
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Partitioning of VLSI Circuits and Systems

Frank M. Johannes

Institute of Electronic Design Automation
ECE Department, Technical University of Munich

Arcisstr. 21, D-80333 Munich, Germany
E-mail: Johannes@e-technik.tu-muenchen.de

ABSTRACT

Partitioning plays an increasingly important role in the design
process of VLSI circuits and systems. There are partitioning
problems to be solved on all levels of abstraction. The rapidly
increasing size of the designs will make good partitioning tools
even more essential in the future. As an introduction to the
other papers in this session, this tutorial presentation discusses
the numerous facets of partitioning.

I I NTRODUCTION

Partitioning is a technique to divide a circuit or system into a
collection of smaller parts (components). It is on the one hand a
design task to break a large system into pieces to be implemented on
separate interacting components and on the other hand it serves as
an algorithmic method to solve difficult and complex combinatorial
optimization problems as in logic or layout synthesis.

Partitioning has been an active area of research for at least a quar-
ter of a century. The main reason that partitioning has become a
central and sometimes critical design task today is the enormous
increase of system complexity in the past and the expected further
advances of microelectronic system design and fabrication. Soaring
system complexities result from a combination of reasons:

Widely accepted powerful high-level synthesis tools allow the
designers to automatically generate huge systems. By just changing
a few lines of code in a functional specification the size of the re-
sulting structural description (netlist) of a system can increase dra-
matically. Synthesis and simulation tools often cannot cope with
the complexity of the entire system under development, and de-
signers want to concentrate on critical parts of a system to speed-up
the design cycle. Thus, the present state of design technology often
requires a partitioning of the system.

Moreover, fabrication technology makes increasingly smaller
feature sizes and augmented die dimensions possible, thus allow-
ing a circuit to accommodate several million transistors. However,
circuits are restricted in size and in the number of external connec-
tions. Thus, fabrication technology requires the partitioning of a
system into components.

As a third reason, economical pressure yields larger systems,
both to make production cheaper and to exploit the optimization
potential of the complete system. The various parts of the sys-
tem should be implemented in appropriate ways to achieve low-

cost fabrication, optimal system performance, and easy adaptation
to changing requirements, e.g.. Thus, profit can be received by par-
titioning a system optimally.

Partitioning applications exist on all levels of abstraction, specif-
ically on the functional (behavioral) and on the structural (netlist)
level. In the early stages of design, far-reaching decisions have to be
made how to partition a design, often based on incomplete knowl-
edge. In particular, it has to be decided whether to implement a
component in various types of hardware or software to achieve an
optimal size/performance trade-off. Because the granularity is low
in this application, i.e. relatively few objects of moderate to high
complexities, partitioning can possibly bedone by human design-
ers based on their experience. Since fully automatic partitioning is
essential for fast iterations in the design cycle, considerable effort
is made in academia as well as in industry to facilitate and improve
the difficult decisions on functional level.

The components resulting from system partitioning are imple-
mented by a team of designers or synthesized from a high-level
description by using synthesis tools that generate a structural im-
plementation. In case the hardware components are too complex
for packaging because of area and i/o constraints they are further
partitioned on structural level based on rather fine-grained objects
(modules, cells). It has been observed [42] that structure synthesis
tools, in general, do not generate a hierarchy which can be used di-
rectly for layout design if this hierarchy is deep. To give the layout
synthesis tools the freedom they require to generate good results,
the netlist has to be flattened out and repartitioned. The subject of
partitioning on structural level is studied very well in the literature.

It is the intention of this paper to provide a concise review of the
state of the art in the field of partitioning and also to serve as an
introduction to the other papers of this session. To achieve this dual
goal a subjective selection has been made from the abundance of
partitioning methods published in theliterature. This is of course
necessary due to space limitations. But the choice has been facili-
tated very much by the availability of the profound and up-to-date
survey published by Charles Alpert and Andrew Kahng [3] which
includes a complete bibliography. Therefore, mainly the most re-
cent publications have been included in the reference section of this
paper. Previous reviews on partitioning have appeared in [11, 43].
Readers interested especially in algorithms are referred to [27]. Ex-
cellent evaluations of bipartitioning techniques have recently been
published in [17, 54]. From the perspective of system specification
and design the partitioning problem is addressed in [13], e.g..

The rest of the paper is organized as follows. In the next section
different applications and the resulting partitioning problems are
discussed. In Section III, an overview of basic solution techniques
is provided. Finally, some remarks on possible future developments
will be given.

