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The on-demand generation and separation of entangled photon
pairs are key components of quantum information processing
in quantum optics1–3. In an electronic analogue, the decompo-
sition of electron pairs represents an essential building block
for using the quantum state of ballistic electrons in electron
quantum optics4–7. The scattering of electrons has been used
to probe the particle statistics of stochastic sources in
Hanbury Brown and Twiss experiments8,9 and the recent
advent of on-demand sources further offers the possibility to
achieve indistinguishability between multiple sources in
Hong–Ou–Mandel experiments10–15. Cooper pairs impinging sto-
chastically at a mesoscopic beamsplitter have been successfully
partitioned, as verified bymeasuring the coincidence of arrival16–21.
Here, we demonstrate the splitting of electron pairs generated
on demand. Coincidence correlation measurements allow
the reconstruction of the full counting statistics, revealing
regimes of statistically independent, distinguishable or cor-
related partitioning, and have been envisioned as a source of
information on the quantum state of the electron pair22–26.
The high pair-splitting fidelity opens a path to future
on-demand generation of spin-entangled electron pairs from
a suitably prepared two-electron quantum-dot ground state.

The few-electron source is based on a single-parameter
non-adiabatic quantized charge pump27–29, which enables the deter-
ministic generation of single electrons and electron pairs with
tunable emission energy12,30. Non-equilibrium electrons propagate
along the edge of a quantum Hall sample with minimal inelastic
scattering. The device and measurement set-up are presented in
Fig. 1. An energy-selective detector barrier splits the incoming
beam of electrons into two detector paths. The coincidence of
arrival of electrons in the two detector channels leads to positive
correlation between the time-dependent current signals. These cor-
relations are inferred from a measurement of the zero-frequency
cross-correlation shot noise. Although an oscillator-controlled elec-
tron source is noiseless31, the splitting of electron pairs generates
partitioning noise and enables tomography of the probability dis-
tribution for the partitioning outcomes within each emission cycle.

The generation and energy-selective detection of on-demand
non-equilibrium electrons was demonstrated with the electron source
configured to emit one electron with charge e and repetition frequency
f of 280 MHz. Figure 2 shows the transmitted current IT as a function of
barrier energy. The maximum level of IT is 2% below the emission
current IP = 1 ef due to residual inelastic scattering events on the
2-µm-long path to the barrier (the emission error of the source is
<1 × 10−4). For energies greater than 57 meV, the current is pinched
off as all of the emitted electrons are reflected at the beamsplitter.
The emission energy is defined by the exit barrier height and can
also be modified by the amplitude and shape of the driving waveform,
which additionally influence the width of the energy distribution30.

Figure 2 also shows the cross-correlation noise power SX. Because
the sequence of emitted electrons is very regular and does not
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Figure 1 | Measurement set-up. a, Schematic diagram of the experimental

set-up following the Hanbury Brown and Twiss geometry. The current IP of

the triggered electron source is split into a reflected part IR and a

transmitted part IT. To measure the coincidence of arrival, the cross-

correlation between the time-dependent fluctuations IR(t) and IT(t) is

detected, giving rise to the cross-correlation noise power SX and the single-

detector channel noise power SR and ST. b, Energy diagram of the loading

(orange) and unloading (green) phase of the dynamic quantum dot,

resulting in a quantized current IP. c, Typical current characteristic versus

exit gate voltage (VDC), showing plateaux corresponding to the emission of

single electrons (i) and electron pairs (ii). d, Micrograph of the sample

geometry. The gates controlled with voltages VAC and VDC form the electron

source. White lines indicate chiral edge channels, which guide the electrons

to the detector barrier defined by VDet. The channel exit is pinched off

(VPO), ensuring that all transmitted electrons are recorded by IT.
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fluctuate within the resolution limit of our noise set-up, the corre-
lation between the two detectors is determined solely by the parti-
tioning of the electrons. For energies below the pinch-off region
we observe a small background of partitioning noise due to the
2% reflection of the energy-relaxed electrons at the detection
barrier. When all electrons are reflected at large detector barrier
energies, the cross-correlation signal is zero. In the transition, SX
reaches a value of –0.5 e2f due to the statistical partitioning at the
partially transparent barrier.

