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PARTITIONING SPARSE MATRICES
WITH EIGENVECTORS OF GRAPHS*

ALEX POTHENf, HORST D. SIMON, AND KANG-PU LIOU

Abstract. The problem ofcomputing a small vertex separator in a graph arises in the context ofcomputing
a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing
vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained
in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid
graphs can be computed from Kronecker products involving the eigenvectors ofpath graphs, and these eigenvectors
can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex
separator in a general graph by first computing an edge separator in the graph from an eigenvector of the
Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results
on the quality of the separators computed by the spectral algorithm are presented, and these are compared with
separators obtained from other algorithms for computing separators. Finally, the time required to compute the
Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain
good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-
size multiprocessor in a straightforward manner.

Key words, graph partitioning, graph spectra, Laplacian matrix, ordering algorithms, parallel orderings,
sparse matrix, vertex separator
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1. Introduction. In the solution of large, sparse, positive definite systems on parallel
computers, it is necessary to compute an ordering of the matrix such that it can be
factored efficiently in parallel. Several algorithms have been developed recently for com-
puting good parallel orderings: for instance [39 ], [40]. For large problems, the storage
required for the structure of the matrix may exceed the storage capacities of a single
processor, and the ordering itself will need to be computed in parallel. One strategy to
compute a good parallel ordering is to employ the divide-and-conquer paradigm: Find
a set of vertices in the adjacency graph of the matrix, whose removal disconnects the
graph into two nearly equal parts. Number the vertices in the separator last, and recursively
number the vertices in the two parts by the same strategy. This strategy is employed in
several algorithms which order sparse matrices for factorization; e.g., the Sparspak nested
dissection algorithm 27 ].

In computing an ordering by the above approach, at each step, the following par-
titioning problem needs to be solved: Given an adjacency graph G of a sparse matrix,
find a vertex separator S such that S has few vertices and S disconnects G\S into two
parts A, B with nearly equal numbers of vertices. In the context of the ordering problem,
since a separator S becomes a clique in the factor matrix (filled matrix), a small S
controls the fill incurred by the ordering. The requirement that the parts A and B be
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roughly equal is a simple way of maintaining load balance in parallel computation, since
the submatrix represented by each part will be mapped to a subset of half the processors..

In this paper, we consider a spectral algorithm for solving the partitioning problem.
We associate with the given sparse, symmetric matrix (and its adjacency graph ), a matrix
called the Laplacian matrix. We compute a particular eigenvector of the Laplacian matrix
and use its components to initially partition the vertices into two sets A’, B’. The set of
edges joining A’ and B’ is an edge separator in the graph G. A vertex separator S is
computed from the edge separator by a matching technique.

The use ofspectral methods to compute edge separators in graphs was first considered
by Donath and Hoffman [16], [17], and since then spectral methods for computing
various graph parameters have been considered by several others. A discussion of some
of this work is included in 2.

The spectral algorithm for computing vertex separators considered in this paper has
three features that distinguish it from previous algorithms that are worthy of comment.

First, previous algorithms for computing separators, such as the level-structure sep-
arator algorithm in Sparspak or the Kernighan-Lin algorithm make use of local infor-
mation in the graph, viz. information about the neighbors of a vertex, to compute sep-
arators. The spectral method employs global information about the graph, since it com-
putes a separator from eigenvector components. Thus the spectral method has the potential
of finding separators in the graph that are qualitatively different from the separators
obtained by previous approaches.

Second, we can view the spectral method as an approach in which a vertex in the
graph makes a continuous choice, with a weight between + and -1, about which part
in the initial partition it is going to belong to. All vertices with weights below the median
weight form one part, and the rest, the other part. In the Kernighan-Lin method, each
vertex makes a discrete choice (zero or one) to belong to one set. The weights in the
spectral method can be used to move a few vertices from one part to the other, if a
slightly different partition is desired in the course of the separator algorithm.

Third, the dominant computation in the spectral method is an eigenvector com-
putation by a Lanczos or similar algorithm. This distinguishes the new algorithm from
standard graph-theoretical algorithms computationally. Most of the computation is based
on standard vector operations on floating point numbers. Because of its algebraic nature,
the algorithm is parallelizable in a fairly straightforward manner on medium-grain mul-
tiprocessors used in scientific computing. Furthermore, since most of the computations
are also vector floating point operations, this algorithm is well suited for vector super-
computers used for large scale scientific computing.

This paper is organized as foiiows. We include background material on the spectral
properties of Laplacian matrices and their relevance to graph partitioning in 2. We also
review earlier work on computing edge separators from the eigenvectors ofthe adjacency
matrix in this section. In 3, we obtain lower bounds on the size of the smallest vertex
separators of a graph in terms of the eigenvalues of the Laplacian matrix. Two different
techniques for proving lower bounds are illustrated: One uses the Courant-Fischer-
Poincar6 minimax criterion, and the second employs an inequality from the proof of the
Wielandt-Hoffman theorem. We then show that the spectra of rectangular and square
grid graphs can be computed explicitly from the spectra of path graphs by employing
suitable graph products and Kronecker products in 4. We proceed show how good
edge and vertex separators in the grid graphs can be computed from the spectral infor-
mation. In 5, we describe our heuristic spectral algorithm to compute vertex separators
in general graphs. The algorithm initially computes an edge separator, and then uses a
maximum matching in a subgraph to compute the vertex separator. Results about the
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quality of the separators computed by the algorithm are presented in 6. In this section,
we also compare the spectral separators with separators computed in the first step of the
Sparspak nested dissection ordering algorithm and the Kernighan-Lin algorithm, as well
as with results obtained recently by Liu [42 and Leiserson and Lewis [38 ]. The time
required to compute the Laplacian eigenvectors with the Lanczos algorithm and the
accuracy needed in the eigenvector to obtain good separators are addressed in 7. The
final contains our conclusions and some directions for future work.

2. Background. Let G (V, E) be an undirected graph on vI n vertices. The
n n adjacency matrix A A(G) has element av, equal to one if(v, w) E, and zero
otherwise. By convention, av,v is zero for all v e V. The rows and columns ofthe matrices
associated with a graph are indexed by the vertices ofthe graph, their order being arbitrary.
Let d(v) denote the degree of a matrix, and define D to be the n n diagonal matrix
with dv,o d(v). The matrix Q Q(G) D A is the Laplacian matrix of G.

Let the edges of the graph G be directed arbitrarily, and let C denote the vertex-
edge incidence matrix of the directed graph. The V EI matrix C has elements

+ ifv is the head of e,
Cv,e= -1 if v is the tail of e,

0 otherwise.

It is easy to verify that Q(G) CCt, and that Q is independent of the direction of the
edges in C. Biggs [11] contains a good discussion of the techniques from algebraic graph
theory that are used here.

The spectral properties ofQ have been studied by several authors [4], [23]. Since

xtQx=stCCtx=(Ctx)t(Ctx) , (Xv-Xw) 2,
(v,w)eE

Q is positive semidefinite. Let the eigenvalues ofQ be ordered
An eigenvector corresponding to , is __e, the vector of all ones. The multiplicity of the
zero eigenvalue is equal to the number of connected components of the graph. If G is
connected, then the second smallest eigenvalue 2 is positive. We call an eigenvector y
corresponding to 2 a second eigenvector.

Fiedler [23 ], [24] has studied the properties of the second eigenvalue X2 and a
corresponding eigenvector y. He calls ,2 the algebraic connectivity, and relates it to the
vertex and edge connectivities of a graph. He has also investigated the partitions of G
generated by the components of the eigenvector y. One of his results of interest in this
paper can be rephrased as follows.

