
40

Partitioning Strategies for Spatio-Textual Similarity Join

Jinfeng Rao1,2, Jimmy Lin1,2,3, and Hanan Samet1,2
1 Department of Computer Science

2 Institute for Advanced Computer Studies
3 The iSchool – College of Information Studies

University of Maryland, College Park

jinfeng@cs.umd.edu, jimmylin@umd.edu, hjs@umiacs.umd.edu

ABSTRACT
Given a collection of geo-tagged objects with associated tex-
tual descriptors, the spatio-textual similarity join (STJoin)
problem is to identify all pairs of similar objects that are
close in distance. This task, which is useful in localized rec-
ommendations and other applications, is challenging since
computing the join is super-linear with respect to the size of
the collection. In this paper, we explore partitioning strate-
gies for tackling STJoin. One approach is to start with a
spatial data structure, traverse regions and apply a previous
algorithm for identifying similar pairs of textual documents
called All-Pairs. An alternative approach is to construct a
global index but partition postings spatially and modify the
All-Pairs algorithm to prune candidates based on distance.
We evaluate these approaches on two real-world datasets and
find that when running in a single thread, both approaches
are comparable in terms of performance. However, a multi-
threaded implementation of the global index approach is
able to achieve far better speedup given its ability to paral-
lelize at a finer granularity to avoid skewed distributions in
task sizes. In addition to using All-Pairs as the underlying
textual similarity join algorithm, we also explored an alter-
nate algorithm known as PPJ: our findings are consistent,
which suggests that load balancing is a fundamental issue
a↵ecting parallel implementations of STJoin algorithms.

Categories and Subject Descriptors: H.3 [Information
Storage and Retrieval]: Content Analysis and Indexing

General Terms: Algorithms, Design, Performance

Keywords: Spatio-textual similarity join, geotagged data,
indexing

1. INTRODUCTION
Our work is situated at the intersection of geo-spatial pro-

cessing, data mining, and information retrieval: In spatio-
textual similarity join (STJoin for short), we are given a
collection of objects with both texts and geo coordinates
and wish to e�ciently identify all pairs of similar objects

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Copyright 3rd ACM SIGSPATIAL International Workshop on Analytics for

Big Geospatial Data (BigSpatial) 2014 ISBN 978-1-4503-3132-6.

that are physically close.
There are many real-world applications of STJoin: One

concrete example is localized recommendation. For example,
Twitter may wish to suggest users who are both close by and
share similar interests (as determined by tweet content). An
online dating service might want to match people based on
profile similarity and location constraints. Another sample
application is near-duplicate detection, where we would like
to group together multiple news stories that report on the
same event based on location.

In this paper, we explore partitioning strategies for the
STJoin problem. One approach is to start with a spatial
data structure (in our case, either grids or quadtrees), tra-
verse regions and apply a previous algorithm for identifying
similar pairs of textual documents called All-Pairs [3]. We
call this the local approach. An alternative approach is to
construct a global index but partition postings spatially (ei-
ther by grid or by quadtree, linearized by z-ordering) and
modify the All-Pairs algorithm to prune candidates based on
distance. We call this the global approach. Together, this
yields four combinations: local grid, local quadtree, global
grid, and global quadtree.

From experiments on two real-world datasets, we find
that single-threaded implementations of these approaches
are roughly comparable in performance. However, multi-
threaded implementations of the global index approach a-
chieve far better speedup due to their ability to parallelize
work at a finer granularitity to avoid skewed distributions in
task sizes. Finally, we varied the underlying similarity join
algorithm, considering the PPJ algorithm [34] in addition to
All-Pairs. Our findings about single- vs. multi-threaded per-
formance hold, suggesting that load balance is a fundamen-
tal issue a↵ecting the parallelization of STJoin algorithms.

Our work makes two contributions. First, we present a
methodical analysis of the STJoin problem in multiple di-
mensions: local vs. global partitioning, grid vs. quadtree,
All-Pairs vs. PPJ, and single- vs. multi-threaded. Although
some combinations have been previously explored, our ex-
periments evaluate the performance of STJoin under di↵er-
ent variants and parameter settings. Second, we believe that
our observation about the performance of multi-threaded
STJoin algorithms is novel. Our results suggest that load
balancing is a fundamental issue regardless of algorithm, and
highlight the importance of evaluating parallel performance
in today’s multi-core computing environments.

2. RELATED WORK
Spatial Distance Join. As a component of the STJoin

http://dx.doi.org/10.1145/2676536.2676542

41

problem, spatial distance join and semi-join have been well
studied in the literatures [33, 6, 15, 17, 19, 20, 25, 27]. In ✏-
distance join, given two geo dataset R and S, we wish to find
all object pairs with dist(r, s) < ✏ where r 2 R and s 2 S.
The dominant approach is based on hierarchical decompo-
sition using R-trees [6] or multi-level grid files [33]. These
hierarchical methods are based on traversals of the spatial
data structures, typically involving two stages: (1) the fil-
ter stage, which uses objects’ minimum bounding rectangle
approximations to find pairs of potentially intersected ob-
jects, and (2) the refinement stage, which checks whether
the candidates satisfy the given distance threshold.

Set Similarity Join. In Set Similarity Join (SSJoin), the
task is to find all pairs of objects from a potentially large col-
lection whose similarity (e.g., Jaccard, cosine, etc.) is above
specified threshold; of course, these objects can represent
“bag of words”. This problem has attracted the attention
of researchers due to applications in data mining. Sarawagi
and Kirpal [29] presented an early solution to this problem
based on inverted indexing: for any object s, the correspond-
ing inverted index lists of s are traversed to accumulate sim-
ilarity with all other objects. The Prefix-Filter algorithm [1]
is an additional optimization based on a subset of elements
with the smallest frequencies, where the size of subset de-
pends on the similarity function and threshold. Our work
builds on the All-Pairs algorithm [3] for SSJoin, which is also
an index-based approach. The algorithm takes advantage of
the threshold property to prune the number of postings con-
sidered and is further optimized by sorting terms based on
document frequencies. We provide the complete All-Pairs
algorithm in Algorithm 1 for reference, but in this paper
All-Pairs is used mostly as a “black box” in conjunction with
spatial data structures.

The All-Pairs algorithm has two phases: building inverted
indexes and finding similar objects. In the first phase, the
algorithm builds postings lists for each term to store the list
of objects containing that term. For an object x, it has a
weight vector over terms that sum to one (

P
i

x[i] = 1), e.g,
x[i] denotes the weight of term t

i

,
P

i

maxweight
i

(R) · x[i]
is the maximum similarity it could have with other objects,
where maxweight

i

(R) is the maximum weight of term t

i

for
all objects in a collection R. If this similarity value is smaller
than the given similarity threshold, then object x can not be
considered as similar with any other object. For an object x,
the All-Pairs algorithm utilizes this property to only index
terms {t

j

} which satisfy following property:
X

i<j

maxweight
i

(R) · x[i] � s

This idea corresponds to Lines 13-19 in the Algorithm 1.
Line 12 calls the FindSimPairs function to find similar object
pairs based on existing inverted indexes. In the second phase
(FindSimPairs), the algorithm traverses the postings lists
to accumulate similarity scores between objects (Line 25-
30). The object pairs with non-zero similarities are further
verified in Line 31-35 by computing the actual similarity
score between objects (Line 32).