For one-electron scattering the current can be equated with the
transmission probability T(E) as a function of the electron energy
IT(E) = T(E)ef, and the resulting expected value for the partitioning
noise, Smod = –2T(1–T)e2f (black line, Fig. 2), agrees very well
with the measured data. In particular, the negative sign of the
cross-correlation signal reflects the anticorrelation of the two detec-
tor channels, as the sequence of single electrons is partitioned into
either reflected or transmitted electrons.

In the following, we characterize the on-demand emission and
splitting of electron pairs. With the quantum-dot current tuned on
the 2 ef plateau, one electron pair is emitted per waveform cycle.
The corresponding partitioning results are shown in Fig. 3a. The
noise power shows a single dip with twice the amplitude of that
observed for the single-electron case (Fig. 2). For a clocked stream
of electron pairs, the full counting statistics of transmission24

can be unambiguously derived from the measurement of IT and
SX, where IT = (p1 + 2p2)ef, SX = –2[p0(1 − p0) + p2(1 − p2) + 2p0p2]e
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Figure 2 | Partitioning noise of an on-demand electron source. Transmitted

current IT and cross-correlation noise power SX as a function of the

energetic detector barrier height with the electron source configured to emit

a sequence of single electrons. 0.5 e2f corresponds to a noise power of

3.6 × 10−30A2 Hz−1. Error bars consist of the statistical error, the error of the

estimated background and the calibration error. The solid black line

represents the expected value Smod of the partitioning noise determined by

the transmission probability T(E), which in turn is given by the fraction of

the transmitted current.
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Figure 3 | Partitioning of on-demand electron pairs. a, Transmitted current and cross-correlation noise power for a source of electron pairs emitted slowly

by a sinusoidal gate drive (see pictogram). The horizontal line at e2f indicates the level for the superimposed noise amplitude of two partitioned electrons.

b, Probabilities for two transmitted (reflected) electrons p2 (p0) and for split electron pairs p1. The dashed lines represent fits to the data using a binomial

distribution. c,d, Electron source tuned to emit electrons at separate energies due to a gate drive with fast emission pulse (pictogram shows the waveform of

−VAC) (c) leading to a splitting fidelity of 90% and an increased bunching at 57 meV (p2) and 50 meV (p0) (d). (i), (ii) and (iii) mark peak positions.
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and ∑ipi = 1. p2 and p0 denote the probability that both electrons are
transmitted or reflected, respectively. p1 is the probability for the
electron pair to split and both detector channels to record one elec-
tron each (Fig. 3b). For sufficiently slow driving of the source, the two
electrons are expected to be emitted in sequence at the same energy
(Supplementary Section A2). Subsequent independent scattering
with the same probability T for each electron results in a binomial
partitioning distribution, p2 = T2 and p0 = (1 − T)2. Assuming a
simple step function T(E) = 1/{1 + exp[(E – E0)/Δb]}, we derive the
probabilities shown in Fig. 3b by black dashed lines, with energy
E0 = 48.4 meV and the detected energy broadening Δb = 1.8 meV
of the emitted electrons as fit parameters and consistent with the
normalization of the probabilities to unity. A monotonic energy
dependence of the barrier yields good agreement with the measure-
ment, and at T = 0.5 the maximum probability for splitting the
electron pair is p1 = 50%.

