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Abstract

The generating function of partitions with repeated (resp. distinct) parts such that each
odd part is less than twice the smallest part is shown to be the third order mock theta
function ω(q) (resp. ν(−q)). Similar results for partitions with the corresponding
restriction on each even part are also obtained, one of which involves the third order
mock theta function φ(q). Congruences for the smallest parts partition function(s)
associated to such partitions are obtained. Two analogues of the partition-theoretic
interpretation of Euler’s pentagonal number theorem are also obtained.
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1 Introduction
Partition-theoretic interpretations of various results involving mock theta functions have
been the subject of intense study for many decades. For instance, the first author and
Garvan [14] reduced the proofs of ten identities for the fifth order mock theta functions
given in Ramanujan’s Lost Notebook ([29] p. 18–20) to proving two conjectures based on
the rank of a partition, and on the number of partitions of an integer with unique smallest
part and all other parts less than or equal to the double (or one plus the double) of the
smallest part. These conjectures, titled as Mock Theta Conjectures, were first proved by
Hickerson [26].
A mock theta function itself may also admit a simple and interesting combinatorial

interpretation. For example, consider χ1(q), one of the fifth order mock theta functions
of Ramanujan, defined by ([32] p. 278)

χ1(q) :=
∞∑
n=0

qn

(qn+1; q)n+1
,

where (a; q)n := ∏n−1
j=0 (1 − aqj).
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It is easy to see that qχ1(q) is the generating function for partitions in which no part is
as large as twice the smallest part. Similarly another fifth order mock theta function ([32]
p. 278), namely

χ0(q) :=
∞∑
n=0

qn

(qn+1; q)n
,

can be interpreted ([2] Lemma 2) as the generating function for partitions with unique
smallest part and the largest part at most twice the smallest part. There are other mock
theta functions that admit combinatorial interpretations when different restrictions are
put on parts of the corresponding partitions, for example the third order mock theta func-
tion ψ(q) ([21] p. 57), and the seventh order mock theta function f (q) ([10] Theorem
4).
In the present paper, among other things, we consider partitions of an integer in which

each odd (even) part is less than (at most) twice the smallest part. For the odd case, the
generating function surprisingly turns out to be qω(q) (see Theorem 3.1), where ω(q)
is the third order mock theta function due to Ramanujan and Watson defined by, ([29]
p. 15), ([31] p. 62)

ω(q) :=
∞∑
n=0

q2n2+2n

(q; q2)2n+1
. (1)

If we put an additional restriction that the parts be distinct, then the generating function
of such partitions is ν(−q) (see Theorem 4.1), where ν(q) is another third order mock
theta function defined by, ([29] p. 31), ([31] p. 62)

ν(q) :=
∞∑
n=0

qn2+n

(−q; q2)n+1
. (2)

For partitions in which each even part is less than or equal to twice the smallest part, the
generating function, as can be seen from Theorem 3.3, involves the function σ(q) defined
by

σ(q) :=
∞∑
n=0

q(
n+1
2 )

(−q; q)n
. (3)

The function σ(q) appears in the Lost Notebook and was analyzed in [7, 13]. Again
restricting the parts in such partitions to be distinct leads us to a yet another third order
mock theta function as a part of a representation for the generating function for these
partitions (see Theorem 4.2). This mock theta function, namely

φ(q) :=
∞∑
n=0

qn2

(−q2; q2)n
, (4)

itself does not have a simple partition-theoretic interpretation ([21] p. 58).
Let pω(n) denote the number of partitions of n in which each odd part is less than twice

the smallest part. As discussed previously,
∞∑
n=1

pω(n)qn = qω(q).

Garthwaite and Penniston [22] showed that the coefficients aω(n) ofω(q) satisfy infinitely
many congruences of the similar type as Ramanujan’s partition congruences. It is trivial to
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see that pω(n) = aω(n − 1). Waldherr [30] proved first explicit examples of such congru-
ences, suggested by some computations done by Jeremy Lovejoy, which in terms of pω(n),
can be written as

pω(40n + 28) ≡ 0 (mod 5),

pω(40n + 36) ≡ 0 (mod 5).

Let pν(n) denote the number of partitions of n into distinct parts in which each odd part
is less than twice the smallest part.
The smallest parts function spt(n), counting the total number of appearances of the

smallest parts in all partitions of n, has received great attention since it was intro-
duced in [9]. For generalizations and analogues of spt(n), we refer the reader to
[12, 18, 20, 23, 27, 28].
If sptω(n) and sptν(n) denote the number of smallest parts in the partitions enumerated

by pω(n) and pν(n) respectively, then we show that the following congruences hold:

sptω(5n + 3) ≡ 0 (mod 5),

sptω(10n + 7) ≡ 0 (mod 5),

sptω(10n + 9) ≡ 0 (mod 5),

sptν(10n + 8) ≡ 0 (mod 5).

The first of these congruences has been independently obtained by Garvan and Jennings-
Shaffer ([24] Theorem 2.1).
As shown in Section 6, the first three congruences from above result from the following

q-series identity:
∞∑
n=1

(q; q)nqn

(q; q2)n(1 − qn)2
=

∞∑
n=1

nqn

1 − qn
+

∞∑
n=1

(−1)n(1 + q2n)qn(3n+1)

(1 − q2n)2
. (5)

In fact, it was this identity that led us to investigate the aforementioned partitions and
their connection with third order mock theta functions. This identity can be obtained by
taking the second derivative of a special case of a 10φ9-transformation (see Eq. (15) below)
due to Bailey ([6] Equation (2.10)), ([17] Equation (6.3)). The details are given in Section 6.
Differentiatiation of identities in basic hypergeometric series with respect to a cer-

tain variable and then specializing them has been proved to be very useful in obtaining
other important q-series identities [16, 19], in constructing new Bailey pairs [8]. It
also yields results with important partition-theoretic implications [9, 15, 20]. Bailey’s
aforementioned 10φ9-transformation is no exception to this.
We note that the series similar to the left-hand side of (5), namely

∞∑
n=1

(q; q)nqn

(q2; q2)n(1 − qn)2
,

does not, however, seem to have a representation similar to that in (5). Also there do not
seem to hold the corresponding congruences for the smallest parts function associated to
the partitions in which each even part is less than or equal to twice the smallest part.
This paper is organized as follows. The preliminary results are provided in Section 2. In

Section 3, we consider partitions in which each odd (even) part is less than (at most) twice
the smallest part, and in which repetition of parts is allowed. Such partitions in which
additionally only the smallest part is not allowed to repeat are also studied. Section 4 is
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devoted to studying partitions into distinct parts in which each odd (even) part is less than
(at most) twice the smallest part. Two analogues of Euler’s pentagonal number theorem
([4] p. 11, Corollary 1.7) are obtained in Section 5. The congruences satisfied by the small-
est parts functions associated with some of the partitions considered in Sections 3 and 4
are proved in Section 6. Finally in Section 7, we generalize two of the results obtained in
the previous sections to those involving generalized third order mock theta functions.