Spatial Keyword Queries. The spatial keyword query
task is to find relevant POIs (points of interest) by consid-
ering distance and textual relevance to a given query q. An
example would be “find the nearest restaurant serving Chi-
nese food”. Here “Chinese food” can be a textual descriptor
of objects. Many researchers have studied this problem [9,

Algorithm 1 All-Pairs Similarity Join on cosine distance

1: Input: threshold s, collection R with n objects and m terms
2: Output: similar pair set S

3: function BuildIndex(ObjectSet R)
4: Sort R in decreasing order of maxweight(x)
5: Sort terms in decreasing order of num. of non-zero entries
6: Denote the max. of x[i] for all x 2 R as maxweight

i

(R)
7: Denote the max. of x[i] for i = 1 . . .m as maxweight(x)
8: S ; . similar pair set
9: I1, I2, . . . , Im ;
10: for each object x 2 R do
11: sim 0
12: S S [FindSimPairs(x, I1, . . . , Im, s)
13: for each i s.t. x[i] > 0 in increasing order of i do
14: sim sim+maxweight

i

(R) · x[i]
15: if sim > s then
16: I

i

 I

i

[{(x, x[i])} . indexed portion
17: x[i] 0
18: else
19: I

0
i

 I

0
i

[{(x, x[i])} . unindexed portion

20: return S

21:
22: function FindSimPairs(x, I1, . . . , Im, s)
23: Sim empty map from object to weight
24: P ;
25: remscore =

P
i

x[i] ·maxweight
i

(R)
26: for each i in reverse order s.t. x[i] > 0 do
27: for each (y, y[i]) 2 I

i

do
28: if Sim[y] 6= 0 or remscore � t then
29: Sim[y] Sim[y] + x[i] · y[i]
30: remscore remscore� x[i] ·maxweight

i

(R)

31: for each y with non-zero weight in Sim do
32: sim Sim[y] + dot(x, y0)
33: . add similarity of index and unindexed portion
34: if sim � s then
35: P P [{(x, y, sim)}
36: return P

14, 8, 16, 21, 11]. A general framework to answer spatial
keyword queries is to first build indexes on the textual and
location attributes, then take into account both textual rel-
evance and location proximity to prune the search space.

Felipe et al. [11] proposed a hybrid indexing approach to
answer the k-nearest-neighbor query. It associates each R-
tree node with a signature file to indicate keywords con-
tained in the subtree rooted at that node. Cong et al. [9]
and Li et al. [21] proposed another hybrid index structure,
IR-Tree, which uses R-trees as the underlying spatial in-
dex and attaches an inverted file to each R-tree node. An
inverted file contains two types of information: (1) the vo-
cabulary of the whole collection, (2) a set of postings lists
for objects located in the subtree. By extending the near-
est neighbor algorithm of R-trees [18], the IR-tree can access
the minimum number of R-tree nodes to find the best match
objects with respect to both distance to the query location
and textual similarity to the query keywords.

Another related spatial query problem is region-based key-
word queries. Given a query consisting of a location and a
set of keywords, find the relevant POIs satisfying the dis-
tance and textual similarity thresholds. Chen et al. [8] stud-
ied the impact of di↵erent indexing orders in hybrid index
construction, e.g, first R-tree then inverted file or first in-
verted file then R-tree. Instead of pruning the search space
by location and text separately, Hariharan et al. [16] pro-
posed an index approach exploiting the power of pruning
location and text simultaneously. As a variant of region-
based keyword queries, Fan et al. [14] studied another prob-

42

lem: given a set of ROIs (Region of Interests) and a query
ROI, find similar ROIs by considering spatial overlap and
textual similarity. The problem setting is changed from
points (POIs) to regions (ROIs). The authors proposed a
signature-based filtering algorithm to generate signatures
for both texts and regions. These signatures are used in
a filter-and-verification framework to generate similar can-
didates and finally identify answers.

Most spatial queries examine the individual behavior of
whether an individual object satisfies a query or not. Cao et
al. [7] extended this work to investigate group behavior: find-
ing groups of objects where objects in a group collectively
satisfy a query. The authors defined two types of group be-
haviors: (1) the group’s keywords cover the query’s keywords
and the sum of the objects’ spatial distances to the query
location is minimized; (2) the group’s keywords cover the
query’s keywords and objects are nearest to the query loca-
tion and also have the lowest inter-object distances. Cao et
al. [7] devised exact algorithms utilizing dynamic program-
ming and greedy algorithms to solve these two problems.

2.1 Spatio-Textual Similarity Join
STJoin is a combination of SSJoin and ✏-distance join [2].

This problem has not been fully studied yet, although there
is some previous work [2, 5, 22, 23]. To the best of our
knowledge, Ballesteros et al. [2] is the first work to study
the STJoin problem. They built a MapReduce platform
for identifying objects similar in texts and close in spatial
locations. The similarity function they used is di↵erent from
ours: sim(x, y) = simt(x.text,y.text)

1+dist(x.loc,y.loc) , where simt

(x.text, y.text)

is the textual similarity of objects x and y and dist(x.loc, y.loc)
is the distance between x and y. Another di↵erence is that
for an object x it identifies object y that maximizes sim(x, y)
as the best match object, while our work aims to find all ob-
jects y with sim(x, y) � s and dist(x, y) t.

Liu et al. [22, 23] presented a hybrid signature method
(both textual signatures and spatial signatures) to prune
dissimilar object pairs. The spatial objects they studied are
regions (polygons) while we view each spatial object as a
point in our work. They adopted the probability constrained
region technique. [30] to generate spatial signatures for each
object. The spatial signatures are combined with textual
signatures to generate candidates and finally to identify the
results. Our work is most similar to Bouros et al. [5], who
presented an approach based on dynamic grid partitioning
and the PPJ algorithm for SSJoin [34]. Our work compares
All-Pairs and PPJ and further explore di↵erent partitioning
strategies. Our work also considers multi-threaded perfor-
mance whereas previous work does not.

3. SPATIO-TEXTUAL SIMILARITY JOIN
We begin with a formal problem definition: given a col-

lection of objects R, textual similarity threshold s, and dis-
tance threshold t, spatio-textual similarity join aims to find
all object pairs (u, v) with sim(u, v) > s and dist(u, v) < t

where (u, v) 2 R ⇥ R. Each object d 2 R is associated
with a textual descriptor and location information. In our
case, the text is represented by a document vector using tf-
idf weighting, and the location is represented by longitude
and latitude. For sim(u, v) we use cosine similarity and for
dist(u, v) we use Euclidean distance, converted into kilome-
ters for easy comprehension.