A particular advantage of single-parameter charge pumps oper-
ated far from equilibrium is the possibility to separately control
loading from the source and emission into the drain by appropriate
tuning of the driving waveform29. We now employ a sharp ejection
pulse for the emission part of the cycle, aiming to reduce the time
delay between the electrons and to preserve the energy difference
imposed by the confinement in the quantum dot in the emission
spectrum of ballistically propagating electrons (Supplementary
Section A3). The resulting transmitted current shows a plateau at
1 ef, hinting at a separation of the two electrons in energy
(Fig. 3c). In comparison to the previous measurement, the cross-
correlation noise power now displays two separate dips at trans-
mission current values of 1.5 ef (i) and 0.5 ef (iii). Between these
dips, the cross-correlation noise drops to a low absolute value of
0.2 e2f at a transmission current of 1 ef (ii), consistent with each
of the two detectors receiving a positively correlated, but highly
regular stream of one electron per cycle. The corresponding count-
ing statistics (Fig. 3d) show the fidelity of splitting the electron pair
(p1) reaching 90%.

The counting statistics not only allow us to verify the pair-
splitting fidelity, but can also provide evidence for electron
interactions in the partitioning process. Strong anticorrelation
between the paths taken by individual electrons after the pair hits

the barrier (p1 > 50%) indicates that the two electrons are
distinguished by the scattering process. Statistically independent
scattering of two electrons with transmission probabilities Ta
and Tb would result in a Poisson binomial distribution, p0 = TaTb ,
p2 = (1–Ta)(1–Tb), which obeys the inequality

���

p0
√

+
���

p2
√

≤ 1.
This necessary condition for statistical independence defines a
domain in the (p0 , p2) plane, which is compared to the statistics
inferred frommeasurements in Fig. 4. The data points for pair emis-
sion, where the electrons are emitted sequentially at the same energy
(Fig. 3b, blue circles in Fig. 4), fall on the border of the domain, as
expected from Ta = Tb = T(E). The high-fidelity partitioning indi-
cated by the peak in p1 in Fig. 3d (red squares marked by (ii) in
Fig. 4) is consistent with the Poisson binomial distribution for a
semitransparent barrier (small p0, p2), where the electrons are distin-
guished by Ta ≠ Tb. Within this region an HBT correlation measure-
ment is unable to discriminate the physical mechanisms of
partitioning; a difference in transmission coefficients may indicate
splitting in energy or a more complex orbital separation induced by
the Pauli principle (for a specific example see Supplementary
Section B1). However, for low transmittance (small p2, large p0) the
independence condition is violated, indicating an increased bunching
of electrons at one detector (co-transmission or reflection) beyond
statistical coincidence. This effect is reflected in the cross-correlation
shot noise, which significantly exceeds the value of single particle
partitioning (0.5 e2f ), suggesting the two electrons are reflected or
transmitted together at their respective energies (E = 50 meV and
E = 57 meV in Fig. 3c,d, respectively).

The violation of scattering independence requires two-body
correlations in the incoming state or in the partitioning process.
Considering quantum correlations in the incoming state imposed
by the Fermi statistics, we note that a single Slater determinant
of two orthogonal spin–orbitals is insufficient for the counting
statistics to exceed the binomial constraint (Supplementary
Section B2), whereas a spin singlet with additional orbital corre-
lations (for example, a symmetric combination of two orbitals
with different energies24,25) can in principle cause a bunching
effect in the transmission. However, the non-monotonic energy
dependence of the bunching anomaly (peak (iii) of p2(E) in
Fig. 3d near E = 57 meV) is inconsistent with the single-channel
Landauer–Büttiker picture and a monotonic T(E), regardless of
the initial correlations in the incoming two-electron state, including
an arbitrary mixed state (Supplementary Section B3). Hence, we
conclude that electron–electron interaction during the partitioning
process remains the most probable cause for the observed bunching,
which may open a path to introduce nonlinearity in electron
quantum optics devices.