THEOREM 2.1. Let G be a connectedgraph, and let y be an eigenvector corresponding
to k2. For a real number r >= O, define V( r) v V" y >= -r }. Then the subgraph
induced by V r) is connected. Similarly, for a real number r <- O, the subgraph induced
by the set Vz(r) v V" yo =< r] } is also connected.

In both sets V and V2, it is necessary to include all vertices with zero components
for the theorem to hold. The role played by these latter vertices in the connectedness of
the two subgraphs has been investigated at greater length by Powers [54], [55 ].

A corollary to this result is that if Yv 4:0 for all v V, then each of the sub-
graphs induced by P { v V" yo > 0 } and N v V" Yv < 0 } is a connected sub-
graph of G.

The eigenvectors of the adjacency matrix corresponding to its algebraically largest
eigenvalues have also been used to partition graphs. It is of interest to ask if a similar
theorem holds for an eigenvector corresponding to the second largest eigenvalue of the
adjacency matrix.
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Let x, y denote eigenvectors corresponding to the algebraically largest and second
largest eigenvalues, respectively, of the adjacency matrix of G. By the Perron-Frobenius
theory, it is known that all components ofx are positive. Fiedler’s theorem states that
if a is a nonnegative number, then the subgraph induced by

V v V: yo + axo >= O }

is connected. Similarly, if a is a nonpositive number, then the subgraph induced by
v2 v v: y Ilx --< 0 is also connected.

Alon [1] and Mohar [44] have studied the relationship of the second Laplacian
eigenvalue to the isoperimetric number, i(G). If U is a subset of the vertices of the graph
G, and 6U denotes the set of edges with one endpoint in U and the other in V\ U, then

IUI
i(G) min

I1-/ UI
Clearly i(G) is related to the problem of computing good edge separators.

Alon, Galil, and Milman [2], [3] have related the second Laplacian eigenvalue to
the expansion properties ofgraphs. The relationship ofthe Laplacian spectrum to several
other graph properties has been considered by several authors; two recent survey articles
are by Mohar [45] and Bien [10].

Spectral methods for computing edge separators have been considered by several
researchers: Donath and Hoffman 16 ], 17 ], Barnes 7 ], 8 ], Barnes and Hoffman 9 ],
Boppana 12]. An algorithm for coloring a graph by employing the eigenvectors of the
adjacency matrix has been considered by Aspvall and Gilbert [6 and a spectral algorithm
for finding a pseudoperipheral node has been described by Grimes, Pierce, and Simon
[33]. A spectral algorithm for envelope reduction is considered in [53].

Algorithms that make use of flows in networks to compute separators have been
designed by Bui et al. 13 ], and Leighton and Rao 37 ]. The former describes a bisection
algorithm with good average-case behavior for degree-regular random graphs, and the
latter describes an approximation algorithm for minimum quotient edge separators.

3. Lower bounds. We obtain lower bounds on the sizes ofvertex separators in terms
of the eigenvalues of the Laplacian matrix Q(G) in this section. The lower bounds hold
for any vertex separator in the graph; in particular, these bounds apply to a smallest
separator in the graph. We assume that the graph G is connected.

Let G (V, E) denote a graph on VI n vertices, and let A be a subset of its
vertices. Denote by 19(v, A the distance of a vertex v from A, i.e., the fewest number of
edges in a shortest path from v to a vertex in A. Let S denote the set of vertices which
are at a distance of less than 19 >_- 2 from A, and not belonging to A. Hence

Define B V\(A (.J S); ifB 4: , then the distance between A and B, 19(A, B) t9. If
19 > 2, the set S is a wide separator that separatesA from B. If 19 2, we get the commonly
used notion of separators. Wide separators were first used in sparse matrix algorithms
by Gilbert and Schreiber [28].

Let EA denote the set of edges with both endpoints in A, and EAS denote the set of
edges with one endpoint in A, and the other in S. The sets E, Es, and Es are defined
similarly. In the following, it will be convenient to work with the fractional sizes a
A l n, b B I/n, and s SI/n. The degree of a vertex v will be denoted by d(v),
and A will denote the maximum degree of vertices in G.



434 A. POTHEN, H. D. SIMON, AND K.-P. LIOU

The first result is a lower bound on the size of a wide separator separating any pair
ofvertex disjoint setsA and B that are at a distance o from each other. As will be described
later, it generalizes a result of Alon, Galil, and Milman [2].

THEOREM 3.1. Let A, B be disjoint subsets of vertices ofG that are at a distance
o > 2 from each other. Let S denote the set of vertices not belonging to A that are at a
distance less than o from A. Then

sZqt-s--pZa(1--a)>=O, where=(A/)z)+pZa 1.

Proof. Let e, 0 be the vector of all ones and all zeros, respectively. The Courant-
Fischer-Poincar6 minimax principle states that

tQs Ei,j),(xi-x) 2

:z= min min ,,,_ 2
x4:0 xtx x_4:O lXi
etx 0 etx 0

Using the Lagrange identity in the above equation, Fiedler [24] derived the following
inequality, which is valid for all real n-vectors.

n (Xi--Xj)2)k2 Z (Xi--Xj) 2"
(i,j) E i,j V

i<j

We prove the result by making an appropriate choice ofx in the above inequality.
Choose the vth component of_x to be x (2/p) min p, p(v, A) }. If v e A,

thenx= 1;ifveB, then x -l; and if v e S, then-1 +(2/p)=<x_-< 1-(2/p).
Also, if v, w are adjacent vertices, then [x Xw --< 2/p.

The left-hand side of has nonzero contributions from three terms, and it can be
bounded from above as follows:

(2)

Z (x-x2)2=( + + )(x-x) 2

(i,j) E (i,j) E (i,j) E (i,j) E
ieA,jeS ieB,jS iS,je S

4
( EAsl + EBsl + Esl)
p

4< nsA.2p

Similarly, nonzero contributions to the right-hand side of also come from three
terms, and we obtain a lower bound as shown:

X Xj
2 ( Z ’]-Z -Jr --- Z ) X Xj

2

V ieA,jeS ieA,jeB ieB,jeS iS,jeS
i<j i<j

ieA,jeS ieA,jeB ieB,jeS

(3) >_- nas+(1 -(-1))nab+ -1 -1

4n

o ((a+b)s+oa(1 a s))

4n

o ((1-s)s+oa(1-a-s)).

2))2+- n2bs
p
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Using inequalities (2) and (3) in Fiedler’s inequality ), and canceling common
terms, we obtain

SA k2( --S)s+pZa( -a-s)).

This last inequality yields the desired result after some rearrangement.
Fiedler 23 showed that X2 =< (n /(n )) min { d(v)" v V }. Mohar 44 proved

that for all graphs except the complete graphs Kn, A >= X2. Thus for all graphs except the
complete graphs, the ratio A/X2 >= 1, and/3 is a positive number. Indeed, the ratio A/
2, and hence/3, is much larger than one, for all the adjacency graphs of sparse matrices
that we have computed partitions.

COROLLARY 3.2. If3 >= O, then

o2a(1-a) 02a(1-a)
S >

13 (A/Xz)+pga 1"

Proof. Let Sl, s)_ be the roots ofthe quadratic equation corresponding to the inequality
in Theorem 3.1, with s -_< s.. Then s >-_ s2, and

s2 (- + (/32 + 4o2a( a))l/2).

If/3 >= 2o(a(1 a)) 1/2, then expanding the right-hand side in power series yields the
result.