II T YPES OFPARTITIONING

In the first part of this section typical applications of partition-
ing will be discussed and classes of partitioning problems will be
summarized in part two.

The emulation of systems and rapid prototyping based on ar-
rays of interconnected field-programmable gate arrays (FPGAs)
has become very popular. To obtain the shortest possible design
cycle, automatic partitioning of a design is absolutely necessary.
As the target architecture is fixed in most applications, i.e. the
number of FPGA components, their types and their geometric ar-
rangement are given, the partitioning task is to find a mapping
of the system’s objects to the FPGAs while satisfying constraints
like FPGA area (number of logic blocks), FPGA pin count, or the
delay of the critical paths. In this case, a decision problem has
to be solved, i.e. a feasible solution is sought. If delay, e.g., is
not a constraint but has to be minimized, a constrained optimiza-
tion problem must be solved. Partitioning for multiple FPGAs
was the application most frequently addressed in recent papers
[5, 8, 18, 22, 25, 31, 26, 36, 40, 50, 51].

Multi-chip modules (MCMs) have been developed as an alterna-
tive packaging technology to conventional printed circuit boards to
achieve higher packing densities, reduced signal delays, lower heat
dissipation etc. To realize these goals and to explore more alterna-
tive solutions than a human designer can, it is necessary to apply
automatic partitioning. If the chips have already been allocated,
i.e. a set of system components has been found to implement the
system’s function, the partitioning task is similar to FPGA arrays.
However, it may be desirable to search for optimal system parti-
tionings first. The final allocation together with the partitioning can
then be chosen from the set of solutions found.

The floorplanning problem is very well known from the litera-
ture and is mostly considered a genuine layout design problem. But
floorplanning and partitioning are closely interrelated. Tradition-
ally, with the partitioning of the system into blocks being given the
floorplanning task is to determine the relative block positions as
well as their sizes, aspect ratios and possibly their pin positions to
optimize silicon area while fulfilling timing constraints. However,
the optimal floorplan largely depends on the quality of the parti-
tioning. Floorplanning is difficult since parts of the circuit may not
be fully specified or implemented making accurate estimation of a
block’s parameters essential. With systems under design becoming
larger the floorplanning problem has recently gained much interest
as all major CAD vendors aim at offering powerful floorplanning
tools.

Microelectronic systems typically consist of application specific
hardware parts and programmable software parts, e.g. ASICs, cus-
tom or standard processors, and memories. Software is more flexi-
ble, can be developed easier, and is less expensive in terms of cost
and development time. Hardware components provide higher per-
formance at the expense of higher cost. Thus, a system designer
will work towards a partitioning into hardware and software com-
ponents that fulfills all performance constraints while using aslittle
hardware as possible. This constrained optimization problem is a
key problem of hardware/software codesign [23, 33].

The decision problem of partitioning digital signal processing
(DSP) algorithms over multi-processor systems is hard to solve be-
cause of its many constraints. The programming of the signal pro-
cessors is done by mapping a functional specification given by a
signal flow graph onto a given network of processors. It is essential
that this task is performed fully automatically [1] such that different
architectures and solutions can be investigated quickly.

For the design of VLSI circuits, logic simulators are the design
tools used most intensively. Due to the ever increasing complex-

ity of digital circuits, logic simulation suffers from consuming vast
amounts of computing time and memory. Parallel computer archi-
tectures and in particular workstation networks offer an ideal pos-
sibility to overcome these bottlenecks. To achieve high efficiency,
the circuit to be simulated must be partitioned such that the amount
of communication is adapted to the available resources and the sim-
ulation load is evenly distributed among the processors. Significant
speed-ups can be observed with parallel simulation which may be
viewed as a divide-and-conquer method. To avoid idle processors
dynamic load balancing, i.e. updating the partitioning over time, is
necessary (see [46, 9, 41], e.g.).

The divide-and-conquer paradigm is widely used for solving
large problems to reduce their complexity. The problem is recur-
sively (top-down) partitioned into smaller subproblems. This pro-
cess continues until subproblems are small enough to be solved di-
rectly. The solutions are combined hierarchically which yields, in
general, suboptimal solutions on the next higher level. A famous
example for this successful solution strategy is the min-cut place-
ment method in layout synthesis. Partitioning is applied recursively
to the circuit’s netlist thereby generating a hierarchical neighbor-
hood (slicing) structure. This structure is then interpreted as a floor-
plan for chip assembly. In addition to reducing problem size, solu-
tion quality is improved and heavy wiring congestion avoided by
minimizing the number of wires cut by the partitions.