Figure 1: Simple quadtree example.

Consider the example shown in Figure 1. We have a col-
lection of objects R = {d1, d2, ..., d9}, whose locations are
shown in the quadtree; the associated texts are shown on
the right. We can think the object as a geo-tagged tweet or
document. For example, the object d4 is located in quad-
tree node 210 and it contains three terms(words) x5, x6 and
x7. Let the unit size of the quadtree be 1km, e.g., the
size of node 210 is 1km. Given textual similarity thresh-
old s = 0.6 (for simplicity, let us assume Jaccard similarity,
i.e., Jaccard(A,B) = A\B

A[B

, and distance threshold t = 1km,
then objects (d4, d5) would be considered a similar pair with

sim(d4, d5) = |x6,x7|
|x5,x6,x7|

= 2/3 and dist(d4, d5) < 1km. Al-

though object pairs (d7, d8) satisfy the distance threshold,
they fail to reach the similarity threshold and thus would
not be identified by the algorithm.

This diagram nicely illustrates the intuition behind our
first approach: the general strategy is to build a spatial in-
dex over the data and then run a SSJoin algorithm (in our
case, All-Pairs) over regions with potential candidates—we
refer to this as the local approach. The alternative approach
is to build a global inverted index on the texts, but to par-
tition each postings list spatially: this can be accomplished
by linearizing each postings list via z-ordering or performing
a grid partitioning of each postings list. This technique al-
lows us to adapt the All-Pairs algorithm to e�ciently prune
pairs based on distance. We call this the global approach.
Although these local and global approaches have been tried
with grid partitions previously [5], we show how to extend
to quadtrees as we believe that quadtrees represent a better
partitioning strategy since geo data often have skewed distri-
butions. Furthermore, we present a methodical analysis of
the STJoin problem in multiple dimensions: local vs. global
partitioning, grid vs. quadtree, All-Pairs vs. PPJ, and single-
vs. multi-threaded. Below, we describe both approaches in
more detail, using All-Pairs as the underlying similarity join
algorithm; later, we replace All-Pairs with PPJ.

3.1 The Local Index Approach
Our algorithm for integrating quadtrees with All-Pairs is

as follows: First, we build a PR-quadtree over the dataset.
Based on common practice, we use the spatial range of
(�180, �90, 180, 90). Given distance threshold t, we re-
cursively decompose each node into four child nodes until
the node contains less than b objects (by default, one) or
the size of the node is about to less than the threshold t.
Each node maintains a list of object ids. With this parti-
tioning approach, when searching for similar objects for a

43

Algorithm 2 Quadtree STJoin

1: Input: similarity threshold s, distance threshold t, set R

2: Output: similar pair set S

3: function QuadtreeJoin
4: T BuildQuadtree(R, t)
5: for each nonempty node n 2 T.leafnodes do
6: Find neighbor nodes in {W,NW,NE,N} directions
7: AllPairs-BuildIndex(node.objects[neighbors.objects)
8:
9: function AllPairs-BuildIndex(allobjects)
10: for each x 2 allobjects do
11: if x 2 node.objects then
12: S S [AllPairs-FindSimPairs(x, I1, . . . , Im, s, t)

13: Index neighbor.objects first, then node.objects

target object x, only objects in the same or neighbor nodes
of the target object need to be checked. Consider the exam-
ple shown in Figure 1. Assume object x is contained in the
node 210. To find all candidate pairs, only objects in the lo-
cating and neighbor nodes {20, 210, 212, 213, 211, 0} need to
be checked. As an additional optimization, since distance is
symmetrical, once we check (x, y), it is unnecessary to check
(y, x). Thus, we only need to consider neighbor nodes in
{W , NW , NE, N} directions: for node 210, these are nodes
{20, 212, 213, 210}.
The pseudo code of our STJoin algorithm is shown in Al-

gorithm 2. We iterate over the quadtree leaf nodes (Line
5); for each non-empty node, we apply the All-Pairs algo-
rithm over the node and its appropriate neighbors (which
entails building the inverted index and traversing the post-
ings). When verifying similar objects for target object x,
both similarity and distance thresholds are used to prune
objects. Note that with a minor modification, it is possible
to recompute STJoin with di↵erent distance and similar-
ity thresholds without rebuilding the entire quadtree. We
can over-partition the quadtree (i.e., build it to a very fine
granularity), and then back o↵ to coarser nodes for larger
distance thresholds.

3.2 The Global Index Approach
In the previous approach, we first spatially partition, and

then build inverted indexes on individual regions. Alterna-
tively, we can build a global inverted index, and then parti-
tion each postings list spatially. The All-Pairs algorithm can
then take advantage of the spatial information when travers-
ing postings. This is accomplished by sorting each postings
list by its z-order, which is a standard way to linearize spa-
tial data structures [26]; in fact this is equivalent to parti-
tioning the postings lists since there is a direct relationship
between z-ordering and quadtrees [26]. The postings lists of
the objects in the quadtree example are shown in Figure 2.
Objects are sorted by its z-order in each postings list. Thus,
when we are applying the All-Pairs algorithm, instead of it-
erating over the entire postings list, we only need to consider
the objects within certain range of z-orders. For example, in
Figure 1, when processing object d6 with z-order 211, only
objects located in z-orders 210, 211, 212, 213 and 302 will
be considered as similar candidates. To make finding these
z-orders e�cient, we store an auxiliary data structure to
keep track of the beginning and end locations of each z-order
(id.startPos, id.endPos). As an additional optimization, we
can avoid checking the pair (y, x) if we’ve already checked
(x, y). When processing object x with z-order i, instead of
checking all objects with z-order in the range (i.startPos,

Figure 2: Postings lists of global index approach

i.endPos), only objects in the range (x.loc + 1, i.endPos)
need to be considered. Note that the global index approach
can be extended to grids as grid cells can also be linearized
by z-order; the only di↵erence is that we access a grid node
by a 2-dimensional array, while for quadtrees, we need to
visit a z-order map to access a quadtree node.

It’s also worth noting that some set join approaches re-
quire objects to be sorted in ascending order of size, con-
flicting with the global index requirement that objects to be
sorted by z -order. In such approaches, when finding similar
objects of x, only objects with smaller sizes than x will be
checked. In this case, we would miss some similar pairs (x, y)
if object y is located in x’s neighbor nodes {W,NW,NE,N}
but has a larger size than x. Note that pair (y, x) will not be
checked since object x is not located in y’s neighbor nodes
in the {W,NW,NE,N} directions. Therefore, instead of
only checking neighbors in the {W,NW,NE, N} directions,
we examine all the neighbor nodes if the technique requires
sorting objects in order of size. However, this modification
increases filtering overhead as more neighbor nodes need to
be visited.

