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Abstract

We propose a new method to partition an unlabeled

dataset, called Discriminative Context Partitioning (DCP).

It is motivated by the idea of splitting the dataset based only

on how well the resulting parts can be separated from a

context class of disjoint data points. This is in contrast to

typical clustering techniques like K-means that are based

on a generative model by implicitly or explicitly searching

for modes in the distribution of samples.

The discriminative criterion in DCP avoids the prob-

lems that density based methods have when the a priori

assumption of multimodality is violated, when the number

of samples becomes small in relation to the dimensional-

ity of the feature space, or if the cluster sizes are strongly

unbalanced. We formulate DCP’s separation property as

a large-margin criterion, and show how the resulting opti-

mization problem can be solved efficiently. Experiments on

the MNIST and USPS datasets of handwritten digits and on

a subset of the Caltech256 dataset show that, given a suit-

able context, DCP can achieve good results even in situation

where density-based clustering techniques fail.

1. Introduction

The question how to split a collection of data into mean-

ingful subgroups is one of the oldest and most difficult prob-

lems in the area of machine learning. In the absence of

additional information, such as training labels or a quality

function, it is even ill-posed. In practice, it depends on the

applications and thereby ultimately on the human, which

partitionings of the data are preferred.

When building an algorithm one needs to formulate a

computable criterion for which partitions are good. Most

existing methods, such as K-means, mean shift or spectral

clustering, rely on a criterion that can be formalized as the

Cluster Assumption [7, 15]. It states that samples belong to

the same cluster, if they lie within a common region of high

sample density, whereas they belong to different clusters, if

they are separated by a region of low sample density.

However, not all realistic data is of that type, and humans

Figure 1. A 2D embedding of the digit ’1’ image in the MNIST

dataset. Humans easily identify a large region of right-slanted

digits (left) and a smaller left-slanted region (right). The parts are

connected by a densely populated transitional region.

have many other ways to split a dataset. This is particularly

apparent for image collections. Figure 1 shows a simple ex-

ample of handwritten digits. It consists of an arrangement

of handwritten digits in a 2-dimensional projection obtained

by PCA. Humans can split this set easily, e.g. identifying

the most discriminative, extremal examples of the left- and

the right-slanted digits with a transitional region of upright

digits in between. As we will see later, density based clus-

tering method fail to detect this. One can come up with

many other examples of this effect: a set of car images can

be split into front-views, side-view and rear-view examples,

even if many images do not fall perfectly into any of the

categories. Obviously, such a set does not fulfill the cluster

assumption, as the transition area between poses might be

densely populated as well. Such distributions are typical for

generating processes that involve continuous latent factors

like size, color or perspective.

In this paper we propose discriminative context partion-

ing (DCP), which allows splitting of image datasets like in

Figure 1 into subparts without applying the cluster assump-

tion. Instead, DCP relies in a purely discriminative way on

how well the parts can be separated from a disjoint sample

set by a generalized large-margin criterion. The additional

samples act as a rest of the world class, that can be inter-

preted as an analog to the context and background knowl-

edge that humans have.

Before we explain the details of DCP, we give an
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overview of related work in the field of clustering and of

previous uses of context sets in machine learning. Here and

in the following, we will call the generic process of split-

ting a dataset into parts partitioning. We reserve the word

clustering for methods where the resulting parts are clusters

in the density-based sense that the word is most commonly

used in. DCP is not a clustering method by this definition.

2. Related Work

There is a large amount of research on unsupervised, su-

pervised and semi-supervised learning that is related to the

problem of splitting a dataset into parts. In the following,

we will only look at methods that provide a hard assignment

of samples to parts, because this is also the way DCP works.

We sort the method by how the resulting parts are formed

and represented.

Prototype-based Clustering. A common way of rep-

resentation is to choose one prototype per cluster. Each

data point is assigned by a nearest-neighbor classifier to

the cluster of the prototype it lies closest to. The proto-

types are typically formed as linear combinations of sam-

ple vectors, as in the many variants of the classical K-

means clustering [13]—which is by far the most popular

clustering method today—or in mean-shift clustering [8, 9].

