
Mathematical Programming 80 (1998) 35-61 

Partitioning mathematical programs 

for parallel solution 1 

Michael C. Ferris *, Jeffrey D.  H o r n  2 

Computer Sciences Department, University of Wisconsin, Madison, WI 53706, USA 

Received 31 May 1994; revised manuscript received 18 December 1995 

Abstract 

This paper describes heuristics for partitioning a general M x N matrix into arrowhead form. 

Such heuristics are useful for decomposing large, constrained, optimization problems into forms 

that are amenable to parallel processing. The heuristics presented can be easily implemented using 

publicly available graph partitioning algorithms. The application of such techniques for solving 

large linear programs is described. Extensive computational results on the effectiveness of our 

partitioning procedures and their usefulness for parallel optimization are presented. @ 1998 The 

Mathematical Programming Society, Inc. Published by Elsevier Science B.V. 
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1. Introduction 

This paper describes several heuristics for parti t ioning a general M x N matrix into 

arrowhead form. Such parti t ioning is useful in many areas of  numerical analysis where 

several part i t ioning heuristics exist for the special case of  N x N symmetric matrices 

[4,9].  We make use of  several recent innovations in graph parti t ioning heuristics to 

decompose large, constrained optimization problems into forms amenable to parallel  

processing. This is done by parti t ioning the large sets of  constraints arising in optimiza- 

tion problems into a manageable number of  independent blocks of  constraints, l inked 

together by relatively few linking variables and coupling constraints. 
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First, the arrowhead form is described and basic results on the correspondence between 

an M x N matrix and its associated graph are presented. This correspondence is then 

used to present heuristics for partitioning a matrix by partitioning the associated graph. 

The results of the heuristics can be improved to some extent by adding dummy nodes 

to the associated graph. These dummy nodes enable the resulting blocks to have uneven 

sizes, and even some of the blocks to be empty. By adding enough dummy nodes to 

the graph, we are able to accommodate problems that naturally split into fewer than the 

requested number of blocks. 

In Section 3, we present some computational results to demonstrate the effectiveness of 

our heuristics. We give two sets of results to show how well our partitioning algorithms 

perform as part i t ioning algorithms, that is, how close do they come to producing a matrix 

in arrowhead form with the desired number of blocks. In the first set of results, we show 

the effect of changing the number of dummy nodes in the problem for the complete set 

of problems in the NETLIB test suite. We detail the percentages of coupling constraints 

and linking variables, and the ratio of the largest block size to the average, in addition 

to an overall measure that indicates how well our heuristic performs. This analysis is 

used to fix the percentage of dummy nodes for the remainder of our computation. In 

the second set of results we show how well our heuristics performs by taking a problem 

that is naturally in arrowhead form and randomly permuting its rows and columns. 

Our heuristics effectively reconstruct an arrowhead form. These results are useful in 

determining what classes of problems are amenable to this kind of partitioning, what 

are the relative costs of treating the linking variables and constraints, and how balanced 

the computational load will be for the parallel processors. 

The remainder of the paper shows one way to use the partitioning algorithm for the 

solution of linear programs. The linking variables are removed and replaced with cou- 

pling constraints to which a dual method is applied. The dual problem is a non-smooth 

optimization problem which is solved by an application of the bundle-level method. Us- 

ing this approach, we illustrate the utility of partitioning matrices by decomposing the 

constraint sets of several NETLIB linear programs into a reasonable number of indepen- 

dent constraint blocks and a relatively small number of linking variables and coupling 

constraints. The resulting problem may be solved in parallel on as many processors as 

there are independent constraint blocks. The computational results given in Section 4.2 

measure the utility of our partitioning algorithms for the efficient solution of large-scale, 

linear programs. 

The analysis of this paper does not rely on the linearity of the constraints. Nonlinear 

programs can use the same technique to exploit underlying structure in the constraint set 

and enable the efficient solution of such problems using decomposition techniques such 

as those found in [5,6,29]. Furthermore, although many modern modeling languages and 

systems allow block structure to be specified during problem formulation, the techniques 

we outline here can be used to modify such a partition to take full advantage of the 

number and relative performance of the available parallel processing units. 
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2. Matrix partitioning algorithms 

37 

Definition 1. A matrix is said to be in arrowhead form if it has the following structure: 

C;/ B2 C2 

B~; 

R1 R2 . . .  RK 

Here Bi ~ R mixm, Ci E ~mi×p, Ri C R qxn~ and D E R qxp. We call each Bi a block and 

note that in the matrix above there are K such blocks. We let M :-- }--~l mi + q and 

N := ~f= l  nj + p be the row and column dimensions of  the matrix respectively. 

Definition 2. We call each row of the q x N submatrix 

(R1 R2 . . .  R~; D) 

a coupling constraint. 

In general, these rows link together or restrict the column spaces of  blocks, resulting 

in the column space for the entire matrix. Such a row may restrict the column space of  

one block Bi based on the column space of  another block Bj. In this event, the blocks 

Bi and B.i are said to be linked or coupled by such a row. The reader should note that 

coupling constraints appear as rows in the arrowhead form of the matrix. 

Definition 3. We call each column of  the submatrix 

(c;) C2 

a linking column. 

In general, these columns link together or restrict the row spaces of  blocks, resulting 

in the row space for the entire matrix. Such a column may restrict the row space of  one 

block Bi based on the row space of  another block B.i. In this event, the blocks Bi and 

Bj are also said to be linked by such a column. 

We note that p and q may take the value 0, in which case either the linking columns 

or the coupling constraints will be missing. I f p  = 0, q va 0 or p 4~ 0, q = 0, the 

resulting matrix is called a singly-bordered, block-diagonal matrix. If  both p and q are 

equal to 0, then we will simply call the matrix block-diagonal. 
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We will later give a procedure whereby all of the linking columns can be removed by 

adding some columns to various blocks and extra coupling constraints, thus transforming 

an arrowhead form into a singly-bordered block-diagonal form. 

An important concept in what follows is that of the associated graph of a matrix [ 10]. 

Definition 4. Given a matrix AM×N, the associated graph of A, denoted by G ( A )  is 

the pair (V,E) satisfying: 

(1) V = R U C ,  R = {r l , r2  . . . . .  rM}, C = {cl ,c2 . . . . .  CN}. 

( 2 )  (r i ,¢ j )  E E if  ri E R, cj E C, and ai,j ~ O. 

Note that the G ( A )  is a bipartite graph, with (R, C) being a bipartition. That is, there 

are no edges joining elements of R to R, or C to C. The set R is the set of row vertices 

of G ( A )  and C is the set of column vertices of G ( A ) .  

For example, given the following 5 × 7 matrix, 

x x 

A =  x x x , 

x 

x x x 

where x denotes a non-zero entry, we have G ( A )  given in Fig. 1. 

The following definition is key to the algorithm that we use to create the matrix in 

arrowhead form. It relates to a general graph; in our work, we use it for the associated 

graph of a matrix. 