Methods
The electrons were sourced from a dynamic quantum dot formed by two metallic
gates over a 900-nm-wide etched channel of a two-dimensional electron gas (2DEG)
90 nm beneath the surface of a GaAs/AlGaAs heterostructure27–31. The carrier
mobility and density of the 2DEG were 1.6 × 106 cm2 V−1 s−1 and 2.6 × 1011 cm−2,
respectively. Controlled by the modulation of the entrance gate, a defined number
of electrons were loaded into the quantum dot and ejected over the exit barrier
into the channel (see refs 28–31 for a detailed description of the operating principle).
The entrance gate voltage was driven by an arbitrary waveform generator,
enabling the triggered emission of electrons. The exit gate was held at a fixed
potential. Owing to an applied perpendicular magnetic field of 12 T, the emitted
electrons followed the sample edge to a detector barrier, where they were transmitted
or reflected into two detector channels depending on their emission energy in
relation to the energetic barrier height. The value for the magnetic field was chosen
to suppress the energy relaxation of the electrons on the 2-µm-long path towards the
detector barrier. For lower values of magnetic field, inelastic scattering set in,
dominated by longitudinal optical phonon coupling32,33 and visible as steps
in the transmitted current with a period of 36 meV. The error rates of the
one- and two-electron emission were below the measurement resolution and
were estimated from the plateau quality to be <1 × 10−4 (ref. 31).

Measurement of the transmitted current IT allowed the average fraction of
reflected electrons to be determined. The fluctuations of the transmitted and
reflected current were also recorded. The two detectors were formed by parallel
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tank circuits with a resonance frequency of 1 MHz, and converted the current
fluctuations to voltage fluctuations. To increase the bandwidth of the tank circuits,
low-capacitance wires connected the detectors with high-electron-mobility
transistors for cryogenic amplification. With the device pinched off, the two detector
channels could be calibrated independently, as the thermal noise of the detector
circuits as a function of temperature allowed in situ calibration of the amplification
chain. The real part of the cross-correlation of the two detector signals was
integrated over 20 min and averaged within a frequency window between 500 kHz
and 3 MHz, yielding the zero-frequency shot noise power SX , which was
determined by the partitioning noise.

The energetic height of the detection barrier was calibrated by driving a constant
current across the exit barrier. With the entrance gate held at ground potential, the
energy of the electrons emitted into the channel was then controlled by the exit gate
and approximately given by the bias voltage VBias across the exit gate. The combined
measurement of IT and VBias as a function of the voltages applied to the exit gate and
the detector gate related the transmission energy of the electrons to the detection
gate voltage VDet (ref. 32). The values for VBias and VDet along a threshold current
then yielded the energy calibration of the detection barrier.

The sine-waveform parameters were VAC = 275 mVPP, with a constant offset of
–368 mV, VDC = –247 mV for 1 ef and VDC = –232 mV for 2 ef. The pulse-waveform
(–V ) is shown in the pictogram in Fig. 3c and the voltages are VAC = 138 mVPP,
with a constant offset of –280 mV, VDC = –235 mV. We verified that the pulse
waveform did not add any additional structure to the energy distribution when
emitting only one electron per cycle (Supplementary Section C).

The achievable rise time in our set-up for the time-dependent gating could be
estimated by time-domain reflectometry to be ≲0.1 ns. The estimated transit time
between the electron source and the partitioning gate was on the order of 0.01 ns.
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Fricke, Bernd Kästner, Klaus Pierz, Hans W. Schumacher, and Rolf J. Haug

Partitioning of on-demand electron pairs

SUPPLEMENTARY INFORMATION
DOI: 10.1038/NNANO.2014.275

NATURE NANOTECHNOLOGY | www.nature.com/naturenanotechnology 1

© 2014 Macmillan Publishers Limited. All rights reserved. 

http://dx.doi.org/10.1038/nnano.2014.275


A. TUNNELING VERSUS BALLISTIC EMISSION

We expect that increasing the ramp rate of the electron emission pulse switches the

emission from an adiabatic, sequential-tunneling regime to a sudden onset of ballistic prop-

agation, leading to a resolved energy separation between two electrons in a simultaneously

emitted pair.

Below we estimate the necessary conditions on characteristic time and energy scales

(Sec. A 1) and describe these two distinct electron emission modes using a simple model

(Sec. A 2 and A3). Although not all model parameters can be determined based on available

experimental data, the robustness of the calculation outcomes supports our assumptions

about the electron source operation regimes that lead to the qualitatively different results

of electron pair partitioning described in the paper.