2 Preliminary results
We give below the standard results from the literature which will be used in the sequel.
Throughout the paper, q denotes a complex number such that |q| < 1. Euler’s identity
([25] p. 222, Equation (8.10.9)), which shows that the number of partitions into distinct
parts equals that of partitions into odd parts, is expressed in terms of generating functions
by

(−q; q)∞ = 1
(q; q2)∞

, (6)

where (a; q)∞ := limn→∞(a; q)n.
For |z| < 1, the q-binomial theorem is given by ([4] p. 17, Equation (2.2.1))

∞∑
n=0

(a; q)nzn

(q; q)n
= (az; q)∞

(z; q)∞
. (7)

Its special case a = 0 gives another useful formula due to Euler ([4] p. 19, Equation
(2.2.5)):

∞∑
n=0

zn

(q; q)n
= 1

(z; q)∞
. (8)

Ramanujan’s 1ψ1 summation formula ([25] p.239, (II 29)) is given by
∞∑

n=−∞

(a; q)n
(b; q)n

zn = (az; q)∞(q/(az); q)∞(q; q)∞(b/a; q)∞
(z; q)∞(b/(az); q)∞(b; q)∞(q/a; q)∞

. (9)

Let the Gaussian polynomial
[
n
m

]
be defined by ([4] p. 35)

[
n
m

]
=

[
n
m

]
q
:=

{
(q;q)n

(q;q)m(q;q)n−m
, if 0 ≤ m ≤ n,

0, otherwise.

From ([4] p. 36, Equation (3.3.7)), we have

1
(z; q)N

=
∞∑
j=0

[
N + j − 1

j

]
zj, (10)

and from ([4] p. 37, Equation (3.3.8)),
m∑
j=0

(−1)j
[
m
j

]
=

{
(q; q2)n, if m = 2n,
0, if m is odd.

(11)

Moreover ([4] p. 21, Corollary 2.7),
∞∑
n=0

(a; q)nqn(n+1)/2

(q; q)n
= (−q; q)∞(aq; q2)∞. (12)
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Next, a q-analogue of Gauss’ second theorem is given by ([3] Equation (1.8))
∞∑
n=0

(a; q)n(b; q)nqn(n+1)/2

(q; q)n(qab; q2)n
= (−q; q)∞(aq; q2)∞(bq; q2)∞

(qab; q2)∞
. (13)

The following four-parameter q-series identity ([5] p. 141, Theorem 1) will be frequently
used in the proofs of our theorems:

∞∑
n=0

(B; q)n(−Abq; q)nqn

(−aq; q)n(−bq; q)n

= −a−1(B; q)∞(−Abq; q)∞
(−bq; q)∞(−aq; q)∞

∞∑
m=0

(A−1; q)m
(
Abq
a

)m
(−B

a ; q
)
m+1

+ (1 + b)
∞∑

m=0

(−a−1; q)m+1
(
−ABq

a ; q
)
m

(−b)m(−B
a ; q

)
m+1

(
Abq
a ; q

)
m+1

. (14)

Finally, we note Bailey’s 10φ9 transformation ([6] Equation (2.10)), ([17] Equation (6.3)):

lim
N→∞ 10φ9

⎛
⎝a, q2

√
a, −q2

√
a, p1, p1q, p2, p2q, f , q−2N , q−2N+1

√
a, −√

a,
aq2

p1
,
aq
p1

,
aq2

p2
,
aq
p2

,
aq2

f
, aq2N+2, aq2N+1 ; q2,

a3q4N+3

p21p
2
2f

⎞
⎠

=
(aq; q)∞

(
aq
p1p2

; q
)

∞(
aq
p1

; q
)

∞

(
aq
p2

; q
)

∞

∞∑
n=0

(p1; q)n(p2; q)n
(
aq
f ; q

2
)
n

(q; q)n(aq; q2)n
(
aq
f ; q

)
n

(
aq
p1p2

)n
, (15)

where

r+1φr

(
a1, a2, . . . , ar+1
b1, b2, . . . , br

; q, z
)
:=

∞∑
n=0

(a1; q)n(a2; q)n · · · (ar+1; q)n
(q; q)n(b1; q)n · · · (br ; q)n zn.

3 Partitions with repeated parts
Theorem 3.1. Let ω(q) be defined in (1). Then,

∞∑
n=1

qn

(1 − qn)(qn+1; q)n(q2n+2; q2)∞
= qω(q). (16)

Remark. The series given in the theorem is clearly the generating function for parti-
tions in which each odd part is less than twice the smallest part.

Proof. First from ([21] p.62, Equation (26.88)),

ν(q) + qω(q2) = (−q2; q2)3∞(q2; q2)∞, (17)

where ν(q) is defined in (2).
Second, in (14), replace q by q2, then set B = q2, a = −b = q, and let A → 0. This yields

∞∑
n=0

(q2; q2)nq2n

(q6; q4)n
= −q−1(q2; q2)∞

(q6; q4)∞

∞∑
m=0

qm2+m

(−q; q2)m+1
+ (1 − q)

∞∑
m=0

(−q−1; q2)m+1qm

(−q; q2)m+1
.

(18)



Andrews et al. Research in Number Theory  (2015) 1:19 Page 6 of 25

Finally replace q by q2 in (9), then set a = −q, b = −q3, z = q and simplify to obtain
∞∑

m=0

qm

1 + q2m+1 = (q4; q4)2∞
(q2; q4)2∞

. (19)

We are now ready to prove the theorem.
∞∑
n=1

q2n

(1 − q2n)(q2n+2; q2)n(q4n+4; q4)∞

=
∞∑
n=0

q2n+2(q2; q2)n
(q2; q2)2n+2(q4n+8; q4)∞

= 1
(q4; q4)∞

∞∑
n=0

q2n+2(q2; q2)n
(1 − q2)(q6; q4)n

= q2

(q4; q4)∞(1 − q2)

∞∑
n=0

q2n(q2; q2)n
(q6; q4)n

= q2

(q4; q4)∞(1 − q2)

(
−q−1(1 − q2)(q4; q4)∞ ν(q) + (1 − q)(1 + q−1)

∞∑
m=0

qm

1 + q2m+1

)

= q
(

−ν(q) + 1
(q4; q4)∞

∞∑
m=0

qm

1 + q2m+1

)

= q
(

−ν(q) + (q4; q4)∞
(q2; q4)2∞

)

= q(−ν(q) + (q4; q4)∞(−q2; q2)2∞)

= q(−ν(q) + (−q2; q2)3∞(q2; q2)∞)

= q2ω(q2), (20)

where the fourth step follows from (18) and (2) the sixth and seventh steps follow from
(19) and (6), respectively, and the last step follows from (17). This proves (16) with q
replaced by q2, and thus completes the proof.