We provide the pseudo code in Algorithm 3. First, a quad-
tree or grid is constructed (Line 4) and objects are sorted
by z-order (Line 5). Then we call the BuildGlobalIndex
function (Line 6), iterating over the sorted objects and con-
structing postings list for each term (Lines 14-21). Note
that when building postings lists for object x, only objects
in the same or neighbor nodes are considered for comput-
ing maxweight

i

(r) (Lines 15-16). In Lines 22-24, for each
postings list, we record the begin and end position of each
node and the exact position of each object for subsequent
access. In the FindSimPairs function, Line 28 accesses the
corresponding postings list I

i

for each term i in the target
object x. Instead of visiting the entire postings lists, we
only need to consider the parts belonging to target object
x’s location or neighbor nodes (Line 29). For the neighbor
nodes, we consider the part of the postings list with position
in the range of [n.startPos, n.endPos] (Lines 31-32), while
for the locating node, we consider the part with position
in the range of [x.pos + 1, n.endPos] (Lines 34-35), where
n.startPos, n.endPos denote the start and end position of
node n in postings list I

i

respectively, x.pos denotes the ex-
act position of object x in postings list I

i

. In Lines 39-40,
we generate and verify the candidates by incorporating the
similarity and distance filters in Algorithm 1.

In the local index approach, inverted indexes are dynam-
ically created with given similarity thresholds. This wastes
computations in reconstructing inverted indexes when thresh-

44

Algorithm 3 Global Index STJoin

1: Input: similarity threshold s, distance threshold t, set R

2: Output: similar pair set S

3: function GlobalIndexJoin(R, s, t)
4: T BuildQuadtree(R, t) or BuildGrid(R, t)
5: Sort objects in ascending order of its z-order
6: I1, . . . , Im BuildGlobalIndex(R0

, s)
7: . R

0 denotes sorted object list
8: for each x 2 R

0 do
9: S S[FindSimPairs(x, I1, . . . , Im, s, t)

10: return S

11:
12: function BuildGlobalIndex(R0

, s)
13: Initializations; // Lines 5-9 in Algo. 1
14: for each x 2 R

0 do
15: r set of objects in x.node or x.neighbors

16: Denote the max. of x[i] for all x 2 r as maxweight
i

(r)
17: for each term i s.t. x[i] > 0 in increasing order of i do
18: sim sim+maxweight

i

(r) · x[i]
19: if sim > s then
20: Construct postings list I

i

21: . // Lines 16-19 in Algo. 1

22: for each postings list I

i

do
23: Record the [start, end] position of each node in the list
24: Record the exact position of each object in the list

25:
26: function FindSimPairs(x, I1, . . . , Im, s, t)
27: Preparations; // Lines 23-25 in Algo. 1
28: for each i in reverse order s.t. x[i] > 0 do
29: for each node n 2 x.node [x.neighbors do
30: if n 2 x.neighbors then
31: startPos = n.startPos

32: endPos = n.endPos

33: else . x located in node n

34: startPos = I

i

.getPos(x) + 1
35: endPos = n.endPos

36: for each y 2 I

i

[startPos, endPos] do
37: if x.id == y.id then
38: Continue;

39: Generate Candidates; // Line 28-30 in Algo. 1

40: Verify Candidates // Line 31-35 in Algo. 1

old parameters change. A simple modification to our global
index algorithms allows us to compute STJoin using di↵er-
ent thresholds without reindexing the collection. The basic
idea is the same: we over-partition the inverted indexes at a
very fine granularity and then choose the right level of gran-
ularity at which to apply the filtering: it is very straight-
forward to merge z-order ranges, which is the equivalent of
ascending the quadtree or grid hierarchy.

The global index approach and the local index approach
manifest di↵erent tradeo↵s. With the global index approach,
each object is indexed only once, but with the local index
approach, each object might participate in All-Pairs search
with several of its neighbors (and thus be indexed multiple
times). On the other hand, the index structures in the local
index approach are much more compact, which gives rise to
better cache locality when traversing postings. How these
two factors balance out is an empirical question we explore.

3.3 Parallelization
Most previous work on STJoin focuses on sequential al-

gorithms. However, today’s servers have multiple proces-
sors, each with multiple cores. To take advantage of modern
hardware, we experimented with multi-threaded implemen-
tations of our approaches.

In the parallel global index approach, we take advantage
of a thread pool. The parallelization is straightforward: we

divide the work into subtasks, and each subtask is responsi-
ble for processing predefined number of objects � (by default
100). The subtasks are queued and executed by the thread
pool. For the local quadtree or grid partition approaches,
since building inverted indexes for each node is blocking, it
is more natural to parallelize at the granularity of nodes.
Thus, we divide the work into subtasks, and each subtask is
responsible for processing a pre-defined number of nodes ↵

(by default 10). The subtasks are queued and executed by
the thread pool. We see that the global index approach lends
itself to finer-grained parallelism, which is consequential for
skewed distributions in geo data, as we see later.

4. EXPERIMENTS

4.1 Setup
Our experiments used two real-world geo-tagged datasets:

The NewsStand dataset is a collection of news articles from
the NewsStand system [28, 31], where each document is asso-
ciated with its dominant geo-tagged location (longitude and
latitude). This dataset contains 100k documents with 221k
distinct words in total. The lengths of documents range from
2 to 7991, with an average length of 218. The World Cities
dataset1 [32] consists of 2.23m geo-tagged images from 40
cities, crawled from Flickr using geographic queries covering
a window centered around each city center. For each im-
age, we extracted values from the ‘title’, ‘description’, and
‘tags’ elements, which were concatenated as the textual de-
scriptor; We used the latitude and longitude value split from
the ‘location’ element to represent each image’s real-world
location. This dataset contains 420k distinct terms. The av-
erage size of the images’ textual descriptors is 17. For both
datasets stopwords are removed.

Our algorithms were implemented in Java, running on
JDK7. Each experiment was repeated three times and we re-
port average performance. Experiments were conducted on
a server with dual Intel Xeon 8-core processors (E5620 2.4
GHz) and 128 GB RAM. With hyper-threading, the server
supports up to 32 concurrent threads.

4.2 Local vs. Global Approaches
We begin with single-threaded experiments comparing the

local and global index approaches described in the previous
section. For the global index approaches, we first build spa-
tial indexes (quadtree or grid), which is equivalent to con-
structing the z-order, and then use the z-order to sort the
postings. To ensure a fair comparison, grid partitions in-
clude all the same optimizations as our quadtree partition
approach. We make the size of a grid node the same as that
of quadtree leaf node.

