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Abstract—Understanding the behavior of large-scale systems Simulators scale through abstraction. For example, the
is challenging, but essential when designing new Internet pro- popular network simulator ns-2 [2] uses simplified models
tocols and applications. It is often infeasible or undesirable to for physical links, host operating systems, and lower layer
conduct experiments directly on the Internet. Thus, simulation, fth K ’ | K R h ’ iV sim-
emulation, and testbed experiments are important techniques of the network protoco StaF: - Researchers can easl y.SIm
for researchers to investigate large-scale systems. ulate a network topology with hundreds of nodes and links

In this paper, we propose a platform-independent mecha- on a single physical machine. Naturally, the simplification
nism to partition a large network experiment into a set of small  of hardware and system properties can adversely impact the
eXper?me”:S that ore Seqé‘e”t“%:'yexewt.ed' EaCthf thfe small  fidelity of experimental results [3]. In contrast to simula-
experiments can be conducted on a given number of experi-
mepntal nodes, e.g., the available mach?nes on a testbed. RFe)suIts tors, network emulators mc_)stly use the real hardware, _and
from the small experiments approximate the results that would ~ Software. This allows experimenters to run their unmodified
have been obtained from the original large experiment. We applications. While emulation can provide higher fidelity,
model the original experiment using aflow dependency graph  scalability is a challenge. Emulation testbeds such as Em-
We partition this graph, after pruning uncongested links, ulab [4] and the popular cyber-range DETER [5] include

to obtain a set of small experiments. We execute the small . . .
experiments in two iterations. In the second iteration, we model a limited set of physical machines that are shared among

dependent partitions using information gathered about both the ~ S€veral users. For fidelity reasons, many testbeds allocate
traffic and the network conditions during the first iteration. resources conservatively; for example, using a one-to-one
Experimental results from several simulation and testbed mapping between hosts in an experimental topology and
experiments demonstrate that our techniques approximate  machines in the testbed. This implies that if the number

performance characteristics, even with closed-loop traffic and : .
congested links. We expose the fundamental tradeoff between of experimental nodes exceeds the number of machines

the simplicity of the partitioning and experimentation process, ~ currently available in the emulation testbed, the expenime
and the loss of experimental fidelity.! cannot be executed.

Scalability of network simulation and emulation has been
extensively studied in the literature. ldeas from parallel
computing [6] and resource multiplexing [7] have been
. INTRODUCTION adopted to increase experimental scale. For discrete-even

Understanding the behavior of large-scale systems is critiSimulators [8], [6], events are distributed among multiple
cal when designing and validating a new Internet protocol of"achines to reduce the simulation time and required hard-
application. However, investigating large systems isdifii ~ Ware resources per machine. Additional overhead for inter-
Since it is often infeasible to perform experiments dirgot ~ Machine synchronization and communication depends on
the Internet or build analytical models for complex systemshow events are partitioned. Emulation testbeds can scale,
researchers often resort to simulation, emulation, aritieds 0 @ certain extent, via mapping multiple virtual resources
experiments. Consider the example of studying the impac@nto available physical resources. For example, the Em-

of a large-scale Distributed Denial of Service (DDoS) dtac Ulab testbed [7] can support experiments which are 20
utilizing a massive botnet. The attack against Estonia idimes larger than the testbed. This network testbed mapping

a well-publicized example [1]. It is important to explore Problem is NP-hard [9]. The main challenge, especially
defenses against this attack using realistic scenariost, isu with DDoS experlments, is that the mapped experiment
undesirable to perform attack experiments on the operaition €@n overload physical resources (e.g., CPU or memory of
Internet. Testbed experiments are vital for studying how we & Physical machine) and lead to inaccurate experimental
a defense would work against such a large scale attackeSults [3]- _ _
Due to this, several countries have invested in large sgcuri N this paper, we present a more versatile solution to
testbeds, popularly referred to egber-ranges the experimental scalability problem. We divide a large
network experiment into multiple smaller experiments,heac
1This work was funded in part by Northrop Grumman Information Of Whichis manageable on a testbed. We conduct the smaller
Systems, and by NSF grant CNS-0831353. experimentssequentiallyon the testbed in two iterations.
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The key contributions of our work include (1) our novel a router does not interfere with a flow from port 4 to port
approach and tool to automatically partition a large exper3. Although this is not always true for low-end routers [3],
iment into sequential small experiments basednetwork the assumption holds for typical core routers, and in most
flows and the dependencies among thé®) our iterative  network simulators, e.g., ns-2 [2].
approach to modeling interacting small experiments, ajid (3 Our approach relies on several simple but important ob-
our comparisons of different approaches via both simutatio servations. First, a large-scale network experiment ira®l
and testbed experiments. many nodes and flows but not all flows directly interact
Our proposed method|ow-based scenario partitioning with each other, e.g., by sharing a physical link. If we can
(FSP) is platform-independenibecause it does not require identify the parts of the network that are not strongly tied,
any modifications to the simulation, emulation, or physicalcan initially examine each part independently. The second
testbed. FSP can be integrated with any existing scalingbservation is that even though a network scenario may
solution. FSP can also be used to analyze dependenciesntain many flows, researchers are often only interested
and tune an experiment, even when the experiment is smalh fine-grained performance of a few of the flows. The rest
enough to fit onto a testbed. of the flows may be used to generate network workload
The remainder of this paper is structured as follows.and considered as background traffic. For example, when
Section Il defines our notation and assumptions. Sections |l studying performance of a web server, we can set up an
IV, and V explain our proposed method, FSP. Sections Vlexperiment with several background FTP flows. Since we are
and VIl describe the experiments used to validate FSP. interested in the web server, we need detailed measurements
Section VIII summarizes related work. We conclude infor HTTP connections such as request/response time. We
Section IX. may not need to measure file transfer times for the FTP
flows, and the precise arrival processes of these flows are not
important as long as they possess certain statistical giepe
In this paper, we focus on performance of data flows.(e.g., average throughput is 1 Mbps or FTP file request
Hence, the termmetwork experimentwill be used to referto  frequency is 1 file per second).
data plane experiments. A network experiment is repredente

