
Partitioning Strategies for Concurrent Programming

Henry Hoffmann, Anant Agarwal, and Srini Devadas
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
{hank,srini,agarwal}@csail.mit.edu

Abstract

This work presents four partitioning strategies, or designpatterns, useful for decomposing a serial application
into multiple concurrently executing parts. These partitioning strategies augment the commonly used task and data
decomposition patterns by recognizing that applications are spatiotemporal in nature. Therefore, data and instruction
decomposition are further distinguished by whether the partitioning is done in the spatial or in temporal dimension.
Thus, this work describes four decomposition strategies: spatial data partitioning, temporal data partitioning, spatial
instruction partitioning, and temporal instruction partitioning, and cataloges the benefits and drawbacks of each.
In addition, the practical use of these strategies is demonstrated through a case study in which they are applied to
implement several different parallelizations of a multicore H.264 encoder for HD video. This case study illustrates
both the application of the patterns and their effects on theperformance of the encoder.

1 Introduction

Design patterns for parallel computing help to add structure and discipline to the process of concurrent software
development [7, 8, 9, 5]. Two of the most commonly referencedparallel patterns aretask and data parallelism.
Using the task parallel pattern, a program is decomposed into concurrent units which execute separate instructions
simultaneously. Using the data parallel pattern a program is decomposed into concurrent units which execute the same
instructions on distinct data.

This work extends both the task and data parallel patterns bynoting that applications execute in time and space. If
one assigns spatial and temporal indices to a program’s dataand instructions, then it is possible to decompose both
data and instructions in time and space. Thus, this work recognizes four partitioning strategies for finding concurrency
in an application: spatial data partitioning (SDP), temporal data partitioning (TDP), spatial instruction partitioning
(SIP), and temporal instruction partitioning (TIP).

Recognizing patterns that distinguish between temporal and spatial partitioning is important for several reasons.
First, this distinction provides an additional set of options for finding concurrency in an application. Second, it pro-
vides greater descriptive power for documenting and characterizing a parallel application. Finally, and perhaps most
significantly, temporal and spatial partitioning affect the performance of an application in separate ways.

To understand the effect on performance, consider an application that continuously interacts with the outside world
by processing a sequence of inputs and producing a sequence of outputs. Examples include desktop applications that
interact with a human, embedded applications that interactwith sensors, and system software that provides quality of
service guarantees to other applications. Such applications typically have boththroughputandlatencyrequirements.
The throughput requirement specifies the rate at which inputs are processed while the latency requirement specifies
the speed with which an individual input must be processed. While both spatial and temporal partitioning patterns
improve throughput, only spatial partitionings can improve latency.

1



To illustrate the use of these patterns this paper presents acase study in which several different strategies are
applied to create parallel implementations of an H.264 video encoder [11, 4] on a multicore architecture. The case
study demonstrates how the additional options of temporal and spatial partitioning can aid programming. In addition,
the effects of different strategies on the throughput and latency of the encoder are cataloged.

The rest of this paper is organized as follows. Section 2 defines terminology and presents an example application
that is used to illustrate concepts. Section 3 presents the four partitioning strategies describing both spatial and
temporal partitionings of data and instructions. Section 4presents the case study illustrating the use of these patterns.
Section 5 covers related work and Section 6 concludes the paper.

2 Basics and terminology

This section presents the context and terminology used to describe the partitioning strategies listed in Section 3. It
begins by introducing an example application: an intelligent security camera. The security camera example is used
to illustrate many of the concepts in the remainder of the paper. Next, the terminology used to describe spatial and
temporal indexing of a program is presented. Finally, the section discusses a simple procedure used to prepare an
application for decomposition using the spatiotemporal design patterns described in Section 3.

2.1 Example application: an intelligent security camera

An intelligent security camera processes a sequence of input images, or frames, from a camera (e.g. [6]). The cam-
era compresses the frames for efficient storage and searchesthe frames to detect objects of interest. The compressed
video is stored to disk while a human is alerted to the presence of any objects of interest. Both the data (frames) and
the instructions (compression and search) of the camera have spatial and temporal dimensions.

The primary data object manipulated by the camera is the frame. The frame consists of pixels where each pixel is
generated by a spatially distinct sensor. The position of a pixel in a frame represents a spatial index into the camera’s
data. Frames are produced at regular time intervals and processed in sequence. Each frame is assigned a unique
identifier corresponding to the order in which it was produced. The sequence of frames represents a temporal index
into the camera’s data. The spatiotemporal dimensions of the security camera are illustrated in Figure 1.

