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Abstract

This work presents four partitioning strategies, or desjatiterns, useful for decomposing a serial application
into multiple concurrently executing parts. These paotithg strategies augment the commonly used task and data
decomposition patterns by recognizing that applicatioresspatiotemporal in nature. Therefore, data and instroiti
decomposition are further distinguished by whether thdifaning is done in the spatial or in temporal dimension.
Thus, this work describes four decomposition strategipatial data partitioning, temporal data partitioning, spal
instruction partitioning, and temporal instruction pditining, and cataloges the benefits and drawbacks of each.
In addition, the practical use of these strategies is dertratesd through a case study in which they are applied to
implement several different parallelizations of a multe®i.264 encoder for HD video. This case study illustrates
both the application of the patterns and their effects ongldormance of the encoder.

1 Introduction

Design patterns for parallel computing help to add strecand discipline to the process of concurrent software
development [7, 8, 9, 5]. Two of the most commonly referenparhllel patterns aréask and data parallelism.
Using the task parallel pattern, a program is decomposedcimmcurrent units which execute separate instructions
simultaneously. Using the data parallel pattern a progsasiecomposed into concurrent units which execute the same
instructions on distinct data.

This work extends both the task and data parallel pattermeobgg that applications execute in time and space. If
one assigns spatial and temporal indices to a program’sastetanstructions, then it is possible to decompose both
data and instructions in time and space. Thus, this workgmizes four partitioning strategies for finding concurnenc
in an application: spatial data partitioning (SDP), tengbaata partitioning (TDP), spatial instruction partitiog
(SIP), and temporal instruction partitioning (TIP).

Recognizing patterns that distinguish between temporispatial partitioning is important for several reasons.
First, this distinction provides an additional set of opsdor finding concurrency in an application. Second, it pro-
vides greater descriptive power for documenting and cherang a parallel application. Finally, and perhaps most
significantly, temporal and spatial partitioning affea frerformance of an application in separate ways.

To understand the effect on performance, consider an apiplicthat continuously interacts with the outside world
by processing a sequence of inputs and producing a sequeaatpats. Examples include desktop applications that
interact with a human, embedded applications that intavibtsensors, and system software that provides quality of
service guarantees to other applications. Such applitatigically have botlthroughputandlatencyrequirements.
The throughput requirement specifies the rate at which sare processed while the latency requirement specifies
the speed with which an individual input must be processedthilaAboth spatial and temporal partitioning patterns
improve throughput, only spatial partitionings can impdatency.



To illustrate the use of these patterns this paper preseossea study in which several different strategies are
applied to create parallel implementations of an H.264 widecoder [11, 4] on a multicore architecture. The case
study demonstrates how the additional options of tempardispatial partitioning can aid programming. In addition,
the effects of different strategies on the throughput atehlzy of the encoder are cataloged.

The rest of this paper is organized as follows. Section 2 defierminology and presents an example application
that is used to illustrate concepts. Section 3 presentsdheartitioning strategies describing both spatial and
temporal partitionings of data and instructions. Sectigmekents the case study illustrating the use of these patter
Section 5 covers related work and Section 6 concludes therpap

2 Basicsand terminology

This section presents the context and terminology usedderithe the partitioning strategies listed in Section 3. It
begins by introducing an example application: an inteliiggecurity camera. The security camera example is used
to illustrate many of the concepts in the remainder of theepapext, the terminology used to describe spatial and
temporal indexing of a program is presented. Finally, thetige discusses a simple procedure used to prepare an
application for decomposition using the spatiotemporalgtepatterns described in Section 3.

2.1 Exampleapplication: an intelligent security camera

An intelligent security camera processes a sequence of images, or frames, from a camera (e.qg. [6]). The cam-
era compresses the frames for efficient storage and sedhehfrfames to detect objects of interest. The compressed
video is stored to disk while a human is alerted to the presefiany objects of interest. Both the data (frames) and
the instructions (compression and search) of the camermadpatial and temporal dimensions.

The primary data object manipulated by the camera is thedrarhe frame consists of pixels where each pixel is
generated by a spatially distinct sensor. The position akel n a frame represents a spatial index into the camera'’s
data. Frames are produced at regular time intervals andcegsed in sequence. Each frame is assigned a unique
identifier corresponding to the order in which it was prodiicEhe sequence of frames represents a temporal index
into the camera’s data. The spatiotemporal dimensionseofeéicurity camera are illustrated in Figure 1.
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Figure 1. Spatiotemporal indexing of data in the security camera example. Spatially distributed
sensors produce a sequence of pixels over time. The pixel’s location in the frame is the spatial
index while the frame number in the sequence in the temporal index.