II. BACKGROUND

by anetwork scenaripthe smaller experiments generated by I1l. OVERVIEW OF FSP

our method are referred to asb-scenario®r partitions A _

network scenario includes tetwork topologyand theflow Our proposed method, which we refer to famw-based
information. scenario partitioning(FSP), does not partition the network

We model the network topology as a gragh= (V,E) nodes, as with partitioning _ap_proaches for parallel_ and
with vertex setV, representing the routers and end hostsdistributed simulation [6]. This is because our goal is to
in the network, and edge s&, representing the links in conduct experiments for each sub-scenardependentlyn
the network.|V| and |E| denote the number of vertices gtestbed.'lf we partition the network topology directly as
and number of edges in the graph, respectively. The flowilustrated in Fig. 1(a), some flows may traverse two or more
information describes all traffic in the experiment. Eaciflo Partitions, and we would need to concurrently execute and
in F includes information about the network application thatSynchronize more than one sub-scenario experiment. thstea
generated the traffic flow (e.g., FTP, HTTP), the parameter8f partitioning the nodes in the topology, we partition the
of the traffic of that application (e.g., request intersaati flowsin the network scenario as illustrated in Fig. 1(b).
times, file sizes), and the source, destination, route, &nd d
rection of the flow. Traffic flowing between the same source <. . .
and destination nodes is grouped into the same macro-flow, E~&
Depending on the type of network application that generatefs . I
a flow, the flow can bepen-loop(e.g., unresponsive CBR ‘&= - Flow2 ™
UDP flow) or closed-loop(e.g., TCP flow). The route of a . " ™. -
flow is a sequence of hops from its source to its destination Sub-scenario 1~ Sub-scenario 2
node. Thedirection of the traffic indicates whether it is
unidirectional or bidirectional.

We initially make the following simplifying assumptions. Figure 1. Direct network partitioning versus flow-basedveek partition-
First, routes in the network are assumed not to chang&g.
during the course of the experiment. Second, we assume
symmetric routes for bidirectional flows, i.e., the packets FSP consists of two phases. In the first phase, we auto-
in both directions traverse the same route. Third, flowsmatically split the input scenario into several sub-sciesar
traversing the same router bubt sharing any linkare  We build a flow dependency graph (FDG) to model the
independent. For example, a flow from port 1 to port 2 ofrelationship between flows. Each connected component in

(a) Partitioning the network directly (b) Flow-oriented partitioning



the FDG constitutes a partition of the graph, which repreAlgorithm 1 Flow-based Scenario Partitioning (FSP)
sents a sub-scenario. If any of the connected components

is too large for the resources available for an experiment-OW-BASED PARTITIONING (network flows maxNodg
i.e., it contains too many hosts and routers, we apply a  Input: A network scenario with topologyngtwork,
modified recursive bisection algorithm [10] to cut these flow information (flows), andmaxNode
connected components into partitions that meet the resourc ~ Output: Estimate of results for original network scenario.
constraints. Section IV gives the details of this phase. The

quantity maxNodedenotes the upper bound on the number > Phase 1: Partition the input network scenario
of nodes that can be supported in each sub-scenario. Observé fdg« BuiLD-FDG(network flows)

that in emulation testbeds such as Emulab and DETER, we2 Parts«< PARTITION(fdg maxNod¢

need to take into account additional required testbed nodes > Phase 2, Iteration 1

e.g., to emulate link delays, when computimgxNode > Collect traces in case of interaction among partitions.
In the second phase, we conduct experiments for each3 for (P € Parts)

sub-scenario and collect measurements for the flows of4 do Conduct experiment for sub-scenafo

interest. If sub-scenarios do natteract with each other, 9 for eachf e P

i.e., they are disjoint components in the FDG, we simply 6 do for eachf’ € fdgneighborgf)

conduct experiments for each sub-scenario independently.” doif (f' ¢ P)

In most cases, however, there will be interactions among8 then collect f's packet traces

sub-scenarios, i.e., there are edges in the FDG that cross on f.pathn f'.path

partition boundaries. To account for these interactions, w > Phase 2, Iterate for interacting partitions

must conduct experiments iteratively. In the first iteratio > Incorporate traces collected from first iteration

we study each sub-scenario independently and collect packe and acquire experimental results.

traces that capture information related to dependent flows9 repeat

in interacting sub-scenarios. In each subsequent iteatio 10 for (P € Parts) > For interacting partitions only

we incorporate informatiorcomputed fromthe traces in 11 do for eachf’ ¢ P

the previous iteration (via tools like [11], [12], [13]) mt 12 do sharedPath— (f"s path)n (links in P)

interacting sub-scenarios. In the final iteration, we atitee 13 if sharedPath# 0

desired measurements, such as the FTP transfer completidd then Import model (e.g., Tmix)

time or HTTP response time. Section V gives the details of f/ on sharedPath(in P).

of this phase. The overall FSP approach is summarized iA> Conduct experiment for sub-scenako

Algorithm 1. 16 until Convergence of results (i.e., twice)