Alternatively, a selection of the samples themselves can

serve as prototypes, as in K-median clustering and median-

shifts [18]. As a variant, spectral clustering [14, 19] has

recently gained popularity, because it combines the flexi-

bility of an arbitrary distance measure with the simplicity

of the K-means search for cluster prototypes. Generally,

prototype-based methods perform a form of learned vector

quantization, and the resulting clusters typically correspond

to maxima in the sample density, possibly after a prepro-

cessing step.

Graph-based Clustering. Graph-based clustering tech-

niques represent a data set as a graph, and partitions non

parametrically as subgraphs. This makes them applicable

also in situations where the samples do not lie in a vector

space. Classical graph-based methods work hierarchically

as agglomerative clustering, or as divisive clustering [12].

Both approaches favor cluster boundaries between samples

that have a large distances from each other.

Classifier-based Clustering. Instead of representing the

clusters in terms of their elements, classifier-based cluster-

ing methods form parametric partitions of the whole input

space. This idea is e.g. employed by maximum-margin clus-

tering [24] which uses large-margin classifiers to identify

those parts of the dataset that can be well separated from

each other. Alternatively, in support vector clustering [4],

the contour lines of a trained one-class SVM with Gaussian

kernel form the cluster boundaries.

The use of large-margin classifiers makes these ap-

proaches related to DCP, but a fundamental difference is,

(a) ground truth (b) K-means (c) spectral clst. (d) DCP

Figure 2. Example dataset consisting of 2 overlapping parts (#,▽)

in an L-shaped arrangement. DCP with access to a context class

(�) identifies the intended parts. K-means and spectral clustering

without context yield worse results.

that all presented approaches rely in some way on the clus-

ter assumption to identify cluster boundaries, which DCP

does not.

Inclusion of Side Information. Research on the inclu-

sion of side-information into clustering has mainly concen-

trated on adding low level constraints to K-means-like al-

gorithms, e.g. by bounding the absolute or relative size of

clusters [5]. Another common approach is to use weak label

constraints, such as sample pairs known to have the same or

different labels [22].

To our knowledge, there is no published work on parti-

tioning by only using a context or rest-of-the-world class,

but context information has frequently been used in semi-

supervised learning. The Transductive Support Vector Ma-

chine (TSVM) [21] makes use of labeled and unlabeled data

from the same distribution by constructing a decision mar-

gin that separates the labeled samples but has few unlabeled

samples falling into it. Alternatively, learning with a Uni-

versum [23] makes use of additional data that belongs to a

different class than the training data. It relies on construct-

ing a classifier that separates the labeled data but is maxi-

mally indecisive about the context data.

Apart from not requiring any label information, DCP’s

way of using context also differs from both the TSVM’s and

the Universum’s approach. DCP does not rely on how the

context class can be split, but the context serves solely as

a stationary reference set. Only the dataset itself is split by

separating each of the parts individually from the context.

3. Discriminative Context Partitioning

We introduce the rationale behind the DCP algorithm on

the example of Figure 2, which was created by applying

DCP and other clustering methods to a toy dataset in R
2. It

contains an L-shaped dataset that we would like to split into

the vertical (blue) and horizontal (green) bars, as would be

a natural choice to a human. Additionally, a disjoint rectan-

gular context class (red) is available, that implicitly encodes

the geometry of our intended split.

Figure 2(b) shows that the K-means algorithm does not

find the intended split, presumably because the sample dis-

tribution is not multimodal, and the K-means objective



tends to favor equally sized clusters in such cases. Clus-

tering methods based on local distances, e.g. spectral clus-

tering with a Gaussian distance function, split the dataset in

a low density region (Figure 2(c)) which in our case is not

the intended split, either.