The camera executes two primary functions: searching émadifor objects of interest and compressing the frames
for storage. The compression operation is, in turn, madd typaodistinct functions. First a series of image processing
operations are executed to find and remove redundancy imihge stream, and, once the redundancy is eliminated,
the remaining data is entropy encoded. Thus, there are tiighdevel functions which constitute the instructions of
the camerasearch , image , andentropy . As these functions occupy distinct regions of memory,rthames
can serve as spatial indices. To determine the temporaleadf these functions, note that the functions must be
executed in a particular order to preserve correctness.ofder of function execution represents an index into the
temporal dimension of the camera’s instructions. in thi&daage must be executed befoemtropy , butsearch
is entirely independent. The spatiotemporal indexing efdhmera’s instructions is illustrated in Figure 2.
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Figure 2. Spatiotemporal indexing of instructions in the security camera. Each frame produced
by the camera is searched and encoded. The encoding process is further broken down into
image processing and entropy encoding functions. The topological sort of the dependence
graph provides a temporal index, while the function name provides a spatial index.

Note that the camera is typical of many interactive applicesin that it has both latency and throughput require-
ments. The camera’s throughput must keep up with the ratdighwhe sensor can produce frames. In addition, the
camera must report objects of interest to the user with adb@nky so that timely action can be taken.

2.2 Terminology

In this paper, the termprogramor applicationis used to refer to the problem to be decomposed into conupaets.

A processs the basic unit of program execution, and a parallel pnogsaone that has multiple processes actively
performing computation at one time. A parallel program isated bypartitioning or decomposin@ program into
multiple processes. A partitioning strategy representaangson design pattern for performing this decomposition.

Programs operate by executiimgtructionsto manipulatedata Both the data and instructions of a program have
spatial and temporal components of execution.

Programs operate on temporal sequences of spatially ciskitta. If each input in the sequence is numbered, then
the sequence number serves as a temporal index into theapnsgtata. Each input may consist of multiple distinct
items, which are stored in separate variables or array@sdithese storage locations serve as spatial indices imto th
program'’s data.



The security camera illustrates one example of data indeagishown in Figure 1. The sequence of frames
represent temporal inputs while the location of pixels ia ttame represent a spatial index. Another example is a
search engine, which receives a sequence of queries dnggifmultiple search terms. In this case, the sequence of
gueries represents a temporal index while the distinctgénnthe query represent the spatial index.

A program operates on a data input by executing sequencéstiottlinstructions which are bundled into functions.
The functions, which are stored in distinct memory locaiorepresent a spatial index into instruction execution.
The dependence between functions can be represented ireaddgwe graph. Performing a topological sort on the
dependence graph produces a partial ordering which candakeassa temporal index into a program’s instructions.

The security camera illustrates one example of instrudtiolexing as shown in Figure 2. The three functions,
search , image, andentropy represent spatial instruction indices of the camera agfdic. The ordering of
function execution dictates that tivaage function must execute before teatropy function, while there are no
ordering constraints ogearch . This partial order represents the temporal instructidiices of the camera example.

To summarize, partitioning strategies are distinguishethe decomposition of data or instructions and whether
that decomposition is performed in time or space. For damtemporal dimension is defined by the sequence of
inputs, while the spatial dimension is defined by the distswmmponents of a single input. For instructions, the
temporal dimension is defined by the sequence of functioed tesprocess an input, while the spatial dimension is
defined by the functions themselves.

2.3 Preparingto partition a program

The following procedure is used to prepare a program foitparing:

1. Determine what constitutes a single input to define thepteai dimension of the program’s data. For some
programs an input might be a single reading from a sensorthier@ases an input might be a file, data from a
keyboard or a value internally generated by the program.

2. Determine the distinct components of an input to definesgfagial dimension of the program’s data.

3. Determine the distinct functions required to processnauti to define the spatial dimension of the program’s
instructions.

4. Determine the partial ordering of functions using togiidal sort to define the temporal dimension of the pro-
gram’s instructions.

To illustrate the process, it is applied to our security cangxample:
1. Asingle frame is an input, so the sequence of frames reptehe temporal dimension of the camera data.

2. Aframe is composed of individual pixels arranged in a tlumensional array. The coordinates of pixels in the
array represent the spatial dimension of the camera data.

3. The three major functions in the camera asearch , image , andentropy . These functions define the
spatial dimension of the camera’s instructions.

4. For a given frame, there is a dependence betweeinthge andentropy functions while thesearch
function is independent. These dependences determinertipotal dimension of the camera’s instructions.

Applying this procedure defines the dimensionality of a paog/s data and instructions. Once this dimensionality
is defined, it is possible to explore different spatiotenappartitioning strategies.

3 A taxonomy of spatiotemporal partitioning strategies

The procedure described in Section 2.3 defines the spatideamporal dimensionality of a program'’s instructions
and data. Given this definition it is possible to apply onehaf tollowing four partitioning strategies: spatial data
partitioning, temporal data partitioning, spatial instian partitioning, and temporal instruction partitiogin For
each of these strategies, this section presents



A brief description of the strategy.