In total, we have four partitioning strategies: local quad-
tree, local grid, global quadtree, and global grid. In this
experiment, we used All-Pairs [3] for joining objects based
on text similarity, using cosine distance. In all cases we
built the spatial data structures at a distance granularity of
0.5km; for larger distance thresholds we take advantage of
the coarsening techniques discussed in the previous section
(e.g., for quadtrees, ascending quadtree nodes to the correct
spatial granularity).

Results are shown in Figure 3 for both collections. In Fig-
ure 3a and 3b, we fixed the distance threshold to 2.5km,

1http://image.ntua.gr/iva/datasets/wc/

45

 200

 250

 300

 350

 400

0.5 0.6 0.7 0.8 0.9

R
u

n
n

in
g

 T
im

e
/s

Cosine Sim

local quadtree
local grid

global quadtree
global grid

(a) NewsStand, fix t=2.5km

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

0.5 0.6 0.7 0.8 0.9

R
u

n
n

in
g

 T
im

e
/s

Cosine Sim

local quadtree
local grid

global quadtree
global grid

(b) World Cities, fix t=2.5km

 220

 240

 260

 280

 300

 320

0.5 1 2.5 5 10

R
u

n
n

in
g

 T
im

e
/s

Distance/Km

local quadtree
local grid

global quadtree
global grid

(c) NewsStand, fix s=0.8

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0.5 1 2.5 5 10

R
u

n
n

in
g

 T
im

e
/s

Distance/Km

local quadtree
local grid

global quadtree
global grid

(d) World Cities, fix s=0.8

Figure 3: Performance of di↵erent partitioning strategies running in a single thread.

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

0.5 0.6 0.7 0.8 0.9

In
d

e
x
 T

im
e
/s

Cosine Sim

local quadtree
local grid

global quadtree
global grid

(a) NewsStand, fix t=2.5km

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

0.5 0.6 0.7 0.8 0.9

In
d

e
x
 T

im
e
/s

Distance/Km

local quadtree
local grid

global quadtree
global grid

(b) World Cities, fix t=2.5km

 5

 10

 15

 20

 25

0.5 1 2.5 5 10

In
d

e
x
 T

im
e
/s

Cosine Sim

local quadtree
local grid

global quadtree
global grid

(c) NewsStand, fix s=0.8

 20

 30

 40

 50

 60

 70

 80

0.5 1 2.5 5 10

In
d

e
x
 T

im
e
/s

Cosine Sim

local quadtree
local grid

global quadtree
global grid

(d) World Cities, fix s=0.8

Figure 4: Indexing Time

and varied the similarity threshold in the range of [0.5, 0.9],
while in Figure 3c and 3d, we fixed the similarity to 0.8 and
varied the distance threshold from 0.5km to 10km. The y

axis shows the total running time of each partitioning strat-
egy. The running time consists of three parts: spatial par-
titioning, inverted indexing, and joining. Since we found
that the spatial partitioning time is small compared to the
total running time (usually ⇠1 second for the NewsStand
data and 10-20 seconds for the World Cities data), we don’t
show this part in our results. The corresponding inverted
indexing time for each experiment in Figure 3 is shown in
Figure 4. We can see that in all cases, most of the time
is taken up by accumulating scores during postings traver-
sal (joining). As expected, inverted indexing time for local
quadtree and grid partitions is longer, since objects may
be indexed multiple times. Since the World Cities dataset is
much larger, we would expect the running time to be longer.
For s = 0.8, t = 2.5km, we identified 79m similar pairs; the
same setting on the NewsStand dataset produced 982k sim-
ilar pairs.

Comparing the performance of the four partitioning strate-
gies, we see that local partitions are generally faster than
global partitions, although all these are still roughly compa-
rable for di↵erent threshold settings. A somewhat surprising
finding is that local grid partition doesn’t su↵er from poor
performance for smaller distance thresholds. As we previ-
ously expected, a smaller distance threshold leads to an ex-
ponentially increasing number of grid cells, thus resulting in
the ine�ciency of local grid partition. This problem is solved
by only generating non-empty grid cells instead of storing all
cells. In this case, grid has almost the same shape and con-
figuration as quadtree, thus is expected to obtain similar
performance. Overall, single-threaded performance between
all four partitioning strategies is comparable.

Finally, we note that in the global partitions, index con-
struction time is shorter since we avoid (potentially) index-
ing an object multiple times. However, during the All-Pairs
computation, we incur additional overhead since we need to
consult the auxiliary data structures to look up the z-order
ranges. These two factors roughly balance out, making the

global partitions roughly as fast as local partitions. This
is a somewhat surprising finding, given how di↵erent the
partition-based and global index approaches are.

Note that in Figure 3, we fixed one threshold and varied
the other. From these experiments, we noticed two trends
of how parameter values influence partition e�ciency: (1)
higher similarity thresholds leads to less processing time
and (2) partitioning strategies are faster for smaller dis-
tance thresholds. The first trend matches our intuition that
increasing similarity will reduce the number of candidates
considered as similar pairs and also improve the filtering pro-
cess, thereby decreasing the total running time. The second
trend reflects the observation that as nodes become smaller,
the average number of objects in the nodes decreases. As we
found that the inverted indexing and joining time is super-
linear to the number of objects in a node and its neighbors,
decreasing the average number of objects in each node will
result in reducing the total running time.

4.3 Multi-Threaded Experiments
Next, we examined the multi-threaded performance of our

techniques. Here, we set the thread pool size to 32, reflect-
ing the number of hyper-threads supported by our machine.
By default, for local partitions (quadtree/grid), we set the
task size to the granularity of 10 leaf nodes, and for global
partitions, each task consists of 100 objects. Table 1 and 2
show multi-threaded experimental results corresponding to
the same conditions in Figure 3; each column represents a
partitioning strategy, e.g, LQ stands for local quadtree par-
tition and GG means global grid partition. We report both
running times and speedups compared to the single-threaded
implementations. Consistent with previous experiment set-
tings, the running time is composed of three parts: spatial
partitioning, inverted indexing, and joining. When comput-
ing speedup, we only take into account the parts which are
processed by multiple threads. For local partitions, both
the inverted indexing and joining parts are considered when
computing multi-threaded speedups, while for global parti-
tions, we only consider the joining time (the global inverted
indexes are precomputed in a single-thread). For reference,

46

LQ LG GQ GG

sim time speedup time speedup time speedup time speedup

0.5 221 1.6⇥ 234 1.5⇥ 35 16.3⇥ 35 16.3⇥
0.6 211 1.6⇥ 240 1.4⇥ 31 17.5⇥ 32 18⇥
0.7 190 1.6⇥ 193 1.6⇥ 30 16.3⇥ 31 16.7⇥
0.8 173 1.6⇥ 178 1.5⇥ 28 17.4⇥ 27 17.9⇥
0.9 152 1.5⇥ 153 1.6⇥ 27 14.9⇥ 23 16.5⇥