We now give another proof of the above theorem. We begin with a lemma that is also
used in the subsequent sections.
Lemma 3.2. We have

∞∑
n=0

q
n
2

1 + q
1
2+n

=
∞∑
n=0

qn

1 − q4n+1 − q2
∞∑
n=0

q3n

1 − q4n+3 =
∞∑
n=0

(−1)nq
n
2

1 − q
1
2+n

. (21)

Proof. For obtaining the first equality, note that
∞∑
n=0

q
n
2

1 + q
1
2+n

=
∞∑
n=0

q
n
2 (1 − q

1
2+n)

1 − q1+2n

=
∞∑
n=0

qn(1 − q
1
2+2n)

1 − q4n+1 +
∞∑
n=0

q
1
2+n(1 − q

3
2+2n)

1 − q4n+3

=
∞∑
n=0

qn

1 − q4n+1 −
∞∑
n=0

q3n+2

1 − q4n+3 − q
1
2

( ∞∑
n=0

q3n

1 − q4n+1 −
∞∑
n=0

qn

1 − q4n+3

)

=
∞∑
n=0

qn

1 − q4n+1 −
∞∑
n=0

q3n+2

1 − q4n+3 ,
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since
∞∑
n=0

q3n

1 − q4n+1 =
∞∑
n=0

q3n
∞∑

m=0
q(4n+1)m =

∞∑
m=0

qm
∞∑
n=0

q(4m+3)n =
∞∑
n=0

qn

1 − q4n+3 . (22)

For the second statement, we employ the same method to see that
∞∑
n=0

(−1)nq
n
2

1 − q
1
2+n

=
∞∑
n=0

(−1)nq
n
2 (1 + q

1
2+n)

1 − q1+2n

=
∞∑
n=0

qn(1 + q
1
2+2n)

1 − q4n+1 −
∞∑
n=0

q
1
2+n(1 + q

3
2+2n)

1 − q4n+3

=
∞∑
n=0

qn

1 − q4n+1 −
∞∑
n=0

q3n+2

1 − q4n+3 + q
1
2

( ∞∑
n=0

q3n

1 − q4n+1 −
∞∑
n=0

qn

1 − q4n+3

)

=
∞∑
n=0

qn

1 − q4n+1 −
∞∑
n=0

q3n+2

1 − q4n+3 ,

where the last equality follows from (22).

Second proof of Theorem 3.1. First,

∞∑
n=1

qn

(qn; q)n+1(q2n+2; q2)∞
= q

(q2; q2)∞(1 − q)

∞∑
n=0

qn(q; q)n
(q3; q2)n

, (23)

as can be seen from the third step in (20).
We now set a = −b = A−1 = q1/2 and let B → 0 in (14) to obtain

∞∑
n=1

qn(q; q)n
(q3; q2)n

= −q−1/2(q; q)∞
(q3; q2)∞

∞∑
m=0

(q1/2; q)m(−q1/2)m + (1 − q1/2)
∞∑

m=0

(−q−1/2; q)m+1qm/2

(−q1/2; q)m+1

= −q−1/2(q; q)∞
(q3; q2)∞

∞∑
m=0

(q1/2; q)m(−1)mqm/2 + q−1/2(1 − q)
∞∑

m=0

qm/2

1 + q1/2+m

= −q−1/2(q; q)∞
(q3; q2)∞

∞∑
m=0

(q1/2; q)m(−1)mqm/2 + q−1/2(1 − q)

×
( ∞∑
n=0

qn

1 − q4n+1 − q2
∞∑
n=0

q3n

1 − q4n+3

)
, (24)

where the last equality follows from Lemma 3.2.
We now use (49), later proved in Theorem 4.1 of Section 4:

∞∑
m=0

(q; q2)m(−q)m = (−q2; q2)∞ψ(q2) − qω(q2) = 1
(q4; q4)∞

ψ2(q2) − q ω(q2),

(25)

where ([4] p. 23, Equation (2.2.13))

ψ(q) =
∞∑
n=0

q(
n+1
2 ) = (q2; q2)∞

(q; q2)∞
. (26)
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The last equality in (25) follows from (6). From (23), (24), and (25), we obtain
∞∑
n=1

qn

(qn; q)n+1(q2n+2; q2)∞
= q ω(q) − q1/2

(q2; q2)∞

(
ψ2(q) −

∞∑
n=0

qn

1 − q4n+1 +q2
∞∑
n=0

q3n

1 − q4n+3

)

= q ω(q).
(27)

This completes the proof.

Remark. As a by-product of (27), we obtain the identity

ψ2(q) = (q2; q2)2∞
(q; q2)2∞

=
∞∑
n=0

qn

1 − q4n+1 − q2
∞∑
n=0

q3n

1 − q4n+3 .

We now obtain a representation corresponding to Theorem 3.1 for the generating
function of partitions in which each even part is at most twice the smallest part.

Theorem 3.3. With σ(q) defined in (3), we have
∞∑
n=1

qn

(qn; q)n+1(q2n+1; q2)∞
= −1

2
σ(q) + 1

(q; q2)∞

∞∑
n=0

qn

1 + qn
.

Proof. First we have
∞∑
n=1

qn

(qn; q)n+1(q2n+1; q2)∞
=

∞∑
n=1

qn(q; q)n−1
(q; q)2n(q2n+1; q2)∞

= q
(q; q2)∞(1 − q2)

∞∑
n=0

qn(q; q)n
(q4; q2)n

. (28)

Set b = −a, A = a−1 and let B → 0 in (14) to obtain
∞∑
n=0

qn(q; q)n
(a2q2; q2)n

= −a−1(q; q)∞
(a2q2; q2)∞

∞∑
m=0

(a; q)m(−q/a)m + (1 − a)
∞∑

m=0

(−a−1; q)m+1am

(−q/a; q)m+1

= −a−1(q; q)∞
(a2q2; q2)∞

∞∑
m=0

(a; q)m(−q/a)m + a−1(1 − a2)
∞∑

m=0

am

1 + qm+1/a
.

(29)

Note that
∞∑

m=0
(a; q)m(−q/a)m = lim

c→0
2φ1

(
a, q
c

; q,−q/a
)
.

Heine’s second transformation ([25] p. 241, Equation (III.2)) of 2φ1 gives
∞∑

m=0
(a; q)m(−q/a)m = lim

c→0
2φ1

(
a, q
c

; q,−q/a
)

= lim
c→0

(c/q; q)∞(−q2/a; q)∞
(c; q)∞(−q/a; q)∞

2φ1

(
−q2/c, q
−q2/a

; q, c/q
)

= (−q2/a; q)∞
(−q/a; q)∞

∞∑
n=0

q(
n+1
2 )

(−q2/a; q)n
. (30)
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Substituting (30) into (29), we see that

∞∑
n=0

qn(q; q)n
(a2q2; q2)n

=−a−1(q; q)∞(−q2/a; q)∞
(a2q2; q2)∞(−q/a; q)∞

∞∑
n=0

q(
n+1
2 )

(−q2/a; q)n
+ a−1(1 − a2)

∞∑
m=0

am

1 + qm+1/a
,

and when a = q, this becomes

∞∑
n=0

qn(q; q)n
(q4; q2)n

= −q−1(q; q)∞
2(q4; q2)∞

∞∑
n=0

q(
n+1
2 )

(−q; q)n
+ q−1(1 − q2)

∞∑
n=0

qn

1 + qn
. (31)

Now substitute (31) into (28) to obtain

∞∑
n=1

qn

(qn; q)n+1(q2n+1; q2)∞
= −1

2

∞∑
n=0

q(
n+1
2 )

(−q; q)n
+ 1

(q; q2)∞

∞∑
n=0

qn

1 + qn
.

This completes the proof.

3.1 Aforementioned partitions with unique smallest part

In this section, we consider the aforementioned partitions with the only additional
restriction being that the smallest part cannot repeat.
Theorem 3.4. The following is true:

∞∑
n=1

qn

(qn+1; q)n(q2n+1; q2)∞
= −1 + (−q; q)∞.