DCP works fundamentally different. It tries to find that

partitioning of the data, in which each part individually can

be separated better from the context class than the combined

data set, where we measure the separation by the margin

achieved by an SVM-like large margin classifier. The deci-

sion boundaries of the best achievable classifiers are shown

in Figure 2(d) as dashed lines. The resulting split of the L

is very close to the ground truth.

By using the SVM margin as a discriminative measure of

separation, we do not require assumptions about the densi-

ties of the parts. It is only their global shape that influences

the class decision. This makes DCP practically indepen-

dent of how densely the parts are sampled. The boundary,

at which the dataset is split, is not modelled directly, but

arises from the orientation of the classifiers. The method

is therefore indifferent to whether it splits the dataset in a

high-density or in a low-density region.

Similar ideas of splitting a dataset into more discrimina-

tive subparts has been employed earlier e.g. in the mixture-

of-experts framework [11]. A construction similar to DCP

has been proposed in a supervised setting as a multi-

prototype SVM [1]. However, DCP differs from these as

it does not require training labels and therefore also does

not aim at improving the classification accuracy. Instead,

we are interested in the most discriminative split itself.

A characteristic property of DCP is, that the choice of

the context class mainly determines how the data set is go-

ing to be split. Since the only constraint there is, that the

context is not a part of the dataset, usually more than one

possible context class is available, and they yield different

partitioning. This effect can be used advantageously, allow-

ing a user to explore different splits of the data. In contrast

to forming random splits, the context-driven exploration re-

spects the global geometry of the data.

Already from the simple situation in Figure 2 we can

see that DCP differs from other techniques to partition a

dataset, in particular from classical clustering techniques,

in three main aspects:

• It allows the partitioning of dataset that do not adhere

the clustering assumption, e.g. unimodal datasets.

• It is insensitive to how large the parts are and how

densely they are sampled.

• By choosing different context classes, the data can be

split with respect to different aspects, giving a human

user an interactive and explorative way to analyze a

dataset.

We will present supporting experiments for these claims in

Section 5.

3.1. Mathematical Formulation

To clarify the informal characterization in the previous

section, we now give the mathematical definition of dis-

criminant context partitioning that allows us to come up

with an efficient algorithm. For this, we assume fixed fi-

nite datasets X and Z. X is to be split and Z is the disjoint

context. For a fixed K ∈ N, we are interested in the most

discriminative split of X into K parts with respect to Z,

according to the following definition.

Definition 1. Let C be a set of classifier-like functions such

that for any c ∈ C and any subset A ⊂ X we have a mea-

sure sepf (A, Z) of how well f discriminates between A and

Z. Let X1 ∪ · · · ∪XK = X be a decomposition of X . Then

the total separation of this split is

sep(X1, . . . , XK ; Z) :=
∑K

k=1
max
f∈C

sepf (Xk, Z). (1)

A decomposition X∗
1 ∪ · · · ∪ X∗

K = X is called a most

discriminative K-split of X with respect to Z, if it maxi-

mizes the total separation over all possible decompositions

of X .

Different choices for C are possible. To make the defini-

tion useful, the separation measure has to take into account

global, e.g. geometric, properties of the sets. For example,

defining the separation between sets as the minimum dis-

tance between elements in some metric space will not give

interesting properties to the most discriminative split, be-

cause too large parts of X can end up in either subset with-

out influencing the separation score.

In a framework of linear hard-margin classifiers, how-

ever, a natural choice for sepf (A, Z) would be the margin

by which the classifier f separates A and Z. In fact, the

resulting splits could then look similar to DCP’s results in

Figure 2(d). However, this measure is undefined if A and Z

are not linearly separable.

For the DCP algorithm, we choose C as a set of soft-

margin generalized linear classifiers, e.g. soft-margin SVMs

with arbitrary kernel. The separation between sets is mea-

sured by the negative of the SVM objective function

sepf (X, Z) := −
1

2
‖f‖2

H−
∑

x∈X

ℓ(1−f(x))−
∑

z∈Z

ℓ(1+f(z)),

(2)

where ℓ is a monotonous convex loss function that penalizes

margin violations, e.g. the hinge loss or the quadratic loss.