Definition 5. Given a graph G = (V,E), and an integer K, a partition of G is a partition 

of the set V of vertices of G into K subsets. The cost of such a partition is the number 

of edges in E that connect vertices in different subsets of the partition of V. 

The general technique we use to partition the graph is a multilevel procedure. At 

each level, clusters of nodes with high connectivity are merged to form a supernode, 

reducing in the size of the graph. Levels are iteratively formed until the condensed graph 

is suitably small. 

A spectral method is applied to the condensed graph to give a initial partition. Such 

methods are known to be effective at finding high quality partitions and are outlined in 

Section 2.1. The levels are then iteratively unravelled by bursting apart the supernodes. 

Each resulting partition is refined using the Kernighan-Lin heuristic that is outlined in 

Section 2.2. 

We first describe both techniques for partitioning a graph with 2n vertices into two 

equally sized subsets. Heuristics for solving this problem are the building blocks for 

heuristics that solve more general graph partitioning problems. For the graph G = (V,E), 

suppose that V contains 2n vertices. We wish to partition V into two sets A and B, each 
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Fig. 1. The associated bipartite graph G(A). 

containing n vertices, such that the number of edges joining vertices in A to vertices 

in B is minimized. 

2.1. Spectral partitioning methods 

Spectral partitioning heuristics generally give very high quality graph partitions. Let 

x b e  a n dimensional vector such that xi = zkl and ~icv  xi = 0 .  Consider the function 

f ( x )  =1 Z ( x i -  xj) 2. 
(i,j)CE 

If  xi = 1 when xi C A and xi = - 1  when xi E B then notice that f ( x )  counts the 

number of edges crossing between the sets A and B. This is because (xi - xj) 2 is zero 

if xi and xj have the same sign and is equal to four if xi and xj differ in sign. 

The adjacency matrix for the graph G is defined by 

A i , j = { ;  i f ( i , j )  CE, 

otherwise. 

The degree matrix for the graph G is a diagonal matrix D = diag(di) where di is the 

number of edges incident on vertex i. We can write f ( x )  in terms of the adjacency 

matrix and degree matrix for the graph G as follows. We note that 

( X i - - X j ) 2 =  Z (X2-I-X2) -- Z 2XiXj. 

(i,j) CE (i,j) CE (i,j) CE 
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We can rewrite each of terms on the right-hand side as follows: 

(i,j) GE (i,j) 6E iGV 

and 

(i,j)CE iEV jCV iCV jCV 

Thus, we may define a Laplacian matrix, L = D - A and conclude that f ( x )  = l x T L x .  

The graph partitioning problem can then be formulated as the following discrete mini- 

mization problem: 

min I xT Lx 

n 

subject to Z x i = 0 '  x i = ± l .  

i=1  

The crucial step in spectral methods is the relaxation of the discrete constraint xi = • 1 

in the following continuous minimization problem: 

min l x T L x  

n 

subject to ~ x i = 0 ,  x T x = n .  

i=1 

A solution x of this problem is projected onto the feasible region of the discrete problem 

to obtain an approximate solution of that problem. 

Let A1, A2 . . . . .  An be an orthonormal basis of eigenvectors of L with the correspond- 

ing eigenvalues .,11 <~ A2 <~ . . .  <~ An. We can therefore write x = ~ i  °liAi and so 

~ i a ~  = n. It is possible to show that AI = (1/x/~)e and ,~l = 0. By substituting for x 

we may write 

// 

- -  

/ - -2  

because /l~ = 0. Given the ordering of the eigenvalues, this gives 

1 nA2 

+ . . .  + -])a2/> 4 

Note also that x* = V~A2 achieves this lower bound. Furthermore, the balance constraint 
n 

that ~-~i--1 xi = 0 is satisfied, since 

eTx * = (v/nA1)T(x/~A2) = ATAz = 0. 

Since x* satisfies the constraints of the continuous problem and minimizes f ( x ) ,  x* is 

a solution to the continuous problem. 
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Spectral methods calculate the vector A2 associated with the second smallest eigen- 

value of the Laplacian matrix L = D - A. This eigenvector is called the Fiedler vector 

and is used to generate the following partition, based on the ideas outlined above. The 

vertices corresponding the the largest n/2 entries in the Fiedler vector are assigned to 

set A. The vertices corresponding to the smallest n/2 entries in the Fiedler vector are 

assigned to B. The Fiedler vector is typically computed using the Lanczos algorithm. 

When k = 2 i, one may use spectral bisection to partition graphs into k subsets, by 

recursively bisecting the sets until reaching the desired number of sets. Spectral bisection 

has also been generalized to more general partitioning problems [ 16,13] using more 

information from the eigenvector decompostion. 

2.2. Kernighan-Lin heuristic 

Kernighan and Lin give an effective heuristic for partitioning graphs so as to minimize 

the cost of the resulting partition [ 17]. Their heuristic is particularly effective when used 

to refine an already good partition but tends to break down when applied to a poorly 

partitioned graph. 

A starting partition A, B of V is generated by a spectral partitioning method. Attempts 

are made to decrease the number of edges joining A to B by interchanging subsets of A 

and B. For each a E A, define the external cost Ea as the number of edges in G joining 

a to vertices in B. Define an internal cost la as the number of edges joining a to other 

vertices in A. For each b E B define Eb and Ib similarly. For every v C V define Dv as 

the difference between external and internal costs, that is Dv = Ev - Iv. It can be shown 

that the gain from interchanging a vertex a C A with a vertex b E B is Da q- Db if there 

is no edge joining a and b and De, ÷ Db -- 2 if there is an edge joining a and b. 

First, D,, is calculated for all v C V. We define 

{20 i f ( a , b )  EE ,  

g,(a, b) = otherwise. 

Second, we choose a E A, b E B such that 

gl = Da + Db - g,(a, b) 

is maximized. We set this a and b aside for the time being and call them al and bl 

respectively. Next, the Dv are recalculated using the following formulae: 

Dx+---Dx + O ( x ,  al)  -~l ,(x,  bl) ,  x c a \ {al}, 

Dy+- -Dy+O(y ,  b l ) - O ( y ,  al) ,  y E B \ { b l } .  

Here, we are recalculating the differences Dv as if al and bl have been removed from 

the graph. Next, we repeat the process by choosing a2 C A \ {al} and b2 C B \ {bl} to 

maximize 

g2 = Da2 + Db2 -- ~//(a2, b2). 
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The quantity g2 is the additional gain that can be made by exchanging vertices a2 and b2 

in addition to aj and bl. We continue this procedure until all of  the vertices in the sets A 

and B have been exhausted. Each time a pair of  vertices ak and bk is identified, that pair 

is removed from consideration in future rounds. The size of  the sets being considered 

decreases by one after each round, so that the procedure is performed a total of  n rounds. 
k 

Finally, we choose k to maximize the sum S = ~-~i=1 gi. If  S > 0 we can reduce the 

value of  S by interchanging al,  a2 . . . . .  ak with bl, b2 . . . . .  bk. Once, this is done, we 

can treat the resulting partition as the initial partition and start the heuristic again from 

the beginning. If  S = 0 then the current partition is a locally optimum partition. 