1. Conditions on the slew rate and tunnel barrier characteristics

Escape of electrons from the quantum dot in the tunneling regime can be described by

emission rate Γ which typically depends exponentially on the single-electron energy E,

Γ(E) = Γbe
−|E−Eb|/∆exit . (S1)

Here ∆exit is an energy scale factor characterizing the exit barrier in the relevant range of

emission energies, Γb is the ballistic rate at which confined electrons would escape if the

barrier is removed (ie., if E exceeds the barrier height Eb). Γb is on the order of the level

spacing ∆ǫ on the dot, Γb ∼ ∆ǫ/h̄, and the equation can only be applied in the tunneling

regime, Γ ≪ Γb

At sufficiently slow slew rates ε̇ ≡ dE(t)/d(t), the emission from a well-defined state on

the quantum dot can be described adiabatically with escape rates (S1) controlled by the

time-dependent energy E(t), see Sec. A 2 below. The characteristic time τ ≡ ∆exit/ε̇ for the

exponential grow of the tunneling rate must be longer than the inverse ballistic rate Γ−1

b ,

hence the condition for the adiabatic tunneling emission is

ε̇ ≪ Γb ∆exit . (S2)

Taking into account that Γb ∼ ∆ǫ/h̄, the condition (S2) is the same as the condition for negli-

gible non-adiabtic quantum excitation due to dynamic broadening [V.K. and J.Timoshenko,
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Phys. Rev. Lett. 109, 216801 (2012)], h̄/τ ≪ ∆ǫ.

2. Sequential tunneling emission (low slew rate)

As long as the dot remains in the adiabatic tunneling regime, the emission time te can

be estimated [30] by requiring the intergrated out-tunneling rate to be on the order of

unity,
∫

te Γ(E(t))dt =
∫
E(te) ε̇−1Γ(E) dE ∼ 1. For a linear ramp, E(t) = E0 + ε̇t, and an

exponential opening of the tunnel barrier, Eq. (S1), this argument yields an estimate of the

emission energy,

Eem ≡ E(te) = Eb −∆exit ln(Γbτ) , (S3)

which depends only on the barrier properties and the slew rate (via τ), but not on the

dc offset E0 of the level position. The tunneling approximation for the emission time and

energy is consistent under the condition (S2): Γbτ ≫ 1 implies Eb − Eem ≪ ∆exit and

Γ(te) ∼ 1/τ ≪ Γb.

The energetic width ∆E of the emitted single-electron packet has contributions [V.K. and

J.Timoshenko, Phys. Rev. Lett. 109, 216801 (2012)] both form the stochastic uncertainty

±τ of the emission time, ∆E ∼ ε̇τ = ∆exit and from quantum broadening, ∆E ∼ h̄Γ(te) =

h̄/τ = h̄ε̇/∆exit, thus we can estimate

∆Etunnel
∼ max(∆exit, h̄ε̇/∆exit) . (S4)

For the case of two electrons separated by an addition energy gap ∆µ, similar analysis

based on rate equations with time-dependent tunneling rates can be performed. As long as

the tunneling rate is determined by the energy of the top-most (first) electron, the emission

spectrum will be centered around Eem for both electrons. If ∆µ ≫ ∆exit then the electrons

will be well separated in time, with the delay given by the time it takes the tunneling

rate of the better-confined (lower energy) electron to reach the value of order 1/τ after the

emission of the loosely confined (higher energy) electron. This time delay can be estimated

as ∆µ/ε̇ = τ ∆µ/∆exit.
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3. Sudden ballistic emission (high slew rate)

Choosing a synthesized waveform with a sharp emission pulse enables us to increase the

slew rate ε̇ considerably. Sufficiently fast ejection will leave no time for the electrons to

tunnel out of the dot before they end up at energies above the potential barrier. In the limit

when the adiabatic tunneling condition (S2) is strongly violated, ε̇/∆exit ≫ Γb ∼ ∆ǫ/h̄, we

can use the sudden approximation to describe the transition form a decoupled quantum dot

to ballistic propagation.