IV. PHASE|: SCENARIO PARTITIONING

In the first phase of our approach, the input network A fow dependency graph, FDG =R(,Fe, fny, fne), is
sce!nario i§ partitioned.into sup—scenarios. By cart_afuﬁy S a weighted graph with vertex s&, edge sefe, vertex
lecting which 'flovv.s to |nglude in eac_h sup—scenarlq, ﬂOWSweight function fn,, and edge weight functiofine. Algo-
can have as little interaction as possible with flows in otherinm 2 gives the steps for FDG construction. A vertesin
sub-scenarios. Given a network scenaﬁ)a_v(/hlch |r_1cludes represents a flow in the given scenaBiand an edgéfy, f)
the network topology& = (V,E)) and flow informationk), i - denotes that flows; and f, are directly dependent
we divide Sinto sub-scenariosy, S, ---,S) such that the o each other. All FDG edges are bidirectional. Note that
number of hosts and routers in each of the sub-scen&hio ( o flows u andv may impact each other if there is a path
is < maxNode An example of this FDG construction and from y to v in the FDG. This follows from the transitivity
partitioning (tiling) process is illustrated in Fig. 2. property of dependence. Unless two flows belong to different
connected components in the FDG, they may affect each
other in the experiment.

Our first step is to identify the relationship among flows in  The fn, function we use in our current implementation
the network scenario. We consider two flows todiectly  sets the weight of a vertex (i.e., flow) to the number of nodes
dependentif they both compete for the same resources(routers or hosts in the network) in the path of the flow. The
such as network buffers or link bandwidth. In our currentweight of an edgene is set to the number of nodes shared
implementation, two flows directly depend on each otherby the two directly dependent flows. We evaluate this choice
if they share at least one common link in the network inexperimentally in Section VI.
the same direction during a time window. We model this In Algorithm 2, we insert all flows in scenart®as vertices
relationship using a flow dependency graph (FDG). in Ry. We then insert edges into the FDG based on the routes

A. Flow Dependency Graph (FDG) Construction



Algorithm 2 Constructing the flow dependency graph

RI
(a) A network experiment scenario (with topology and flows). 1
The end hosts (senders and receivers for all flows) are not 2
shown in this figure.
Sub-scenario 1 Sub-scenario 2 3
4
(b) The flow dependency graph of (ar)r.rw 6
7
Figure 2. Example of transforming a network scenario into a fiepen- 8
dency graph. According to the partitioning in (b), the netascenario in (a) 9
can be divided into two sub-scenarios with five routers e&ci-scenario
1 contains router§R0,R1,R3,R6,R9} and flows{F0,F1,F2,F5}. Sub-
scenario 2 contains routefR0, R4, R7, R8,R9} and flows{F3,F4,F6,F7}.
10
11

and the directions of the flows. Recall that an edge betweemn2
two vertices in the FDG indicates that the two flows will
compete for resources. We need to predict the existence af3
such competitiorwithout actually conducting the original 14
large experimentUnfortunately, such a priori prediction is

BuiLD-FDG(network flows)

Input: A network scenario with topologynétwork
and flow information {lows).

Output: A flow dependency graphdg)

> Initialize the flow dependency graph.

fdg < an empty graph
for eachf € flows
do fdg.addNodef)
> Add edge if the paths of two flows have
common links innetwork
for each(flowA, flowB) € fdg.nodes()
do commonlinks— flowA pathn flowB.path
if commonlinksZ 0
then newEdge— (flowA flowB)
newEdgecommonlinks— commonlinks
fdg.addEdgatewEdge
> Remove uncongested links. Remove the edge if
all common links are removed.
freeLinks— UNLOADED-LINKS(network flows)
for eachedgec fdg.edges()
do edgecommonlinks—
edgecommonlinks- freeLinks
if edgecommonlinks=0
then fdg.removeEdge{dgg

challenging, especially for closed-loop flows. Therefave,
resort to using flow path and direction. For example, if the
set of flows that will traverse link at any time during the
experiments {a, b, c}, we insert the three edges, £), (b, c),
and @,c), into the FDG. Of course, even though floasb,
andc all traverse linkl, it is possible that only a single flow
traverses link at any given time.

Edge pruning. Extra FDG edges unnecessarily limit our
ability to partition the experiment. Therefore, we prune
edges in cases of underload. Previous work [14] shows that
when flows are competing for the same link bandwidth, if
the capacity of the link is large enough, i.e., there are no
packet drops and only a few packets in the buffers, each

of the three flows on link cannot exceed 30 Mbps. Since
the physical capacity of link exceeds 30 Mbps, we predict
that link x will not be significantly congested during the
experiment. We have implemented an automated tool to
identify such links and delete them from the FDG.

Host b

flow will utilize this link as if there are no other flows on Figure 3. The solid lines are (unidirectional) physicakérand the link
the same link. Therefore, we identify “uncongested links” capacity is shown next to the link. Regardless of the type @kd]| the
in the network and remove these links from the FDG. (An299regate throughput on linkcannot exceed 30 Mbps.

edge in the FDG represents a set of links in the network that

are shared by two directly dependent flows, and an edge is The connected components in the FDG are automatically
removed from the FDG when it contains no links.) assigned as partitions of the graph. The size of a partiton i
Using flow path information and physical link capacity, defined as the number of routers and hosts used by the flows
we can estimate an approximate upper bound on the workn that partition. Wemergesmall partitions if their total size
load that can appear on any single link. If the upper bounds less than available nodem#&xNodg in order to limit
is less than the physical link capacity, we mark this link asthe number of experiments to be conducted. However, if
“uncongested” and remove it from the FDG. For example, inthe size of any partition (connected component in the FDG)
Fig. 3, assuming that there are three flows (from hagts  exceedsnaxNodewe must further sub-divide this partition,
and c to hostx) in the network, the aggregate throughput as discussed next.