(a) NewsStand

LQ LG GQ GG

sim time speedup time speedup time speedup time speedup

0.5 3012 3.1⇥ 2505 3.7⇥ 1325 7.4⇥ 1310 7.3⇥
0.6 2493 3⇥ 1559 4.5⇥ 882 8.9⇥ 890 8.9⇥
0.7 1770 3⇥ 1293 4.5⇥ 750 8.3⇥ 744 8.4⇥
0.8 1401 3.2⇥ 1010 4.5⇥ 579 9.3⇥ 560 9.2⇥
0.9 1122 3.5⇥ 939 4⇥ 452 9.7⇥ 456 9.9⇥

(b) World Cities

Table 1: Multi-threaded Experiments: fix t=2.5km, vary s

LQ LG GQ GG

dist time speedup time speedup time speedup time speedup

10 176 1.5⇥ 180 1.5⇥ 30 14.5⇥ 28 16.6⇥
5 172 1.6⇥ 181 1.5⇥ 28 15.3⇥ 26 16.6⇥
2.5 171 1.6⇥ 193 1.3⇥ 27 15.7⇥ 28 15.7⇥
1 180 1.5⇥ 187 1.4⇥ 26 16.4⇥ 27 15.6⇥
0.5 191 1.3⇥ 177 1.5⇥ 27 15.6⇥ 25 17⇥

(a) NewsStand

LQ LG GQ GG

dist time speedup time speedup time speedup time speedup

10 2855 2.5⇥ 2690 2.5⇥ 987 7.7⇥ 966 8.1⇥
5 2269 2.8⇥ 1841 3.2⇥ 861 7.8⇥ 841 7.9⇥
2.5 1431 3.3⇥ 1031 4.4⇥ 578 9.2⇥ 587 9.1⇥
1 464 4.3⇥ 411 5⇥ 260 8⇥ 277 8.2⇥
0.5 258 4.1⇥ 223 4.8⇥ 144 8.8⇥ 147 8.4⇥

(b) World Cities

Table 2: Multi-threaded Experiments: fix s=0.8, vary t

our machine has 16 physical cores (each core supports two
virtual threads), and thus it is di�cult to achieve linear
speedup to 32 if the processors are fully occupied.

As we can see from Table 1 and 2, for all threshold set-
tings, the multi-threaded global partitions achieve far bet-
ter speedup than local partitions. This is because coarse-
grained partitions (in local quadtree and grid partitions)
lead to larger task sizes and unbalanced computation dis-
tribution. For the experiment on the NewsStand dataset,
we discovered that a node contains 10k documents and gen-
erates 582k similar pairs, which consumed around 70% of
the entire processing time. This intrinsically skewed geo-
location distribution increases scheduling di�culties and re-
sults in idle cycles when waiting for a large task to finish.
Therefore, in the context of skewed geo distributions, a fine-
grained multi-threaded approach, enabled by global parti-
tions, appears to be better for STJoin.

To further examine this skewed distribution, we visual-
ized the distribution of task running times of the multi-
threaded experiments in Figure 5. This visualization was
on the NewsStand dataset with similarity threshold 0.8 and
distance threshold 2.5km. Each task is viewed as a point in
the graph. The x axis is the running time of a task, the y axis
is the percentage of the number of tasks with corresponding
running times.

These distributions nicely illustrate what makes multi-
threaded speedup of global partitions and local partitions
di↵erent. First, the distribution shows that a small number
of tasks occupy a large portion of total running time, while
most tasks consume little processing time. These small num-
ber of tasks determine the speedup of multi-threaded exper-
iments. As we can see from Figure 5, for local partitions,
the largest task consumes more than 100 seconds, while it
only takes around 10 seconds for global partitions. Second,
compared to global partitions, tasks for the local partitions
have a much wider distribution over running times (from
10�3 to 102), which means local partitions have a more un-
balanced computation distribution than global partitions.
This unbalanced computation distribution is the reason for
low speedups. We also notice that global grid has a larger
portion of tasks (around 30%) with small running times than
global quadtree. This is due to the smaller overhead of the
global grid when consulting the auxiliary data structures to
look up the z-order ranges. For the global grid, we can ac-

Figure 5: Distribution of tasks’ running time

cess a grid node by a two-dimensional array, while for the
global quadtree we need to visit a map to access a quadtree
node. Of course, the former is better for random access.

In Table 1 and 2, we also noticed di↵erent speedups for the
NewsStand and the World Cities dataset. In the NewsStand
dataset, the multi-threaded speedup of local partitions is
around 1.4-1.7 times, while in the World Cities dataset, the
speedup is 4-5 times. We believe this di↵erence is caused
by di↵erent spatial distributions of these two datasets. In
the NewsStand data, there can be many duplicate docu-
ments located in a same place, but in the World Cities
data, we crawled images and texts distributed in 40 cities
in worldwide, and therefore this dataset is more uniformly
distributed than the NewsStand and thus achieve a better
speedup for local partitions.

4.4 The Finer-Grained the Better?
As we claimed that fine-grained partitioning is good for

multi-threaded speedup, can we conclude that the finer the
better? To explore this, we performed another set of multi-
threaded experiments varying the task size. For this, we
fixed the similarity threshold to 0.8 and distance threshold
to 2.5km. For local partitions, we vary the task size from

47

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1/10
5/50

10/100

20/200

30/300

40/400

50/500

100/1000

S
p

e
e

d
u

p

Task size

local quadtree
local grid

global quadtree
global grid

(a) NewsStand

 0

 2

 4

 6

 8

 10

 12

 14

 16

1/10
5/50

10/100

20/200

30/300

40/400

50/500

100/1000

S
p

e
e

d
u

p

Task size

local quadtree
local grid

global quadtree
global grid

(b) World Cities

Figure 6: Multi-threaded speedup varying task size

the granularity of 1 nodes to 100 nodes; for global partitions,
the task size ranges from 10 objects to 1000 objects. Results
are shown in Figure 6. Labels in x axes represent the task
sizes (i.e., the first label ‘1/10’ denotes the local partition
task contains 1 node and global partition task contains 10
objects); the y axes show multi-threaded speedup.

In the NewsStand dataset, varying task size doesn’t make
much di↵erence to local partitions, but the global partitions
seem to be more sensitive to the task size, and achieve bet-
ter speedups for smaller task sizes. However, this finding
doesn’t hold for the World Cities dataset. In Figure 6b,
local partitions obtain the best speedup at the finest task
size, and gradually su↵er poorer speedups as the task size
increases. But for global partitions, they achieve the best
speedup at the task size of 100 objects. These inconsis-
tent findings originate from the di↵erent sizes and distribu-
tions of the datasets. The World Cities data contains a total
of 2.23m objects and each quadtree/grid leaf node contains
around 3000 objects. Here, a finer-grained setting would be
better for local partitions. However, for global partitions, a
very fine-grained setting results in a large number of tasks
(there are total of 223k tasks in the task size setting of 10
objects), thereby increasing context switch costs. Therefore,
we conclude that for global partitions, a suitable task size
setting should balance the benefits of a uniform computa-
tion distribution and context switch costs; while for local
partitions, a finer-grained task setting can be better.