For a specific model calculation we consider a sudden onset of strong dot-lead coupling

in a quantum-impurity-like model of the quantum dot and the edge channel, governed at

t > 0 by the Hamiltonian

H = εc(d
†
1
d
1
+ d†

2
d
2
) + (∆ε+ Ud†

1
d
1
)d†

2
d
2

+
∑

i=1,2

√

γi/(2πν)
∑

k

(

d†ick + c†kdi

)

+
∑

k

ǫkvF c
†
kck . (S5)

Here εc > Eb is the lowest single-electron energy level right after application of the emission

pulse at t = 0; ν is the density of states in the lead with a quasi-continuous spectrum ǫk.

d1, d2 and ck are the usual fermionic annihilation operators for a single spin species. The

level broadenings γ1, γ2 are on the order of h̄Γb which in turn is expected to be on the order

of level-spacing ∆ε. Pre-emission Coulomb charging energy is described by the Hubbard

parameter U .

Starting from initial conditions at t = 0 with two electrons on the dot, 〈d†
1
d
1
〉+〈d†

2
d
2
〉 = 2,

and a drained Fermi sea, 〈c†kcq〉 = 0, time evolution of the two-particle wavefunction governed

by Eq. (S5) can be solved exactly using standard methods. For t ≫ Γ−1

b , the solution

converges to |Ψ〉 =
∑

kq ψkq |k〉 ⊗ |q〉 where ψkq = −ψqk and |k〉 are the single particle states
in the lead created by c†k. The asymptotic two-particle amplitudes are

ψkq =
1

2πν
√
2

∆ε
√
γ1γ2

(ǫq − z1)(ǫq − z2)(ǫq + ǫk − U − z1 − z2)
− (q ↔ k) . (S6)

Here z1 and z2 are the (complex) roots of the secular quadratic equation: (z− z1)(z− z2) =

(z − εc + iγ1/2)(z − εc −∆ε+ iγ2/2) + γ1γ2/4.

For γ1 = γ2 = ∆ε (which mimics ballistic propagation over the exit barrier), the joint

probability distribution to find one electron at energy ǫk and the other at ǫq is

ν2 |ψkq|2 =
∆ǫ4

8π2

(ǫk − ǫq)
2[(ǫk + ǫq)

2 +∆ε2]

(ǫ2k +∆ε2/4)(ǫ2q +∆ε2/4)[(ǫk + ǫq − U)2 +∆ε2]
. (S7)
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Supplementary Figure 1. The spectrum of single-electron energies P (E) emitted in the sudden

approximation for charging energies U/∆ε = 0, 1 and 4 (from left to right). The thin vertical lines

mark the positions of εc and εc + U .

This result contains both fermionic (ψkk = 0) and interactions-induced (for U > 0) corre-

lations. We plot the projected energy spectrum P (ǫk) = 2
∫
|ψkq|

2
ν2dǫq for three represen-

tative cases in Supplementary Figure 1. The distribution becomes bimodal for sufficiently

large interaction energy, meaning that electrons can be separated in energy. The widths of

the peaks are on the order of quantum broadening which we equate with the level spacing

on the dot:

∆Esudden ∼ ∆ε . (S8)

Note that our energy width estimates on the tunneling (slow) and the sudden (fast) sides of

the transition driven by the slew rate ε̇ (see the condition (S2)) agree if extrapolated into

the crossover region, ∆Etunnel ∼ ∆Esudden if h̄ε̇ ∼ ∆exit∆ε.

The simple two-orbital model analyzed here does not include higher excited states on the

dot, hence it can not predict the line-shapes quantitatively (e.g., the higher width of the

second peak at εc + U in Supplementary Figure 1 depends on the exact assumptions about

γ1, γ2 and ∆ε). Nevertheless, the calculation makes clear that interactions in the source

may induce a bimodal energy distribution of the emitted electrons in case of a sharp ejection

pulse as employed in the experiment.