If  at each round, the difference values Dx for x C A and Dy for y E B are kept in 

sorted order, then only a few contenders for pairs that maximize gk need to be evaluated. 

When this is done, the heuristic runs in time proportional to n 2 log n. Note that this is 

much more reasonable than enumerating all of  the partitions of  G. 

Once the basic two-way partitioning heuristic is well understood, we can easily extend 

it to partitioning a set of  n = km vertices in k vertex sets in such a way that the number 

of  edges between distinct vertex sets is minimized. We start with an arbitrary partition 

of  the vertices into k equally sized subsets. The two-way partitioning heuristic is then 

applied to pairs of  subsets until all subsets are pairwise optimal. There are (~) pairs 

of  subsets that must be considered. Note that more than one pass through the pairs of 

subsets may be necessary since, when two subsets are made optimal with respect to 

each other by means of  interchanging vertices, this may change their optimality with 

respect to other subsets. 

2.3. Unequally sized partitions 

Suppose that we wish to partition a set of  vertices into k subsets, but that we do not 

care whether or not each of  the subsets has exactly the same number of  vertices. We 

can then add enough dummy vertices to the problem, so that there will be a total of  km t 

vertices in the problem. These dummy vertices have no edges incident on them. When 

the resulting problem is solved and the dummy vertices are removed from the subsets 

in the resulting partition, the resulting partition will consist of  k subsets each containing 

between 0 and m I of  the original n vertices. 

Notice, that if one of  the k subsets is empty, then we have essentially partitioned the 

n vertices into k - 1 subsets. This indicates that we can also introduce slack into the 

number of  subsets in the partitions. To generate a partition of  between j and k subsets 

each containing possibly unequal numbers of  vertices, simply introduce enough dummy 

vertices so that there is a total of  k In/j l  vertices in the resulting problem. We remove 

the dummy vertices from each of  the subsets in the resulting locally optimal solution 

and then discard any subsets in the partition that are empty. 

2.4. Matrix partitioning 

We now discuss how the graph partitioning heuristics outlined above can be used to 

partition a matrix into arrowhead form. First, the graph of  the matrix is formed and 
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enough dummy vertices are added to reflect the amount of slack we desire in both 

the number of blocks and the uniformity of size for the blocks. The spectral method 

is applied to the resulting graph• Then the resulting graph is locally refined using the 

Kernighan-Lin heuristic• 

We are then left with a partition of vertices• We examine the edges that join vertices 

in distinct subsets of the partition• For each vertex v we count the number of edges 

connecting the vertex to vertices outside of the subset in the partition containing v. 

Call this number Ev, the external cost of the vertex v. We apply a greedy algorithm 

that looks for the largest Ev and removes that vertex from the graph. The Ev are then 

recalculated for the resulting graph• Actually, this recalculation is easy, since we only 

need decrement Ew for all vertices w coincident on an edge with the vertex v. We 

continue this procedure until all Ev in the remaining graph are zero. In a tie breaking 

procedure we favor removing rows to columns• 

It is possible to improve the partitions that this heuristic generates, but the added 

cost appears significant. Each time a vertex is removed the Kernighan-Lin heuristic 

can be re-applied to the remaining graph• Although some improvement was noted for 

many of the NETLIB problems, this procedure typically increased the running time by 

a factor of  10. For applications that are frequently repeated, the partition improvement 

may warrant this extra computation• However, in our applications to parallel solution of 

linear programs, it was not worthwhile• 

The column vertices removed during this procedure correspond to columns in the 

right-hand border in our matrix partition. The row vertices removed during this procedure 

correspond to rows in the lower border in our matrix partition. The subsets in the 

original graph partition are now completely disconnected from each other, for all edges 

connecting one subset to another have been removed• Each of these subsets forms a 

block in the matrix partition. This completes the transformation to arrowhead form. 

It is relatively easy to transform a matrix in arrowhead form into a singly-bordered 

block-diagonal form. To accomplish this, we consider the variables corresponding to the 

linking columns 

C2 

For each column j of this matrix, we introduce multiple copies of the corresponding 

variable, one copy for each block Ci (or D) that has at least one nonzero in column j.  

These multiple copies are used to decouple the corresponding Ci's. We then add coupling 

constraints that force these variables all to be equal• This technique is the same as one 

used in stochastic programming to treat non-anticipativity (see [ 23 ] ). Other techniques 

are described in [20]. For example, 
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iixx xxx xx 
X 

X 

X 

gets transformed into 

/X  X 

X X 

X X 

X X 

X X 

1 - 1  

or with a single column permutation that makes the 5th column the 3rd column 

/X X X 

X X X 

X X X 

X X 

X X 

1 - 1  

Note that at most p x K constraints are added if C is completely dense, many fewer if 

C is sparse. 

3. Partitioning results 

In this section, we present some computational results to demonstrate the effectiveness 

of the heuristics outlined above. We coded the heuristics ourselves and also tested two 

publicly available graph partitioning routines, Chaco [12] and Metis [15]. Almost 

without exception, Metis performed the best in terms of run time and partition quality. 

For this reason we use Metis for all the results listed in this paper. We give three 

sets of results to show how well our partitioning heuristics perform as par t i t ioning 

algori thms.  That is, how close do they come to producing a matrix in arrowhead form 

with the desired number of blocks. We have run the above matrix partitioning procedure 

on all the sample linear programs that are publicly available via anonymous ftp from 

netlib.att.com (see [7] ). We have attempted to partition each problem into 2, 4, 8, 16, 

32, 64, 128, and 256 blocks. 

Let mi denote the number of rows and ni the number of columns in the ith block. Let 

M and N denote the number of rows and columns in the original matrix. Throughout 

this section we use the following measure to determine the effectiveness of our partition 

into K blocks, 

]l.p,q := po~ + qfl ,  
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w h e r e p + q =  1 and 

m* := max mi,  n* := m a x  nj, 

1 K K ~'~:= mi nj ~iKl mi 1 nj 

a : = ~ - 7 / ~ l  ~ - ~ n - 2 - ,  /3:= M N  
"= j=l  

We note that ce is equal to one if each of the blocks has an equal number of rows 

and an equal number of columns and diminishes to zero as the numbers of rows and 

columns become increasingly variable. The value of/3 simply measures the fraction of 

the partition that is not part of the lower or right-hand border. That means that 1 - / 3  

measures the fraction of the partition that is made up of blocks. Thus, if we manage to 

split the matrix into K blocks of equal area, then/,p,q = 1. If  the blocks are of unequal 

area, then /z decreases. We may control the extent to which coupling constraints and 

linking variables are penalized by adjusting the parameters p and q. Values of q near one 

(p near zero) will penalize linking constraints heavily, while values of q near zero (p 

near one) will penalize unevenly sized blocks. The values p = 0. l, q = 0.9 were chosen 

to try to reflect how the partitioning would enable parallel solution of the underlying 

linear program. Unequal sized blocks probably lead to load balancing problems, while 

linking constraints are usually treated by some synchronization procedure, leading to 

loss of parallel efficiency. In both of these cases, the resulting tZp,q becomes closer to 0. 