It remains to verify the condition of the corollary. Since (a( a))/ has its max-
imum value 1/2 when 0 _-< a =< 1, the power series expansion is valid when

The corollary exhibits the dependence of vertex separator sizes on X: the smaller
the second eigenvalue, the larger the ratio A/X2, and the smaller the lower bound on the
vertex separator size. The corollary also shows the dependence of the lower bound on
the distance 0 and the fractional size of the set A.

The common situation ofa separator corresponds to o 2. In this case, the quadratic
inequality becomes s 2 + /s 4a(1 a) _>- 0, with/3 (zX/X2) + 4a 1. After some
simplification, it can be seen that the inequality in Theorem 2.1 of Alon, Galil, and
Milman 2 is equivalent to the above inequality. In this case, when/3 >= 2, we obtain
the lower bound

4a(l-a)
S >

(A/X2) +4a-

Mohar [43, Lem. 2.4] has obtained a lower bound on vertex separators in terms of
Xn and X. Lower bounds on edge separators can also be obtained by this technique.

A second lower bound. We now obtain a lower bound that exhibits another factor
influencing the size ofvertex separators. The technique used is derived from the Wielandt-
Hoffma theorem, and has been previously used by Donath and Hoffman 17 to obtain
lower bounds on edge separators.

Let S be a vertex separator that separates the graph G into two sets A and B, with
AI >-- BI >= SI. Let d(v) denote the degree of a vertex v, and let i(v) denote the

"internal" degree of v, i.e., the number of edges incident on v with the other endpoint
in the same set as v.

Recall that the eigenvalues of Q are ordered as Xl 0 < X _-< X3 =< X,. Let the
n n matrix J diag (Ja, J6, Jc), where Ja is the na n a matrix of all ones, and J6,
J are similarly defined. The eigenvalues of J are #l na >= t nb >= #3 ns > ld4

#n=0.
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THEOREM 3.3. Let S be a vertex separator that divides a graph G into two parts,
A, B, with I/I >--IBI >- ISI. Then

a)X2s>=
2A ()‘3--)‘2)

Proof. From the proof of the Wielandt-Hoffman theorem 34 (see also 17 ),

(4) trace QJ) >-
i=1

We now compute both sides of the above inequality.
The fight-hand side is

Xi#i=na’O+nb’Xz+ns’X3=n(1-a-s)X2+nsX3.
i=1

to J:
To evaluate the left-hand side, we partition the symmetric matrix Q to conform

Qaa 0 Qas tQ= o Qbb Qbs
Qtas Qtb, Qss

trace QJ) trace (Q,J,) + trace (Q,bJ,) + trace (QssJs)

(5) --2(IEI-IEAI--IEl-IEsl)

2(I gl gl gl)

<=2nsA.

Substituting the inequalities (3) and (5) in (4), we obtain

2nsA >= n( 1--a--s)X2+ns)‘3.

This yields the final result after some rearrangement, rq

This last lower bound on a vertex separator size shows as before that the magnitude
of )‘2 influences the lower bound; it also shows that the "gap" between ),3 and )‘2 has an
effect.

A word of caution is in order about these lower bounds. These bounds should be
considered the same way one treats an upper bound on the error in an a priori roundoff
error analysis [58 ]. The lower bounds obtained are not likely to be tight, except for
particular classes of graphs. They do illustrate, however, that a large )‘2, with an accom-
panying small A/)‘2, will result in large sizes for the best separators in a graph.

4. Partitions of grid graphs. In this section we show that the second eigenvector of
the Laplacian matrix can be used to find good vertex separators in grid graphs, which
are model problems in sparse matrix computations. The separators obtained are identical
to the separators used by George [26] at the first step in a nested dissection ordering of
grid graphs.

To compute separators by this technique, we need to first compute the eigenvectors
of grids. The Laplacian spectra of grid graphs can be explicitly computed in terms of the
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Laplacian spectra of path graphs. Some of this material is well known in spectral graph
theory [15], but such treatments consider only eigenvalues and not eigenvectors. Further,
the nine-point grid needs to be modified before its spectrum can be explicitly computed.
The techniques used are quite general, and can be used to compute the spectra of several
other classes of graphs which can be expressed in terms of graph products of simpler
graphs.

The path graph. Let Pn denote the path graph on n vertices. We assume in the
following discussion that n >= 2 is even. We number the vertices of the path from to n
in the natural order from left to fight.

The Laplacian matrix ofPn is tridiagonal, and hence its spectrum is easily computed.
Let ff)n 7l’/n. We denote the elements of a vector s by writing its th component
as (xi).

LEMMA 4.1. The Laplacian spectrum ofPn is

(1Xk,n =4sin 2 (k-1)4n
xk,,=(cos((i -1/2)(k-1)4)), fork= l, ,n, l, ,n. V1

As k ranges from to n, the angle 1/2 (k )4, varies from zero to r/2; hence the
< )t2 n

< n Note that X l, ,neigenvalues are ordered as Xl, 0, X 1, and X2,n
4 sin2((hn/2), and _x,. (cos((/- 1/2 )qS)). The components of_x2,, plotted against the
vertices of P30 decrease monotonically from left to right.

Let Xl denote the median n / 2th largest) component of the second eigenvector, and
partition the vertices of the path into two sets, one set consisting of all vertices with
components less than or equal to the median component, and the other consisting of all
vertices with components larger than the median component. This partitions the path
into subsets of vertices ofequal size, one consisting ofthe vertices with positive eigenvector
components, and the other consisting of vertices with negative components.

Graph products. We can compute the spectra ofgrid graphs from the spectra ofthe
path graph. We require the concepts of graph products and the Kronecker products of
matrices. One notation for graph products is from Cvetkovic, Doob, and Sachs [15 ],
and a good discussion of Kronecker products may be found in Fiedler [25].

For 1, 2, let Gi (Vi, Ei) be graphs. The Cartesian sum G1 nt- G2 is the graph
(V1 V2, E), where vertices il, jl and i2, j.) are joined by an edge if either i i2 and
{j, j2 is an edge in G2, orj j2 and { i, i2 is an edge in G1. The Cartesian product
Gl" G2 is the graph (V1 V2, F), where vertices (il,j and i2, j2) are joined by an edge
if { il, i2 is an edge in G and { j, j2 is an edge in G. The strong sum G (R) G2 is the
graph (V1 V2, E U F); thus it contains the edges in both the Cartesian sum and the
Cartesian product.

It is easy to verify that the Cartesian sumP + Pm is the five-point m n grid graph,
and that the strong sum P Pm is the nine-point m n grid graph.

Since the grid graphs can be obtained from appropriate graph products of the path
graph, the Laplacian matrices ofthe grid graphs can be obtained from Kronecker products
involving the Laplacian matrices of the path graph. If C is a p q matrix, and D is
r s, recall that the Kronecker product C (R) D is the pr qs matrix with each element
do ofD replaced by the submatrix (Cdij).

The five-point grid. We consider the m n five-point grid, and without loss of
generality consider m _-< n. Initially we consider the case when n is even, and m < n. At
the end of this section, we discuss how the results are modified when n is odd, or m n.
We draw the m n grid with n vertices in each row and m vertices in each column.
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Let Q denote the Laplacian matrix of the five-point m n grid graph, Rn denote
the Laplacian matrix of the path graph on n vertices, and In be the identity matrix of
order n. Recall that k,n, Xk, denotes the kth eigenpair (when eigenvalues are listed in
increasing order) of the path graph with n vertices. The following result is well-known;
we include a proof for completeness, and because we wish to indicate how a similar result
is obtained for the Laplacian spectrum of a modified nine-point grid.

THEOREM 4.2. The Laplacian spectrum ofthe m n five-point grid is

Idk, kk,n d- kl,m,

y__k,l=Xk,n( Xl,m, k-- 1, ,n, 1, ,m.