Sensors 

…

S
pa

ce

Time

D
a

ta
 M

e
m

o
ry

 

A
[0

] 
A

[1
] 

…
A

[N
]…

…
…
…

Figure 1. Spatiotemporal indexing of data in the security camera example. Spatially distributed
sensors produce a sequence of pixels over time. The pixel’s location in the frame is the spatial
index while the frame number in the sequence in the temporal index.

2



The camera executes two primary functions: searching the frame for objects of interest and compressing the frames
for storage. The compression operation is, in turn, made up of two distinct functions. First a series of image processing
operations are executed to find and remove redundancy in the image stream, and, once the redundancy is eliminated,
the remaining data is entropy encoded. Thus, there are threehigh-level functions which constitute the instructions of
the camera:search , image , andentropy . As these functions occupy distinct regions of memory, their names
can serve as spatial indices. To determine the temporal indices of these functions, note that the functions must be
executed in a particular order to preserve correctness. Theorder of function execution represents an index into the
temporal dimension of the camera’s instructions. in this caseimage must be executed beforeentropy , butsearch
is entirely independent. The spatiotemporal indexing of the camera’s instructions is illustrated in Figure 2.

image

search

entropy

S
pa

ce

Time

In
st

ru
ct

io
n

 M
e

m
o

ry
 

Figure 2. Spatiotemporal indexing of instructions in the security camera. Each frame produced
by the camera is searched and encoded. The encoding process is further broken down into
image processing and entropy encoding functions. The topological sort of the dependence
graph provides a temporal index, while the function name provides a spatial index.

Note that the camera is typical of many interactive applications in that it has both latency and throughput require-
ments. The camera’s throughput must keep up with the rate at which the sensor can produce frames. In addition, the
camera must report objects of interest to the user with a low latency so that timely action can be taken.

2.2 Terminology

In this paper, the termprogramorapplicationis used to refer to the problem to be decomposed into concurrent parts.
A processis the basic unit of program execution, and a parallel program is one that has multiple processes actively
performing computation at one time. A parallel program is created bypartitioning or decomposinga program into
multiple processes. A partitioning strategy represents a common design pattern for performing this decomposition.

Programs operate by executinginstructionsto manipulatedata. Both the data and instructions of a program have
spatial and temporal components of execution.

Programs operate on temporal sequences of spatially distinct data. If each input in the sequence is numbered, then
the sequence number serves as a temporal index into the program’s data. Each input may consist of multiple distinct
items, which are stored in separate variables or array indices. These storage locations serve as spatial indices into the
program’s data.

3



The security camera illustrates one example of data indexing as shown in Figure 1. The sequence of frames
represent temporal inputs while the location of pixels in the frame represent a spatial index. Another example is a
search engine, which receives a sequence of queries consisting of multiple search terms. In this case, the sequence of
queries represents a temporal index while the distinct terms in the query represent the spatial index.

A program operates on a data input by executing sequences of distinct instructions which are bundled into functions.
The functions, which are stored in distinct memory locations, represent a spatial index into instruction execution.
The dependence between functions can be represented in a dependence graph. Performing a topological sort on the
dependence graph produces a partial ordering which can be used as a temporal index into a program’s instructions.

The security camera illustrates one example of instructionindexing as shown in Figure 2. The three functions,
search , image , andentropy represent spatial instruction indices of the camera application. The ordering of
function execution dictates that theimage function must execute before theentropy function, while there are no
ordering constraints onsearch . This partial order represents the temporal instruction indices of the camera example.

To summarize, partitioning strategies are distinguished by the decomposition of data or instructions and whether
that decomposition is performed in time or space. For data, the temporal dimension is defined by the sequence of
inputs, while the spatial dimension is defined by the distinct components of a single input. For instructions, the
temporal dimension is defined by the sequence of functions used to process an input, while the spatial dimension is
defined by the functions themselves.

2.3 Preparing to partition a program

The following procedure is used to prepare a program for partitioning:

1. Determine what constitutes a single input to define the temporal dimension of the program’s data. For some
programs an input might be a single reading from a sensor. In other cases an input might be a file, data from a
keyboard or a value internally generated by the program.