Our experience indicates that loss of parallel efficiency is a much more critical problem 

than load balancing, so we penalized the number of linking constraints rather severely. 

In the first set of computational results, we show the effect of changing the number 

of dummy nodes in the problem and use this analysis to fix this parameter for the 

remainder of our computation. We fix the number of requested blocks at 8 and vary the 

number of dummy nodes to be 0, 20, and 40 percent of the number of nodes in the 

original problem. The results are given in Table 1. On a large subset of the problems, 

the resulting values o f / z  are greater than 0.6. Figs. 2-5 show the original matrix, the 

resulting permuted matrices and corresponding values of/~ for a particular problem. We 

believe this shows that our heuristic performs very well. 

In most of the problems that are amenable to partitioning, adding 20% dummy nodes 

improves the partition. However, adding 40% dummy nodes sometimes degrades the 

resulting partition. The reason for this is that adding too many dummy nodes tends 

to make eigenvalues clump together in spectral methods and causes the quality of 

the resulting partitions to degrade. We stress that using spectral methods followed by 

refinement via Kernighan-Lin is important when dummy nodes are present. We initially 

tried a Kernighan-Lin heuristic alone that generally resulted in partitions that were poorer 

at the 20% level and even worse at the 40% level. Too many dummy nodes encourages 

Kernighan-Lin methods to fall into non-global optima much more frequently. 

There are cases however, where increasing the number of dummy nodes does seem 

to be beneficial. A good example of this is the problem named "sharelb". We present 

some graphical representations of this problem in Figs. 2-5 as the number of dummy 
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Table 1 

8 block partitions with varying percentages of dummy nodes 

Problem Dnsty % 0% dummy nodes 

a /3 /z 

20% dummy nodes 

a /3 # 

40% dummy nodes 

a /3 # 

25fv47 0.9 0.61 0.64 0.64 

80bau3b 0.1 0.46 0.57 0.56 

adlittle 8.4 0.52 0.47 0.47 

afiro 9.8 0.41 0.47 0.46 

agg 3.2 0.44 0,65 0,63 

agg2 2.9 0.42 0.69 0.66 

agg3 2.9 0.42 0.70 0.67 

bandm 1.8 0.81 0.65 0.67 

beaconfd 7.6 0.31 0,42 0.41 

blend 8.4 0.55 0.56 0,56 

bnll 0.8 0.64 0.69 0.69 

bnl2 0.2 0.64 0.78 0.76 

boeingl 2.9 0.48 0.57 0.56 

boeing2 6.6 0.31 0.37 0.37 

bore3d 2.1 0.56 0.62 0.62 

brandy 4.7 0.45 0.50 0.50 

capri 1.9 0.49 0.58 0.57 

cycle 0.4 0.66 0.75 0.74 

czprob 0.4 0.24 0,49 0.46 

d2q06c 0.3 0.68 0.72 0.72 

d6cube 1.8 0.21 0.02 0.04 

degen2 1.9 0.55 0.48 0.49 

degen3 1.0 0.56 0.49 0.49 

dflO01 0.1 0.81 0.58 0.60 

e226 4.4 0.47 0.63 0.62 

etamacro 0.9 0,71 0.53 0.55 

fffff80 1.40 0,34 0.46 0.45 

finnis 0.9 0.74 0.66 0.67 

fitld 56.3 0.00 0.00 0.00 

fitlp 1.0 0.17 0.11 0,12 

fit2d 50.6 0.00 0,00 0.00 

fit2p 0.1 0.10 0.01 0.02 

forplan 27.7 0.30 0.83 0.78 

ganges 0.3 0.75 0.84 0.84 

gfrd-pnc 0.5 0.72 0.83 0.82 

greenbea 0.2 0.74 0.72 0.72 

greenbeb 0.2 0.74 0.72 0.72 

grow 15 2.9 0.77 0.65 0,66 

grow22 2.0 0.54 0.56 0.56 

grow7 6.2 0.50 0.46 0.47 

israel 9.5 0,49 0.43 0.44 

kb2 16.1 0.27 0.34 0.33 

lotfi 2.3 0.59 0,56 0.56 

maros 0.8 0.62 0.71 0.70 

0.65 0.65 0.65 

0.59 0.61 0.60 

0.60 0.49 0.50 

0,54 0.56 0.56 

0.46 0.67 0.65 

0.49 0.74 0.71 

0.53 0.87 0.83 

0,94 0.69 0.71 

0.37 0.50 0.48 

0.68 0.61 0.62 

0.65 0.69 0.69 

0.65 0.79 0.78 

0,66 0.69 0.69 

0.37 0.39 0,39 

0.63 0.65 0,65 

0.54 0.57 0.57 

0.53 0.60 0.59 

0.90 0.76 0.77 

0.30 0.60 0,57 

0,85 0.80 0.80 

0.23 0.02 0.04 

0.58 0.49 0.50 

0.72 0,52 0.54 

! .00 0.73 0.76 

0.55 0.64 0.63 

0.86 0.60 0.62 

0.35 0.47 0.45 

0.88 0.79 0.80 

0,00 0.00 0.00 

0.19 0.11 0.12 

0.00 0.00 0.00 

0.12 0.01 0.02 

0.33 0.89 0,84 

0.84 0.89 0.88 

0.81 0.84 0.84 

0.77 0.73 0.73 

0.85 0.78 0,79 

0.82 0,66 0.68 

0.69 0.6 0.61 

0.58 0.48 0.49 

0.64 0.52 0.53 

0.28 0.35 0,34 

0.69 0.60 0.61 

0.79 0.88 0.87 

0.74 0.74 0,74 

0.65 0.62 0.62 

0.65 0.54 0.55 

0.62 0.64 0.64 

0.46 0.66 0.64 

0,46 0.74 0.71 

0.46 0.75 0.72 

0.98 0.72 0.74 

0.38 0.50 0.49 

0.61 0.61 0.61 

0.71 0.71 0.71 

0.71 0.80 0.79 

0.67 0.70 0.70 

0.41 0.41 0.41 

0.59 0.62 0.62 

0.56 0.58 0.58 

0.51 0.59 0.58 

1.00 0.81 0.83 

0.25 0,50 0.48 

0.75 0.78 0.78 

0,28 0.02 0.05 

0.70 0.51 0.53 

0.87 0.55 0.58 

1.00 0.87 0.88 

0.61 0.66 0.66 

0.74 0,54 0.56 

0.35 0.46 0.45 

0.79 0.70 0.71 

0.00 0.00 0.00 

0,23 0.13 0.14 

0.00 0,00 0.00 

0.11 0.01 0.02 

0.36 0.93 0.87 

0.96 0.95 0.95 

0.75 0.83 0.82 

0.81 0.74 0.75 

0.94 0.79 0.81 

0.94 0.75 0.77 

0,77 0.61 0,62 

0.63 0.53 0.54 

0.74 0.59 0.60 

0.28 0.35 0,34 

0.64 0.60 0.60 

0.68 0.76 0.76 
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Table 1- -cont inued 