Proof. It is easy to verify that the Laplacian matrix of the five-point grid can be
expressed in terms of the Laplacian matrix of the path graph as Q Rn (R) Im + In (R) Rm.
The first term in the sum creates m copies of the path on n vertices, and the second term
adds the "vertical" edges, which join neighboring vertices in each column of the grid.

We show that zk,t, Y,t is an eigenpair of Q.

QXk,n () Xl, Rn (R) Im Xk,n () Xl, 41- (In ()Rm Xk,n( Xl,

(RnXk,n)()(ImXl,m) -1- (InXk,n)((RmXl,m)

k,n__k,n () Xl,m d- Xk,n () ,l,mXl,m

Ik, "l- 11,m X__k,n () Sl,

The transformation from the first line to the second line uses the associativity of the
Kronecker product. D

The smallest eigenvalue tl, l,n + X,m is zero. The next smallest eigenvalue is

/2, 4 sin 2 (n/2), and the corresponding eigenvector is

___.Y2,1 X2,n(Xl,m COS i- qn (R) I.

The components of Y2, are constant along each column of m vertices, and the
components decrease from left to fight across a row. Columns numbered to n/2 have
positive components, and the rest of the columns have negative components. The com-
ponents of this eigenvector of the m n five-point grid are plotted in Fig. 1.

These results show that the second eigenvector of the grid can be used to compute
good edge separators and vertex separators. Let y denote this eigenvector in the following
discussion, and let y denote the median component ((mn/2)th largest component out
of mn). Let Yo denote the eigenvector component corresponding to vertex v.

COROLLARY 4.3. Let V denote the set of vertices of the five-point m n grid
m < n, n even), and let V be partitioned by its second eigenvector as follows"

A’={v’y<=y}, B’=V\A.

IfE’ denotes the set ofedgesjoiningA to B’, then E’ is an edge separator ofsize rn which
separates the grid into two parts each with mn / 2 vertices. Further, ifS denotes the set

ofendpoints ofE’ which belong to B’, then S is a vertex separator ofsize rn which separates
the grid into two parts of(mn/2) and m((n/2) vertices.

The corollary follows from noting that A’ consists of vertices in the columns to
n/2 of the grid, and B’ is the remaining set of columns. The edge separator E’ consists
of the rn edges of the grid which join vertices in column n/2 to column (n/2) + 1.
Finally, the vertex separator S consists of vertices in column (n/2) + 1. Note that the
vertex separator is the same as the separator at the first step ofa nested dissection ordering
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FIG. 1. The second Laplacian eigenvector ofthefive-point grid.

described by George [26 ]. Buser [14] has shown that the edge separator E’ yields the
optimal isoperimetric number for grid graphs.

We now consider the case when n is odd orm n. When n is odd, the only difference
is that vertices in the middle column ((n + )/2th column) have eigenvector components
equal to zero. Columns numbered less than the middle column have positive components,
and columns numbered higher have negative components. The middle column can be
chosen as a vertex separator. The second case corresponds to a square grid, m n. Then
/2,1 /1,2, and the second smallest eigenvalue ofQ has geometric multiplicity two. The
two linearly independent eigenvectors obtained by the graph product approach are
y2,1 __XE,n () Sl,n, and y 1,2 _xl,n (R) _XE,n. The eigenvector Y2,1 has components as described
earlier for the rectangular case. The eigenvector Y1,2 has components constant across
each row, and decreasing from bottom to top along each column. From these two in-
dependent eigenvectors, we obtain a middle column and a middle row as the vertex
separators.

Note that when the Lanczos algorithm is used to compute an eigenvector corre-
sponding to the second eigenvalue of the square grid, the eigenvector obtained will be
some linear combination of the two eigenvectors y 1,2 and y2,1. This will lead to a larger
vertex separator than the ones above. We report computational results on separators of
square grids obtained from the Lanczos algorithm in 6.

The nine-point grid. Let Q’ denote the Laplacian matrix of the nine-point grid, and
let Dn be the n n diagonal degree matrix of the n-vertex path. As before, let Rn denote
the Laplacian matrix of the n-vertex path, and In the identity matrix of order n. It is
again not difficult to verify that Q’ Rn (R) Im + In (R) Rm + Rn (R) Dm + Dn (R) Rm
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Rn (R) Rm. Unfortunately, the spectrum of Q’ cannot be expressed in terms of the spectra
of the path graphs, as for the five-point grid.

However, we can first embed the nine-point grid graph in a modified grid, whose
Laplacian spectrum is computable in terms of the spectra of the path graphs, and then
partition the modified grid. We use the partition of the modified grid to partition the
nine-point grid.

The necessary modification to the nine-point grid is as follows. Replace each bound-
ary edge of the rn n grid by two edges joining the same endpoints. Let Q denote the
Laplacian of the resulting multigraph.

THEOREM 4.4. The spectrum ofQ is

l,,z 3 X,,n + Xl, kk, )kl,

Y___k,l-- Xk,n@ Xl,m, for k 1, n, 1, m.

Proof. It is easy to show that Q 3(Rn () Im + In @ Rm) Rn Rm. A direct
computation, as in Theorem 4.2, shows that k,,Yk, is an eigenpair of Q.

Note that the eigenvectors of the modified nine-point grid are the same as the ei-
genvectors of the five-point grid, and hence the partitions ofthe modified nine-point grid
are exactly the same as those of the five-point grid.

Finally, we remark that the adjacency spectra of the grids can also be explicitly
computed in terms of the adjacency spectra of the path graphs.

5. A spectral partitioning algorithm. In this section we describe an algorithm for
finding a vertex separator of a graph by means of its Laplacian matrix. Recall that we
require the separator to partition the graph into two parts with nearly equal numbers of
vertices in each part, and also that the size of the vertex separator be small.

The algorithm uses a second eigenvector of the Laplacian matrix to compute the
partition. We compute xt, the median value of the components of the eigenvector. Let
A’ be the set of vertices whose components are less than or equal to x1, and let B’ be the
remaining set of vertices. If there is a single vertex with the component corresponding
to x, then A’ and B’ differ in size by at most one. If there are several vertices with
components equal to xl, arbitrarily assign such vertices to A’ or B’ to make these sets
differ in size by at most one.

This initial partition of G gives an edge separator in the graph. Let A1 denote the
vertices in A’ that are adjacent to some vertex in B’, and similarly let B1 be the set of
vertices in B’ that are adjacent to some vertex in A’. Let E be the set of edges ofG with
one endpoint in A and the other in B. Then E is an edge separator of G. Note that
the subgraph H (A1, B, El is bipartite.

We require a vertex separator of G, which can be obtained from the edge separator
E1 by several methods. The simplest method is to choose the smaller ofthe two endpoint
sets At and B. Gilbert and Zmijewski 29 have computed vertex separators from edge
separators in this manner in the context ofa parallel Kernighan-Lin algorithm. However,
there is a way to choose a smallest vertex separator, which can be computed from the
given edge separator E’.

The idea is to choose a set S consisting of some vertices from both sets of endpoints
A and B, such that every edge in E is incident on at least one of the vertices in S. The
set S is a vertex separator in the graph G, since the removal of these vertices causes the
deletion of all edges incident on them, and this latter set of edges contains the edge
separator El. The set S is a vertex cover (cover) of the bipartite graph H.

A cover of smallest cardinality is a minimum cover. A minimum cover S of the
graph H is a smallest vertex separator of G corresponding to the edge separator El. It is
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well known [36], [47] that a minimum cover of a bipartite graph H can be computed
by finding a maximum matching, since these are dual concepts.

