, length one
eigenvectors cti, ..., Op, then necessarily

Z-'=fX;'aja] . (3)
j=i

This follows since [I - XjI]Oj = 0 => [Z* - 1/tyotj = 0 for j = l,...,p, i.e.,
eigenvalues of Z** are reciprocals of those of Z and the associated eigenvectors
are unchanged. Substitution in (1) yields an orthogonal decomposition of D^,
namely

(4)

where dj = (y - JLL)'OJ. The task remains to attach meaning to the separate
components of D̂ .

From- geometry of a linear vector space, dj represents the length of a
projection of "mean-centered" y - p, on an axis defined by extensions of Oj
(Johnson [5]), where the sign of dj is determined by the positive orientation of <Xj.
Since dj = 0 is possible for some y, implying a projection of length zero on Oj, a
crucial point is that Oj is normal to a p - 1 dimensional hyperplane defined as all y
satisfying

(y-|UL)'aj = 0. (5)

The deviation in the orthogonal sense of y - |H from this hyperplane is identical to
its projection dj on the axis defined by Oj, so that the variance of these deviations
is given by varfdj] = Oj'Z (Xj = A,j oCj'Oj = A,j for y E ty.

It follows that the "plane of closest fit", in the sense of Pearson [6],
corresponds to

(y - |i)'ai = 0. (6)

since for y e fy deviations d% = (y - |J,)'oci from this plane have the smallest

possible variance, namely K\. For any y, d,/̂ )̂  in eqn (4) represents its

deviation in standard measure with metric defined by the smallest eigenvalue of
E. A second-best, p - 1 dimensional hyperplane, which satisfies corr[dj,d2] = 0, is
defined by

(y - pL)'(%2= 0. (7)

with deviations of y - ji from this hyperplane reflected by d] = (y- |Li)'oc2, or

2̂/V̂ 2 in standard measure, and so forth. The net result is that D^ represents a

sum of squares of deviations, in standard measure, of a particular point with
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198 Management Information Systems

coordinates given by y - |Ll from each of p, p - 1 dimensional hyperplanes, all of
which pass through the point y = JLI in the original p-dimensional sample space.

In applications, JLI usually will be replaced by the centroid, y = n'̂ y. and Z
i=l

by its unbiased estimator, S = (n-l)~'£(y. -y)(y. -y)', where yi,.-,yn are p-

dimensional vectors characterizing n habitats known to be occupied by the
species. It is informative to explore why, with this substitution, we arrive at the
"plane of closest fit" in the orthogonal least squares sense as originally developed
by Pearson [6]. If a is any p-dimensional vector normalized to length one, the

smallest distance between the point y. -y and the hyperplane a'(ŷ  -y) = 0is

given by the orthogonal projection, Q. =oc'(yj-y) i = l,...,n. The sum of

squares of these "errors", computed in a direction normal to the hyperplane, is

SSE(a) = Ze^ = ia'(y; - y)(y, - y)'a

(8)

By analogy to a principal components solution, this is minimized by choosing a
as the eigenvector of length one corresponding to the minimum eigenvalue of S.
But this is what we previously proposed to do, with the understanding that
unknown u, and E there would require replacement by their usual estimators.
Additional planes of increasingly poorer fit are defined by the eigenvectors
associated with an increasing sequence of eigenvalues of S.

2.1 Proposed modification to D̂

Rotenberry, Knick, and Dunn [4] argued the premise that not all p components of
D\ as partitioned in eqn (4), are likely to define limiting combinations of habitat
variables for the species. Some p-kof these are included in D^ simply because p
habitat variables were measured or available in the GIS database. For example,
Dettmers, et al. [1] initiated their avian habitat analysis with 24 variables.
Certainly, the hyperplane (y - JLI)'(XI = 0, corresponding to the first principal
component, logically cannot be considered a limitation since the variance of
deviations from this hyperplane is Xi, the maximum possible. Yet, this deviation
makes its contribution to D^ as commonly defined.

As a result, it is proposed that habitat suitability for a p-dimensional y be
measured by

D*(k)= 1 d*/X, (9)
j=p-k+l

for some 1 < k < p, where the eigenvalues of £ (or its sample analog) are ordered
Xi > . . . > Ap . Thus, suitability of a particular habitat location y for a species
would be measured in terms of deviations from k basic requirements for that
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Management Information Systems 199

species, to the extent that we are able to know k. In that D"(k) ~ %^ under

multinomial assumptions, p = P[%̂  > D*(k)] is analogous to a posterior

probability resulting from use of either a Bayes discriminant function or logistic
regression.

To satisfy a criticism by Knick and Rotenberry [2], use of D̂ (k) has the
potential for coping with a rapidly evolving environment, e.g., rangeland
recovering from fire damage, in a way that D^ = D̂ (p) does not. In the latter case,
the "ideal" habitat, represented by |i, is a single point at the intersection of p
hyperplanes in p-space. Less desirable habitat is inferred by any deviation from
|i. For D̂ (k), "ideal" habitat corresponds to the locus of the intersection of k
hyperplanes in p-space, allowing unlimited species expansion in any of the
remaining p - k dimensions without degrading habitat suitability. The only
requirement is that habitat variation not proceed in any of the directions parallel
to mutually orthogonal axes defined by a,, ..., o*.