2. Determine the distinct components of an input to define thespatial dimension of the program’s data.

3. Determine the distinct functions required to process an input to define the spatial dimension of the program’s
instructions.

4. Determine the partial ordering of functions using topological sort to define the temporal dimension of the pro-
gram’s instructions.

To illustrate the process, it is applied to our security camera example:

1. A single frame is an input, so the sequence of frames represents the temporal dimension of the camera data.

2. A frame is composed of individual pixels arranged in a two-dimensional array. The coordinates of pixels in the
array represent the spatial dimension of the camera data.

3. The three major functions in the camera are:search , image , andentropy . These functions define the
spatial dimension of the camera’s instructions.

4. For a given frame, there is a dependence between theimage and entropy functions while thesearch
function is independent. These dependences determine the temporal dimension of the camera’s instructions.

Applying this procedure defines the dimensionality of a program’s data and instructions. Once this dimensionality
is defined, it is possible to explore different spatiotemporal partitioning strategies.

3 A taxonomy of spatiotemporal partitioning strategies

The procedure described in Section 2.3 defines the spatial and temporal dimensionality of a program’s instructions
and data. Given this definition it is possible to apply one of the following four partitioning strategies: spatial data
partitioning, temporal data partitioning, spatial instruction partitioning, and temporal instruction partitioning. For
each of these strategies, this section presents

4



• A brief description of the strategy.

• An example illustrating how the strategy could apply to the security camera.

• Other common examples of the strategy.

• A description of the effects of a partitioned application relative to the serial one.

• The applicability of the strategy, or scenarios where it is most useful is discussed.

3.1 Spatial data partitioning

Description. Using the spatial data partitioning (SDP) strategy, data isdivided among processes according to
spatial index. Following this pattern, processes perform computation on spatially distinct data with the same temporal
index. Typically, each process will perform all instructions on its assigned data. Additional instructions are usually
added to SDP programs to enable communication and synchronization. This partitioning strategy is illustrated in
Figure 3(a).

Example in security camera. To implement the SDP strategy in the security camera example, separate processes
work simultaneously on pixels from the same frame. Each process is responsible for executing theimage , encode ,
andsearch functions on its assigned pixels. Processes communicate with other processes responsible for neighbor-
ing spatial indices.

Other common examples. Jacobi relaxation is often parallelized using the SDP pattern. This application iteratively
updates a matrixA. At each iteration the new value of a matrix element is computed as the average of its neighbors.
In the SDP implementation of Jacobi relaxation, each process is assigned a region of the matrix and is responsible for
computing the updates to that region for each iteration. This pattern is also common in many parallel linear algebra
implementations like ScaLAPACK [1] and PLAPCK [10].

Effects on application. An application parallelized with the SDP pattern generallyhas the following effects relative
to a serial implementation. The throughput of the application improves. The latency of the parallelized application
decreases. The load-balancing of the parallelized application tends to be easy, as the same instructions are often
executed in each process. Finally, the communication in theparallel implementation is always application dependent.

Applicability. Use the SDP strategy to parallelize an application when:

• A single processor will not meet the application’s latency demands.

• The spatial data dimension is large and has few dependences.

• The application performs similar amounts of work on each of the spatial indices, which makes it easy to load
balance.

3.2 Temporal data partitioning

Description. Using the temporal data partitioning (TDP) strategy, data are divided among processes according to
temporal index. Following this pattern, each process performs computation on all spatial indices associated with its
assigned temporal index as illustrated in Figure 3(b). In a typical TDP implementation each process executes all
instructions on the data from its assigned temporal index. Often, communication and synchronization instructions
need to be added to allow processes to handle temporal data dependences.

Example in security camera. To implement TDP in the security camera example, each frame is assigned to a
separate process and multiple frames are encoded simultaneously. A process is responsible for executing theimage ,
entropy , andsearch functions on its assigned frame. Processes receive data from processes working on earlier
temporal indices and send data to processes working on latertemporal indices.

Other common examples. Packet processing is commonly parallelized using the TDP pattern. This application
processes a sequence of packets from a network, possibly searching them for viruses. As packets arrive they are
assigned to a process which performs the required computation on that packet.

5



…S
p

ac
e

Data

… …

Time
(a) Spatial Data Partitioning

…S
p

ac
e

Data

… …

Time
(b) Temporal Data Partitioning

image

search

entropy

S
p

ac
e

Time

Instructions

(c) Spatial Instruction Partitioning

image

search

entropy

S
p

ac
e

Time

Instructions

(d) Temporal Instruction Partitioning

Figure 3. A Taxonomy of parallelization strategies for embedded real-time systems.