Proof. First note that

∞∑
n=0

qn

(qn+1; q)n(q2n+1; q2)∞
= 1

(q; q2)∞

∞∑
n=0

qn(q; q)n
(q2; q2)n

. (32)

Set a = −b = A = −1 and let B → 0 in (14) to see that

∞∑
n=0

qn(q; q)n
(q2; q2)n

= (q; q)∞
(q2; q2)∞

∞∑
m=0

(−1; q)mqm. (33)

From (32) and (33),

∞∑
n=0

qn

(qn+1; q)n(q2n+1; q2)∞
=

∞∑
m=0

(−1; q)mqm

= −1 + 2
(
1 +

∞∑
m=1

(−q; q)m−1qm
)

= −1 + 2(−q; q)∞,

where the last step is valid since

1 +
∞∑

m=1
(−q; q)m−1qm = (−q; q)∞, (34)

which in turn follows from the fact that both sides represent the generating function for
partitions into distinct parts, with the left one doing so by separating out the largest part.
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Hence,
∞∑
n=1

qn

(qn+1; q)n(q2n+1; q2)∞
=

∞∑
n=0

qn

(qn+1; q)n(q2n+1; q2)∞
− 1

(q; q2)∞

=
∞∑
n=0

qn

(qn+1; q)n(q2n+1; q2)∞
− (−q; q)∞

= −1 + (−q; q)∞.

A combinatorial proof of Theorem 3.4. Theorem 3.4 yields the following partition
theorem. We provide a combinatorial proof.
Theorem 3.5. Let n be a positive integer. Then the number of partitions of n with unique
smallest part in which each even does not exceed twice the smallest part equals the number
of partitions of n into distinct parts.

Proof. For any fixed k, let Ak be the set of partitions λ in which k is the unique smallest
part and even parts are ≤ 2k. In other words,

Ak = {λ = (k, (k + 1)fk+1 , (k + 2)fk+2 , . . .) | fn = 0 if n is even and greater than 2k}.
We now write fn as a binary representation:

fn =
∞∑
i=0

an,i2i,

where an,i is either 0 or 1. Note that this binary representation is unique. Also, for n1, n2 >

k with the constraint that they do not exceed 2k if they are even, we have

2in1 = 2jn2 if and only if i = j, n1 = n2.

The necessity is trivial. The sufficiency is clear as well for n1 ≡ n2 ≡ 1 (mod 2). We now
suppose that n1 = 2r1(2a + 1) and n2 = 2r2(2b + 1) with r1 ≥ r2, and also suppose that

2i+r1(2a + 1) = 2j+r2(2b + 1).

Then i + r1 = j + r2 and a = b. If r1 > r2, then since n1 = 2r1(2a + 1) ≤ 2k,

n2 = 2r2(2b + 1) ≤ 2r1−1(2a + 1) ≤ k,

which is a contradiction. Thus we can say that Ak is the set of partitions into distinct parts
of the form 2in with i ≥ 0, n > k for n odd and k < n ≤ 2k for n even.
We now prove the theorem by showing that any integer > k can be uniquely written as

an integer of the form 2in, i ≥ 0, n > k for n odd, and k < n ≤ 2k for n even.
Let k be even, i.e., k = 2m for somem ≥ 1. For an integer N > k, we now write it as

N = 2iM,

whereM is odd. IfM > 2m, then

N = 2i
(
2m + (M − 2m)

)
,

which is of the desired form. IfM < 2m, then since N = 2iM > 2m, there exists a unique
j such that 2m < 2jM ≤ 4m, so we write

N = 2i−j(2jM),

as is desired.
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We can prove the result for odd k in a similar way, and hence the proof is omitted.

Remark. Theorem 3.4 can be proved as follows without using (14):

∞∑
n=1

qn

(qn+1; q)n(q2n+1; q2)∞
=

∞∑
n=1

qn(q2n+2; q2)∞
(qn+1; q)n(q2n+1; q)∞

=
∞∑
n=1

qn(q2n+2; q2)n(−q2n+1; q)∞
(qn+1; q)n

=
∞∑
n=1

qn(−qn+1; q)n(−q2n+1; q)∞

=
∞∑
n=1

qn(−qn+1; q)∞

= −1 + (−q; q)∞,

where the last equality holds because if we interpret the n in the sum
∑∞

n=1 qn(−qn+1; q)∞
as denoting the smallest part in a partition enumerated by

∑∞
n=1 qn(−qn+1; q)∞, we

obtain partitions into distinct parts.

We now give an analogue of Theorem 3.4 for partitions with unique smallest part and
all even parts at most twice the smallest part.

Theorem 3.6. We have

∞∑
n=1

qn

(qn+1; q)n(q2n+2; q2)∞
= q2

∞∑
m=0

q3m

(q; q2)m+1
+ q

(q2; q2)∞
.

Proof. Note that

∞∑
n=1

qn

(qn+1; q)n(q2n+2; q2)∞
= 1

(q2; q2)∞

∞∑
n=1

(q; q)nqn

(q; q2)n
. (35)

Set a = −b = −q1/2, B = q2, and let A → 0 in (14) to see that

∞∑
n=0

(q2; q)nqn

(q3; q2)n
= q− 1

2 (q2; q)∞
(q3; q2)∞

∞∑
m=0

q(
m+1
2 )

(q
3
2 ; q)m+1

+ (1 + q
1
2 )

∞∑
m=0

(q− 1
2 ; q)m+1(−1)mq

m
2

(q
3
2 ; q)m+1

=q− 1
2 (q; q)∞

(q; q2)∞

∞∑
m=0

q(
m+1
2 )

(q
3
2 ; q)m+1

+(1 − q)(1 − q− 1
2)

∞∑
m=0

(−1)mq
m
2

(1 − q
1
2+m)(1 − q

3
2+m)

.

Multiplying both sides by q, we obtain

∞∑
n=1

(q; q)nqn

(q; q2)n
= q

1
2 (q; q)∞
(q; q2)∞

∞∑
m=0

q(
m+1
2 )

(q
3
2 ; q)m+1

−q
1
2 (1−q

1
2)(1−q)

∞∑
m=0

(−1)mq
m
2

(1 − q
1
2+m)(1 − q

3
2+m)

.

(36)
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Also, using (10) in the first step below, then (13) with a = qj+1 and b = 0 in the third, and
then (8) in the fifth, we see that

∞∑
n=0

q(
n+1
2 )

(q
3
2 ; q)n+1

=
∞∑
n=0

q(
n+1
2 )

∞∑
j=0

[
n + j
j

]
q

3
2 j

=
∞∑
j=0

q
3
2 j

∞∑
n=0

(qj+1; q)n
(q; q)n

q(
n+1
2 )

=
∞∑
j=0

q
3
2 j(−q; q)∞(qj+2; q2)∞

= (−q; q)∞(q2; q2)∞
∞∑
j=0

q3j

(q2; q2)j
+ q

3
2 (−q; q)∞(q3; q2)∞

∞∑
j=0

q3j

(q3; q2)j

= (−q; q)∞(q2; q2)∞
(q3; q2)∞

+ q
3
2 (−q; q)∞(q; q2)∞

∞∑
j=0

q3j

(q; q2)j+1

= (−q; q)∞(q2; q2)∞
(q3; q2)∞

+ q
3
2

∞∑
j=0

q3j

(q; q2)j+1
, (37)

and

(1 − q)
∞∑

m=0

(−1)mq
m
2

(1 − q
1
2+m)(1 − q

3
2+m)