B. Partitioning the FDG

Algorithm 3 Graph partitioning algorithm

The FDG created in the previous step may have severghrr tion(fdg maxNodé

connected components, and one or more of these com-
ponents may be too large to fit onto an experimentation
platform. Our next step is to further divide the FDG such
that each partition needs at masaxNodenodes (routers
and hosts). Ideally, we would like to partition the FDG
such that there is as little interaction as possible among
the components. Since the optimal solution to this graph2
partitioning problem is computationally intractable, wa-e
ploy an approximation that repeatedly computes two-way
partitions (i.e., bisections) of the graph [15]. Algorithgn
gives the complete algorithm. 4
We leverage the greedy graph growing partitioning ap-
proach (GGGP) [16]. GGGP is a simple approach to bisecé
a graph. It starts from a vertex and grows the region in &
greedy and breadth-first fashion. While the number of nodeg
in the region is smaller than half of the nodes in the graph

Input: A flow dependency graphfdg) and
a positive integemaxNode
Output: A set offdg partitions (each partition
is a set of vertices irfdg).
maxFlowNode— the maximum number of nodes
a flow will visit in the original scenario.
if maxNode< maxFlowNode
then return @ > Error, maxNodetoo small.
> Partition fdg such that each partition needs no
more thanmaxNodenodes.
initPart — fdg.nodes()
PartSet— {initPart }
while (P € PartSe) and (REQNODES(P) > maxNodé
do PartSet— PartSet— {P} + GGGHRP)
return PartSet

(line 5 of GGGPY()), the algorithm will add new vertices into GGGRP)

the region. A vertex that is adjacent to the current regiah an
has the smallest edge-cut (humber of edges that connect it to
nodes in that region) is selected in each iteration. Sinee th
algorithm is sensitive to the choice of the initial vertexew 1
randomly select the initial vertex and repeat the process fiv 2
times. The partition with the smallest edge-cut is seleeted 3
the final output.

As discussed above, the size of a partition in the FDG
is not sum of the weights of its vertices (i.e., flows). Since 4
there are nodes shared among the flows in the partition, thes
total size is the number dfistinct network nodetraversed
by the flows. Therefore, the size of a partition that is used in 6
the partitioning algorithm (line 6 of ARTITION() and lines 4 7
and 5 of GGGP()) represents the number of network nodes
required to execute an experiment with that partition.

When computing the weight of the edge-cut between two
partitions (line 8 of GGGP()), we do not simply add the 9
weights of edges; rather, we compute the distinct network
nodes included in the edge-cut. We evaluate this choice in0
our simulation experiments. 11

12

8

V. PHASE Il: SUB-SCENARIOEXPERIMENTS

Input: A partition P

Output: Two partitions By, P,)

>> Generate two initial partitions d®.

v« a random vertex i

Py {V}

Py, —P— {V}

> Move vertices fromP, to P until their weights
are balanced.

hal fNodes— REQNODES(P)/2

while (REQNODES(P;) < hal fNode$

> Move the best candidate vertegafdV) from P, to P;.

do for eachcandVe P,
do cutEdges— all fdg edges between
({P1+ candV}, {P — candV}).
cutWeighfcandV] —

WEIGHT(cutEdge$

Let cutWeighivertex be the smallest

value incutWeight]

P, — P+ {vertex

P — P, — {vertex

return {P;,P}

REQNODES(S)

After determining the partitions (sub-scenario§), (S,
-+, §j), our goal is to obtain the desired performance
measurements, such as the goodput of flows, from these suk-
scenarios. Without loss of generality, &tbe a sub-scenario 3
containing certain flows of interest, and let thererbsub-

Input: A set of vertices in arfdg
for eachflow € s.nodes()

do nodeSet— nodeSet{nodes onflow's path}
return |nodeSet

scenarios thainteractwith Sy, i.e., they belong to the same WEIGHT(S)

connected component in the FDG. We definghared link
as a link in the original network topology that is shared by1
flows in more than one sub-scenario. Assume that there arg
n shared links ir5;. In order to obtain measurements for the 3
flows of interest (inS;), we need to generate workload on 4
thesen shared links for flows in{S,,---,Sy} (since these

Input: A set of edges in afidg
for each(f1,fy) €s
do sharedLinks— fi's pathuU f,’s path
nodeSet— nodeSet {nodes ornsharedLink$
return |nodeSet




flows are not inS;). To achieve this, we propose to conduct C. lllustrative Examples

the experiments in two iterations. To understand how the two iterations of the second phase
] . of FSP work, we use a set of simple illustrative examples.
A. First Iteration We study network scenarios with FTP and HTTP flows using

In the first iteration, we conduct experiments indepen-the popular network simulator ns-2 (Version 2.31) [2]. We
dently for each sub-scenario. For interacting sub-scesari Use the topology given in Fig. 2, and set all last-mile links t
there will be flowsmissingon the shared links, compared 100 Mbps to create more interaction among flows. The FDG
to the original large scenario. For example, there can be for the closed-loop scenarios is given in Fig. 2(b). For FTP,

network link | that exists in both sub-scenari® and S, a client at the source host will send requests to download
and there are two flows; € S, f, €S on link | in the  files from an FTP server at the destination host. Each time

0rigina| scenario. When we conduct the experimentSpr the client downloads a 5 MB file, and the interval between
in the first iteration, flowf, will not generate any workload requests is exponentially distributed with the rate patame
on link | since it is not included irS;, and f; will also  (A) setto 0.1, 1, or 2. We generate HTTP flows using the
be missing fromS,. As a result, the measurements in this PackMime-HTTP [17] traffic generator. We control the rate
iteration may be dramatically different, compared to thiose Parameter in the traffic generator to study network scesario
the original scenario, e.g., the throughputfginay increase  under different loads.