6



This pattern is sometimes called round-robin parallelism as temporal indices are often distributed among processes
in a round-robin fashion. Additionally this pattern is often associated with a master-worker pattern; however, it is
distinct as no master process is required to implement the TDP strategy.

Effects on application. An application parallelized with the TDP pattern generallyhas the following behavior
compared to a serial implementation. The throughput of the application increases. The latency of the application
remains the same. The load-balancing of the parallelized application tends to be easy. Even when the computa-
tion varies tremendously between inputs, it is often easy toload-balance applications written using this strategy by
combining it with another pattern. For example, a master-worker pattern can use the master to manage the load of
the individual workers or a work-queue pattern can allow theindividual processes to load-balance through the work
queue. Finally, the communication required in the parallelimplementation is always application dependent.

Applicability. Use the TDP strategy to parallelize an application when:

• A single processor cannot meet the application’s throughput requirement, but can meet the application’s latency
requirement.

• The temporal data dimension is large and has few dependences.

• The application performs widely different computation on inputs and may benefit from load-balancing patterns
that synergize well with TDP.

3.3 Spatial instruction partitioning

Description. Using the spatial instruction partitioning (SIP) strategy, instructions are divided among processes
according to spatial index. Following this pattern, each process performs a distinct computation using the same data.
Often no communication is needed between processes. This strategy is illustrated in Figure 3(c).

Example in the security camera. To implement SIP in the security camera, theimage andentropy functions
are coalesced into onecompress function. This function is assigned to one process while thesearch function is
assigned to a separate process. These two processes work on the same input frame at the same time. In this example,
the two processes need not communicate.

Other common examples. This pattern is sometimes used in image processing applications when two filters are
applied to the same input image to extract different sets of features. In such an application each of the two filters
represents a separate function and therefore a separate spatial instruction index. This application can be parallelized
according the SIP strategy by assigning each filter to a separate process.

Effects on application. An application parallelized with the SIP pattern generallyhas the following behavior rela-
tive to a serial implementation. The throughput of the application increases. The latency of the application decreases.
The load-balancing of the parallel application tends to be difficult as it is rarely the case that each function has the
same compute requirements. The communication required in the parallel implementation is always application depen-
dent, but generally low as functions that process the same input simultaneously typically require little communication.
Finally, note that the SIP pattern breaks a large computation up into several smaller, independent functional mod-
ules. This can be useful for dividing application development among multiple engineers or simply for aiding modular
design.

Applicability. Use the SIP strategy to parallelize an application when:

• A single processor cannot meet the application’s latency requirements.

• An application computes several different functions on thesame input.

• It is useful to split a large and complicated algorithm into several smaller modules.

3.4 Temporal instruction partitioning

Description. Using the temporal instruction partitioning (TIP) strategy, instructions are divided among processes
according to temporal index as illustrated in Figure 3(d). In a TIP application each process executes a distinct

7



function and data flows from one process to another as defined by the dependence graph. This flow of data means that
TIP applications always require communication instructions so that the output of one process can be used as input to
another process. To achieve performance, this pattern relies on a long sequence of input data and each process executes
a function on data that is associated with a different input or temporal data index.

Example in the security camera. To implement TIP in the security camera, theimage function is assigned to one
process while theentropy function is assigned to another. Thesearch function can be assigned to a third process
or it can be coalesced with one of the other functions to help with load balancing. In this implementation, one process
execute theimage function for frameN while a second process executes theentropy function for frameN − 1.

Other common examples. This pattern is commonly used and sometimes called task parallelism, functional
parallelism, or pipeline parallelism. This pattern is often used to implement digital signal processing applicationsas
they are easily expressed as a chain of dependent functions.In addition this pattern forms the basis of many streaming
languages like StreamIt [3] and Brook [2].

Effects on application. An application parallelized with the TIP pattern has the following characteristics compared
to a serial implementation. The throughput of the application increases. The latency of the application remains the
same, and sometimes can get worse to the added overhead of communication. The load-balancing of the parallel
application is generally hard as the individual functions rarely have the same computational needs. TIP applications
always require communication, although the volume of communication is application independent. Finally, note that
the SIP pattern breaks a large computation up into several smaller, independent functional modules. This can be useful
for dividing application development among multiple engineers, or simply to create a modular application.