This choice allows us to intuitively understand that a large

separation between two sets still corresponds to a large mar-

gin between them. The optimal f for given A and Z can be

computed efficiently by the usual SVM training procedure.



A solution to the discrete partitioning problem is now

given by the following proposition. For the sake of read-

ability we only formulate and prove it for linear classifiers

f(x) := 〈w, x〉 here. The non-linear case is obtained by

kernelization in Section 4.

Proposition 1. The most discriminative partitioning of X

with respect to Z is given by

X∗
k := { x ∈ X : argmax

k′=1,...,K

〈w∗
k′ , x〉 = k }, (3)

for k = 1, . . . ,K, where (w∗
k)k=1,...,K minimizes

J(w1, . . . , wK) =
1

2

K
∑

k=1

||wk||
2 +

K
∑

k=1

∑

z∈Z

ℓ(1 + 〈wk, z〉)

+
∑

x∈X

ℓ(1−max
k

〈wk, x〉). (4)

Here and in the following, the argmax should be inter-

preted in an exclusive way, such that each sample x ∈ X

cannot be assigned to more than one partition X∗
k . We have

also adopted the convention that the linear classifiers are

written without a bias term, but that the samples are aug-

mented in a way where one component of wk takes this role.

Proof. Because of the way the X∗
k are constructed, it is

clear that their union is all of X . We therefore only have

to show that (X∗
k)k=1,...,K maximizes the total separation

as given in Definition 1.

First, we parameterize the set of all possible splits

by introducing a binary membership matrix λ =
(λi

k)xi∈X,k=1,...,K for the elements of X , where λi
k = 1

if and only if xi is an element of Xk. We can ensure

that X =
⋃

k X∗ by demanding that
∑

k λi
k = 1. Every

λ now uniquely represented a split of X by the relation

Xk = {xi ∈ X : λi
k = 1}.

Note that by imposing additional constraints on λ, we

could also incorporate other side information like known

cluster membership for some samples, samples sharing or

not sharing their labels, or limits on the cluster sizes.

To prove Proposition 1, we will first study the situation

where the partitioning matrix λ is fixed, and afterwards the

maximization over all these cases.

Large margin classification with fixed partitions: In-

serting Equation (2) with a linear fk(x) = 〈wk, x〉 into

Equation (1) we obtain

sep(X1, . . . , XK ;Z) = − min
w

K
∑

k=1

{1

2
||wk||

2

+
∑

z∈Z

ℓ(1 + 〈wk, z〉) +
∑

xi∈X

λi
kℓ(1 − 〈wk, xi〉)

}

, (5)

where w = (wk)k. Since we assumed λi
k fixed, and the

components for different K do not interact with each other,

the optimal w can be found by training K independent soft-

margin SVMs with slack penalization ℓ, where each SVM

uses all of Z as negative examples but only those xi ∈ X

as positive example for which λi
k = 1.

Joint minimization over partitions and classifiers:

Finding the most discriminative partition corresponds to

maximizing Equation (5) over λ or equivalently minimiz-

ing its negative:

λ∗ = argmin
λ

min
w

K
∑

k=1

{1

2
||wk||

2 +
∑

z∈Z

ℓ(1 + 〈wk, z〉)

+
∑

xi∈X

λi
kℓ(1 − 〈wk, xi〉)

}

, (6)

subject to λi
k ∈ {0, 1},

∑K

k=1
λi

k = 1 for all i = 1, . . . , N .