47 

Problem Dnsty % 0% dummy nodes 20% dummy nodes 40% dummy nodes 

nesm 0.7 0.67 0.59 0.60 0.77 0.62 0.64 0.81 0.65 0.67 

perold 0.7 0.74 0.60 0.61 0.88 0.71 0.73 0.90 0.71 0.73 

pilot 0.8 0.42 0.47 0.47 0.52 0.51 0.51 0.47 0.51 0.51 

pilot.ja 0.8 0.68 0.61 0.61 0.69 0.61 0.62 0.76 0.63 0.64 

pilot.we 0.5 0.60 0.72 0.71 0.61 0.73 0.72 0.66 0.74 0.73 

pilot4 1,3 0.74 0.61 0.62 1.00 0.74 0.77 1.00 0.75 0.78 

pilot87 0.7 0.49 0.48 0.48 0.59 0.50 0.51 0.65 0.53 0.54 

pilotnov 0.6 0.61 0.62 0.62 0.69 0.65 0.65 0.64 0.62 0.62 

recipe 4.5 0.71 0.79 0.78 0.86 0.91 0.90 0.88 0.91 0.91 

scl05 2.6 0.65 0.75 0.74 0.70 0.77 0.76 0.67 0.76 0.75 

sc205 1.3 0.85 0.82 0.82 1.00 0.83 0.85 1.00 0.89 0.90 

sc50a 5.5 0.58 0.65 0.64 0.71 0.79 0.78 0.60 0.67 0.66 

sc50b 5.1 0.46 0.61 0.60 0.57 0.67 0.66 0.51 0.66 0.64 

scagr25 0.9 0.79 0.84 0.84 0.88 0.85 0.86 1.00 1.00 1.00 

scagr7 3.0 0.66 0.70 0.70 0.70 0.71 0.71 0.84 0.75 0.75 

scfxml 1.7 0.63 0.70 0.69 0.81 0.74 0.75 0.98 0.79 0.81 

scfxm2 0.9 0.72 0.82 0.81 0.94 1.00 0.99 1.00 1.00 1.00 

scfxm3 0.6 0.83 0.86 0.86 0.97 0.88 0.89 1.00 0.90 0.91 

scorpion 1.2 0.85 0.86 0.86 1.00 0.97 0.97 0.88 0,87 0.87 

scrs8 0.7 0.51 0.80 0.77 0.52 0.81 0.78 0.52 0.80 0.78 

scsdl 5.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

scsd6 2.8 0.17 0.16 0.16 0.19 0.17 0.17 0.18 0.16 0.16 

scsd8 1.0 0.78 0.71 0.72 0.89 0.72 0.74 1.00 0.83 0.85 

sctapl 1.4 0.84 0.71 0.72 1.00 0.73 0.76 1.00 0.83 0.85 

sctap2 0.4 0.88 0.80 0.81 1,00 0.89 0.91 0.98 0.82 0.83 

sctap3 0.3 0.89 0.82 0.83 0,99 0.88 0.89 1.00 0.92 0.93 

seba 0.9 0.17 0.20 0.20 0,19 0.21 0.21 0.22 0.23 0.23 

sharelb 4.5 0.46 0.65 0.63 0.52 0.66 0.65 0.74 0.72 0.72 

share2b 9.5 0.71 0.71 0.71 0.74 0.72 0.72 0.78 0.73 0.74 

shell 0.5 0.54 0.59 0.59 0~58 0.60 0.60 0.66 0.68 0.68 

ship041 1,1 0.31 0.16 0.17 0,40 0.17 0.19 0.44 0.17 0.20 

ship04s 1.1 0.32 0.41 0.40 0.37 0.43 0.42 0.40 0.47 0.46 

ship081 0.6 0.98 0.97 0.97 1,00 1.00 1.00 1.00 1.00 1.00 

ship08s 0.6 0.53 0.82 0.79 0.56 0.84 0.82 0.56 0.83 0.81 

shipl21 0.4 0.61 0.64 0.64 0.71 0.68 0.68 0.67 0.69 0.68 

shipl2s 0.4 0.67 0.74 0.73 0.85 0.91 0.91 0.74 0.80 0.79 

sierra 0.4 0.71 0.84 0.83 0.82 0.89 0.88 0.86 0.92 0.92 

stair 2.3 0.62 0.60 0.61 0,74 0.71 0.71 0.76 0.71 0.72 

standata 0.8 0.38 0.71 0.68 0.47 0.78 0.75 0.42 0.77 0.74 

standgub 0.7 0.30 0.71 0.67 0.30 0.71 0.67 0.33 0.73 0.69 

standmps 0.7 0.36 0.65 0.63 0.37 0.66 0.63 0.40 0.66 0.64 

stocforl 3.6 0.47 0.54 0.53 0.64 0.65 0.65 0.66 0.66 0.66 

stocfor2 0.2 0.74 0.80 0.79 0.73 0.73 0.73 0.74 0.73 0.73 

tuff 2.6 0.34 0.37 0.36 0.39 0.39 0.39 0.36 0.37 0.37 

vtp.base 2.3 0.58 0.58 0.58 0.70 0.66 0.67 0.72 0.67 0.68 

woodlp 11.0 0.12 0.01 0.02 0.13 0.01 0.02 0.12 0.01 0.02 

woodw 0.4 0.27 0.17 0.18 0.37 0.17 0.19 0.41 0.18 0.21 
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+ + + ~ ++ + +++ ~ ............. ~. 

+ "": iiii 2211 iiii • ..................... 

Fig. 2. Sharelb - Original structure. 

+ + ~  ~ + : ........................ +~÷ ,+ ~ .......................... 
" +  + + ,  ~2111111',[',[[',',i[',[i[ ":  ',',",',[',",[',','[[',77 ~ 

Fig. 3. Sharelb - 8 block partition, 0% dummy variables (/x = 0.63). 

+ ......................... + + +  .................... + +  + 

Fig. 4. Sharelb - 8 block partition, 20% dummy variables (/z = 0.65). 

v a r i a b l e s  is  i n c r e a s e d .  N o t i c e  h o w  t h e r e  is a t r a d e o f f  b e t w e e n  m a k i n g  the  n u m b e r  o f  

l i n k i n g  c o n s t r a i n t s  a n d  v a r i a b l e s  s m a l l  a n d  k e e p i n g  a f a i r ly  r e g u l a r  b l o c k  size.  In  m a n y  

cases ,  o n e  can  see  exac t l y  w h e r e  l i n k i n g  v a r i a b l e s  w e r e  i n s e r t e d  i n t o  b l o c k s  as t h e  

n u m b e r  o f  d u m m y  n o d e s  is  i n c r e a s e d .  
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+ 

,+ 

~ +  +~. + ~ . 

......................... +++++2-- 

Fig. 5. Sharelb - 8 block partition, 40% dummy variables (/x = 0.72). 

Fig. 6. PDS problem - Original structure. 

Fig. 7. PDS problem - Randomly permuted. 