4.5 Set Join Approaches Comparisons
In previous experiments, all partitioning strategies adopt

All-Pairs [3] using cosine distance in the inverted indexing
and joining phase. To generalize our findings, we also com-
pleted the experiments for other set join approaches and
other distance measures: PPJ [34] using Jaccard distance
measure, All-Pairs [3] using Jaccard distance measure. All
the optimizations and experimental settings in previous ex-
periments are used here to ensure a fair comparison.

The single-threaded performance of PPJ Jaccard and All-
Pairs Jaccard are shown in Figure 7 and 8. Consistent with
previous findings, local partitioning strategies outperform
using a single-thread but all partitioning strategies are still
comparable. Comparing these three set join approaches for
the same parameter settings, we found that PPJ Jaccard is
the fastest, All-Pairs Jaccard second, and All-Pairs cosine
the slowest. We believe that the ine�ciency of All-Pairs co-
sine stems from the fact that cosine distance requires floating
point operations while Jaccard distance only needs integer
operations. The PPJ Jaccard approach is more e�cient than
All-Pairs Jaccard as PPJ employs positional information to
increase filtering power. Detailed comparisons between PPJ
and All-Pairs Jaccard can be found in [34].

The multi-threaded speedups of PPJ Jaccard and All-

Pairs Jaccard are shown in Figure 9 and 10. For the PPJ
Jaccard approach, we see that global partitions achieve 8-16
times speedup and local partitions obtain a speedup of 2-5
times. Since we use the default task size for all threshold
settings, we expect to observe some fluctuations in multi-
threaded speedup. However, for the All-Pairs Jaccard ap-
proach, we noticed that the global partitions don’t achieve
the expected speedup. This is because the All-Pairs Jac-
card approach requires objects to be sorted in ascending
order of size, thereby conflicting with the global partitions
requirement that objects need to be sorted by z -order. As
discussed in Section 3.2, for such approaches, we need to
visit all neighbor nodes instead of only the four neighbors in
the {W,NW,NE,N} directions. In this case, the filtering
overhead of global partitions increases, and thus the average
running time of global partition tasks increases. Neverthe-
less, global partitions achieve better multi-threaded speedup
than local partitions.

5. FUTURE WORK AND CONCLUSIONS
An obvious question in response to our work is: in addi-

tion to grids and quadtrees, why not also consider R-trees
and variants [15, 4, 21]? We believe that R-trees are not
appropriate for several reasons. First, similar objects of a
target object x can only be located in the same or neighbor
nodes of x (otherwise it will not satisfy the distance thresh-
old). Quadtrees and grids allow us to easily access neighbor-
hoods in a e�cient manner. On the other hand, R-trees are
primary designed to support fast access in terms of contain-
ments relationships. To access neighbors, we would need to
visit all nearby MBRs (minimum bounding rectangles) and
check the distances to identify the neighbor nodes. This is
less e�cient than accessing neighbor nodes via z-order in
quadtrees or grids. Furthermore, there is no upper bound
on the size of a minimum bounding rectangle, which means
that we may need to consider a large number of irrelevant
objects (i.e., far outside the distance threshold). Second,
our global index approach requires a consistent ordering of
nodes, which is a intrinsic property of quadtrees and grids
but is di�cult for R-trees. Indeed, Bouros et al. [5], show
that R-trees and their variants are slower than grid partition
in terms of single-threaded performance.

We see two future extensions of our work. First, as join
performance is super-linear with the size of collections, we
can replace the underlying set join approaches with prob-
abilistic techniques, e.g., based on locality sensitive hash-
ing [10] or some other signature-based approaches [24], to
accelerate the join performance. These probabilistic tech-
niques are able to identify most similar object pairs in an
approximate but e�cient manner. Another possible exten-
sion is to scale up our algorithms in a distributed frame-
work [13, 12]. MapReduce [12] is one obvious choice as it
o↵ers partitioning and aggregation as basic primitives, which
share similarities to our multi-threaded implementations.

To conclude, this work presents a methodical analysis of
the STJoin problem in multiple dimensions: local vs. global
partitioning, grid vs. quadtree, All-Pairs vs. PPJ, and single-
vs. multi-threaded. Although some of these combinations
have been previously explored, our experiments thoroughly
evaluate performance of STJoin under di↵erent variants and
parameter settings. From experiments on two real-world
datasets, we find that single-threaded implementations of
these approaches are roughly comparable in performance.

48

 10

 20

 30

 40

 50

 60

 70

 80

0.5 0.6 0.7 0.8 0.9

R
u

n
n

in
g

 T
im

e
/s

Jaccard Sim

local quadtree
local grid

global quadtree
global grid

(a) NewsStand, fix t=2.5km

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

0.5 0.6 0.7 0.8 0.9

R
u

n
n

in
g

 T
im

e
/s

Jaccard Sim

local quadtree
local grid

global quadtree
global grid

(b) World Cities, fix t=2.5km

 12

 14

 16

 18

 20

 22

 24

0.5 1 2.5 5 10

R
u

n
n

in
g

 T
im

e
/s

Distance/Km

local quadtree
local grid

global quadtree
global grid

(c) NewsStand, fix s=0.8

 100

 200

 300

 400

 500

 600

 700

0.5 1 2.5 5 10

R
u

n
n

in
g

 T
im

e
/s

Distance

local quadtree
local grid

global quadtree
global grid

(d) World Cities, fix s=0.8

Figure 7: PPJ single-threaded performance.

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.5 0.6 0.7 0.8 0.9

R
u

n
n

in
g

 T
im

e
/s

Jaccard Sim

local quadtree
local grid

global quadtree
global grid

(a) NewsStand, fix t=2.5km

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

0.5 0.6 0.7 0.8 0.9

R
u

n
n

in
g

 T
im

e
/s

Jaccard Sim

local quadtree
local grid

global quadtree
global grid

(b) World Cities, fix t=2.5km

 15

 20

 25

 30

 35

 40

 45

0.5 1 2.5 5 10

R
u

n
n

in
g

 T
im

e
/s

Distance/Km

local quadtree
local grid

global quadtree
global grid

(c) NewsStand, fix s=0.8

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0.5 1 2.5 5 10

R
u

n
n

in
g

 T
im

e
/s

Distance/Km

local quadtree
local grid

global quadtree
global grid

(d) World Cities, fix s=0.8

Figure 8: All-Pairs Jaccard single-threaded performance.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0.9 0.8 0.7 0.6 0.5

S
p

e
e
d

u
p

Jaccard Sim

local-quadtree
local-grid

global-quadtree
global-grid

(a) NewsStand, fix t=2.5km

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0.9 0.8 0.7 0.6 0.5

S
p

e
e
d

u
p

Jaccard Sim

local-quadtree
local-grid

global-quadtree
global-grid

(b) World Cities, fix t=2.5km

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

10 5 2.5 1 0.5

S
p

e
e
d

u
p

Distance/Km

local-quadtree
local-grid

global-quadtree
global-grid

(c) NewsStand, fix s=0.8

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

10 5 2.5 1 0.5

S
p

e
e
d

u
p

Distance/km

local-quadtree
local-grid

global-quadtree
global-grid

(d) World Cities, fix s=0.8

Figure 9: PPJ multi-threaded speedup.