Note that in a minimum argminλ, we will have

λ∗i
k 6= 0 only if ℓ(1−〈wk, xi〉)=min

k′

ℓ(1−〈wk′ , xi〉),

(7)

because otherwise we could increase the separation by de-

creasing λ∗i
k while at the same time increasing the minimal

λ∗i
k′ . Using the monotonicity of ℓ, we obtain that it suffices

to solve the unconstrained optimization problem

w∗ = argmin
w

1

2

K
∑

k=1

||wk||
2 +

∑

z∈Z

K
∑

k=1

ℓ(1 + 〈wk, z〉)

+
∑

x∈X

ℓ(1 − max
k=1,...,K

〈wk, x〉). (8)

The corresponding best partition X∗
k = Xλ

k can now be

reconstructed by going backwards through the calculation

and undoing the simplifications, yielding

Xλ

k = {xi ∈ X : λ∗i
k = 1}

= {x ∈ X : ℓ(1 − 〈w∗
k, x〉) = min

k′

ℓ(1−〈w∗
k′ , x〉)}

= {x ∈ X : k = argmax
k′

〈w∗
k′ , x〉} (9)

which concludes the proof.

3.2. Numerical optimization

The previous section gave us two equivalent formula-

tions to find the most discriminative partition. Minimizing

either Equation (6) or Equation (8) will yield the desired

split. However, neither of the formulations is convex, and

we therefore cannot expect to easily find a globally optimal

solution as in the case of fixed partitions. In the following,

we analyze the properties of both minimization problem,

showing that they give rise to two different implementation

for DCP.



3.2.1 Optimization by Deterministic Annealing

Equation (6) is an example of a non-linear mixed-integer

program. In general, these are difficult so solve because

of the combinatoric component. However, minimization

problems similar to (6) occur e.g. in the training step of the

Transductive Support Vector Machine (TSVM), and efficient

optimization techniques have been developed, e.g. based on

Deterministic Annealing [20].

Deterministic Annealing treats the entries of λ as ran-

dom variables following a probability distribution p(λ).
Studying the expectation value of the objective function

over p(λ), we obtain a homotopy method for solving (6)

that iterates the following steps: for a fixed entropy level H

we calculate the minimizing distribution p(λ) while keep-

ing w fixed. This is easy if we allow only factorizing dis-

tributions since λ is binary. Fixing this p(λ), we then min-

imize over w, which is a convex problem. By varying H ,

we obtain a sequence of simpler problems that converges

smoothly to the original non-convex and combinatoric prob-

lem for H → 0.

Applying this technique to (6) results in an algorithm that

is similar to the Stochastic MProtSVM Optimization method

proposed in [1] for training a multi-prototype SVM.

3.2.2 Optimization by Gradient Descent in the Primal

In deriving Equation (8), we were able to remove the com-

binatoric component, but with the negative side effect that

the resulting max-term makes the objective function non-

convex in w. Nevertheless, the resulting form is very sim-

ilar to a normal SVM optimization in primal form [6]. As

proposed there, we can apply a gradient descent based tech-

nique, either relying on subgradients [3] or smoothing the

objective function first, e.g. by a softmax operation. The

same applies to the loss function, where we can approx-

imate e.g. the non-differentiable hinge loss by the Huber

loss. As always when relying on gradient descent for a non-

convex problem, convergence to a global optimum is not

guaranteed, but we have to find a good start vector to not

get trapped in a local minimum. Our experiments show that

a random initialization for w is sufficient if we perform 10
or 20 restarts and choose the solution of maximal separation

score. Alternatively, one can start the process with vectors

w that were obtained my solving Equation (5) given some

suboptimal partitioning of the space, e.g. obtained by K-

means clustering.

4. Kernelization

So far we have only studied the case of linear classifiers.

As usually for SVM-like algorithms, we can make use of the

kernel trick [2] to extend our method to the non-linear case.

The use of kernels is also necessary in situations where lin-

ear operations on the samples are not defined, e.g. to find

splits of non-vectorial data. Since we have not represented

our optimization problem in the dual, where kernelization is

a standard procedure, we give a sketch how the kernel trick

can be applied also in the primal, following the description

in [16].