Mathematically, partitioning problems are mostly formalized by
using graphs. Functional descriptions in hardware description lan-
guages can be modeled bysignal flow graphs. The edges of this
directed type of graph describe the signal flow between functional
units or registers which are represented by the graph’s nodes.

For modeling circuits as graphs on the structural level many al-
ternatives have been published in the literature [27]. The modules
of a circuit can be represented as a set of nodes. The signal nets
interconnecting the modules can either be characterized by directed
or undirected edges between pairs of nodes or by hyperedges con-
necting sets of nodes (hypergraph). Edges and/or nodes may be as-
signed weights, costs, or capacities. E.g.,node weight can be used
to characterize module area or edge weights model multiple con-
nections between modules. Hyperedges can be mapped into sets
of (binary) edges by using the model of a clique (complete sub-
graph) or a star (by adding additional nodes for the nets). Changing
the modeling by weighting the clique’s edges can improve the re-
sults, although it has been shown that perfect weightings cannot be
achieved [27].

As a consequence of the differing applications various problem for-
mulations for partitioning can be distinguished from an algorithmic
point of view:

� Two-way partitioning or bipartitioning divides a graph into
two non-empty subgraphs while minimizing the number or
weight of the edges cut by the partition. To obtain balanced
partitions which is often desirable constraints on the partition
sizes are applied. The aims to minimize the number of cut
edges and to obtain balanced partitions have been integrated
in the minimum ratio cut objective function.

� Multi-way partitioning divides a graph into a prespecified
number of subgraphs. The standard objective is to minimize
the number of edges between all partitions while meeting con-
straints. Typical constraints are lower and upper size limits on
the area and the pin count of the components. As a general-
ization of ratio-cut partitioning, various alternative objectives
have been proposed for multi-way partitioning to combine cut
size and the balance criterion in a single objective. Multi-way
partitionings can be generated by recursively solving two-way

partitioning problems.
For rapid prototyping using arrays of FPGAs the multi-way
partitioning problem is formulated as a decision problem
(see [8, 19], e.g.). A feasible solution is sought that satisfies
all constraints. All such feasible solutions are equally good
assuming they are routable.

� Performance-driven partitioning is targeted towards optimiz-
ing the system’s performance rather than only minimizing the
number of interconnections between components. Most re-
cent papers aim at improving the timing [44, 24, 25, 26, 40,
51], but minimal power consumption has also been used as an
objective [49]. In [26] knowledge about the logic function of
the circuit has been used to improve performance.

� Layout-driven partitioning emphasizes geometric aspects.
The partitioning is based on a placement or geometric or-
dering rather than merely on structure (see [35, 36, 37]
and [14, 4, 2, 28], e.g.). This is motivated by the observa-
tion that a placement with minimized wire length will lead to
a low probability for a net being cut. As system performance
heavily depends on layout this type of partitioning inherently
combines several partitioning objectives. It has been shown
in [48] that partitioning and placement are indeed equivalent
in an algorithmic sense.

� Partitioning with replication is useful to enhance system per-
formance, in particular in prototyping systems with FPGAs
where the available FPGA pins are the limiting resource. By
eliminating the requirement that the components of a parti-
tion have to be disjunct, the number of component pins can
be reduced and the system’s performance improved by repli-
cating parts of the netlist in different components. The ad-
ditional area needed is usually available. This problem has
gained much interest in the recentliterature [22, 26, 30, 31,
40, 50, 51].

From an algorithmic standpoint, most partitioning problems are
classified as hard problems, which means that in practice heuris-
tics have to be used to obtain useful solutions.

III SOLUTION TECHNIQUES

In this section an overview of attractive methods for solving par-
titioning problems will be given. More detailed information about
the algorithms can be found in [3, 27].

Partitioning methods can be classified as beingconstructiveor
iterative. Constructive algorithms determine a partitioning from the
graph describing the circuit or system, whereas iterative methods
aim at improving the quality of an existing partitioning solution.

Partitioning algorithms can also be labeleddeterministicor prob-
abilistic. Deterministic programs generate the same solution each
time they are started. Probabilistic methods result in differing solu-
tions because they are based on random numbers.