In general, S will consist of vertices from bothA and B. Let As and Bs denote the
vertices ofS that belong to A and B, respectively. Then S separates G into two subgraphs
with vertex setsA A’\As, B B’\Bs. Usually the structure ofH permits some freedom
in the choice of the sets At and Bs; only the sum ]AI + BI is invariant. This freedom
can be used to make the two sets A and B less unequal in size. The sets As and B may
be computed from a canonical decomposition of bipartite graphs called the Dulmage-
Mendelsohn decomposition, which is induced by a maximum matching. An implemen-
tation of this decomposition is described in [52].

The Spectral Partitioning Algorithm is summarized in Fig. 2.

Complexity of the algorithm. In finite precision arithmetic, how accurately must
the components of a Laplacian eigenvector be computed to ensure that the vertices are
correctly partitioned with respect to the median component? Since the eigenvector com-
ponents are algebraic numbers, it follows from a discussion in Aspvall and Gilbert 6
that only a polynomial number of bits are needed to order the components of a second
eigenvector correctly. In theory, this can be computed in polynomial time by any algorithm
that is at least linearly convergent.

In practice, we will have to be content with eigenvector components that are accurate
to a fixed number of digits. Since the Lanczos algorithm is an iterative algorithm, the
number of Lanczos steps required to approximately compute a second eigenvector will
depend on the accuracy desired in the eigenvector. In exact arithmetic, the distribution
of the eigenvalues of the Laplacian matrix Q is the primary factor which influences the
number of steps required to approximate a second eigenvector ( 12.4, Parlett [48,

2.4 ]. We will assume that the number of iterations of the Lanczos algorithm required
to compute a second eigenvector to a small number of digits (say, four) is bounded by
a constant. Our experiments in 7 indicate that this is a reasonable assumption. Each
iteration of the Lanczos algorithm costs O(e) flops, and by our assumption, a second
eigenvector can also be approximated to a few digits in O(e) flops.

The median component of the eigenvector can be obtained by an algorithm that
selects the kth element out of n. This can be done in O(n) time in the worst case by a
well-known algorithm of Blum, Floyd, Pratt, Rivest, and Tarjan. This algorithm finds
the desired element by repeatedly partitioning a subarray with respect to a pivot element,
without sorting the array.

1. Compute the eigenvector x2 and the median value xt of its components;
2. Partition the vertices of G into two sets:

A’ {vertices with Xv <= xt};
B’= V\A;

If IA’I B’I > 1, move enough vertices with components equal to x from A’ to B’ to make this
difference at most one;

3. Let A1 be the set of vertices in A’ adjacent to some vertex in B’;
Let B1 be the set of vertices in B’ adjacent to some vertex in A’;
Compute H (A1, B1, El), the bipartite subgraph induced by the vertex sets A1, B;

4. Find a minimum vertex cover S of H by a maximum matching;
Let S As LJ Bs, where As

_
A Bs

_
B

S is the desired vertex separator, and separates G into subgraphs with vertex sets A A’\ As,
B B’\Bs.

FIG. 2. The Spectral Partitioning Algorithm.
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The partition into the sets A and B can be done in O(n) time. The bipartite graph
H can be generated in O(e) time, by examining the adjacency list of each vertex at most
once. Let m be the smaller of A’I and B’I, and let e’ E’I. A maximum matching
and a minimum cover S can be obtained in O(Ve’) o(Ve) time by an algorithm
of Hopcroft and Karp. Thus the worst-case time complexity of the Spectral Partitioning
Algorithm is O(Vne).

Some comment is necessary about the above analysis. In practice, the matching is
obtained quite fast. Several matching algorithms have been efficiently implemented in
[18 ], [20], [52], and these algorithms exhibit O(n + e) time complexity in practice.
Also, we used a less sophisticated median-finding algorithm, which is O(n) in the average-
case, and O(n 2) in the worst-case. In practice, the dominant step in the Spectral Parti-
tioning Algorithm is the computation of a second eigenvector by the Lanczos algorithm.

6. Results. In this section, we report computational results obtained from the Spec-
tral Partitioning Algorithm and provide comparisons with several other separator algo-
rithms: a modified level-structure separator algorithm implemented in Sparspak, the
Kernighan-Lin algorithm, the Fiduccia-Mattheyses algorithm as implemented by Leis-
erson and Lewis [38 ], and the separator algorithm of Liu [42] based on the Multiple
Minimum Degree algorithm. We implemented the spectral algorithm, the modified
Sparspak separator algorithm, and the Kernighan-Lin algorithm; results for the last two
algorithms were obtained from Lewis (personal communication) and Liu’s paper [42].
Several sparse matrices from the Boeing-Harwell collection 19 and five- and nine-point
grids are partitioned using these algorithms.

Our primary goal in this paper is to establish that the spectral algorithm computes
separators that compare favorably with separators computed by previous algorithms.
Thus in this section, we report statistics about the quality of the separators computed by
the various algorithms. In the next 7, we report the time required to compute the second
Laplacian eigenvector (the dominant computation in the spectral algorithm) for a few
representative problems.

In current work, we are implementing a parallel Lanczos algorithm for computing
the second eigenvector in parallel. This algorithm will be used to compute the separators
in parallel. The parallel separator algorithm will then be used to recursively find separators
and thereby to compute, in parallel, orderings appropriate for parallel factorizations.

Arioli and Duff [5] have reported results on generating bordered block triangular
forms of unsymmetric matrices by finding separators in a directed graph associated with
the matrix. Their goal was to use the bordered block triangular form for the parallel
solution of large, sparse systems of equations.

The spectral algorithm. We computed vertex and edge separators using the Spectral
Partitioning Algorithm from the second Laplacian eigenvector. The Lanczos algorithm
was terminated either when the approximate eigenvector satisfied the eigenvalue equation
to a residual of 10-6 or when 300 Lanczos steps were performed. The partitions obtained
with the Spectral Partitioning Algorithm are tabulated in Table 1. In this table, we list
the edge separator first and the vertex separator next, since the former is computed first,
and the latter is computed from the former. The edge separator E separates the graph
into two parts A’ and B’. The sizes of these sets are shown in the first group of three
columns in the table. We show two vertex separators obtained from El: the first vertex
separator is chosen to be the smaller endpoint set of El; in the table, this set is denoted
A. The second vertex separator S includes subsets of vertices from both endpoint sets,
and is computed by means of a maximum matching to be a minimum vertex cover of
the bipartite graph induced by E.
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TABLE
Partitions using median component ofthe second Laplacian eigenvector.

Vertex separators

Edge separator Endpoint set Matching

Key IE, IA’] IB’I IA, IA’I- IAI IB’I ISI IAI Inl

BCSPWR09 34 862 861 22 840 861 20 857 846
BCSPWR10 44 2,650 2,650 35 2,615 2,650 31 2,623 2,646
BCSSTK13 3,585 1,002 1,001 295 707 1,001 236 862 905
CAN 1072 165 536 536 53 483 536 33 525 514
DWT 2680 85 1,340 1,340 29 1,311 1,340 28 1,313 1,339
JAGMESH 50 468 468 26 442 468 26 442 468
LSHP3466 121 1,733 1,733 61 1,672 1,733 61 1,672 1,733
NASA1824 740 912 912 103 809 912 102 839 883
NASA2146 934 1,073 1,073 96 977 1,073 74 1,036 1,036
NASA4704 1,324 2,352 2,352 185 2,167 2,352 172 2,266 2,266

GRD61.101.5 61 3,111 3,050 61 3,050 3,050 61 3,050 3,050
GRD61.101.9 181 3,111 3,050 61 3,050 3,050 61 3,050 3,050
GRD80.80.5 80 3,200 3,200 80 3,120 3,200 80. 3,120 3,200
GRD80.80.9 238 3,200 3,200 80 3,120 3,200 80 3,120 3,200

For six of the Boeing-Harwell problems, the matching method computes vertex
separators that are almost the same size as the smaller endpoint set. However, on the
CAN 1072 problem, the separator from the matching method is almost 40 percent smaller.
On the average problem in this test set, matching finds a separator that is about 11 percent
smaller than the separator obtained from the endpoint set. Further, since there are two
choices for the minimum cover, a good choice also makes the two part sizes less different.
Thus the use of matching techniques seems to be recommended in this context.