=
∞∑

m=0

(−1)mq
m
2

1 − q
1
2+m

+
∞∑

m=0

(−1)m+1q1+m
2

1 − q
3
2+m

= (1 + q
1
2 )

∞∑
m=0

(−1)mq
m
2

1 − q
1
2+m

− q
1
2

1 − q
1
2

=(1+q
1
2)

( ∞∑
n=0

qn

1− q4n+1 −q2
∞∑
n=0

q3n

1− q4n+3

)
− q

1
2

1 − q
1
2
,

(38)

where the last step follows from (21). Thus, by (36), (37), (38), and (35), we obtain

∞∑
n=1

qn

(qn+1; q)n(q2n+2; q2)∞

= q
1
2 (q2; q2)∞

(q; q2)∞(q3; q2)∞
+ q2

∞∑
j=0

q3j

(q; q2)j+1
− q

1
2 (1 − q)

(q2; q2)∞

( ∞∑
n=0

qn

1 − q4n+1 − q2
∞∑
n=0

q3n

1 − q4n+3

)
+ q

(q2; q2)∞

= q2
∞∑
j=0

q3j

(q; q2)j+1
+ q

(q2; q2)∞
+ q

1
2 (1 − q)

(q2; q2)∞

(
(q2; q2)2∞
(q; q2)2∞

−
∞∑
n=0

qn

1 − q4n+1 + q2
∞∑
n=0

q3n

1 − q4n+3

)

= q2
∞∑
j=0

q3j

(q; q2)j+1
+ q

(q2; q2)∞
,

where we used (21), and (19) with q replaced by q1/2 in the last step.

4 Partitions with distinct parts
In the theorem below, we show that the generating function for partitions into distinct
parts where each odd is less than twice the smallest part is the third order mock theta
function ν(−q).
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Theorem 4.1. Let ψ(q) be defined in (26), and ω(q) and ν(q) be defined in (1) and (2)
respectively. Then,

∞∑
n=0

qn(−qn+1; q)n(−q2n+2; q2)∞ = q ω(q2) + (−q2; q2)∞ψ(q2) (39)

= ν(−q).

Proof. If we divide both sides of the first equality in (39) by (−q2; q2)∞, we see that
proving it is equivalent to showing

∞∑
n=0

qn(−q; q2)n
(−q; q)n

= q
ω(q2)

(−q2; q2)∞
+ ψ(q2).

We now apply (14) with A = B/aq, a = 1, and then let b → 0. This yields

∞∑
n=0

(B2; q2)nqn

(−q; q)n
= − (B2; q2)∞

(−q; q)∞

∞∑
m=0

Bm

(−B; q)m+1
+

∞∑
m=0

(−1; q)m+1(−1)mq(
m
2)B2m

(B2; q2)m+1
.

(40)

Next from (10),

∞∑
m=0

Bm

(−B; q)m+1
=

∞∑
m,n=0

Bm+n(−1)n
[
m + n

n

]

=
∞∑

N=0
BN

N∑
n=0

(−1)n
[
N
n

]

=
∞∑

N=0
B2N

2N∑
n=0

(−1)n
[
2N
n

]

=
∞∑

N=0
B2N (q; q2)N , (41)

where in the penultimate as well as in the ultimate step, we used (11).
Substituting (41) into (40), we find

∞∑
n=0

(B2; q2)nqn

(−q; q)n
= − (B2; q2)∞

(−q; q)∞

∞∑
n=0

B2n(q; q2)n + 2
∞∑

m=0

(−q; q)m(−1)mq(
m
2)B2n

(B2; q2)m+1
. (42)

Now set B2 = −q (i.e., B = iq1/2) in (42) to deduce that

∞∑
m=0

(−q; q2)mqm

(−q; q)m
= − (−q; q2)∞

(−q; q)∞

∞∑
m=0

(−q)m(q; q2)m + 2
∞∑

m=0

(−q; q)mq(
m+1
2 )

(−q; q2)m+1

=:
−1

(−q2; q2)∞
S1(q) + 2S2(q). (43)
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We now evaluate S2(q):

S2(q) =
∞∑

m=0

q(
m+1
2 )

(q; q)m
(−q; q)m(q; q)m

(−q; q2)m+1

= (−q; q)∞(−q2; q2)∞(q2; q2)∞
(1 + q)(−q3; q2)∞

= (q4; q4)∞
(q2; q4)∞

= ψ(q2), (44)

where we used (13) in the first step and (26) in the last. Note that from ([4] p. 29, Exercise
6),

∞∑
m=0

qm2xm

(y; q2)m+1
=

∞∑
m=0

(−xq/y; q2)mym. (45)

Using the above identity with x = q and y = −q in the first step below, and the q-binomial
theorem (7) with q replaced by q2, z = −q and a = q2m+2 in the next step, we observe that

S1(q) =
∞∑

m=0
(−q)m(q; q2)m

=
∞∑

m=0

qm2+m

(−q; q2)m+1

=
∞∑

m=0
qm

2+m
∞∑
n=0

(−1)nqn
[
n + m
m

]
q2

=
∞∑

m=0
qm

2+m
∞∑
n=0

q2n
[
2n + m

m

]
q2

−
∞∑

m=0
qm

2+m
∞∑
n=0

q2n+1
[
2n + 1 + m

m

]
q2

=: T1(q2) − qT2(q2). (46)

Also,

T1(q) =
∞∑
n=0

qn
∞∑

m=0

q(
m+1
2 )(q2n+1; q)m

(q; q)m

=
∞∑
n=0

qn(q2n+2; q2)∞(−q; q)∞

= (−q; q)∞(q2; q2)∞
∞∑
n=0

qn

(q2; q2)n

= (−q; q)∞(q2; q2)∞
(q; q2)∞

= (−q; q)∞ψ(q), (47)
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where (12), with a = q2n+1, was used in the second step. Again using (12), this time with
a = q2n+2, in the second step below, we find that

T2(q) =
∞∑
n=0

qn
∞∑

m=0

q(
m+1
2 )(q2n+2; q)m

(q; q)m

=
∞∑
n=0

qn(q2n+3; q2)n(−q; q)∞

= (−q; q)∞(q; q2)∞
∞∑
n=0

qn

(q; q2)n+1

=
∞∑
n=0

qn

(q; q2)n+1

= ω(q), (48)

where the last step follows from ([21] p. 61, Equation (2.6.84)).
Substituting (47) and (48) into (46), we find that

S1(q) = (−q2; q2)∞ψ(q2) − q ω(q2). (49)

Now substitute (49) and (44) in (43) to finally deduce
∞∑
n=0

(−q; q2)nqn

(−q; q)n
= −1

(−q2; q2)∞
(
(−q2; q2)∞ψ(q2) − qω(q2)

) + 2ψ(q2)

= q
ω(q2)

(−q2; q2)∞
+ ψ(q2)

= ν(−q)
(−q2; q2)∞

, (50)

where the last step results from ([21] p. 62, Equation (26.88)).

The result corresponding to Theorem 4.1 for partitions into distinct parts where each
even part is at most twice the smallest part is presented below.