In the second set of results, we show how well our heuristic identifies hidden structure 

in a problem. To do this, we consider the Patient Distribution System problem [ 1 ] which 

has a natural 11 block structure (see Fig. 6) and was obtained from the United States 

Air Force. The problem we consider here is of size 1,386 by 3,729, with 11 blocks 
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Fig. 8. PDS problem - Result o f  partitioning (/x = 0.94).  

Fig. 9. Stocfor2 - Original structure. 

Fig. 10. Stocfor2 - 2 block partition (/x = 0.90). 

all approximately 125 by 340 with 90 coupling constraints. This structure is hidden by 

randomly permuting its rows and columns (see Fig. 7).  Our algorithm is then applied 

to this matrix and the resulting matrix is shown in Fig. 8. Note that although 16 blocks 

were requested, our algori thm returned the natural 1 l block structure since we gave the 
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Fig. 11. Stocfor2 - 4 block partition (/~ = 0.80). 

Fig. 12. Stocfor2 - 8 block partition (/z = 0.73). 

~- + 

Fig. 13. Stocfor2 - 16 block partition (/z = 0.73). 

graph par t i t ioning algori thm approximately  2,500 d u m m y  nodes. The easier p rob lem of  

f inding 11 blocks also finds a s imilar  form without  any difficulties. These results show 

that our a lgor i thm effectively detects arrowhead form when it exists. For  this problem,  

our  heuristic takes 1.7 seconds of  CPU t ime on a Sparc 2 for the 16 block request. As 



52 M.C. Ferris, J.D. Horn/Mathematical Programming 80 (1998) 35-61 

Fig. 14. Stocfor2 - 32 block partition (/x = 0.69). 

• ~+ ~ 

Fig. 15. Stocfor2 - 64 block partition (/z = 0.63). 

Fig. 16. Stocfor2 - 128 block partition (/x = 0.55). 

we shall see in Sect ion 4.2, this is a very small  fraction o f  the t ime needed for so lv ing  

the under ly ing  l inear p rogram on a parallel  machine.  This solut ion t ime is typical  for 

most  o f  the p rob lems  that we have encountered.  There are a few problems which take 

longer  ( the  worst  is 25 seconds) .  
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Fig. 17. Stocfor2 - 256 block partition (/z = 0.44).  

For the remainder of the results in this section, we fix the level of dummy variables 

at 20 percent. The /z  values for different numbers of blocks for various of the problems 

from the NETLIB collection are given in Table 2. In most cases, the/z value decreases 

as the number of blocks increase as would be expected. There are exceptions to this rule 

since the heuristic does not always give a globally optimal solution to the partitioning 

problem. Some of the problems in the NETLIB suite do not split effectively into more 

than 8 or 16 blocks due to their relative density. Further, our algorithm is much more 

effective on very large and sparse problems, as would be expected. 

Figs. 9-17 plot the partitioned matrix for the problem "stocfor2" using 20% dummy 

variables. Note how effective the method appears to be in generating the blocks and the 

increase in linking variables and coupling constraints for more blocks. 

Certainly different solution techniques for linear and nonlinear programs will require 

measures other than /z to find what is the best partitioning. The greedy technique for 

partitioning can easily be modified to generate other partitionings if this is necessary 

(for example, if linking variables are less costly than coupling constraints the tie break 

could favor variables over constraints, etc.). Finally, we note that a-priori removal of 

dense rows and columns from the matrix did not improve the resulting partition when 

using our heuristics. 

4. Parallel solution of linear programs 

The remainder of this paper is concerned with the utility of the aforementioned 

partitioning algorithm. We apply the matrix partitioning scheme to linear programming 

problems arising in the NETLIB collection [ 7] to form a singly-bordered block-diagonal 

linear program (see Section 2). We then apply a variant of the bundle method to an ap- 

propriately formed dual problem and implement the resulting algorithm on the Thinking 

Machines CM-5 to obtain an efficient parallel method for general linear programming 

problems. 

After partitioning, the linear programming problem that we solve has the form 
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Table 2 