Applicability. Use the TIP strategy to parallelize an application when:

• A single processor cannot meet the application’s throughput requirement, but it can meet the application’s
latency requirements.

• An application consists of sequence of stages where each function is a consumer of data from the previous stage
and a producer of data for the subsequent stage.

• The amount of work in each stage is enough to amortize the costof the required communication between stages.

• It is useful to split a large and complicated algorithm into several smaller modules.

3.5 Combining strategies in a single program

It can often be helpful to combine partitioning strategies within an application, to provide the benefit of multiple
strategies or to provide an increased degree of parallelism. The application of multiple strategies is viewed as a
sequence of choices. the first choice creates multiple processes, and these processes can then be further partitioned.
Combining multiple choices in sequence allows the development of arbitrarily complex parallel programs.

The security camera example demonstrates the benefits of combining multiple strategies. As illustrated above it is
possible to use TIP partitioning to split the application into two processes. One process is responsible for theimage
function while another is responsible for theentropy function. (For the moment, ignore thesearch function).
This TIP partitioning is useful because theimage and entropy functions have very different dependences and
splitting them creates two simpler modules, each of which iseasier to understand and parallelize. In addition, this TIP
partitioning improves throughput, but it suffers from a load-imbalance, because theimage function requires much
more processing power than theentropy function. In addition, this partitioning has not improved the camera’s
latnecy.

To address the load-imblance and latency issues, one may apply a further partitioning strategy. For example,
applying the SDP strategy to the process executingimage will split that computationally intensive function into
smaller parts. This additional partitioning helps to improve load-balance and application latency.

The case study presented in Section 4 includes examples using multiple strategies to partition an application.

8



4 Case study

4.1 H.264 overview

4.2 H.264 with TDP

4.3 H.264 with SDP

4.4 H.264 with TIP

4.5 H.264 with TIP and SDP

4.6 H.264 with TDP, TIP, and SDP

4.7 Summary of case study

5 Related Work

6 Conclusion

References

[1] L. S. Blackford, J. Choi, A. Cleary, A. Petitet, R. C. Whaley, J. Demmel, I. Dhillon, K. Stanley, J. Dongarra, S. Hammarling,
G. Henry, and D. Walker. Scalapack: a portable linear algebra library for distributed memory computers - design issues
and performance. InSupercomputing ’96: Proceedings of the 1996 ACM/IEEE conference on Supercomputing (CDROM),
page 5, Washington, DC, USA, 1996. IEEE Computer Society.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.Houston, and P. Hanrahan. Brook for gpus: Stream computing on
graphics hardware.ACM TRANSACTIONS ON GRAPHICS, 23:777–786, 2004.

[3] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, C. Leger, A. A. Lamb, J. Wong, H. Hoffman, D. Z. Maze, and
S. Amarasinghe. A stream compiler for communication-exposed architectures. InInternational Conference on Architectural
Support for Programming Languages and Operating Systems, San Jose, CA USA, Oct 2002.

[4] ITU-T. H.264: Advanced video coding for generic audiovisual services.
[5] D. Lea. Concurrent Programming in Java: Design Principles and Patterns. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1996.
[6] L.-K. Liu, S. Kesavarapu, J. Connell, A. Jagmohan, L. hoon Leem, B. Paulovicks, V. Sheinin, L. Tang, and H. Yeo. Video

analysis and compression on the sti cell broadband engine processor. InICME, pages 29–32. IEEE, 2006.
[7] B. L. Massingill, T. G. Mattson, and B. A. Sanders. A pattern language for parallel application programs (research note). In

Euro-Par ’00: Proceedings from the 6th International Euro-Par Conference on Parallel Processing, pages 678–681, London,
UK, 2000. Springer-Verlag.

[8] T. Mattson, B. Sanders, and B. Massingill.Patterns for parallel programming. Addison-Wesley Professional, 2004.
[9] S. Siu, M. D. Simone, D. Goswami, and A. Singh. Design patterns for parallel programming, 1996.

[10] R. van de Geijn.Using PLAPACK – Parallel Linear Algebra Package. MIT Press, Cambridge, MA, 1997.
[11] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra. Overview of the H.264/AVC video coding standard.Circuits and

Systems for Video Technology, IEEE Transactions on, 13(7):560–576, 2003.

9