Theorem 4.2. Let φ(q) be defined in (4). Then,

1 + q
∞∑
n=0

qn(−qn+1; q)n(−q2n+1; q2)∞ = 1 − φ(q)
(−q; q2)∞

+ (q2; q2)∞(−q; q2)2∞.

Proof. In (14), we set A = B/bq and a = 1, and then let b → 0. Then we obtain
∞∑
n=0

(B2; q2)nqn

(−q; q)n
= − (B2; q2)∞

(−q; q)∞

∞∑
n=0

B2n(q; q2)n + 2
∞∑

m=0

(−q; q)m(−1)mq(
m
2)B2m

(B2; q2)m+1
.

We now set B = qi, and obtain
∞∑
n=0

(−q2; q2)nqn

(−q; q)n
= − (−q2; q2)∞

(−q; q)∞

∞∑
n=0

(−1)nq2n(q; q2)n + 2
∞∑

m=0

(−q; q)mq(
m
2)q2m

(−q2; q2)m+1

= −1
(−q; q2)∞

∞∑
n=0

(−1)nq2n(q; q2)n + 2
∞∑

m=0

(−q; q)mq(
m
2)q2m

(−q2; q2)m+1

=:
−1

(−q; q2)∞
U1(q) + 2U2(q).
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We now claim that

U1(q) = q−1(φ(q) − 1),

U2(q) =
∞∑
n=0

qn
2+2n = q−1

∞∑
n=1

qn
2
.

First, for U1(q), set x = q2, y = −q2 in (45). Then,

U1(q) =
∞∑

m=0
(q; q2)m(−q2)m =

∞∑
m=0

qm2+2m

(−q2; q2)m+1
= q−1

∞∑
m=1

qm2

(−q2; q2)m
= q−1(φ(q) − 1).

Next, note that from ([4] p. 29, Exercise 4), we have
∞∑
n=0

(a; q)n(b; q2)ntn

(q; q)n(atb; q2)n
= (at; q2)∞(bt; q2)∞

(t; q2)∞(abt; q2)∞

∞∑
m=0

(a; q2)m(b; q2)m(tq)m

(q2; q2)m(bt; q2)m
.

Now set a → −q2/t, b → q2 in the above equation to see that
∞∑
n=0

(−q2/t; q)n(q2; q2)ntn

(q; q)n(−q4; q2)n
= (−q2; q2)∞(q2t; q2)∞

(t; q2)∞(−q4; q2)∞

∞∑
n=0

(−q2/t; q2)n(q2; q2)n(tq)n

(q2; q2)n(q2t; q2)n
.

Let t → 0. Then
∞∑
n=0

(q2; q2)nq(
n
2)+2n

(q; q)n(−q2; q2)n+1
=

∞∑
n=0

qn
2+2n.

Hence,

U2(q) =
∞∑

m=0

(−q; q)mq(
m
2)q2m

(−q2; q2)m+1

=
∞∑
n=0

(q2; q2)nq(
n
2)+2n

(q; q)n(−q2; q2)n+1
=

∞∑
n=0

qn
2+2n

Finally,

q
∞∑
n=0

qn(−qn+1; q)n(−q2n+1; q2)∞ = −qU1(q)
(−q; q2)∞

+ 2qU2(q)

= 1 − φ(q)
(−q; q2)∞

+
∞∑

n=−∞
qn

2 − 1

= 1 − φ(q)
(−q; q2)∞

+ (q2; q2)∞(−q; q2)2∞ − 1,

where in the last step we used the Jacobi triple product identity ([4] p. 21, Theorem 2.8).

5 Analogues of Euler’s pentagonal number theorem
We begin with a result, motivated from studying a generating function similar to that
of pω(n), which has an interesting partition-theoretic interpretation analogous to that
of Euler’s pentagonal number theorem ([4] p. 10, Theorem 1.6). This interpretation is
provided after the proof of the following theorem.
Theorem 5.1. The following identity holds:

∞∑
n=1

qn

(−qn; q)n+1(−q2n+2; q2)∞
=

∞∑
j=0

(−1)jq6j
2+4j+1(1 + q4j+2).
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Proof.
∞∑
n=1

qn

(−qn; q)n+1(−q2n+2; q2)∞
=

∞∑
n=1

(−q; q)n−1qn

(−q; q)2n(−q2n+2; q2)∞

= 1
(−q2; q2)∞

∞∑
n=0

(−q; q)nqn+1(−q2; q2)n+1
(−q; q)2n+2

= q
(1 + q)(−q2; q2)∞

∞∑
n=0

(−q; q)nqn

(−q3; q2)n

= q
(1 + q)(−q2; q2)∞

∞∑
n=0

qn

(q; q)n
(q2; q2)n

(−q3; q2)n

= q(q2; q2)∞
(−q; q2)∞(−q2; q2)∞

∞∑
n=0

qn

(q; q)n
(−q2n+3; q2)∞
(q2n+2; q2)∞

= q(q2; q2)∞
(−q; q)∞

∞∑
n=0

qn

(q; q)n

∞∑
m=0

(−q; q2)mqm(2n+2)

(q2; q2)m

= q(q; q)∞
∞∑

m=0

(−q; q2)mq2m

(q2; q2)m
1

(q2m+1; q)∞

= q
∞∑

m=0

(−q; q2)m(q; q)2mq2m

(q2; q2)m

= q
∞∑

m=0
(q2; q4)mq2m

=
∞∑
n=0

(−1)nq6n
2+4n+1(1 + q4n+2),

where we used (7) in the sixth step, (8) in the next, and finally Entry 9.5.2 from ([11]
p. 238) in the last step.

Remark. One can also set a = −q, b = q, t = q2 and c → 0 in ([1] p. 67, Theorem A3),
([11] p. 229, Equation (9.3.3)) so as to obtain

∞∑
n=0

(q2; q2)nqn

(q; q)n(−q3; q2)n
= (q2; q2)∞

(q; q)∞(−q3; q2)∞

∞∑
n=0

(−q; q2)n(q; q)2nq2n

(q2; q2)n

= (q2; q2)∞
(q; q)∞(−q3; q2)∞

∞∑
n=0

(q2; q4)nq2n

directly.
One can conceive the above result through its interesting partition-theoretic interpre-

tation given in the following theorem.

Theorem 5.2. Among the partitions in which each odd part is less than twice the smallest
part, let do(n) be the number of such partitions with an odd number of parts and let de(n)

be the number of such partitions with an even number of parts. Then for j ≥ 0,

do(n) − de(n) =
{

(−1)j, if n = 6j2 + 4j + 1 or n = 6j2 + 8j + 3,
0, otherwise.
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For example, if n = 3, the three partitions to be considered are 3, 2 + 1, 1 + 1 + 1, and
do(3) = 2 and de(3) = 1, where as if n = 4, the four partitions are 4, 2 + 2, 2 + 1 + 1, 1 +
1 + 1 + 1, and do(4) = 2 = de(4).
There is another result that one can obtain by working analogously with a generating

function similar to that of pν(n), namely,

Theorem 5.3. We have

∞∑
n=0

qn(qn+1; q)n(q2n+2; q2)∞ =
∞∑
j=0

(−1)jqj(3j+2)(1 + q2j+1).