2.2 Characterization of any plane of closest fit

Insight may be gained by visualizing the habitat constraints implied by each of
the components of D̂ (k). Collins [7] attempted to identify planes of closest fit by
interpreting their correlation structure, mimicking principal components analysis.
However, since correlation structure reflects the vagaries of the calibration data
whereas we want to infer species requirements given an infinite choice of
habitats, it is more informative to relate variation in each of the variables to the
rate of departure from the target planes. For the j* component, this information
is contained in the gradient vector

3d,

~dy

3d. 3d

'3y

The rank order of I3d/3yhl = loChjl from large to small for h = l,...,p suggests the
relative importance of the habitat variables to the species requirement defined by
dj = 0. Variables with small lothjl can vary considerably while allowing the habitat
to remain close to the requirement. This description is only complete, however,
when one realizes that even if both ot,j and c^ are large in absolute value, their
effects will tend to cancel if they have opposite signs and the habitat still will
satisfy the requirement dj = 0. This is a perceived advantage of the model since it
allows the possibility of detecting that a species can make a trade-off, balancing
different habitat variables, while still maintaining habitat utility.

For the above interpretation to be effective, yi,...,Vp should be in identical
units. An obvious approach is to standardize all variables preliminary to the
habitat analysis, i.e., replacing y with y^ = D^ (y - (Li), where diagonal D^
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200 Management Information Systems

displays the standard deviations of the elements of y. The net effect is to replace
Z by R, the correlation matrix. While this has no effect on D̂ (p) since

D' (p) = y;R-'y, = (y - (D;'ZD;' )D;' (y - |Li)

individual components will differ. This is traceable to the nonlinear relationships
between polynomial roots of IZ - AJI = 0 and those of the generalized eigenvalue

problem 0 = |R - 9l| = D;'ZD;' - 61Z-6D

3 Variable selection

Choice of k often is compounded by a perceived need to reduce the number of
habitat variables involved in the defining relationships. Suppose a tentative k is
chosen on the basis of an initial principal components solution, Z=AA', and we
wish to test (after some rearrangement of variables)

(p-k)

~J&]
zero)

(r)
(p-r)' (11)

i.e., that k species requirements depend only on r habitat variables, where

while

[AJi,A;,]' = [cc,,...,cCp_Jand [ A ;,, (all zero)]' = [oĉ ,..., a J contain the

eigenvectors of Z as columns. The solution Z = AA' corresponds to

Z = P:

But when HO is true, snce

A[,A,2 = 0 and A^A^ = l^ from the orthogonality requirements placed on the

original solution. Thus, under HO, the original eigenvectors defining k habitat
requirements in eqn (11) are contained in the set of eigenvectors of Zn involving
only r habitat variables. Since k < r, the required eigenvectors correspond to the
k smallest eigenvalues of Zn (and Z).

In our consulting experience, the proposed sequence of tests has produced a
sharp demarcation between zero and non-zero component loadings. The
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Management Information Systems 201

following is an illustration taken from Gullett [8] in which the calibration data set
consisted of 97 pixels in the Ouachita mountains of Arkansas where the Acadian
flycatcher had been observed. Each pixel was characterized by 11 logratios
describing forest species composition at the site. An initial principal components
solution produced eigenvalues A,, = 4.273, ...,Xg = 0.127, kg = 0.097, KIQ = 0.069,
KU = 0.024, so that k = 3 was chosen on the basis of subjective judgment. The
last three eigenvectors are reproduced below:

LR1
LR2
LR4
LR5
LR6
LR10
LR11
LR12
LR17
LR18
LR20

(09)
-0.54488
0.10296
0.75496
0.15504
-0.01580
0.18769
-0.20557
0.03453
-0.04113
0.05763
-0.12066

(3)
(2)
(7)
(2)
(1)
(1)
(1)
(2)
(1)
(2)
(1)

(am)
0.00640
0.00656
0.02664
-0.18829
-0.06135
0.19772
0.09496
0.68456
-0.03171
-0.66277
-0.05464

(2)
(2)
(2)
(2)
(1)
(1)
(1)
(5)
(1)
(6)
(1)

(an)
0.00364
0.78384
0.07768
-0.56979
0.03411
-0.20949
0.05170
-0.06051
0.02506
0.05194
-0.01321

(2)
(8)
(2)
(4)
(1)
(1)
(1)
(2)
(1)
(2)
(1)