The edge separators obtained are small relative to the total number of edges in each
graph, except for the BCSSTK13 problem, which has a high average degree. For all
problems, except two, the vertex separators obtained are also relatively small (fractional
separator size s < 0.04) in comparison to the parts generated by the separators. The
exceptions are BCSSTK13 and NASA1824. Both these problems have large second ei-
genvalue X2. For BCSSTK13, ),_ 0.65; in contrast, for the 80 80 nine-point grid,
which has good separators, X2 4.6 10 -3.

For the grid graphs, good vertex separators can be computed by explicitly computing
the second eigenvector by the methods in 4. Here, we investigate the partitions obtained
by the spectral algorithm with the eigenvector computed by the Lanczos algorithm. We
partitioned the 61 101 grids initially into two sets with 3050 (50 columns) and 3111
(51 columns) vertices. The edge separator obtained joins vertices in the fiftieth column
to vertices in the fifty-first column. The vertex separator computed is the middle (fifty-
first) column.

In the square grids, the second eigenvalue has geometric multiplicity two, and there
are two linearly independent eigenvectors. The eigenvectors in 4, Y2,1 and y 1,2, obtained
by the Kronecker products of the Laplacian eigenvectors of the path, can be used to
compute two sets of edge separators. One edge separator joins vertices in the fortieth
column to vertices in the forty-first column, and the other joins vertices in the fortieth
row to the forty-first row. In general, the Lanczos algorithm will compute a linear com-
bination of the two eigenvectors described above, leading to a different (and large) edge
separator. However, for the starting vector we used, the Lanczos algorithm converged to
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the eigenvector y 1,2, and the latter edge separator was computed. (The choice ofthe start
vector is described in 7.)

We now compare the quality of the separators computed by the spectral algorithm
with separators computed from several other algorithms.

The modified level-structure separator algorithm. The separator routine in Sparspak,
FNDSEP, finds a pseudoperipheral vertex in the graph, and generates a level structure
from it. It then chooses the median level in the level structure as the vertex separator.
However, this choice may separate the graph into widely disparate parts. We modified
this routine such that the vertex separator is chosen to be the smallest level k such that
the first k levels together contain more than halfthe vertices. A vertex separator is obtained
by removing from the vertices in level k those vertices that are not adjacent to any vertex
in level k + 1. By the construction ofthe level structure, the removed vertices are adjacent
to vertices in level k 1, and hence these are added to the part containing vertices in
the first k levels. The other part has vertices in levels k + and higher. We can also
obtain two edge separators using the level structure from the set of edges joining the
vertex separator to the two parts A and B.

Statistics about the edge and vertex separators computed by this technique are shown
in Table 2. In this table, the vertex separator is listed first and then the edge separator
since the former is computed first and the latter is obtained from the former.

The Spectral Partitioning Algorithm computes smaller vertex separators than the
Sparspak separator algorithm; on the average problem in the Boeing-Harwell test set,
the spectral vertex separator is about half the size of the Sparspak vertex separator. The
spectral algorithm also succeeds in keeping the part sizes less disparate than the latter
algorithm. The average difference in the part sizes is about 7 percent for the Sparspak
separator, but there are problems for which this difference is greater than 20 percent.

For most problems, the spectral algorithm also finds smaller edge separators in the
graph than the Sparspak level-structure separator algorithm. There are a few problems
where the best edge separator obtained by the latter algorithm is smaller than that obtained
by the spectral algorithm, but the former edge separators separate the graph into parts
with widely differing sizes. In the spectral algorithm, equal part sizes can be obtained by

TABIF 2
Partitionsfrom automated nested dissection.

Vertex separator Edge separators

Key IS[ [A[ [B[ [EI[ [A[ IBtA SI [E2[ [A tA SI [B[

BCSPWR09 68 762 893 80 762 961 130 830 893
BCSPWR10 169 2,421 2,710 209 2,421 2,879 317 2,590 2,710
BCSSTKI3 302 764 937 3,035 764 1,239 4,792 1,066 937
CAN 1072 64 478 530 108 478 594 342 542 530
DWT 2680 28 1,327 1,325 84 1,327 1,353 84 1,355 1,325
JAGMESH 26 455 455 50 455 481 50 481 455
LSHP3466 59 1,711 1,696 118 1,711 1,755 116 1,770 1,696
NASA1824 137 839 848 910 839 985 1,347 976 848
NASA2146 131 1,008 1,007 1,473 1,008 1,138 1,569 1,139 1,007
NASA4704 296 2,245 2,163 2,134 2,245 2,459 2,424 2,541 2,163

GRD61.101.5 61 3,050 3,050 121 3,050 3,111 121 3,111 3,050
GRD61.101.9 111 3,025 3,025 327 3,025 3,131 333 3,131 3,025
GRD80.80.5 80 3,160 3,160 158 3,160 3,240 158 3,240 3,160
GRD80.80.9 113 3,136 3,151 333 3,136 3,264 339 3,249 3,151
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partitioning with respect to the median eigenvector component; any other choice of part
sizes can also be obtained by partitioning with respect to the appropriate component.
Since edge separators are computed in the Sparspak algorithm by means of a level struc-
ture, part sizes cannot be controlled as effectively.

The Kernighan-Lin algorithm. The Kernighan-Lin algorithm is a heuristic algorithm
for computing small edge separators. We investigated the use ofthis algorithm separately
and in conjunction with the Spectral PartitioningAlgorithm, to compute edge and vertex
separators.

The Kernighan-Lin algorithm begins with an initial partition of the graph into two
subsets A’, B’, which differ in their sizes by at most one. At each iteration, the algorithm
chooses two subsets ofequal size to swap between A and B, thereby reducing the number
of edges that join A to B. We refer the reader to Kernighan and Lin 35 ], or Gilbert and
Zmijewski 29 for a detailed description ofhow the algorithm chooses the subsets to be
swapped. The algorithm terminates when it is no longer possible to decrease the size of
the edge separator by swapping subsets. In our implementation, each iteration could
require O(n 3) time, though in practice, often the running time is O(n 2 log n), the time
required for n sorts.

One initial partition we could use is the edge partition obtained from the Spectral
Partitioning Algorithm, and a second choice is to use a randomly computed initial par-
tition. We consider the four graphs with the largest edge separators from Table 1, and
report the sizes of the edge and vertex separators obtained with the Kernighan-Lin al-
gorithm in Table 3. An edge separator was computed first, and then a vertex separator
was obtained as before by matching methods. The column labeled "SP" corresponds to
the output of the spectral algorithm, "SP, KL" corresponds to the Kernighan-Lin al-
gorithm with initial partition from the spectral algorithm, and "KL" corresponds to the
Kernighan-Lin algorithm with a random initial partition.