Let C be the space of soft-margin SVMs with kernel

function K(. , .) that gives rise to non-linear classifiers f

in a reproducing kernel Hilbert space H. Instead of Equa-

tion (4), the separation measure becomes

1

2

K
∑

k=1

||fk||
2
H +

∑

z∈Z

K
∑

k=1

ℓ(1+fk(z)) +
∑

x∈X

ℓ(1−max
k

fk(x)),

(10)

which we have to minimize over all tuples (fk)k ∈
HK . From this we can derive X∗

k := {x ∈ X :
argmink′ fk′(x) = k} as a most discriminative split of

X . We apply the representer theorem [17] and obtain

fk =
∑

j βk
j K( . , yj) for suitable coefficients β = (βk

j )j,k

and yj ∈ X ∪ Z. The objective function becomes

JK(β) =
1

2

K
∑

k=1

∑

yi,yj
∈X∪Z

βk
i βk

j K(yi, yj)

+
∑

z∈Z

K
∑

k=1

ℓ
(

1 +
∑

yj∈X∪Z

βk
j K(z, yj)

)

+
∑

x∈X

ℓ
(

1 − max
k

∑

yj∈X∪Z

βk
j K(x, yj)

)

, (11)

which we have to minimize over β ∈ R
N×K , where N =

|X| + |Z| is the total number of samples.

The kernelization runs completely along the lines of

other scalar-product based algorithms, but one has to spend

some care in the choice of kernels: our objective is not to

classify optimally between X and Z, but to identify mean-

ingful structure within X . Z acts only as a tool that encodes

information about the feature space in some discriminative

way. Therefore, the kernel should not be localized, as e.g.

RBF-kernels, but has to retain the global geometry and la-

tent structure that is present in X and Z.

5. Experiments

We tested out method on three image datasets, two of

handwritten digits and one of generic object categories. All

experiments were performed with the gradient-descent ap-

proach of Section 3.2.2 from 20 random starting positions

using the hinge loss ℓ(x) = C [1 − x]+ with C = 100.

Other values for C or a higher number of restarts did not

have a significant effect on the results.



Figure 3. DCP (left) and K-Means (right) splits of the MNIST digit

’1’ (bottom) using the digit ’7’ (top) class as context. The K-

Means objective favors balanced clusters. DCP finds parts which

depend on the overall to global geometric situation.

5.1. MNIST

We start by showing how DCP handles the situation of

datasets not fulfilling the cluster assumption, i.e. where the

parts that we would like to identify are not regions of high

sample density separated by a region of low density.

For this, we return to the example of Figure 1 in Sec-

tion 1. We project the MNIST dataset1 of handwritten digits

into R
2 using PCA. The task is to split the set of digits ’1’

into two parts and for this, we apply K-means and DCP,

where DCP is given access to the digit ’7’ set as context.

The results are shown in Figure 3 as point clouds: the

class 1 is the handle shaped cloud in the bottom, this is the

same as Figure 1. The other, more spread out cloud in the

top is the set of digits 7. DCP splits the set of 1s far to the

right, because this yields the best large-margin separation

from the context 7. By consulting Figure 1 we see that the

split falls into the region of upright digits. Therefore, the

split that DCP finds discriminates well between the regions

of different slant. This is also visible from Figure 4, which

contains samples from the resulting parts. The smaller par-

tition contains the left slanted and the larger partition con-

tains the right slanted digits. Uprights and irregular shaped

1s lie in the transitional region and occur in both partitions.

In contrast, K-means converges to a split where both

clusters basically contain half of the samples, a typical be-

havior if there are no clear local maxima in the data distribu-

tion. The resulting cut falls into the region of right slanted

digits, and the clusters do not show an interpretable pattern.

5.2. USPS

In another experiment, we analyze a situation where the

cluster assumption holds, but which nevertheless shows

drawbacks of the inherently generative clustering algo-

rithms. We used the USPS database2 of handwritten digit

images, treating each an 8 × 8 digit image as a vector in

R
256. We created pairwise mixtures of all combinations of

digits, and used K-means as well as DCP to separate these

again. In another experiment, we used the same setup but

1http://yann.lecun.com/exdb/mnist/index.html
2http://www.cs.toronto.edu/˜roweis/data.html

Figure 4. Random samples from the DCP split in Figure 3. The

left cluster contains mainly right-slanted digits, the right cluster

mainly left-slanted and irregularly shaped digits.