Proof. Starting with the left-hand side and using (8) in the third and the fifth step below,
we see that

∞∑
n=0

qn(qn+1; q)n(q2n+2; q2)∞ = (q2; q2)∞
∞∑
n=0

(q; q2)nqn

(q; q)n

= (q2; q2)∞(q; q2)∞
∞∑
n=0

qn

(q; q)n(q2n+1; q2)∞

= (q; q)∞
∞∑
n=0

qn

(q; q)n

∞∑
m=0

q(2n+1)m

(q2; q2)m

= (q; q)∞
∞∑

m=0

qm

(q2; q2)m

∞∑
n=0

qn(2m+1)

(q; q)n

= (q; q)∞
∞∑

m=0

qm

(q2; q2)m(q2m+1; q)∞

=
∞∑

m=0

(q; q)2mqm

(q2; q2)m

=
∞∑

m=0
(q; q2)mqm

=
∞∑

m=0
(−1)mq3m

2+2m(1 + q2m+1),

again by Entry 9.5.2 in ([11] p. 238).

This result also has a partition-theoretic interpretation similar to that of Theorem 5.2.

Theorem 5.4. Among the partitions into distinct parts such that each odd part is less than
twice the smallest part, let do(n) be the number of such partitions with an odd number of
parts and let de(n) be the number of such partitions with an even number of parts. Then
for j ≥ 0,

do(n) − de(n) =
{

(−1)j, if n = 3j2 + 2j or n = 3j2 + 4j + 1,
0, otherwise.
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Remark. As a side observation, we note that a similar treatment, as above, of the left-
hand side of Theorem 4.2 leads to the following result:

1 − q
∞∑
n=0

qn(qn+1; q)n(q2n+1; q2)∞ = (q; q2)∞.

This follows immediately when we observe that

1 − q
∞∑
n=0

qn(qn+1; q)n(q2n+1; q2)∞ = 1 − q(q; q2)∞
∞∑
n=0

qn(qn+1; q)n(q2; q2)n
(q; q)2n

= 1 − (q; q2)∞
∞∑
n=1

(−q; q)n−1qn,

and then use (34) and (6).

6 Congruences
Two new partition functions, namely pω(n) and pν(n), are introduced here. For any pos-
itive integer n, pω(n) counts the number of partitions in which all odd parts are less than
twice the smallest part, and pν(n) counts the number of partitions in which the parts are
distinct and all odd parts are less than twice the smallest part. Then it follows that

∞∑
n=1

pω(n)qn =
∞∑
n=1

qn

(1 − qn)(qn+1; q)n(q2n+2; q2)∞
,

∞∑
n=1

pν(n)qn =
∞∑
n=1

qn(−qn+1; q)n(−q2n+2; q2)∞.

We now define two analogues of spt(n). Denote by sptω(n) and sptν(n) the number of
smallest parts in the partitions of n enumerated by pω(n) and pν(n) respectively. Note that
since the parts in partitions counted by pν(n) are all distinct, sptν(n) = pν(n). Also, from
the definition of sptω(n),

∞∑
n=1

sptω(n)qn =
∞∑
n=1

qn

(1 − qn)2(qn+1; q)n(q2n+2; q2)∞
.

In the following lemma, we first derive an alternative representation of the above
generating function which will help us obtain congruences for sptω(n).

Lemma 6.1. The following identity holds:

∞∑
n=1

qn

(1 − qn)2(qn+1; q)n(q2n+2; q2)∞
= 1

(q2; q2)∞

∞∑
n=1

nqn

1 − qn

+ 1
(q2; q2)∞

∞∑
n=1

(−1)n(1 + q2n)qn(3n+1)

(1 − q2n)2
.

(51)

Proof. Let a = 1, p1 = z = p−1
2 and then let f → ∞ in Bailey’s 10φ9 transformation,

namely (15), to see that

∞∑
n=0

(z; q)n(z−1; q)nqn

(q; q)n(q; q2)n
= (zq; q)∞(z−1q; q)∞

(q; q)2∞

(
1 +

∞∑
n=1

(1−z)(1−z−1)(1+q2n)(−1)nqn(3n+1)

(1 − zq2n)(1 − z−1q2n)

)
.
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Now take the second derivative on both sides with respect to z, make use of the facts ([9]
Equations (2.1), (2.4))

−1
2

[
d2

dz2
(1 − z)(1 − z−1)f (z)

]
z=1

= f (1),

−1
2

[
d2

dz2
(zq; q)∞(z−1q; q)∞

]
z=1

= (q; q)2∞
∞∑
n=1

nqn

1 − qn
,

to deduce that
∞∑
n=1

(q; q)nqn

(q; q2)n(1 − qn)2
=

∞∑
n=1

nqn

1 − qn
+

∞∑
n=1

(1 + q2n)(−1)nqn(3n+1)

(1 − q2n)2
.

Finally, multiply both sides of the above identity by 1/(q2; q2)∞ and simplify the resulting
left-hand side to arrive at the claimed result.

We now use the above lemma to prove the next theorem.

Theorem 6.2. The following congruence holds:

sptω(5n + 3) ≡ 0 (mod 5).

Proof. In ([9] Equation (3.4)), the second expression on the right hand side of (51) was
shown to be

−1
2

∞∑
n=0

N2(n)q2n.

Additionally ([9] p. 139)

N2(n) ≡ 0 (mod 5)

if n ≡ 4 (mod 5), and equivalently if 2n ≡ 3 (mod 5). Hence, to prove that

sptω(5n + 3) ≡ 0 (mod 5),

it suffices to show that the coefficients of q5n+3 in

1
(q2; q2)∞

∞∑
n=1

nqn

1 − qn

are divisible by 5. This is one of the objectives of the following theorem.

Theorem 6.3. Let
∞∑
n=0

cnqn := 1
(q2; q2)∞

∞∑
n=1

nqn

1 − qn
.

Then 5 | c5n+3 and 5 | c5n+4.

Proof. Using Jacobi’s identity for (q; q)3∞ ([4] p. 176), we see that
∞∑
n=0

(−1)n(2n + 1)
(
n + 1
2

)
q(

n+1
2 ) = q

d
dq

(q; q)3∞

= −3(q; q)3∞
∞∑
n=1

nqn

1 − qn
.
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Hence

1
(q2; q2)∞

∞∑
n=1

nqn

1 − qn
= 1

(q; q)∞(−q; q)∞

⎛
⎝ −1
3(q; q)3∞

∞∑
j=0

(−1)j(2j + 1)
(
j + 1
2

)
q(

j+1
2 )

⎞
⎠

= −1
3(q; q)5∞

∞∑
n=−∞

(−1)nqn
2

∞∑
j=0

(−1)j(2j + 1)
(
j + 1
2

)
q(

j+1
2 )

≡ −1
3(q5; q5)∞

∞∑
n=−∞

(−1)nqn
2

∞∑
j=0

(−1)j(2j + 1)
(
j + 1
2

)
q(

j+1
2 )(mod 5),

where in the second step we used ([4] p. 23, Equation (2.2.12)). So we need to know when
is

n2 +
(
j + 1
2

)
≡ 3 (mod 5).