since f; does not need to compete for bandwidth with Uncongested scenariosWe first study the performance
Therefore, we collect packet traces for these interactingf our method in lightly loaded network scenarios. We use 8
flows, and then use information computed from these tracek TP flows and the rate parametar) (s 0.1. We measure the

to generate workload that models the missing flows. goodput and packet drop rate for all 8 flows. As expected, the
measurements from the original scenario and sub-scenarios
B. Second Iteration (iteration 1) are almost identical (results omitted foritg,

and we observe similar results for lightly loaded network

In the second iteration, we sequentially conduct eXperi'scenarios with 8 HTTP flows (rate = 1). This confirms the

ments for each sub-scenario that interacts with others, bli'ﬁtuition that under lightly loaded scenarios, resultsniro

we now mcorgolrgte_ information cbomputeql from the first it- 5 gingle iteration suffice to accurately approximate result
eration to model its interacting sub-scenarios. Measunisne of the original scenario, which is the rationale for pruning

collected in this final iteration approximate the result$haf uncongested links in Section V.

ong!nal experiment. i Congested scenariosWe now increase the load in the
Since many flows arelosed-loop we cannot simply  henyork to increase interaction among flows. Table | lists

replay the collected packet traces on the shared links. Wene average results for a heavily loaded network with 8 FTP
must model the workload of flows at the application level, ;s (A = 2), repeating each experiment 10 times. The left

and model theconditions experienced by these flows in  gi4e of the table gives the results of the original network
the non-shared linksin interacting sub-scenarios. This is gcenario, and the rightmost columns list the percentage
crucial so that the missing flows are more aggressive igerence between the original scenario and the parttion

than they would have been in the original unpartitionedg,n_scenarios. For example, if flow 0 sent 100 packets in

experiment. In other words, the conditions in the networkyne original network and 120 packets in the sub-scenarios,
such as congestion level and delays experienced by thg. indicate the difference as 20%.

missing flows during the second iteration, must mimic the

original unpartitioned experiment, so that the transpod a 8Table I s
application layers at the end hosts can react similar to RESULTS FOR8 FTPFLOWS (A = 2).
their reaction in the original experiment. This is critical Original Difference
when the flows are bottlenecked in another partition or their Flow Sent Goodput | Sent | Goodput
propagation delays in another partition are high. (Packets)| (Mbps) | (%) (%)

89189.2 38.52 -1.57 -1.42
46636.2 21.58 1.59 1.78
89164.5 51.73 -0.69 -0.71
103391.8| 40.74 0.66 0.69
77328.8 36.03 -1.66 -1.70

77194 29.83 0.22 0.33
81920.4 43.97 -1.39 -1.47
62159.5 30.65 1.43 1.47

In our experiments in this paper, we investigate the use
of three tools (1) Tmix [11], (2) Harpoon [13], and (3)
Swing [12] to (i) process packet traces collected during the
first iteration, and (i) model non-shared network condigo
and generate application workloads in the second iteration
These tools capture application traffic characteristicg.(e
connection vectors representing requests, responses, and
think times), as well as network conditions (e.g., rounp-tr As depicted in Fig. 2, we have 2 sub-scenar®sk,) and
time (RTT) and packet loss) on the parts of the network thatink RO-R9 is shared among them. In the first iteration, we
are not shared among partitions. conduct an experiment fd?;, and collect a packet trace on

~NOoO b wWwNE O




link RO-R9, which contains packets for flow 0. We collect After the second iteration, we are better able to predict
another packet trace on link R0O-R9 which includes flow 4the goodput of flows 4 and 6. However, the goodput of
and flow 6 when running the experiment féy. flow O is still 5.32 Mbps higher than the correct value.
In the second iteration, the packet trace on link RO-R9Recall that when we generate the workload for flow 4 and
is input to the Tmix tool [11] to generate workloads that flow 6 into Py, the network conditions oP, are modeled
represent the missing flows on the link, i.e., flow 4 andas the delay, link capacity, and loss on the Tmix delay
flow 6 for P, and flow 0 forP.. When connecting the Tmix boxes. Ideally, the loss rates should capture the impact of
workload generator to link RO-R9, we insert a “delay box” other flows inP. (flow 3 and flow 7). However, to reduce
between the link and each Tmix traffic generator. This delaycomplexity, we do not capture theynamicsencountered
box introduces delays representing the one way portion opy each flow in the interacting partition. As a result, the
the RTT of each flow, minus the propagation delay of theworkload generated by Tmix in the second iterationPpf
shared path. The capacity of the delay box is configured to btgils to accurately constrain the goodput of flow 0. We are
the bottleneck link capacity of a flow. We assign loss rates te¢urrently investigating alternative Tmix configuratiorisat
the delay box to model the network conditions encounterednore accurately represent the workload of missing flows, at
in interacting partitions. For each path, we compute thghe expense of space and time complexity.
packet loss rates of the non-shared linkem the trace
collected in the first iteration. For example, let,np,ns,  D- Examples with Multiple Interacting Partitions

andny be the nodes on the path of flow 0, whereandny We now examine other aspects of the tradeoff between
are the source and destination of the flow apdindnz are  experimental fidelity and complexity. Consider open-loop
the two end pOintS of the shared link. The four loss rateslows and assume we will S|mp|y rep|ay traces during the
on the non-shared parts of the flow (in both directions), i.e.second iteration anahot use a tool like Tmix to model
(N, M2), (N3, Na), (Na,n3), @and (nz,ny), are used in the delay network conditions. As discussed earlier, FSP represhats t
box configuration. relationship between flows by an FDG, where each flow

Tmix also infers application behavior from the trace andis a vertex in the graph and two flows can influence each
represents it agonnection vectord11]. The results in  other as long as there is a path between them. If there is no
Table | demonstrate that long-term metrics, such as théirect edge between two flows, the interaction among the two
average goodput of a flow, can be reasonably predicteflows can only be propagated transitively via other flows. If
using our method. Transient behavior of the flows is notthe flows belong to different sub-scenarios, this propagati
preserved due to this simple Tmix configuration that does noprocess can only take place in a subsequent iteration.
capture dynamics of the interacting partitions, and simply
uses average values over the entire experiment.