(a) balanced mixture: KM (left), DCP-avg (center), DCP-best (right).

(b) unbalanced mixture: KM (left), DCP-avg (center), DCP-best (right).

Figure 5. Errors rate in unmixing USPS digits for K-means (KM)

clustering, DCP with best context class (DCP-best) and average of

DCP over all context classes (DCT-avg). Black indicates 0% and

White 50% error rate.

mixed all samples of one digit class with only 10% of the

other digit class, creating datasets in which the target clus-

ters are strongly unbalanced. With the dataset consisting of

mixtures of 2 digits each, there are always 8 disjoint sets of

digits remaining, that we used as context for DCP.

Figure 5 visualizes the results for all pairs of digit mix-

tures in the balanced and unbalanced case. The error rate

is indicated by shading, with black meaning 0% and white

the maximal possible 50%. The matrices show the result

of K-means, of DCP averaged over all context classes, and

of DCP for the best context class in each case. One can see

that except for some outliers, K-means manages to separate

the balanced mixtures well. This is to be expected, as the

K-means objective is well suited for the case of multimodal

mixture densities. However, when the mixture becomes un-

balanced K-means fails almost always. Presumedly, this

happens because the local density maximum of the smaller

mixture component disappears.

DCP’s averaged performance is comparable with K-

means in the balanced situation, except that the scores are

more uniformly distributed. However, DCP is not affected



6 vs. 0 2 vs. 0
1 : 1 1 : 10 1 : 1 1 : 10

KM 48.8±0.0 46.8±0.4 5.9±0.0 36.3±0.6

DCP-1 14.5±3.5 14.2±2.6 22.6±2.1 22.5±2.6

DCP-2 27.3±2.0 25.2±2.3 — —

DCP-3 13.8±2.4 14.6±3.6 23.4±1.7 27.5±2.1

DCP-4 15.5±2.8 14.0±3.4 13.9±3.2 12.7±2.1

DCP-5 21.1±1.9 16.1±3.5 20.4±2.1 19.5±2.2

DCP-6 — — 21.1±1.4 20.7±2.1

DCP-7 3.6±0.9 4.5±2.0 5.8±2.6 6.0±1.8

DCP-8 14.5±3.5 15.1±1.9 22.0±3.1 23.9±3.4

DCP-9 6.1±1.9 7.6±3.0 8.0±2.9 6.6±2.5

DCP-0 — — — —

avg. 14.6±2.4 13.9±2.8 17.2±2.4 17.4±2.4

Table 1. Unsupervised separation of USPS digits by K-means

(KM) and DCP with context classes 0–9 (DCP-n): The column

titles indicate the digit pair that has been mixed and the mixing

ratio. The reported numbers are average error rates [%] with 95%

confidence intervals from 100 runs. See Section 5.2 for details.

by the mixture ratio, thereby clearly outperforming K-

means in the unbalanced case. For all mixtures, at least

one of the eight context classes causes a very good split,

typically better than the one by K-means. One can see

this from the minimal DCP error rates, which are generally

lower than the average ones. However, as we have men-

tioned in the introduction, there is no a priori best context

class. In a real application, a decision such as which con-

text yields the best results requires a human or a separate

automatic system to judge the splits.

Table 1 shows the effect of the different context classes

for two of the mixtures. ’6’ vs. ’0’ is a pair that K-means

fails to separate. DCP’s score clearly depends on the con-

text used, even though it is always better than the K-means

solution. Two of the context classes perform better than the

others, with the best one achieving excellent results of be-

low 5% error. This is consistent for the balanced as well

as for the unbalanced mixture. The second mixture, ’2’

vs. ’0’ is one that K-means manages to solve well, better

than the average performance of DCP and on par with DCP

with best context class. However, when the data becomes

unbalanced, K-means’ error rates again strongly increases,

whereas DCP’s performance is unaffected.