An example illustrating how the strategy could apply to thewsity camera.

Other common examples of the strategy.

A description of the effects of a partitioned applicatiotatiee to the serial one.

The applicability of the strategy, or scenarios where it @ashuseful is discussed.

3.1 Spatial data partitioning

Description. Using the spatial data partitioning (SDP) strategy, datdivided among processes according to
spatial index. Following this pattern, processes perfoomputation on spatially distinct data with the same temipora
index. Typically, each process will perform all instruetfoon its assigned data. Additional instructions are uguall
added to SDP programs to enable communication and syndat@m. This partitioning strategy is illustrated in
Figure 3(a).

Examplein security camera. To implement the SDP strategy in the security camera exare@f@rate processes
work simultaneously on pixels from the same frame. Eachgs®ds responsible for executing iheage , encode ,
andsearch functions on its assigned pixels. Processes communicéteotfier processes responsible for neighbor-
ing spatial indices.

Other common examples. Jacobi relaxation is often parallelized using the SDP patfEhis application iteratively
updates a matrixd. At each iteration the new value of a matrix element is coraguais the average of its neighbors.
In the SDP implementation of Jacobi relaxation, each pmiseassigned a region of the matrix and is responsible for
computing the updates to that region for each iterations Pphattern is also common in many parallel linear algebra
implementations like ScaLAPACK [1] and PLAPCK [10].

Effectson application. An application parallelized with the SDP pattern generadly the following effects relative
to a serial implementation. The throughput of the applaratmproves. The latency of the parallelized application
decreases. The load-balancing of the parallelized afigitéends to be easy, as the same instructions are often
executed in each process. Finally, the communication ip#nallel implementation is always application dependent.

Applicability. Use the SDP strategy to parallelize an application when:

e A single processor will not meet the application’s lateneynénds.
e The spatial data dimension is large and has few dependences.

e The application performs similar amounts of work on eacthefdpatial indices, which makes it easy to load
balance.

3.2 Temporal data partitioning

Description. Using the temporal data partitioning (TDP) strategy, datadivided among processes according to
temporal index. Following this pattern, each process perfocomputation on all spatial indices associated with its
assigned temporal index as illustrated in Figure 3(b). Igpacal TDP implementation each process executes all
instructions on the data from its assigned temporal indefter) communication and synchronization instructions
need to be added to allow processes to handle temporal dagadiences.

Example in security camera. To implement TDP in the security camera example, each franassigned to a
separate process and multiple frames are encoded simulisigeA process is responsible for executingithage ,
entropy , andsearch functions on its assigned frame. Processes receive datagdrocesses working on earlier
temporal indices and send data to processes working ortdsigroral indices.

Other common examples. Packet processing is commonly parallelized using the TOiea This application
processes a sequence of packets from a network, possiblghseathem for viruses. As packets arrive they are
assigned to a process which performs the required comepntaii that packet.



Space

Space

Space

v

(a) Spatial Data Partitioning

Instructions

(c) Spatial Instruction Partitioning

Time

v

| | |
00

N
OO

A
nn

. Thnel ]

(b) Temporal Data Partitioning

Instructions

(d) Temporal Instruction Partitioning

—— III EII N BN S -

Time

Figure 3. A Taxonomy of parallelization strategies for embedded real-time systems.
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This pattern is sometimes called round-robin parallelisteanporal indices are often distributed among processes
in a round-robin fashion. Additionally this pattern is aftassociated with a master-worker pattern; however, it is
distinct as no master process is required to implement tHe JtEategy.

Effects on application. An application parallelized with the TDP pattern generdiés the following behavior
compared to a serial implementation. The throughput of fh@ieation increases. The latency of the application
remains the same. The load-balancing of the parallelizpticapion tends to be easy. Even when the computa-
tion varies tremendously between inputs, it is often eadpad-balance applications written using this strategy by
combining it with another pattern. For example, a masterkaopattern can use the master to manage the load of
the individual workers or a work-queue pattern can allowitftividual processes to load-balance through the work
gueue. Finally, the communication required in the paraigllementation is always application dependent.

Applicability. Use the TDP strategy to parallelize an application when:

e A single processor cannot meet the application’s througtgmuirement, but can meet the application’s latency
requirement.

e The temporal data dimension is large and has few dependences

e The application performs widely different computation aputs and may benefit from load-balancing patterns
that synergize well with TDP.

3.3 Spatial instruction partitioning

Description. Using the spatial instruction partitioning (SIP) stratemgtructions are divided among processes
according to spatial index. Following this pattern, eaabcpss performs a distinct computation using the same data.
Often no communication is needed between processes. Tatiegt is illustrated in Figure 3(c).