B. COUNTING STATISTICS OF ELECTRON PAIR PARTITIONING UNDER

LINEAR SCATTERING

Here we assess the effect of initial correlations on the counting statistics of two electrons

partitioned by an energy barrier which does not induce additional two-body correlations.
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Specifically, we test the following combination of model assumptions: (a) absence of two-

body interactions at the barrier; (b) single chiral orbital channel per spin projection σ =↑, ↓,

and (c) monotonic dependence of the single-electron scattering probability Tσ(E) on the

energy E as tuned by the barrier-creating gate.

Assumption (a) implies that the quantum numbers that diagonalize the single-particle

scattering matrix remain good for the two-particle transmission. This allows one to express

the two-particle scattering probabilities as

p2 =
∑

kq

∑

σσ′

ρkσqσ′TkσTqσ′ ,

p0 =
∑

kq

∑

σσ′

ρkσqσ′(1− Tkσ)(1− Tqσ′),
(S9)

where 0 ≤ Tkσ ≤ 1 are the transmission coefficients of the scattering eigenmodes and ρkσqσ′

is the diagonal element of the two-particle density matrix of the incoming state. The third

component of the statistics is p1 = 1 − p0 − p2. The necessary conditions on ρkσqσ′ are

non-negativity, normalization (
∑

kσqσ′ ρkσqσ′ = 2), and exchange symmetry (ρkσqσ′ = ρqσ′kσ).

(The latter is due to electrons being identical particles, not necessarily in identical states).

1. Examples of enhanced partitioning due to either Fermi correlations or an energy

gap

Here we show that the linear scattering theory expressed by assumptions (a)-(c) and

Eq. (S9) does allow enhanced partitioning (p1 > 50%) both for statistics-dominated or

interactions-induced initial correlations.

Using Eq. (S9) for the partitioning statistics, and the diagonal elements of the density

matrix (S7) from a model calculation of Sec. A 3 with T (ǫk) being a sharp (∆b ≪ ∆ǫ, U)

function of energy gives the results shown in Supplementary Figure 2.

We can see that for ∆ε >
∼ ∆b electrons can be efficiently partitioned by either pure

statistics (U ≪ ∆ε) or on-the-dot interacitons (U ≫ ∆ε). Energy separation is not a

neccessary condition for enhanced partitioning, as can be seen from the U = 0 case in

Supplementary Figures 1 and 2.
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Supplementary Figure 2. Counting statistics for the pair partitioning, calculated in the sudden

emission approximation for the same model parameters as in Supplementary Figure 1. Orange,

blue, and red curves depict p0, p1 and p2, respectively, as functions of the sharp cut-off threshold

E of the detector barrier.

2. Poisson binomial statistics for minimally entangled electrons

Here we consider only minimally entangled states for a propagating electron pair and show

that under the assumptions (a)-(c) of interactions-free scattering (listed at the beginning of

Supplementary Information B) such states cannot violate the Poisson binomial constraint

on the partitioning statistics,
√
p0 +

√
p2 ≤ 1. The arguments here are more general than a

specific model discussed in Secs. A 3 and B1.

For a pure state composed of two orthogonal spinorbitals, |Ψ〉 = 1√
2
(|a〉 ⊗ |b〉 − |b〉 ⊗ |a〉)

(a Slater determinant), one has ρkσqσ′ = |〈Ψ|(|kσ〉⊗|qσ′〉)|2 = 1

2
|〈a|kσ〉〈b|qσ′〉−〈b|kσ〉〈a|qσ′〉|2

and the counting statistics (S9) become

p2 = det





〈a|T̂ |a〉 〈a|T̂ |b〉
〈b|T̂ |a〉 〈b|T̂ |b〉



 , p0 = det





1− 〈a|T̂ |a〉 〈a|T̂ |b〉
〈b|T̂ |a〉 1− 〈b|T̂ |b〉



 , (S10)

where 〈x|T̂ |y〉 are matrix elements of a single-particle operator T̂ =
∑

kσ |kσ〉Tkσ〈kσ|. Ex-

pressing the determinants in terms of products of eigenvalues, we arrive at Poisson binomial

distribution p2 = TaTb and p0 = (1− Ta)(1− Tb). It easily follows from 0 ≤ pi ≤ 1 that the

eigenvalues satisfy 0 ≤ Ta, Tb ≤ 1. An equivalent derivation utilizing a generating function

for the counting statistics can be found in [24, 25].