Constructive partitioning approaches are mainly based on clus-
tering, spectral or eigenvector methods, placement-based partition-
ing, mathematical programming, or network flow computations.

Clustering is a bottom-up technique to determine strongly con-
nected components of a graph. It can perform well when cluster
sizes are small. To partition designs of millions of modules bottom-
up clustering is often combined with top-down partitioning [8]. A
formulation unifying both strategies has recently been published
in [20]. Clustering has also been applied to optimize performance
[24, 34, 49, 51, 53]. For parallel simulation and load balancing a
hierarchical four-phase algorithm based on corolla clustering has
been developed [46, 41]. A corolla is defined in [10] as a set of
overlapping fanout regions of a circuit. Cone structures, i.e. sets

of all nodes of a combinatorial block between a single output and
the inputs that lead to that single output, have recently been applied
to bottom-up FPGA partitioning for critical paths [5, 9]. In these
approaches, the consideration of signal directions has resulted in
improved partitioning solutions. The trade-off between run time
and performance is explored in [39, 52]. In the next paper of this
session a clustering approach is described where the graph’s global
connectivity information is derived from the clustering property of
the eigenvector approach [29].

Next, mathematical programming and spectral methods will be
addressed. These approaches are attractive because they keep the
global view of the partitioning problem.

Mathematical programming techniques are used to optimize an
objective function under inequality constraints. Quadratic program-
ming [35], quadratic Boolean programming [45], linear and inte-
ger programming [24, 31, 23, 33] have been applied to partitioning
problems.

Spectral methods have recently attracted much attention [14, 2,
4, 28, 6]. Based on the adjacency matrix of the graph the min-cut
objective can be rewritten as an equation system. The eigenvector
of its minimum non-zero eigenvalue can be interpreted as a linear
placement or ordering of the graph’s nodes. This ordering can be
cut to yield a partitioning of thenodes. Many modifications of this
basic method have been published in the literature including the
use of more than one eigenvector. For multi-way partitioning it has
been demonstrated that the more eigenvectors are used the better
is the partitioning quality [4]. It is interesting to note that Rent’s
parameter and eigenvalues have properties in common [14].

Placement-based partitioning is closely related to spectral meth-
ods. These methods minimize a quadratic objective function. For
placement, it has been shown that minimizing a linear objective
yields improved results. In [35] this observation has been used to
obtain better partitionings. Since the placement with a linear ob-
jective is derived from a eigenvector-based placement this method
could also be classified as an iterative improvement method. This
placement-based approach has also been extended to multi-way
partitioning with application to FPGAs and MCMs [36, 37]. The
next paper in this session will show how the linear objective could
be integrated directly into eigenvector formulations [29].

With network flow methods directed signal flow can be used to
improve system performance. Different types of network flow for-
mulations have been proposed [20, 22, 28, 30, 31, 50, 53]. They
all have in common that a graph model is devised from the directed
netlist to determine a maximum flow which is equivalent to a min-
imum cut. These methods have shown to be particularly effective
for solving partitioning problems with replication.

Probabilistic constructive algorithms have not been used fre-
quently to solve partitioning problems. Recent examples are
[18, 19, 53]. In [18, 19] a linear ordering is determined by randomly
selecting nodes to start with. By using dynamic programming the
ordering is split into clusters. The clustering approach in [53] is
based on multi-commodity flows. A probabilistic flow-injection
method is proposed to reduce the computational complexity of the
flow-based algorithm.

Numerous deterministic iterative approaches have been pub-
lished. These methods iteratively exchange nodes or interchange
pairs of nodes to minimize the number of edges cut. For this rea-
son, they are often collectively designated as min-cut algorithms.
They differ significantly in the choice of the objective function
used. An improved objective based on probabilistic gain compu-
tation is introduced in the last paper of this session [12]. Iterative
improvement can be combined with clustering to reduce compu-
tational complexity. Recent advances are the following: Because

deterministic iterative methods are sensitive to how the starting par-
titioning is chosen, a gradient method was proposed in [32] to over-
come this disadvantage. The authors of [15] found that implemen-
tation choices play an important role and reported significant im-
provements in computing the gains. In [47] a min-cut partitioning
method is proposed which is based on quadratic programming.