Shared links are bottlenecksIn the previous experiment,
although the network is congested, the shared link RO-R9 is RO | :
not a bottleneck in the original network because flows 4 and Flow 2V
6 and flow O are downloading files in opposite directions.
We now reverse the direction of flow 0 to make link RO-R9
the bottleneck link. The goodput of the flows is given in . . .
Table 1. We are especially interested in flows 0, 4, and 6, _For exam_ple,_ consider th_e network scenario shown in
since they are the flows on the shared link RO-R9. In the first 9 4 In this simple scenario, there are three UDP flows,
iteration, the goodput of flows 0, 4, and 6 is 16.22, 11.16,‘3""(:h belonging to a different partitiorF{ € Py,F2 €

and 13.75 Mbps higher than the goodput they obtain in thé:)z":3 < P3)'.Tab|? lll gives the goodput for all three flows
original scenario. This is due to the missing flows in eachafter each iteration. Th_e gopdputs of flow 1 and flow 2
sub-scenario, e.g., flow 0 does not existFin can be collected after iteration 2, as they do not change

in subsequent iterations. The goodput of flow 3 is incorrect
until the third iteration. This is because, in this netwdte

R
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Figure 4. A scenario with a sub-scenario that interacts with others.

Table Il

GOoODPUT OF8 FTPFLOWS (MBPS) IN DIFFERENT ITERATIONS traffic on the bottleneck link R1-R2 depends on all three
flows, and the effect of flow 2 on flow 1 will not have
F'gw O;g'gg' 'tegast';’? 1 Ite;“gg 2 propagated to the packet trace on link R1-R2 after the first

1 | 4041 | 3899 40.37 lteration. _
2 49.88 38.63 49.53 Now consider closed-loop flows and the use of Tmix. We
3 46.16 39.07 47.45 again use the network scenario shown in Fig. 4, with three
4 29.03 40.19 29.17 . .
5 40.20 38.67 39.42 FTP flows, and 1 ms propagation delay on all links. The
6 32.18 45.93 33.23 results are given in Table IV. We observe that the results
’ 39.72 33.98 41.24 stabilize after the second iteration.




Table Il

GOODPUT OFUDP FLOWS IN KBPS we generate a set of Rocketfuel [18] topologies represgntin
the backbone network using the Rocketfuel-to-ns tool [19].
Flow | Original | lteration 1 | lteration 2 | lteration 3 For each flow, we insert two end hosts as the source and the
% ggg? ggij ﬁgg fl‘gg destination of this flow and randomly attach these end hosts
3 1513 2646 1225 1546 to the backbone network. The end hosts are only attached to
routers with degree no larger than three and, to avoid trivia
Table IV cases, the source and destination nodes of a flow are not

GOODPUT OFFTPFLOWS IN KBPS
attached to the same router.

Flow | Original | Iteration 1 | Iteration 2 | Iteration 3
1 4014 9333 5416 5416 A. Weights in Partitioning
2 10684 12705 8542 8542 . . . o
3 5756 10039 6600 6600 We first evaluate our choice of weight function in the

first phase of FSP. Recall that we compute the weight of an
edge cut in the FDG as the number of distinct nodes (hosts
Unlike the open-loop case, where we naively replayedand routers in the network topology) among all the shared
the packet trace, we employ Tmix tgenerate the ap- network links represented in the cut (Section IV). Since the
plication workload and to model the network conditions graph partitioning algorithm in our method aims to select
in interacting partitions. Two iterations are now suffidien partitions with low edge cut weight, the function we choose
because, in the second iteration, we are already modeling calculate the weight of an edge cut should help reduce
network conditions that a flow encounters on parts of thehe interactions among partitions. In this section, we show
network not represented in this sub-scenario. The apfitat how our weight function compares to a sample alternative
behavior extracted by Tmix for all three flows, each a Sing'efunction that uses the number of FDG edges on an edge cut
long-term TCP flow, remains unchanged in all iterations,as the weight. Since an edge in the FDG implies dependence
since we are using the same application traffic model. Tmixamong two flows, fewer FDG edges between partitions also
correctly infers that model from the traffic traces. Theimplies less dependence among partitions.
network conditions (delay and loss) inferred by Tmix from  Fig. 5 demonstrates the average number of shared links
the traces are stable from the second iteration onwards. Wgatween partitioned network scenarios when using these
repeat this experiment with HTTP flows, with different level +yo methods of computing the weight of an edge cut. In
of network congestion (with high and low packet loss) andthis experiment, we generate different network scenanjos b
the results are always consistent: results after the secor}gndowy assigning 50 or 100 flows with their end hosts onto
iteration are close to the original scenario. Table V gives & fixed Rocketfuel backbone with 100 routers. We compute

sample result from a highly congested scenario. the average number of shared links among partitions and the
Table V averaged results from 30 experiment runs are plotted. From
GOODPUT OFHTTP FLOWS IN KBPS ITERATIONS 6 ONWARDS YIELD Fig. 5, we find that using the number of distinct nodes as the
THE SAME RESULTS AS ITERATIONS. weight of an edge cut can lead to fewer shared links among
Flow | Original | Tier T | Tter 2 | Tter 3 [ Tter 4 [ Tier 5 sub-scengnos than s!mply using the number of dependent
1 3607 | 9748 | 3610 | 3617 | 3563 | 3529 flows. This not only indicates that we have fewer packet
2 10961 | 14490 | 10487 | 10801 | 10550 | 10744 traces to collect in the second phase of our method, but also
3 5902 | 9734 | 5585 | 5684 | 5640 | 5649 implies that there may be less complex interactions among