The model discussed in Sec. B 1 provides an example of a minimally entangled state

for U = 0: equation (S6) is reproduced by taking 〈k|a〉 = (γ/π)1/2/(ǫk + iγ) and 〈k|b〉 =

(γ/π)1/2(γ + iǫk)/(γ − iǫk)
2 with γ ≡ ∆ε/2. The deviations from the simple binomial

statistics seen in the first panel of Supplementary Figure 2 in this language are explained
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by the overlap of the initially orthogonal wavefunctions |a〉 and |b〉 after the transmission,

〈b|T̂ |a〉 = π−1γ/(γ + iE).

Eigenstates of the total spin operator that carry minimal entanglement are the spin singlet

state with a doubly occupied orbital and the fully polarized two-orbital triplet states,

|S〉 ∝ (|↑↓〉 − |↓↑〉) |ψψ〉 ,

|Tσ〉 ∝ |σσ〉 (|ψ1ψ2〉 − |ψ2ψ1〉) .

Since |S〉 and |Tσ〉 are expressible by a single Slater determinant, their partitioning by

an interactions-free barrier will also result in a generalized binomial distribution, regard-

less of the barrier-induced overlap 〈a|T̂ |b〉. If the scattering is spin-independent, then

the same applies to the non-spin-polarized component of a two-orbital triplet, |T0〉 ∝
(|↑↓〉+ |↓↑〉) (|ψ1ψ2〉 − |ψ2ψ1〉).

Hence, only the states that carry more correlations than required by the entanglement

due to exchange statistics may violate the constraint
√
p0 +

√
p2 ≤ 1 under the single-

particle scattering assumption (a), thus ruling out minimal-entanglement interactions-free

explanations for the correlation (bunching) anomaly reported in the paper.

3. Monotonicity argument

Here we state implications of the assumptions (a)-(c) defined in the beginning of Sec. B

for the partitioning statistics (S9) of an arbitrarily correlated initial density matrix.

Assumption (b) establishes that the orbital indices k are not degenerate in energy. If

Tkσ = Tσ(ǫkσ + E) where ǫkσ is the kinetic energy of the plane-wave mode with respect to

a fixed reference level, and E is tuned monotonically by the detector barrier gate, then by

assumption (c) and by the nonnegativity of ρ, the probabilities p2(E) and p0(E) have to be

monotonic in E as well.

Therefore, models considering electron-electron interactions in the source only (like the

example in Sec. A 3) may not be sufficient to explain the entirety of observation reported in

the paper.
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Supplementary Figure 3. Transmitted current IT as a function of the exit barrier (VDC) and the

detector barrier (VDet) with the entrance gate driven by a pulse-waveform (left) and a sine-waveform

(right).

C. DEPENDENCE OF THE ENERGY DETECTION ON THE WAVEFORM

To illustrate the effect of a sharp ejection pulse we compare intensity plots of the trans-

mitted current as a function of the exit gate and the detector gate (Supplementary Figure 3).

By tuning the exit gate a larger number of electrons are sourced per waveform cycle and

the emission energy follows the exit barrier height. The detector gate dependence reflects

the energy distribution of the emitted electrons. Switching the waveform from a sine to

an optimized waveform with a sharp ejection pulse leaves the behavior in the regime of

1ef unchanged. However, in the 2ef regime a stepwise extension towards higher energies is

observed, c.f. Fig. 3c. For a sine waveform no such step is visible.
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