The probabilistic iterative improvement methods commonly
used in design automation are simulated annealing and simulated
evolution. Their most important advantage is that they can escape
from local minima. A recent experimental evaluation [54] on two-
way partitioning concluded that simulated annealing seems to offer
little advantage in solution quality, but consumes a large amount of
computing time. In [38] simulated annealing was applied to FPGA
and MCM partitioning and computation time was reduced by clus-
tering. A different randomized approach was proposed in [7]. This
method can escape from local minima by using the concept ofal-
ternate wirescomes from logic synthesis and is very similar tore-
dundancy addition and removalknown from automatic test pattern
generation.

IV FUTURE DIRECTIONS

Due to the increasing requirements on partitioning tools further
developments and improvements are very desirable. It has been
observed in the past that even minor algorithmic modifications can
be very effective.

From the application viewpoint, highly constrained
performance-driven partitioning is attractive for research and
accurate but efficient delay calculation remains an important issue.
With the rapidly increasing computing power in mind enumerative
methods will become more attractive.

On the higher levels of abstraction, applying logic synthesis
methods, e.g. logic replication and retiming, seems to have great
optimization potential. The estimation of system properties needs
attention such that designers can examine potential partitioning so-
lutions quickly at the highest abstraction level possible.

Benchmarking of partitioning approaches (as of other classes of
design problems) urgently needs to be improved. In particular, huge
problem instances are needed to demonstrate the power of solution
methods. To generate such problems that resemble real problems
a replication method has been proposed [16]. Another approach to
solve this problem will be presented in this session [21].

Last but not least, synergy effects could result from coordinating
the partitioning activities on different levels of abstraction and for
different applications at the major conferences.

REFERENCES

[1] E.H.L. Aarts, G. Essink, and E.A. de Kock. Recursive bipar-
titioning of signal flow graphs for programmable video sig-
nal processors. InThe European Design and Test Conference
(EDTC). IEEE, 1996. Session 9A.

[2] Charles J. Alpert and Andrew B. Kahng. Multiway partition-
ing via geometric embeddings, orderings, and dynamic pro-
gramming.Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 14:1342–1358, 1995.

[3] Charles J. Alpert and Andrew B. Kahng. Recent directions
in netlist partitioning: a survey.INTEGRATION, the VLSI
journal, 19:1–81, 1995.

[4] Charles J. Alpert and So-Zen Yao. Spectral partitioning: the
more eigenvectors the better. InDesign Automation Confer-
ence (DAC), pages 195–200. ACM/IEEE, 1995.

[5] Daniel Brasen and Gabri`ele Saucier. FPGA partitioning for
critical paths. InThe European Design and Test Conference
(EDTC), pages 99–103. IEEE, 1994.

[6] P.K. Chan, M.D.F. Schlag, and J.Y. Zien. Spectral based
multi-way FPGA partitioning. InInt’l Symposium on Field-
Programmable Gate Arrays, pages 133–139. ACM, 1995.

[7] David Ihsin Cheng, Chih-Chang Lin, and Malgorzata Marek-
Sadowska. Circuit partitioning with logic perturbation. InIn-
ternational Conference on Computer Aided Design (ICCAD),
pages 650–655. IEEE/ACM, 1995.

[8] Nan-Chi Chou, Lung-Tien Liu, Chung-Kuan Cheng, Wei-Jin
Dai, and Rodney Lindelof. Local ratio cut and set covering
partitioning forhuge logic emulation systems.Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, 14:1085–1092, 1995.

[9] Jason Cong, Zheng Li, and Rajive Bagrodia. Acyclic multi-
way partitioning of Boolean networks. InDesign Automation
Conference (DAC), pages 670–675. ACM/IEEE, 1994.

[10] Sujit Dey, Franc Brglez, and Gershon Kedem. Corolla based
circuit partitioning and resynthesis. InDesign Automation
Conference (DAC), pages 706–712. ACM/IEEE, 1990.

[11] W.E. Donath. Logic partitioning. In B. Preas and M. Loren-
zetti, editors,Physical Design Automation in VLSI Systems.
Benjamin/Cummings, 1988.

[12] Shantanu Dutt and Wenyong Deng. A probability-based ap-
proach to VLSI circuit partitioning. InDesign Automation
Conference (DAC). ACM/IEEE, 1996.

[13] Daniel D. Gajski and Frank Vahid. Specification and design
of embedded hardware/software systems.Design & Test of
Computers, pages 53–67, 1995.

[14] Lars Hagen, Andrew B. Kahng, Fadi L. Kurdahi, and
Champaka Ramachandran. On the intrinsic Rent parame-
ter and spectra-based partitioning methods. Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
13:27–37, 1994.