/x values for partitions into varying numbers of blocks 

Problem Number of blocks requested 

2 4 8 16 32 64 128 256 

25fv47 0.97 0.88 0.65 0.73 0.69 0.58 0.45 0.27 

80bau3b 0.78 0.62 0.60 0.59 0.56 0.52 0.43 0.41 

adlittle 0.95 0.59 0.50 0.47 0.35 0.18 0.10 0.03 

afiro 1.00 0.77 0.56 0.51 0.33 O. 16 0.00 0.00 

agg 0.80 0.74 0.65 0.44 0.27 0.19 0.19 0.18 

agg2 1.00 0.89 0.71 0.76 0.59 0.53 0.48 0.45 

agg3 1.00 1.00 0.83 0.78 0.66 0.57 0.53 0.50 

bandm 0.91 0.77 0.71 0.66 0.58 0.43 0.34 0.34 

beaconfd 0.73 0.49 0.48 0.46 0.44 0.44 0.38 0.28 

blend 0.75 0.75 0.62 0.46 0.29 0.18 0.00 0.00 

bnll 0.84 0.75 0.69 0.62 0.58 0.52 0.48 0.37 

bnl2 0.87 0.83 0.78 0.71 0.66 0.60 0.58 0.52 

boeing 1 1.00 0.73 0.69 0.66 0.62 0.57 0.44 0.34 

boeing2 0.65 0.52 0.39 0.34 0.32 0.25 O. 17 O. 16 

bore3d 0.85 0.74 0.65 0.62 0.52 0.49 0.41 0.38 

brandy 0.80 0.66 0.57 0.49 0.42 0.40 0.34 0.31 

capri 0.80 0.62 0.59 0.50 0.42 0.34 0.27 0.17 

cycle 0.91 0.80 0.77 0.70 0.66 0.58 0.55 0.41 

czprob 0.91 0.61 0.57 0.48 0.41 0.43 0.44 0.43 

d2q06c 0.94 0.89 0.80 0.79 0.75 0.66 0.52 0.41 

d6cube 0.32 0.06 0.04 0.04 0.02 0.00 0.00 0.00 

degen2 0.71 0.61 0.50 0.45 0.37 0.29 0.21 0.13 

degen3 0.78 0.60 0.54 0.45 0.34 0.30 0.25 0.20 

dflO01 1.00 0.83 0.76 0.67 0.60 0.57 0.49 0.44 

e226 0.81 0.71 0.63 0.59 0.46 0.39 0.35 0.34 

etamacro 0.92 0.69 0.62 0.56 0.45 0.40 0.29 0.18 

fffff800 0.83 0.54 0.45 0.34 0.33 0.28 0.28 0.27 

finnis 1.00 0.87 0.80 0.69 0.66 0.61 0.56 0.45 

fit I p 0.60 0.24 O. 12 O. 12 0.00 0.00 0.00 0.00 

fit2p O. 14 0.04 0.02 0.02 0.02 0.00 0.00 0.00 

forplan 0.96 0.88 0.84 0.68 0.62 0.54 0.42 0.35 

ganges 1.00 0.92 0.88 0.78 0.74 0.66 0.57 0.48 

gfrd-pnc 0.97 0.87 0.84 0.82 0.79 0.72 0.65 0.52 

greenbea 0.96 0.83 0.73 0.61 0.57 0.47 0.38 0.26 

greenbeb 1.00 0.90 0.79 0.66 0.62 0.51 0.41 0.28 

grow ! 5 0.97 0.72 0.68 0.60 0.55 0.00 0.00 0.00 

grow22 0.66 0.64 0.61 0.52 0.39 O. 18 0.00 0.00 

grow7 0.76 0.53 0.49 0.30 0.00 0.00 0.00 0.00 

israel 0.78 0.64 0.53 0.57 0.54 0.33 0.25 0.21 

kb2 0.55 0.52 0.34 0.24 O. 18 O. 19 0.00 0.00 

lotfi 0.92 0.65 0.61 0.57 0.49 0.52 0.47 0.40 

maros 1.00 0.95 0.87 0.82 0.79 0.71 0.51 0.36 

nesm 0.87 0.71 0.64 0.57 0.50 0.46 0.44 0.37 

perold 1.00 0.83 0.73 0.63 0.55 0.36 0.28 0.21 
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Table 2 - -  continued 

Problem Number of blocks requested 

2 4 8 16 32 64 128 256 

pilot 0.75 0.62 0.51 0.37 0.23 0.21 0.15 0.14 

pilot.ja 0.97 0.74 0.62 0.55 0.46 0.39 0.35 0.29 

pilot.we 1.00 0.80 0.72 0.60 0.56 0.40 0.29 0.23 

pilot4 1.00 0.99 0.77 0.60 0.49 0.44 0.39 0.21 

pilot87 0.87 0.68 0.51 0.39 0.37 0.23 0.19 0.16 

pilotnov 0.86 0.71 0.65 0.59 0.52 0.44 0.38 0.29 

recipe 1.00 0.93 -0 .90  0.76 0.46 0.26 0.01 0.00 

scl05 0.95 0.84 0.76 0.61 0.45 0.32 0.24 0.17 

sc205 1.00 0.94 0.85 0.72 0.62 0.47 0.37 0.24 

sc50a 1.00 0.88 0.78 0.58 0.41 0.25 0.00 0.00 

sc50b 0.92 0.79 0.66 0.56 0.44 0.33 0.00 0.00 

scagr25 0.97 0.91 0.86 0.85 0.75 0.69 0.62 0.55 

scagr7 0.87 0.79 0.71 0.63 0.56 0.52 0.46 0.33 

scfxml 1.00 0.87 0.75 0.65 0.59 0.48 0.38 0.32 

scfxm2 1.00 1.00 0.99 0.83 0.72 0.64 0.56 0.45 

scfxm3 1.00 0.95 0.89 0.77 0.74 0.62 0.53 0.47 

scorpion 1.00 1.00 0.97 0.94 0.92 0.87 0.66 0.45 

scrs8 0.91 0.80 0.78 0.69 0.62 0.50 0.46 0.43 

scsd 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

scsd6 0.25 0.64 0.17 0.04 0.02 0.04 0.00 0.00 

scsd8 0.75 0.92 0.74 0.36 0A0 0.04 0.04 0.00 

sctap I 0.90 0.81 0.76 0.62 0.55 0.46 0.38 0.15 

sctap2 1.00 0.97 0.91 0.86 0.80 0.72 0.59 0.44 

sctap3 1.00 0.94 0.89 0.83 0.77 0.71 0.61 0.53 

seba 0.26 0.22 0.21 0.20 0.20 0.19 0.17 0.14 

share lb 0.78 0.71 0.65 0.53 0.36 0.12 0.13 0.09 

share2b 0.89 0.75 0.72 0.32 0.21 0.16 0.19 0.19 

shell 0.65 0.62 0.60 0.53 0.47 0.44 0.41 0.36 

ship041 1.00 0.46 0.19 0.21 0.16 0.11 0.11 0.08 

ship04s 0.56 0.47 0.42 0.41 0.38 0.36 0.35 0.34 

ship081 1.00 1.00 1.00 0.73 0.53 0.47 0.40 0.33 

ship08s 0.88 0.89 0.82 0.76 0.73 0.70 0.66 0.64 

shipl21 1.00 0.70 0.68 0.59 0.50 0.48 0.44 0.42 

ship 12s 1.00 0.98 0.91 0.90 0.87 0.85 0.79 0.79 

sierra 1.00 1.00 0.88 0.79 0.75 0.77 0.69 0.52 

stair 0.97 0.85 0.71 0.48 0.34 0.23 0.18 0.15 

standata 0.90 0.77 0.75 0.68 0.66 0.59 0.57 0.54 

standgub 0.87 0.69 0.67 0.63 0.62 0.58 0.53 0.52 

standmps 0.86 0.76 0.63 0.56 0.52 0.43 0.46 0.43 

stocforl 1.00 0.75 0.65 0.56 0.49 0.43 0.30 0.13 

stocfor2 0.90 0.80 0.73 0.73 0.69 0.63 0.55 0.44 

tuff 0.78 0.43 0.39 0.32 0.30 0.31 0.27 0.20 

vtp.base 0.95 0.80 0.67 0.62 0.53 0.49 0.49 0.36 

woodlp 0.05 0.03 0.02 0.02 0.01 0.01 0.01 0.01 

woodw 1.00 0.67 0.19 0.14 0.10 0.10 0.05 0.05 
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K 

m i n  E cT xi 
X=(Xl,...,XK) 

i=1 

subject t o  Bix i  = bi, xi  c X i 

K 

E Rix i  = r. 

i=1 

Note that simple bound constraints on the variables have been represented as xi C 

Xi. There are several known techniques for solving problems of  this form in parallel  

[3,30,31,11,14]. We now outline the method that we use in this paper. 

4.1. Bundle-level decomposition 

For notational simplicity, we let 

~ cVi xi i f  B i x  i = bi, xi  C Xi, 

f i (x i )  := [ . + o e  otherwise, 

and we note that f i  is a closed convex function, proper if  the ith block is feasible. Our 

problem is rewritten as 

K K 

X=(Xl,...,XK) [~ 
i=I i=1 

Following Robinson [27,26],  we introduce a perturbation function 

f i ( x i )  i f  r -- Rix i = p, 
F ( x , p )  := _ i=1 

I. + o c  otherwise, 

a Lagrangian 

K 

L(x,  y) := inf{yTp + F ( x , p )  } = yTr + ~ { f i ( x i )  - yTRixi}, 
P i=1 

and a dual problem 

s u p g ( y ) ,  
Y 

where 

K 

* ' R  y " ,  g(y) := i n f L ( x , y )  = yTr-- E f i  I i Y) 
x i=1 

with 

f*  (RTy) = sup{ yT Rixi -- f i ( xi ) }. 
xi 

(1) 
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(R i y) is easily calculated by solving the following Note that, for a given value of y, f/* T 

linear program, the dimension of which is the size of the corresponding block B i 

m a x { ( y T R i - - c T ) x i  B i x i = b i , x i E  Xi}. (2) 
x, 

Under the constraint qualification 

K 

r E Z Ri(ri dom f * ) ,  
i=1 

the dual problem (1) has a solution and the dual optimal value is equal to the primal 

optimal value. Thus we solve the dual problem (1), whose dimension is given by the 

number of coupling constraints q. 