. . . . sub-scenarios.
The examples in this section highlight a fundamental

tradeoff: fidelity of the results versus the time and space
complexity of the experimentation process. When simple
aggregate measurements, e.g., average RTT or loss over the
entire experiment, are input to a tool like Tmix to model
network conditions encountered by a flow, loss of fidelity
will occur, compared to having more detailed represematio

of network conditions, e.g., a time series of packet losg ove
the entire experiment duration. We are currently exploring
this tradeoff in greater depth.
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In this section, we investigate the first phase of FSP. GiverfFigure 5. Number of shared links among sub-scenarios with twthade
the size of a backbone network (the number of routers) anép calculate the weight of an edge cut.
the number of flows we wish to have in a network scenario,



B. Time Complexity to reduce the number of routers. For example, if the last

The time required for the second phase of FSP depend® hops of a traceroute record are not used by any other
on the number of sub-scenarios and the tool used (e.gflow. we aggregate the delays between them and remove
Tmix vs. Harpoon) which can significantly vary According the 7 intermediate hops. After reductions, there are 438
to Algorithm 1, the time complexity of the first phase of nodes in this network topology. Note that the end hosts for
FSP, i.e., partitioning a large network scenarios into sublegitimate users and attackers are aggregated. For imstanc
scenarios, is decided by the graph partitioning algorithin ( the 50 attack flows rgpresent thousands of attackers from the
gorithm 3). Our current implementation uses the recursive®0 /24 subnets. All links are set to 100 Mbps.
bisection algorithm with complexit®(|Fe|logk), whereFg Since the size of this topology is larger than the'QETER
denotes the edges in the FDG andenotes the number of testbed, we use ns-2 to compare between the original and
partitions generated by the algorithm [16]. The worst casdh€ partitioned experiments. The 200 legitimate flows are
time complexity of our complete algorithm @(|F|4) where generated by the Pacleme—HTTP module in ns-2 with 2
IF| is the number of input flows. This includes our functions 'équests per second using both HTTP/1.0 and HTTP/1.1.
to determine the size of a partition and weight of an edgd™r each HTTP/1.0 session, the client requests a 36 kB
cut (REQNODES() and WEIGHT() in Algorithm 3). page, which is the size of the most po_pular page in our _vveb

We computed the run-time for partitioning scenarios withSIt€, and terminates the TCP connection once it is received.
100 to 500 flows, randomly generating 30 scenarios for eachOr HTTP/1.1 sessions, the client first requests the same
value of the number of flows. As expected, the runtimeP@ge asin HTTP/1.0, but continues requests up to two other
is proportional to the number of flows in the network Pages using the same persistent connection. This 3-page per
scenario. The runtime can vary from seconds to hours fopession is based on the fact that most of our site visitors
the same number of flows depending on the complexity of85.89%) view at most three pages during their visit. Each
the scenario or, in other words, the number of edges in thea9¢ contains several objects and the size and number of the
FDG. Despite the fact that FSP took up to a few hours forobjects are generated by PackMime-HTTP. For the attack
some scenarios with 500 flows, partitioning will typically flows, we send UDP packet bursts to the web server at
be invoked offline and infrequently, and hence FSP is still® Mbps and exponential on and off time with mean set to 2
feasible. Moreover, our current implementation does riat ta Seconds. _ o
advantage of possible performance optimizations; we will We execute FSP on this scenario witlexNodeset to
develop a faster implementation by selecting a faster graph00 to generate sub-scenarios which can easily fit onto a
partitioning algorithm, e.g., the k-way multilevel paiditing testbed like DETER. The large scenario with 438 nodes is

algorithm with O(|E|) [16], and using more sophisticated partitioned by FSP into 8 sub-scenarios where the largest

data structures and program optimization techniques. one contains 83 nodes — a reasonable size for DETER.
Due to space limitations, more partition characteristics We use a user-perceived metric, the ratio of successful
experiments. An HTTP session is successful if its durason i
VII. BOTNET EXPERIMENTS less than 60 seconds or the delay between receiving objects

Denial of Service (DoS) attacks have been launchedrom the server is less than 4 seconds [22]. Fig. 6 and Fig. 7
against Internet sites for decades, and distributed DoS agive the percentage of successful HTTP/1.0 and HTTP/1.1
tacks are one of the hardest assaults to defend against. Wisiessions in the 300-second period when the server is under
the prevalence of botnets in today’s Internet, individuala  DoS. We also examined the download time distributions for
easily launch a massive DDoS attack from a rented botngtages and objects. Clearly, results from the first iterasien
for just a few hundred dollars per day. In this section, weerroneous (100% success) since attack flows and legitimate
use both phases of FSP on a scenario that studies the impdltiws are mostly in separate partitions, while the resutimfr
of a large-scale DDoS attack targeting a busy web server dhe second iteration reasonably match the original soenari
Purdue University. A closer look at the results in Fig. 6 and Fig. 7 reveals

To understand the availability of our web server to visitorsthat a few flows (e.g., flow 9) have a lower success ratio in
during the attack, we selected 200 domains as sourcdabe partitioned experiments. Comparing Fig. 6 and Fig. 7,
of the legitimate users and 50 subnets as the attackerthe success ratios for HTTP/1.1 sessions are lower than the
The 200 (out of 14407) domains cover more than 70%HTTP/1.0 ones, and the results from the second iteration
of the service providers of all visitors to our web serverhave a greater error for HTTP/1.1. This is because HTTP/1.1
between May 2009 and May 2010, and the 50 subnets angses persistent connections. The HTTP/1.1 session has more
selected from the black list generated by DShield.org [21]objects and pages in the first iteration than in the original
in June 2010. We use traceroute from the web server to alicenario and the Tmix-injected TCP flows are thus more
200+50=250 /24 subnets to generate the network topologyggressive. This is because when a requested page is dropped
and find 1232 routers. Several heuristics are then applieth the original scenario, a client will not request the obgec



w into two categories: (1) approaches that reduce the size or

‘ Origionai —

100 |ttt bbby lOn L events in a given experimental scenario, and (2) approaches
. ) that perform intelligent resource allocation to map a given

8 T scenario onto available resources.

60 [ [t 1 The goal of the approaches in the first category is to

generate adownscaledversion of the original network
scenario that preserves important properties of the aigin
scenario. For example, Paat al. [23] propose Small-scale
Hi-fidelity Reproduction of Network Kinetics (SHRINK).