Since n2 ≡ 0, 1, or 4 (mod 5), and
(j+1

2
) ≡ 0, 1 or 3 (mod 5), the only way we can get 3

mod 5 is for n2 ≡ 0 and
(j+1

2
) ≡ 3 (mod 5). Now

(j+1
2

) ≡ 3 (mod 5) if and only if j ≡ 2
(mod 5) and then

(2j + 1)
(
j + 1
2

)
≡ 0 (mod 5).

Hence 5 | c5n+3.
Second, we need to see when is

n2 +
(
j + 1
2

)
≡ 4 (mod 5).

There are two possibilities here - either n2 ≡ 1 and
(j+1

2
) ≡ 3 (mod 5) or n2 ≡ 4 (mod 5)

and
(j+1

2
) ≡ 0 (mod 5). The first one requires j ≡ 2 (mod 5). Consequently in both,

(2j + 1)
(
j + 1
2

)
≡ 0 (mod 5).

This proves that 5 | c5n+4.

We now prove two other congruences satisfied by sptω(n).

Theorem 6.4. The following congruences hold:

sptω(10n + 7) ≡ 0 (mod 5),

sptω(10n + 9) ≡ 0 (mod 5).

Proof. We again use (51) to prove the congruences. Since 2n �≡ 7, 9 (mod 10) for any n,
there is no contribution from the generating function of − 1

2N2(n). Hence our objective is
only to prove that the coefficients of q10n+7 and q10n+9 in

1
(q2; q2)∞

∞∑
n=1

nqn

1 − qn

are divisible by 5. Since 10n + 7 and 10n + 9 are both odd, we only need to consider

1
(q2; q2)∞

∞∑
n=0

(2n + 1)q2n+1

1 − q2n+1 =:
∞∑
n=0

dnqn.
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Now in ([21] p. 79, Equation (32.31)), we find
∞∑
n=0

(2n + 1)q2n+1

1 − q2n+1 = q(q4; q4)8∞
(q2; q2)4∞

.

Hence
∞∑
n=0

dnqn = q
(

(q4; q4)∞
(q2; q2)∞

)5
(q4; q4)3∞

≡ q
(q20; q20)∞
(q10; q10)∞

∞∑
n=0

(−1)n(2n + 1)q2n
2+2n (mod 5)

Now mod 5,

n 2n2 + 2n + 1
0 1
1 0
2 3
3 0
4 1

Thus we immediately see that d5n+2 and d5n+4 are divisible by 5. Finally also d5n+3 is
divisible by 5 because 3 (mod 5) arises only for n ≡ 2 (mod 5), but then (2n + 1) ≡ 0
(mod 5). Thus we have proved:

(A) 5 | dn for n ≡ 2, 3, 4 (mod 5).
(B) 5 | d10n+7, 5 | d10n+3, 5 | d10n+9.

This then proves, in particular, that 5 | sptω(10n + 7) and 5 | sptω(10n + 9).

Our last congruence is for the smallest parts function associated with pν(n), and is given
in the following theorem.

Theorem 6.7. We have

sptν(10n + 8) ≡ 0 (mod 5).

Proof. Since sptν(n) equals pν(n) and thus sptν(10n + 8) is the coeffcient of q10n+8 in
the generating function

∞∑
n=0

qn(−qn+1; q)n(−q2n+2; q2)∞,

in view of (39), it suffices to consider the contribution from (−q2; q2)∞ψ(q2) only. Now

(−q2; q2)∞ψ(q2) = (−q2; q2)∞
(q4; q4)∞
(q2; q4)∞

= (−q2; q2)3∞(q2; q2)∞

= (−q2; q2)3∞(q2; q2)6∞
(q2; q2)5∞

= (q4; q4)3∞(q2; q2)3∞
(q2; q2)5∞

≡ (q4; q4)3∞(q2; q2)3∞
(q10; q10)∞

(mod 5)



Andrews et al. Research in Number Theory  (2015) 1:19 Page 23 of 25

By Jacobi’s identity,

(q4; q4)3∞(q2; q2)3∞ =
∞∑

m=0
(−1)m(2m + 1)q2m(m+1)

∞∑
j=0

(−1)j(2j + 1)qj(j+1).

Since j(j + 1) ≡ 0, 2, 6 (mod 10) and 2m(m + 1) ≡ 0, 4, 2 (mod 10), we get

j(j + 1) + 2m(m + 1) ≡ 8 (mod 10) iff j(j + 1) ≡ 6, 2m(m + 1) ≡ 2 (mod 10)

iff j ≡ 2,m ≡ 2 (mod 10).

So for j,m ≡ 2 (mod 10),

(2m + 1)(2j + 1) ≡ 0 (mod 5),

which completes the proof.

As a result of the above theorem, we obtain the following corollary.

Corollary 6.8. The coefficient of q10n+8 in ν(−q) is divisible by 5.

7 Some results on generalized third order mock theta functions
In ([1] p. 78), the first author gave generalizations of five of the seven third order mock
theta functions, and proved that when α = qr , r ∈ Z

+, they indeed satisfy Ramanujan’s
definition of a mock theta function [31]. In particular, he defined

ω(α; q) :=
∞∑
n=0

q2n2α2n

(q; q2)n+1(α2q−1; q2)n+1
,

ν(α; q) :=
∞∑
n=0

qn(n+1)

(−α2q−1; q2)n+1
.

It is easy to see that for α = q, the above functions are equal to ω(q) and ν(q) defined in
(1) and (2) respectively. In this section, we give generalizations of two of the results from
previous sections. For example, the following theorem holds:

Theorem 7.1. For |α2| < |q| < 1, we have

α4q−2ω(α2; q2) = α2(q6; q4)∞
(α2; q2)∞

+ α2(q6; q4)∞(q4; q4)∞
(α2q2; q2)∞

∞∑
n=2

q2n−2(α2q2; q2)n−2
(q4; q2)2n−1(q4n+4; q4)∞

− α2q−1(q2; q4)∞
2(1 + α2q−1)(α2; q2)∞

( ∞∑
n=0

−
−1∑

n=−∞

)
(−q; q2)nqn

(−α2q; q2)n
. (52)

When α = q, we obtain Theorem 3.1 with q replaced by q2. It may be worthwhile seeing
if the above theorem has an interesting partition-theoretic interpretation.
Similarly, for |α2| < |q| < 1, one has

ν(−α;−q)
(−q2; q2)∞

= −1
(−q2; q2)∞

∞∑
m=0

(α−2q3; q2)m(−α2q−1)m

+ 2(q2; q2)∞
(−q; q)∞(α2; q2)∞(α2q−1; q2)∞

∞∑
m=0

(α2q−1; q)m(−q; q)mqm(m+1)/2

(q; q)m(−α2q−1; q2)m+1
.

(53)

When α = q, one gets
ν(−q)

(−q2; q2)∞
= −S1(q)

(−q2; q2)∞
+ 2S2(q),
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which is the identity obtained from (43) and (50). It remains to be seen if there exists a
full generalization of Theorem 4.1 for ν(−α;−q).
We refrain ourselves from giving proofs of (52) and (53) since they involve similar ideas

as those involved in their special cases proved in this paper. We only mention, however,
that one starts the proofs by using the following identity from ([1] p. 78, Equation (3c)):

ν(−α;−q) = (q2; q2)∞(−q2; q2)2∞
(α4q−2; q4)∞

+ α2q−1ω(α2; q2),

which gives (39) as a special case when α = q.
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