Note that g is a concave function, but it is not necessarily differentiable. However, 

it is possible (under the condition n ~ l  (imR/T N r i d o m f [ )  4: 0) to determine at least 

one subgradient of ( - ) g  using 

K 

Og(y) = r - Z RiOfi*(RTy)' 

i=1 

where 

Of* ( RT y ) = arg min{fi(xi)  -- yT Rixi }, 

as shown in [28, p. 223]. Thus a subgradient at y of ( - ) g  can be calculated by solving 

the K subproblems (2). Therefore, to solve (1) we use the bundle-level algorithm from 

[ 18], which is now discussed in more detail. Other related work on bundle methods 

can be found in [ 19,30,21,2]. 

Suppose that we wish to 

where f is a convex function and Q represents some simple convex constraint set. The 

algorithm builds a piecewise linear convex "model" function m which underestimates f 

and is given by 

m(x)  := max { f ( x  j) + f t ( x J ) ( x  - xJ)}, 
j=l  ,...,i 

where f~(xJ) E Of(xJ) and x j are the points the algorithm has already visited. Note 

that superscripts on the x represent different vectors in R N, whereas subscripts refer to 

component vectors of x. We can therefore calculate a lower and upper bound on the 

optimal value of f by evaluating 

f ,  = minimum value of model m over Q, 

f* = minimum function value already seen. 

Associated with f*  is an attaining x*. The algorithm chooses the next point at which 

to evaluate the function and a subgradient by projecting x* onto a carefully chosen 
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level set of the model function m. The "level" L is adjusted depending on how well the 

algorithm is progressing. A full description is now given. 

Given x I E Q and A c (0, 1), let A~ = ~ .  Having x i, repeat the following steps until 

convergence is attained: 

(i) Calculate f ( x  i) and ft(xi) E cgf(xi). 

(ii) Evaluate f . ,  f*  and x* and let A = f* -- f . .  

(iii) Let L t = Af .  + (1 - A)f* and determine the new level by 

L' i fA < AA~_1, 

L = min{L ~,L} otherwise, 

where 

A if A < AA~_~, 

A~_ 1 otherwise. 

(iv) Project x* onto the level set of the model ML = {x E Q ] re(x) <~ L}, that is, 

X i+l : ¢r(x*IML). 

It can be shown (see [ 18 ] ) that this technique will generate function values arbitrarily 

close to the optimal value under a simple compactness assumption on Q. Each iteration 

requires the evaluation of f ( x  i) and fl(xi) which can be carried out in parallel in our 

work as described above. The synchronization requires the solution of a simple linear 

program and projection problem, both over the same feasible set. This can be carried out 

very easily using crash techniques and restarts. The key to the success of this approach 

is a partition with roughly equal sized blocks and few coupling constraints. 

4.2. Parallel implementation 

The algorithm for solving linear programs given in the previous section has been 

implemented in PVM C libraries [8] on the Thinking Machines CM-5 supercomputer 

and used to solve a variety of the largest linear programs in the NETLIB collection [7]. 

PVM [8] is a set of C libraries that facilitate parallel programming in a message 

passing environment. The libraries are portable to a variety of parallel computers and 

also function well in distributed parallel applications. 

In our implementation, message passing is used to handle data associated with the 

linear and quadratic programs used for synchronization. The first part of our code 

partitions the constraints of the problems according to the algorithm given in Section 2. 

The output of this phase are two permutations, one for the constraints and one for the 

variables, the application of which gives the constraint matrix an arrowhead form. In 

determining these permutations, we treat all the constraints as if they were equalities 

and do not add slack variables since it is extremely likely that the slack variables would 

be added to the constraint blocks that we generate anyway, and the extra preprocessing 

work is not justified. This hypothesis could be tested in future work. 
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Table 3 
Parallel solution statistics 

59 

Problem % Density Dual Dim 32 Block/x Iters % Efficiency 

sc205 1.30 92 0.62 7 89.7 
scfxm3 0.60 348 0.74 10 91.0 
sierra 0.40 409 0.75 13 90.7 
scagr25 0.90 321 0.75 10 80.3 
bnl2 0.20 148 0.66 9 88.1 
sctap2 0.40 273 0.80 12 85.2 
sctap3 0.30 520 0.74 11 83.5 
stocfor2 0.22 240 0.69 11 87.2 
scorpion 1.20 76 0.92 7 90.6 
gfrd-pnc 0.50 164 0.79 10 87.3 

Once the partitioning is complete, we apply the bundle-level method to the resulting 

linear program. For the function and gradient evaluation steps we use an implementation 

of the revised simplex method written in C which incorporates the Reid basis updating 

technique [25] and other computational enhancements [24]. The synchronization steps 

solve the linear programs using the same code as the parallel steps, the quadratic program 

resulting from the projection is solved using a method due to Mifflin [22]. 

Special care is taken during the synchronization step to ensure that the vector y is 

indeed a subgradient. If a y is generated such that RTy ~ dom f/*, then the level is 

reduced by a multiplicative factor and the resulting problems are resolved in parallel 

until a suitable y is found. Using this technique we have circumvented the compactness 

assumptions required by the theory. This is not guaranteed to work, but has proven very 

effective in our computations. 

In Table 3 we report the results on the subset of the NETLIB problems that had 

very good/x values. We give problem density, the 32 block/z value calculated by our 

algorithm, the number of steps that the bundle-level method took to solve the problem 

on 32 processors and the parallel speedup efficiency. Our termination criterion required 

that two successive iterations have objective function values within 10 -9 of each other. 

The speedups for all of the problems are rather good. It should be noted that as the 

number of linking constraints grows, the efficiency decreases due to the difficulty of 

treating such constraints. Contrary to popular belief, however, the bundle-level method 

would appear to be a promising approach for solving such structured problems. Further 

computational comparison is needed between the bundle-level method and the other 

methods mentioned elsewhere in this paper, but this is beyond the scope of this work. 

5. Conclusions 

We have shown how to reorder the variables and constraints of a mathematical program 

in order to detect underlying arrowhead structure. The technique uses graph partition- 

ing algorithms on the associated graph of the constraint matrix. We demonstrated the 

effectiveness of our heuristics on the NETLIB problems and solved several of the larger 

problems with high parallel efficiency. 
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We r e c o m m e n d  the fo l lowing  three techniques.  

( i )  Mul t i l eve l  par t i t ioning a lgor i thms that combine  spectral methods  and the Ker- 

n i g h a n - L i n  heurist ic,  as implemen ted  in [ 15,12].  

( i i )  Add ing  20 % d u m m y  nodes to the graph to a l low uneven part i t ions.  

( i i i )  Bundle - leve l  methods  for so lv ing  the result ing mathemat ica l  programs.  
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