The application ofthe Kernighan-Lin algorithm with the spectral partition as input
succeeds in reducing the sizes of the edge separator considerably for two of the four
problems. Thus if one is primarily concerned with small edge separators, applying the
Kernighan-Lin algorithm to the partition produced by spectral algorithm could be

TABLE 3
Partitions from the Kernighan-Lin algorithm. The first table describes the edge separators, and the second,

vertex separators.

Key A’I B’I SP SP, KL KL

BCSSTK 13 1,002 1,001 3,585 2,880 3,550
NASA 1824 912 912 740 739 739
NASA2146 1,073 1,073 934 870 870
NASA4704 2,352 2,352 1,324 1,313 1,525

SP SP, KL KL

Key ISI IAI Inl ISI IAI Inl ISI IAI Inl

BCSSTK13 236 862 905 250 870 883 284 772 947
NASA1824 103 839 883 102 830 892 102 830 892
NASA2146 74 1,036 1,036 74 1,036 1,036 74 1,036 1,036
NASA4704 172 2,266 2,266 172 2,266 2,266 204 2,163 2,337
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worthwhile. However, the size of the vertex separator is not improved. For two of the
problems, the size remains the same; for a third, it decreases by one, and the size increases
for a fourth problem. Also, for two of the four problems, the spectral algorithm by itself
finds better vertex separators than those obtained by the Kernighan-Lin algorithm alone.

Gilbert and Zmijewski [29] have observed that the quality of the partition found
by the Kernighan-Lin algorithm strongly depends on the quality of the initial partition.
They show for a grid graph that it is possible to choose a bad initial partition for the
Kernighan-Lin algorithm such that the algorithm will not find a minimum edge separator.

Edge separators obtained from the Kernighan-Lin algorithm with initial spectral
partition are better than those obtained from the application of the Kernighan-Lin al-
gorithm with random initial partitions for two of the four problems. Use of the initial
partition from spectral algorithm also helps the Kernighan-Lin algorithm to converge
faster. On these four problems, the Kernighan-Lin algorithm ran on the average about
3.2 times faster when the spectral partition was used. Thus the spectral algorithm could
be used to generate initial partitions of high quality for the Kernighan-Lin algorithm.

The Leiserson-Lewis and Liu algorithms. In [38] Leiserson and Lewis have used
the Fiduccia-Mattheyses algorithm 22 to compute vertex separators and then to order
sparse matrices. Liu [42] uses the Multiple Minimum Degree ordering algorithm to
compute vertex separators, and then improves the separator (by decreasing its size and
making the parts less unequal) by a matching technique. He uses his separator algorithm
in [41 to compute a good ordering for parallel factorization. In both implementations
sparse matrices from the Boeing-Harwell collection are used, so we are able to give a
direct comparison of the first level vertex separator. The data in Table 4 are obtained
directly from Liu’s report 42 and from Lewis (personal communication). In both cases
we have added small disconnected components, which were created by the vertex sepa-
rators, to the smaller of the two sets AI or BI.

The results in Table 4 show that the Leiserson-Lewis implementation and Liu’s
algorithm find separators which are smaller than the spectral separators for the two power
network problems. The reason for this seems to be that for these problems, the spectral
algorithm computes a partition from an eigenvector that has converged to fewer than
two correct digits. The accuracy of the computed eigenvectors is discussed in greater
detail in 7. For the other four problems, the Leiserson-Lewis and the spectral separators
are almost the same size. Liu’s algorithm finds a larger separator than the spectral algorithm
for the BCSSTK 13 problem. The Leiserson-Lewis algorithm does a good job of keeping
the part size roughly equal. There is greater difference between the part sizes in Liu’s
algorithm. However, neither the Leiserson-Lewis algorithm nor Liu’s algorithm offers
any easy prospect for a parallel implementation. A factor which cannot be evaluated in

TABLF, 4
Vertex separatorsfrom the Leiserson-Lewis and the Liu algorithms.

Leiserson-Lewis Liu

Key ISI IAI Inl ISl

BCSPWR09 7 858 854 8 1,026 689
BCSPWR 10 18 2,641 2,634 19 2,661 2,620
BCSSTKI 3 242 892 869 298 941 764
CAN 1072 34 522 516 38 665 368
DWT2680 28 1,339 1,313 26 1,369 1,283
LSHP3466 57 1,708 1,701 61 1,727 1,678
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this comparison is the relative execution time of the algorithms, since these algorithms
were implemented on different computers.

7. Convergence. The dominant computation in the Spectral Partitioning Algorithm
is the computation of the second eigenvector of the Laplacian matrix by the Lanczos
algorithm. Since the Lanczos algorithm is an iterative algorithm, the number ofiterations
and the time required to compute this eigenvector is dependent on the number of correct
digits needed in the eigenvector components. In this section, we describe the details of
an implementation of the Lanczos algorithm for computing this eigenvector, and study
how the quality ofcomputed separators depends on the accuracy in the second eigenvector.

The Lanczos algorithm. The most efficient algorithm for computing a few eigen-
values and eigenvectors of large, sparse symmetric matrices is the Lanczos algorithm.
Since the Lanczos algorithm is discussed extensively in the textbook literature 30 ], 48 ],
we do not include a detailed description ofthe standard algorithm here. The convergence
of the Lanczos algorithm depends critically on the distribution of the eigenvalues of the
underlying matrix. Usually the extreme eigenpairs, i.e., the largest and smallest, are found
first. However it is also known that for operators such as the discrete Laplacian for a grid
problem, or more generally for positive definite finite element matrices which are ap-
proximations to elliptic operators, the Lanczos algorithm converges in most cases to the
extreme fight, i.e., the very large eigenvalues, before delivering good approximations to
the eigenvalues close to zero. This behavior can be explained with the so-called Kaniel-
Paige-Saad theory (see [48]). When computing the smallest positive eigenvalue of the
Laplacian matrix Q, one faces exactly the same situation: the Lanczos algorithm delivers
very good approximations to the large eigenvalues before converging to the desired second
smallest eigenvalue. Thus the Lanczos algorithm potentially requires long runs before it
computes an approximation to the second eigenpair.

A potential modification which can be incorporated in the Lanczos algorithm for
faster computation of the second eigenvector would be to apply the shifted and inverted
operator, i.e., to consider the eigenvalue problem

(Q- rI)-lu #__u.

This is a standard technique in finite element applications [31], and it has been used
very successfully in a variety of implementations of the Lanczos algorithm [21 ], [32 ],
[49 ], [56 ]. In the situation here, a shift r chosen near zero would result in rapid con-
vergence to the eigenvalue 2. This approach cannot be taken here, since it requires the
factorization of the matrix Q ri, which is a large sparse symmetric matrix with the
same sparsity structure as M. Our original goal, however, is to find an efficient reordering
ofM, so to be able to factor it efficiently. Hence the "shift and invert" approach would
require us to factor a matrix closely related to M, and thus cannot be considered in this
application.

Reorthogonalization has also been used in the Lanczos algorithm to improve both
its reliability and computational efficiency 49 ], 50 ], 57 ]. However, in this application
we do not require reorthogonalization techniques in their full generality. Only a limited
amount of reorthogonalization is necessary for the computation of the second eigenpair.
No reorthogonalizations are performed at the fight end of the spectrum, with respect to
the large eigenvalues, since there is no interest in the accurate computation ofeigenvalues
at this end. Also it is unlikely that preserving orthogonality at the fight end will have any
impact on the convergence of the Lanczos algorithm towards the second smallest eigen-
value, which is at the left end of the spectrum. The first eigenvector xl of Q is e, the
vector of all ones, and this vector can be used for reorthogonalization at the left end of
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the spectrum. At each step we explicitly orthogonalize the current Lanczos vector against
e. This is effectively a deflation of the problem and now the eigenpair ),2, x2 will be
computed as the first eigenpair at the left end of the spectrum.