Examplein the security camera. To implement SIP in the security camera, thrage andentropy functions
are coalesced into ore@mpress function. This function is assigned to one process whilesterch function is
assigned to a separate process. These two processes whkkgante input frame at the same time. In this example,
the two processes need not communicate.

Other common examples. This pattern is sometimes used in image processing applsaivhen two filters are
applied to the same input image to extract different seteafures. In such an application each of the two filters
represents a separate function and therefore a separétd Bpruction index. This application can be paralletz
according the SIP strategy by assigning each filter to a aépprocess.

Effectson application. An application parallelized with the SIP pattern generhlyg the following behavior rela-
tive to a serial implementation. The throughput of the aggtion increases. The latency of the application decreases
The load-balancing of the parallel application tends to ifficdlt as it is rarely the case that each function has the
same compute requirements. The communication requirdebiparallel implementation is always application depen-
dent, but generally low as functions that process the samé gimultaneously typically require little communicatio
Finally, note that the SIP pattern breaks a large computatpinto several smaller, independent functional mod-
ules. This can be useful for dividing application developtr@mong multiple engineers or simply for aiding modular
design.

Applicability. Use the SIP strategy to parallelize an application when:

e A single processor cannot meet the application’s latengyirements.
e An application computes several different functions onstime input.

e Itis useful to split a large and complicated algorithm indwesral smaller modules.
3.4 Temporal instruction partitioning

Description. Using the temporal instruction partitioning (TIP) stratemstructions are divided among processes
according to temporal index as illustrated in Figure 3(d). al TIP application each process executes a distinct



function and data flows from one process to another as definttbltlependence graph. This flow of data means that
TIP applications always require communication instrutdiso that the output of one process can be used as input to
another process. To achieve performance, this patteasmi a long sequence of input data and each process executes
a function on data that is associated with a different inpuémporal data index.

Examplein the security camera. To implement TIP in the security camera, theage function is assigned to one
process while thentropy function is assigned to another. Teearch function can be assigned to a third process
or it can be coalesced with one of the other functions to hétip lvad balancing. In this implementation, one process
execute thémage function for frameN while a second process executeseén&ropy function for frameN — 1.

Other common examples. This pattern is commonly used and sometimes called tasKigaa, functional
parallelism, or pipeline parallelism. This pattern is oftesed to implement digital signal processing applicatass
they are easily expressed as a chain of dependent functioaddition this pattern forms the basis of many streaming
languages like Streamlt [3] and Brook [2].

Effectson application. An application parallelized with the TIP pattern has thédfeing characteristics compared
to a serial implementation. The throughput of the appliaratncreases. The latency of the application remains the
same, and sometimes can get worse to the added overhead ofurdcation. The load-balancing of the parallel
application is generally hard as the individual functioasety have the same computational needs. TIP applications
always require communication, although the volume of comication is application independent. Finally, note that
the SIP pattern breaks a large computation up into severlerindependent functional modules. This can be useful
for dividing application development among multiple eregrs, or simply to create a modular application.

Applicability. Use the TIP strategy to parallelize an application when:

e A single processor cannot meet the application’s throughgguirement, but it can meet the application’s
latency requirements.

¢ An application consists of sequence of stages where eaclidans a consumer of data from the previous stage
and a producer of data for the subsequent stage.

e The amount of work in each stage is enough to amortize theoftts¢ required communication between stages.

e Itis useful to split a large and complicated algorithm indwesral smaller modules.
3.5 Combining strategiesin a single program

It can often be helpful to combine partitioning strategigthim an application, to provide the benefit of multiple
strategies or to provide an increased degree of parallelihre application of multiple strategies is viewed as a
sequence of choices. the first choice creates multiple psese and these processes can then be further partitioned.
Combining multiple choices in sequence allows the devebaptrof arbitrarily complex parallel programs.

The security camera example demonstrates the benefits dificimm multiple strategies. As illustrated above it is
possible to use TIP partitioning to split the applicatiotoitwo processes. One process is responsible fontage
function while another is responsible for teatropy function. (For the moment, ignore tlsearch function).
This TIP partitioning is useful because thmage andentropy functions have very different dependences and
splitting them creates two simpler modules, each of whigaiser to understand and parallelize. In addition, this TIP
partitioning improves throughput, but it suffers from adembalance, because timaage function requires much
more processing power than tkeatropy function. In addition, this partitioning has not improvdtetcamera’s
latnecy.

To address the load-imblance and latency issues, one mdy agprther partitioning strategy. For example,
applying the SDP strategy to the process executimgge will split that computationally intensive function into
smaller parts. This additional partitioning helps to imgdoad-balance and application latency.

The case study presented in Section 4 includes examplegmsitiiple strategies to partition an application.
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