5.3. Caltech256

To show the possibilities that DCP offers for the explo-

ration of image datasets, we implemented a light-weight in-

teractive system that allows us to choose datasets and con-

text classes from the Caltech256 dataset3[10] and to visu-

ally inspect the resulting most discriminative splits. Inter-

3http://www.vision.caltech.edu/Image Datasets/Caltech256/

(a) Split of 020.brain with 021.breadmaker context

(b) Split of 020.brain with 053.desk-globe context

Figure 6. Explorative use of DCP: the brain class in Caltech256 is

split using two different context classes. A human could interpret

the first split as structured vs. smooth, and the second split as

natural vs. schematic.

nally, each image in Caltech256 is represented by a 1000-

bin bag-of-visual words histogram based on quantized SIFT

descriptors. In general, the classes in Caltech256 are very

uniform and clustering algorithms are not able to identify

meaningful subclusters. Here it comes as a benefit that

DCP has access to a large number of canonical context

classes, namely all other Caltech256 categories. While

many of those yield very imbalanced splits, making DCP

behave similar to an outlier detector, some combinations

yield balanced and interpretable results. Figure 6 shows

two of these: the brain class is split using two different

contexts, breadmaker and desk globe. While internally the

split are just based on DCP’s maximum separation prop-

erty, a human user can give a semantic interpretation, e.g. a

distinction between smooth and structures brain images in

Figure 6(a), and a distinction between natural and artificial

brain images in Figure 6(b).

Of course, this characterization is subjective, as the

whole process of partitioning without labels is. DCP pro-

vides a mechanism to come up many different splits—one

per context class—that give the user a meaningful selection

of all partitioning, based on a well-defined maximization

criterion. A typical clustering algorithm would require a

change of the data representation or the pair-wise distance

function for this, which is hardly possible in an interactive

system that is meant to be usable by non-experts.



6. Summary and Outlook

We have proposed discriminant context partitioning

(DCP), a new approach to split a dataset into a fixed num-

ber of parts. It differs from clustering techniques as it can

also identify parts that do not correspond to regions of high

sample density in feature space. This is because it relies on

a purely discriminative criterion, namely how well the parts

can be separated from a disjoint dataset of ”non-examples“

using a large margin classifier. DCP is motivated by the ob-

servation that the human way of splitting a dataset into in-

teresting parts is not necessarily guided by which patterns

occur most frequently. Instead, it is natural for humans to

characterize parts of a dataset by how easily they can be de-

tected and described in a realistic environment with objects

of other classes acting as reference. As a main contribu-

tion, we gave a large-margin formulation of this concept,

and showed that the resulting optimization problem is very

close to well-known approaches from semi-supervised ma-

chine learning. This allowed us to come up with two algo-

rithms that rely on standard optimization techniques.

We showed promising results on images datasets of

handwritten digits, and on a subset of the Caltech256 collec-

tion. Because DCP avoids the almost ubiquitous assump-

tion that partitioning a set is the same as identifying peaks

in the sample density, it is also applicable to unimodal and

strongly imbalanced dataset, yielding much more stable re-

sults than classical methods like K-means.

DCP requires access to a context class, and different con-

texts give rise to different splits of the data. DCP is there-

fore not intended to replace existing clustering algorithms in

situations, where the clustering objective is a well defined

intrinsic property of the dataset, such as vector quantiza-

tion. Instead, the approach of partitioning with a context

class can serve as a tool to explore the track that cluster-

ing is a subjective process, which depends not only on the

dataset itself but also on which aspect the user is interested

in. Using DCP, one can generate different meaningful splits

of the data by only changing the context set, but without the

need to come up with a new data representation or to define

a new distance function. This allows an explorative and in-

teractive way of dealing with the partitioning problem, and

in particular one that is also accessible to non-experts.

For future work, we see the need to improve the under-

standing of how data and context interact. This could al-

low to come up with new suitable classifiers and kernels.

Also, we plan to further study how human make use of con-

text and how this can be used to find better automatic algo-

rithms.
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