Another important consideration for the Lanczos algorithm is the choice ofa starting
vector. In the absence of any other information, a random starting vector is appropriate.
However, many practical matrix problems are presented already.in an ordering relevant
to the formulation of the problem, sometimes even in an ordering which is close to a
good band or envelope ordering. In this case it is desirable to transmit this ordering
information to the Lanczos algorithm. This was accomplished by setting the starting
vector in the Lanczos algorithm to r, with r; (n + )/2. This choice also makes
the starting vector orthogonal to e. In most cases this resulted in faster convergence to
the second eigenvector.

Finally, another point needs to be mentioned. Considering the simple structure of
the Laplacian matrix Q, and the seeming simplicity of the task of computing just one
eigenpair at the left end ofthe spectrum, one might be inclined to avoid the complexities
of the Lanczos algorithm and attempt to solve this problem with a simple shifted power
method with a deflation procedure analogous to the one described above. This was tried
as a first attempt at the computation of a second eigenvector, but with very poor results.
The power method converged exceedingly slowly, in many cases exhibiting the phenom-
enon of misconvergence [51]. This meant that the power method settled down at an
eigenvalue ofQ, which was not the Fiedler value, and whose eigenvector correspondingly
delivered a very poor reordering. The results here support the claims of[51 that even
in the simplest cases the Lanczos algorithm is the method of choice, when computing
eigenvalues of large, sparse, symmetric matrices.

Figure 3 contains a description of the specialized Lanczos algorithm for computing
the second Laplacian eigenvector. In this algorithm, we have assumed that the Laplacian
Q(G) is irreducible, or equivalently that the graph G is connected. Many of the sparse
matrices from the Boeing-Harwell collection have disconnected adjacency graphs. If a
graph has k connected components, the first k eigenvectors correspond to the multiple
eigenvalue zero, and the k + th eigenvector is used to partition the graph. A simple
modification to the above algorithm can be used to compute this eigenvector.

Convergence and quality of separators. We now present our results on the number
of iterations and the time required by the Lanczos algorithm as the second eigenvector
is computed to a set of different tolerances. The tolerance criterion, tol, is the 2-norm of
the residual vector Qu Xu, where X, u are the computed quantities at the current step
in the algorithm. We also study the quality of the vertex separators obtained from these
approximate eigenvectors.

We report results for a few representative problems from the Boeing-Harwell col-
lection and for two grid problems in Table 5. The iteration numbers reported are multiples
oftwelve, since we checked for convergence in the Lanczos algorithm by an eigendecom-
position of the tridiagonal matrix only after every twelve iterations. Times are in seconds

1. Given the sparsity structure of a matrix M, form the Laplacian matrix O.
2. Pick a starting vector r, with h (n + 1)/2.
3. Carry out a Lanczos iteration with the matrix Q and starting vector r. At each step orthogonalize the

Lanczos vector against the vector e. Stop when a second eigenvector has been determined to
sufficient accuracy.

FIG. 3. The Lanczos algorithm for computing the second Laplacian eigenvector.
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TABLE 5
Convergence results. Times are in seconds on a Cray Y-MP. A blank entry in the separator column indicates

that the separator is unchangedfrom the row above it.

Key tol Items Time IS A B

NASA4704 10- 24 0.27 172 2,266 2,266
10-2 60 0.65
10-3 72 0.80
10-4 96 1.10
l0-5 108 1.30
l0-6 120 1.50

BCSSTKI3 10- 36 0.23 236 905 862
10-2 36 0.23
10-3 48 0.30
10-4 60 0.39
10-5 72 0.49
10-6 84 0.60

BCSPWR 10 10- 24 0.24 171 2,619 2,510
10-2 84 0.92 72 2,642 2,586
I0-3 252 7.20 34 2,643 2,623
10-4 300 11.90 31 2,646 2,623

GRD61.101.5 10-2 12 0.15 101 3,050 3,010
10-3 36 0.42 61 3,050 3,050
10-4 96 1.26
10-5 108 1.47
10-6 120 1.67

GRD61.101.9 10- 12 0.16 101 3,030 3,030
10-2 24 0.30 61 3,050 3,050
10-3 108 1.53
10-4 120 1.76
10-5 144 2.38
10-6 156 2.70

on a Cray Y-MP, using our vectorized Lanczos code. For each value of tol, we report
the size ofthe vertex separator and the corresponding part sizes computed by the Spectral
Partitioning Algorithm. Blank entries in the separator columns mean that the separator
computed is the same as the one obtained with the previous tolerance.

For most of the problems that we have computational results, it is only necessary
to compute the second eigenvector to a tolerance ofabout 10-2, to obtain the best separator
obtained by the spectral algorithm. This accuracy requires only a modest number of
Lanczos iterations, and can be obtained reasonably fast. One class of notable exceptions
is the power network problems, illustrated by BCSPWR 10 in the table. For these problems,
the average degree of a vertex is small (about 1.5 for BCSPWR10), and the diameter of
the graph is large; hence computing eigenvector components (which represent global
information about the graph) is relatively slow. A large number of iterations are thus
necessary to compute the second eigenvector accurately. In the BCSPWR10 problem,
after 300 iterations, the norm of the residual in the eigenvalue equation was about 10 -4.
In this problem, the vertex separator decreases in size as the eigenvector becomes more
accurate.

8. Conclusions. We have considered an algebraic approach for computing vertex
separators and have shown that the eigenvalues of the Laplacian matrix can be used to
obtain lower bounds on the sizes ofthe separators. We have described a heuristic algorithm
for computing vertex separators from the second eigenvector of the Laplacian. Thus the
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spectral algorithm uses global information about the graph to compute separators. It is
enough to compute the eigenvector to low accuracy to obtain good separators for most
problems. Our results show that the spectral separators compare quite favorably with
separators computed by previous algorithms. The spectral algorithm has an advantage
over these algorithms in that its dominant computation is an eigenvector computation
(which involves mainly dense and sparse vector operations), and is fairly straightforward
to compute efficiently on medium-size multiprocessors used in scientific computing. For
previous algorithms, it is either not clear how to implement them in parallel or the
amount of parallelism is not high. Since the spectral algorithm involves mainly floating
point computations, we expect it to be attractive over primarily combinatorial algorithms
on machines like the Cray Y-MP, where floating point arithmetic is considerably faster
than integer arithmetic.

The computation of good separators is useful in many divide-and-conquer algo-
rithms. Several of the new parallel algorithms that have been reported to date make use
of divide and conquer, and hence the spectral separator algorithm will have applications
in parallel algorithm design. The spectral algorithm may also be useful in VLSI layout
problems, since good edge separators are needed in this context.

But our immediate intent was to use the spectral separator algorithm to compute
good orderings for parallel sparse factorizations. More work remains to be done in order
to accomplish this goal. First, we intend to compute and study the quality of orderings
obtained by the recursive application of the spectral algorithm. Second, we are working
on the fast sequential and parallel computation ofthe second Laplacian eigenvector. The
latter algorithm will enable us to compute the separators (and thereby orderings for
parallel factorizations) in parallel. We are investigating the Lanczos algorithm and the
generalized Davidson’s algorithm of Morgan and Scott [46] in this regard.

Finally, much remains to be understood about the theoretical underpinnings ofthe
spectral separator algorithm. It will be useful to obtain results on the quality of the
partitions computed by the Laplacian eigenvector components. It will also be helpful to
identify classes of graphs that are partitioned well by the spectral algorithm.
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