[15] Lars W. Hagen, Dennis J.-H. Huang, and Andrew B. Kahng.
On implementation choices for iterative improvement parti-
tioning algorithms. InEuropean Design Automation Confer-
ence (Euro-DAC), pages 144–149, 1995.

[16] Lars W. Hagen, Dennis J.-H. Huang, and Andrew B. Kahng.
Quantified suboptimality of VLSI layout heuristics. InDesign
Automation Conf. (DAC), pages 216–221. ACM/IEEE, 1995.

[17] Scott Hauck and Gaetano Borriello. An evaluation of biparti-
tioning techniques. InChapel Hill Conference on Advanced
Research in VLSI, pages 383–402, 1995.

[18] Scott Hauck and Gaetano Borriello. Logic partition order-
ings for multi-FPGA systems. InInternational Symposium on
Field-Programmable Gate Arrays, pages 32–38. ACM, 1995.

[19] Dennis J.-H. Huang and Andrew B. Kahng. Multi-way sys-
tem partitioning into single and multiple type FPGAs. InIn-
ternational Symposium on Field-Programmable Gate Arrays,
pages 140–145. ACM, 1995.

[20] Dennis J.-H. Huang and Andrew B. Kahng. When clusters
meet partitions: new density-based methods for circuit de-
composition. InThe European Design and Test Conference
(EDTC), pages 60–64. IEEE, 1995.

[21] Michael Hutton, J.P. Grossman, Jonathan Rose, and Derek
Corneil. Characterization and parameterized random gener-
ation of digital circuits. InDesign Automation Conference
(DAC). ACM/IEEE, 1996.

[22] L. James Hwang and Abbas El Gamal. Min-cut replication in
partitioned networks.Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 14:96–106, 1995.

[23] I. Karkowski and R.H.J.M. Otten. An automatic hardware-
software partitioner based on the possibilistic programming.
In The European Design and Test Conference (EDTC). IEEE,
1996. Session 9A.

[24] Yoshinori Katsura, Tetsushi Koide, Shin’ichi Wakabayashi,
and Noriyoshi Yoshida. A new system partitioning method
under performance and physical constraints for multi-chip
modules. InAsia and South Pacific Design Automation Con-
ference (ASP-DAC), pages 119–126. IFIP/ACM/IEEE, 1995.

[25] Chunghee Kim, Hyunchul Shin, and Younguk Yu.
Performance-driven circuit partitioning for prototyping
by using multiple FPGA chips. InAsia and South Pacific
Design Automation Conference (ASP-DAC), pages 113–118.
IFIP/ACM/IEEE, 1995.

[26] Roman Kužnar and Franc Brglez. PROP: a recursive
paradigm for area-efficient and performance oriented parti-
tioning of large FPGA netlists. InInternational Confer-
ence on Computer Aided Design (ICCAD), pages 644–649.
IEEE/ACM, 1995.

[27] T. Lengauer.Combinatorial algorithms for integrated circuit
layout. Wiley-Teubner, 1990.

[28] J. Li, J. Lillis, and C.K. Cheng. Linear decomposition algo-
rithm for VLSI design applications. InInternational Confer-
ence on Computer Aided Design (ICCAD), pages 223–228.
IEEE/ACM, 1995.

[29] Jianmin Li, John Lillis, Lung-Tien Liu, and Chung-Kuan
Cheng. New spectral linear placement and clustering. InDe-
sign Automation Conference (DAC). ACM/IEEE, 1996.

[30] Lung-Tien Liu, Ming-Ter Kuo, Chung-Kuan Cheng, and T.C.
Hu. A replication cut for two-way partitioning.Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, 14:623–630, 1995.

[31] Lung-Tien Liu, Ming-Ter Kuo, Chung-Kuan Cheng, and
Te C. Hu. Performance-driven partitioning using a replication
graph approach. InDesign Automation Conference (DAC),
pages 206–210. ACM/IEEE, 1995.

[32] Lung-Tien Liu, Ming-Ter Kuo, Shih-Chen Huang, and
Chung-Kuan Cheng. A gradient method on the initial partition
of Fiduccia-Mattheyses algorithm. InInt’l Conf. on Computer
Aided Design (ICCAD), pages 229–234. IEEE/ACM, 1995.

[33] Ralf Niemann and Peter Marwedel. Hardware/software parti-
tioning using integer programming. InThe European Design
and Test Conference (EDTC). IEEE, 1996. Session 9A.