Numbers in parenthesis indicate the order in which confirmatory tests were
performed using SAS® procedure CALIS [9], with all tests based on 55 degrees
of freedom. Step (1) attempted to zero entire rows LR6, LR10, LR11, LR17, and
LR20, yielding X^ = 12.44 with p = 1.0 This suggests that these 5 logratios do
not contribute to the 3 habitat requirements of the species. In addition to the zero
elements specified in step (1), the hypothesis of step (2) also specified certain
zero elements in those rows containing at least one sizable element, e.g., LR1.
Again, this hypothesis was accepted since X^ = 15.70, p = 1.0. Steps (3) - (8)
included the hypotheses of steps (1) and (2) as well as zeroing one additional
element. X̂  = 114.8, 96.3, 260.9, 213.9, 821.9, and 588.8, respectively, in steps
(3) - (8) with p < 0.0005 in every case, thus leading to retention of the 6 boldface
entries shown above. A principal components analysis of the retained variables,
LR1, LR2, LR4, LR5, LR12, and LR18, yielded eigenvalues A* = 0.137, ̂  =
0.080, and A^ = 0.031 with associated eigenvectors

LR1
LR2
LR4
LR5
LR12
LR18

(04)
-0.57824
0.01196
0.77417
0.24422
-0.07531
-0.02907

(05)
0.08683
0.00277
0.00837
0.03844
-0.72059
0.68677

w
-0.04937
0.73950
0.15787
-0.65173
-0.00618
0.03133
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202 Management Information Systems

Aside from an immaterial reflection of signs in one case, the eigenvalues and
eigenvectors for the reduced set of 6 variables closely mimic those of the original
set of 1 1 variables. These three eigenvectors ultimately were the basis for D̂ (3)
used to map potential habitat of the Acadian flycatcher. The boldface elements
suggest that Acadian flycatcher habitat requirements will be met if (a) all 6
logratios are close to their respective means, or if (b) LR1 and LR4
simultaneously vary in the same direction from their means, or if (c) LR12 and
LR18 simultaneously vary in the same direction from their means, or if (d) LR2
and LR5 simultaneously vary in the same direction from their means, or if (e) any
combination of (b), (c), or (d) holds.

Figure 1 shows an overlay of the empirical c.d.f. of D̂ (3) for the 97 known
Acadian flycatcher sites, its kernel density smooth by means of SAS® procedure

KDE [9], and the c.d.f. of the approximating %^ . We used 51 bins and a

bandwidth multiplier of 1.3 for the kernel density estimation shown here. It is
typical that the empirical c.d.f. tends to accumulate faster than the normal-based
chisquared distribution, suggesting that one or both tails of the variables defining
D̂ (3) have been trimmed in the calibration data set. This corresponds to
preferred habitat being in the middle of the ranges of the habitat variables, a
situation where both Bayes linear discriminant functions and logistic regression
tend to perform rather poorly.
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Figure 1: Empirical (—) and smoothed ( ) c.d.f.'s for D\3) at 97 flycatcher
sites, and cumulative %̂  ( ).
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Management Information Systems 203

4 Discussion

Objections may be leveled at the subjective nature of the hypotheses being tested
above in arriving at a relevant subset of habitat variables. This is a flaw inherent
in all stepwise model building algorithms. The practicality of the results are our
only defense. Choice of k is likely to be somewhat subjective, depending on the
magnitudes and relative spacings among the eigenvalues, the interpretability of
dp_k+i = 0,...,dp = 0, and the credibility of predicted use areas which result from
particular choices of k. In this respect, it does not differ from any other principal
components/factor analysis application where interpretability usually dictates
choice of the number of dimensions. We find it surprising that the empirical
c.d.f., or its smoothed version, has not entered into general use for assignment of
p-values to D in the context of GIS habitat mapping. It is an obvious answer to
concerns about non-normality often encountered. Perhaps by tradition D^ and its
asymptotic chisquared distribution are irrevocably linked, but this is a
misconception. D^ and D̂ (k) are valid metrics, requiring only second moment
properties, regardless of what distributions are associated with them.

Of the variety of problems which we have encountered in using D̂ (k), the
most pervasive has been the presence of a zero eigenvalue in the initial principal
components solution. Interpreted literally, this implies a mechanistic "all-or-
nothing" species requirement corresponding to the hyperplane defined by the
associated eigenvector. Such might be the case for habitats supporting an avian
species, say, if such universal requirements as the presence of water, food supply,
nesting sites, etc. were included as indicator variables in the data set. However,
the situation corresponding to mutual absence of all measurable properties is not
so easily understood. Our problems always have arisen in situations where the
data takes the form

(y,) (ys) (yt)

0 0 0
a 0 c
0 b d
0 0 0

This situation typically arises when focusing on a subregion within a vegetatively
heterogeneous data base. Even though y,., y§, yt, are quantitative variables, the
rarity of their occurrence causes them to behave as indicator variables and linear
column dependencies readily appear. To define a species requirement as the
mutual absence of measurable properties seems presumptuous. But still, as
humans, our own preferred habitat is determined by the (near) absence of UV
radiation, absence of pollution, etc. The problem ultimately comes down to
asking what level of subdivision of the microhabitat is biologically meaningful,
so that further refinements are merely bothersome.
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