 0

 2

 4

 6

 8

 10

 12

 14

 16

0.9 0.8 0.7 0.6 0.5

S
p

e
e
d

u
p

Jaccard Sim

local-quadtree
local-grid

global-quadtree
global-grid

(a) NewsStand, fix t=2.5km

 0

 2

 4

 6

 8

 10

 12

 14

 16

0.9 0.8 0.7 0.6 0.5

S
p

e
e
d

u
p

Jaccard Sim

local-quadtree
local-grid

global-quadtree
global-grid

(b) World Cities, fix t=2.5km

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 5 2.5 1 0.5

S
p

e
e
d

u
p

Distance/Km

local-quadtree
local-grid

global-quadtree
global-grid

(c) NewsStand, fix s=0.8

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 5 2.5 1 0.5

S
p

e
e
d

u
p

Distance/Km

local-quadtree
local-grid

global-quadtree
global-grid

(d) World Cities, fix s=0.8

Figure 10: All-Pairs Jaccard multi-threaded speedup.

49

In terms of the underlying similarity join algorithms, PPJ is
faster than All-Pairs for Jaccard similarity, but when cosine
similarity is desired, All-Pairs remains the preferred choice.
However, in a multi-threaded setting, we find that the global
index approach yields significantly better speedups than the
local approach. Our results suggest that load balancing is
a fundamental issue regardless of algorithms, and highlight
the importance of evaluating parallel performance in today’s
multi-core computing environments.

6. ACKNOWLEDGMENTS
This work was supported in part by the U.S. National Sci-

ence Foundation under awards IIS-12-18043, IIS-10-18475,
IIS-12-19023, and IIS-13-20791. Any opinions, findings, con-
clusions, or recommendations expressed are those of the au-
thors and do not necessarily reflect the views of the sponsor.

7. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. E�cient exact

set-similarity joins. In VLDB, 2006.
[2] J. Ballesteros, A. Cary, and N. Rishe. SpSJoin:

parallel spatial similarity joins. In GIS, 2011.
[3] R. Bayardo, Y. Ma, and R. Srikant. Scaling up all

pairs similarity search. WWW, 2007.
[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and

B. Seeger. The R*-tree: an e�cient and robust access
method for points and rectangles. In SIGMOD, 1990.

[5] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual
similarity joins. PVLDB, 2012.

[6] T. Brinkho↵, H.-P. Kriegel, and B. Seeger. E�cient
processing of spatial joins using R-trees. In SIGMOD,
1993.

[7] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi.
Collective spatial keyword querying. In SIGMOD,
2011.

[8] Y.-Y. Chen, T. Suel, and A. Markowetz. E�cient
query processing in geographic web search engines. In
SIGMOD, 2006.

[9] G. Cong, C. S. Jensen, and D. Wu. E�cient retrieval
of the top-k most relevant spatial web objects.
PVLDB, 2009.

[10] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In Annual Symposium on Computational
Geometry, 2004.

[11] I. De Felipe, V. Hristidis, and N. Rishe. Keyword
search on spatial databases. In ICDE, 2008.

[12] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. CACM, 2008.

[13] A. Eldawy and M. F. Mokbel. A demonstration of
SpatialHadoop: an e�cient MapReduce framework for
spatial data. PVLDB, 2013.

[14] J. Fan, G. Li, L. Zhou, S. Chen, and J. Hu. Seal:
Spatio-textual similarity search. PVLDB, 2012.

[15] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD, 1984.

[16] R. Hariharan, B. Hore, C. Li, and S. Mehrotra.
Processing spatial-keyword (SK) queries in geographic
information retrieval (GIR) systems. In SSBDM, 2007.

[17] G. R. Hjaltason and H. Samet. Incremental distance
join algorithms for spatial databases. In SIGMOD,

1998.
[18] G. R. Hjaltason and H. Samet. Distance browsing in

spatial databases. TODS, 1999.
[19] E. H. Jacox and H. Samet. Spatial join techniques.

TODS, 2007.
[20] E. H. Jacox and H. Samet. Metric space similarity

joins. TODS, 2008.
[21] Z. Li, K. C. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and

X. Wang. IR-Tree: An e�cient index for geographic
document search. TKDE, 2011.

[22] S. Liu, G. Li, and J. Feng. Star-Join: Spatio-textual
similarity join. In CIKM, 2012.

[23] S. Liu, G. Li, and J. Feng. A prefix-filter based
method for spatio-textual similarity join. TKDE, 2013.

[24] G. S. Manku, A. Jain, and A. Das Sarma. Detecting
near-duplicates for web crawling. In WWW, 2007.

[25] S. Nutanong, E. H. Jacox, and H. Samet. An
incremental Hausdor↵ distance calculation algorithm.
PVLDB, 2011.

[26] H. Samet. Foundations of multidimensional and
metric data structures. Morgan Kaufmann, 2006.

[27] H. Samet, H. Alborzi, F. Brabec, C. Esperança, G. R.
Hjaltason, F. Morgan, and E. Tanin. Use of the SAND
spatial browser for digital government applications.
CACM, 2003.

[28] H. Samet, J. Sankaranarayanan, M. D. Lieberman,
M. D. Adelfio, B. C. Fruin, J. M. Lotkowski,
D. Panozzo, J. Sperling, and B. E. Teitler. Reading
news with maps by exploiting spatial synonyms.
CACM, 2014.

[29] S. Sarawagi and A. Kirpal. E�cient set joins on
similarity predicates. In SIGMOD, 2004.

[30] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and
S. Prabhakar. Indexing multi-dimensional uncertain
data with arbitrary probability density functions. In
VLDB, 2005.

[31] B. E. Teitler, M. D. Lieberman, D. Panozzo,
J. Sankaranarayanan, H. Samet, and J. Sperling.
NewsStand: A new view on news. In GIS, 2008.

[32] G. Tolias and Y. Avrithis. Speeded-up, relaxed spatial
matching. In ICCV, 2011.

[33] K.-Y. Whang and R. Krishnamurthy. The multilevel
grid file: a dynamic hierarchical multidimensional file
structure. In International Symposium on Database
Systems for Advanced Applications, 1992.

[34] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang.
E�cient similarity joins for near-duplicate detection.
TODS, 2011.