[34] Rajmohan Rajaraman and D.F. Wong. Optimum clustering for
delay minimization.Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 14:1490–1495, 1995.

[35] Bernhard M. Riess, Konrad Doll, and Frank M. Johannes. Par-
titioning very large circuits using analytical placement tech-
niques. InDesign Automation Conference (DAC), pages 646–
651. ACM/IEEE, 1994.

[36] Bernhard M. Riess, Heiko A. Giselbrecht, and Bernd Wurth.
A new k-way partitioning approach for multiple types of
FPGAs. InAsia and South Pacific Design Automation Con-
ference (ASP-DAC), pages 313–318. IFIP/ACM/IEEE, 1995.

[37] Bernhard M. Riess and Andreas A. Schoene. A new layout
design system for multichip modules. International Journal
of High Speed Electronics and Systems, 6:509–538, 1995.

[38] K. Roy-Neogi and C. Sechen. Partitioning with performance
optimization. In Int’l Symposium on Field-Programmable
Gate Arrays, pages 146–152. ACM, 1995.

[39] Youssef G. Saab. A fast and robust network bisection algo-
rithm. Transactions on Computers, 44:903–913, 1995.

[40] Prashant Sawkar and Donald Thomas. Multi-way partitioning
for minimum delay for look-up table based FPGAs. InDesign
Automation Conf. (DAC), pages 201–205. ACM/IEEE, 1995.

[41] R. Schlagenhaft, M. Ruhwandl, Ch. Sporrer, and H. Bauer.
Dynamic load balancing of a multi-cluster simulator on a
network of workstations. InWorkshop on Parallel and Dis-
tributed Simulation (PADS), pages 175–180, 1995.

[42] B. Schürmann, J. Altmeyer, and G. Zimmermann. Three-
phase chip planning — an improved top-down chip planning
strategy. InInternational Conference on Computer Aided De-
sign (ICCAD), pages 598–605. IEEE/ACM, 1992.

[43] N.A. Sherwani.Algorithms for VLSI physical design automa-
tion. Kluwer, Boston, 1993.

[44] Minshine Shih and Ernest S. Kuh. Quadratic Boolean
programming for performance-driven system partitioning.
In Design Automation Conference (DAC), pages 761–765.
ACM/IEEE, 1993.

[45] Minshine Shih and Ernest S. Kuh. Circuit partitioningunder
capacity and i/o constraints. InCustom Integrated Circuits
Conference, pages 659–662. IEEE, 1994.

[46] Ch. Sporrer and H. Bauer. Corolla partitioning for distributed
logic simulation of VLSI circuits. InWorkshop on Parallel
and Distributed Simulation (PADS), pages 85–92, 1993.

[47] Katsunori Tani. A robust min-cut improvement algorithm
based on dynamic look-ahead weighting. InAsia and South
Pacific Design Automation Conference (ASP-DAC), pages
127–133. IFIP/ACM/IEEE, 1995.

[48] Ren-Song Tsay and Ernest Kuh. A unified approach to parti-
tioning and placement.Transactions on Circuits and Systems,
38:521–533, 1991.

[49] Hirendu Vaishnav and Massoud Pedram. Delay optimal par-
titioning targeting low power VLSI circuits. InInternational
Conference on Computer Aided Design (ICCAD), pages 638–
643. IEEE/ACM, 1995.

[50] Hannah Honghua Yang and D.F. Wong. New algorithms for
min-cut replication in partitioned circuits. InInternational
Conference on Computer Aided Design (ICCAD), pages 216–
222. IEEE/ACM, 1995.

[51] Honghua Yang and D.F. Wong. Circuit clustering for de-
lay minimization under area and pin constraints. InThe Eu-
ropean Design and Test Conference (EDTC), pages 65–70.
IEEE, 1995.

[52] Ching-Wei Yeh. On the acceleration of flow-oriented circuit
clustering. Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 14:1305–1308, 1995.

[53] Ching-Wei Yeh, Chung-Kuan Cheng, and Ting-Ting Y. Lin.
Circuit clustering using a stochastic flow injection method.
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 14:154–162, 1995.

[54] Ching-Wei Yeh, Chung-Kuan Cheng, and Ting-Ting Y. Lin.
Optimization by iterative improvement: an experimental eval-
uation on two-way partitioning.Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 14:145–153, 1995.