Successful HTTP/1.0 Sessions (%)

bl nil B RS X

0 s 10 15 20 2 Using SHRINK, one can construct a downscaled network
HTTP Flow ID replica by sampling flows, reducing link speeds, and down-
scaling buffer sizes and Active Queue Management (AQM)
flows are shown due to space constraints. parameters. Instead of sampling traffic flows, Keh al.
propose TranSim [24] to slow down the simulation and
‘ sampletime intervalg(also referred to aime expansion By

Figure 6. Percentage of successful HTTP/1.0 sessions. Baljirst 25
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100 bes e, Mteraln ] maintaining the bandwidth-delay product invariant, netwo
ST efation 2 e dynamics (such as queue sizes) and TCP dynamics (such
80 [ g as congestion windows) remain unchanged in the process of

i network transformation.
60 [ |’

Another noteworthy approach in the first category is
1 DSCALE, proposed by Papadopoulesal. [25]. DSCALE
: i _ includes two methods, DSCALEd and DSCALEs, that prune
) HW s [ F M Rl uncongested network links, based on earlier work on queu-
0 p o 1 2 p ing networks [26]. Petitet al. [27] investigate methods
HTTP Flow ID similar to DSCALE, and point out that downscaling methods
are highly sensitive to network traffic, topology size, and
performance measures. This is consistent with our findings
in [28].

_ ) ) Approaches in the second category map an experimental
in that page. Since there are no dropped requests in theenario onto available resources. These approacheslénclu
first iteration (the horizontal line in the figure for ite@ti  he application of a range of parallel and distributed simu-
1), a client will request more objects and pages in a conyation techniques such as in [6], [29]. For example, Walker
nection. Such changes in user behavior are hard to captugg 5| [30] employ software virtualization to migrate running
by workload generators unless they have application-layegqge images from one switch to another, in order to maintain
knowledge, which is avoided by Tmix because it hindersye proximity of the nodes attached to each RF switch. An
scalability and extensibility to new applications. TmiXl[L  important technique in this category is virtualization lsuc
Harpoon [13], and Swing [12] make different choices in 45 in [7], [31], [32]. In contrast to FSP, approaches in this
terms of the user, session, connection, and network charaggonq category typically map multiple nodes in the origina
teristics that they extract and model, and hence the fidelitganario to a single node in the experiment, potentially

of the results obtained varies according to which of thesgnoducing artifacts in experiments that overload resesy
tools we use, and how we configure the selected tool. A§,ch as DoS experiments [3].

we extract and model more information, space and time

complexity increase, but fidelity also increases. Thisdodfl Our approach is orthogonal to techniques in both cate-
must be balanced according to the goals of the experiment t8ories, and can be easily combined with them. For example,
be partitioned, and the time and space constraints. Reade#§wnscaling techniques can be applied to an experimen-
can refer to [20] for a detailed comparison between the thre&l scenario before or after FSP to simplify the original

tools and the comparison between FSP and a downscalirggeénario or to speed up the execution of a sub-scenario.
technique. Virtualization techniques can also be used on a sub-seenari

when appropriate, allowing it to be executed on a smaller

VIII. RELATED WORK number of testbed machines. FSP is a simple platform-

The experimental scalability problem has been studiedndependent approach for different types of experiments,

in the context of simulation, emulation, and testbed experincluding DoS experiments that pose significant challenges
iments. The proposed approaches can be broadly classifiedth other approaches [3], [28].

20 - |i

Successful HTTP/1.1 Sessions (%)

Figure 7. Percentage of successful HTTP/1.1 sessions. Baljirst 25
flows are shown due to space constraints.



IX. CONCLUSIONS ANDFUTURE WORK

[12] K. V. Vishwanath and A. Vahdat, “Realistic and responsive

In this paper, we have proposed a platform-independerttls]
mechanism, FSP, to partition flows in a large network
experiment into a set of smaller experiments that can bl4]
sequentiallyexecuted in two iterations. The results of the

smaller experiments approximate the results of the origin
experiment. FSP is platform-independent since it does n

require any modifications to the experimentation testbed.
Since the original large experiment and the partitioned16]
smaller experiments can be viewed as independent exper-

iments, our approach can be integrated with existing sgalin

solutions. For example, we can use our tools to understan

or simplify a large network experiment before applying
virtualization or hybrid simulation techniques.
Our results from several simulation and DETER testbed

experiments indicate that FSP approximates applicati
performance under different levels of congestion an

e

4

[

18]

on

4191

open/closed-loop traffic. Our future work plans includei-opt |20
mization of the partitioning process, and an in-depth asialy
of the granularity of modeling interacting partitions. We a

also experimenting with FSP on a variety of topologies an
flow mixes, including large CDNs and P2P systems. Th

£

21]
2]

focus of these experiments is to further explore the funda-
mental tradeoff between experimental fidelity and spaue/ti
complexity of the experimentation process. Finally, we are

examining the integration of hybrid simulation, emulation [23

and experimentation techniques into FSP, in order to relax
the assumptions we made, especially regarding dynamic
route changes and route symmetry.
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