
PARTITIONS OF MASS-DISTRIBUTIONS AND

OF CONVEX BODIES BY HYPERPLANES

B. GRUNBAUM

1. Introduction, The following results are well-known (Neumann
[7]; Eggleston [3], [4, p. 125-126], [5, p. 118]; Newman [8]:

(A) For any mass-distribution in the plane, such that the total
mass contained in every half-plane is finite and depends continuously on
the position of the half-plane, there exists a point P such that each
half-plane which contains P, contains at least 1/3 of the total mass.

(B) For any convex body K in the plane there exists a point P
such that for each half-plane H containing P the area of H f] K is at
least 4/9 of the area of K.

The main object of the present note is to generalize (A) and (B) to
higher-dimensional Euclidean spaces.

In the following m shall denote a fixed (non-negative) finite measure
on the ring of subsets of En generated by the closed half-spaces in En.
(For the terminology and results on measures see, e.g., Halmos [6].)

For a real λ, 0 ^ λ ^ 1/2, we define <^(m, λ) as the subset of En

consisting of those points P e En which satisfy the condition: For any
closed half-space H c En

y with P e H, the relation m(H) ^ λ . m(En)
holds.

Obviously, ^ ( m , λ) is a compact, convex (possibly empty) set.
Using the notation of ^ ( m , λ), Theorem (A) may be extended as

follows:

THEOREM 1. ^ ( m , l/(n + 1)) Φ φ for any measure m in En.
Let V(S) denote the volume (^-dimensional Lebesgue measure) of

the set S a En. For any convex body K c En, we denote by mκ the
measure (defined for all Lebesgue measurable subsets S of En) ob-
tained by taking mκ(S) = V(S Π K). We denote ^{mK9 λ) by cέ\K, λ).

Theorem (B) may now be generalized as follows:

THEOREM 2. If K is any convex body in En then

Φ .

We shall prove Theorems 1 and 2 in the following two sections.
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The last section contains remarks and comments.

2. Proof of Theorem I.1 If v is a unit vector (in En) and a is a
real number, let H(v, a) be the closed half-space

H(v, a) = {x e En; (x, v) ^ a}.

Let a(v) be defined by

a(v) = min {α; m(£Γ(t;, α)) ^ — - — m(En)\ ,
I w- + 1 J

(the minimum is attained since m(H(v, a)) is continuous to the right as
a function of a). Let H(v) = fZ"(v, α(v)) and

jyty) = {# e En; (x, v) ^ α(t;)} .

(Without loss of generality we shall in the sequel assume m(En) — 1.)
Obviously,

)
{n + 1)/

hence, if f]υH(v) Φ φ the proof is complete. On the other hand, if
f\υH(v) = φ, we shall show that

in the following way. The half-spaces H(v) are closed convex sets, and
it is easily seen that a finite number of them may be found such that
their intersection is compact. By Helly's theorem on intersections of
convex sets (see, e.g., Rademacher-Schoenberg [9]) the assumption
f\υH(v) = φ implies the existence of an n + 1 membered family of unit
vectors vi9 0 <£ i g n, such that Π?=o-ff(̂ *) = Φ Using an inductive
argument it is easily seen that we may assume that every n of the
vectors vt are linearly independent. Therefore (denoting Ht = H{v^ and
H? — H*(vt)) the set S = Γ\t=oHt is a non-degenerate simplex whose
faces are contained in the hyperplanes Hι Π H*, 0 g i ^ n. By the
definition of a(v) we have m(£r4*) ^ l/(n + 1) and m(Int if**) ^ l/(w + 1)
for all i. Therefore m{H3 Π Int Ht*) ^ l/(w + 1), and thus m(H3 Π H,) ^
(w — l)l(n + 1) for all i Φ j . Now, since Γ)?=o#i = Φ, we have

^ mΪH, Π ( U

— 1 w + 1 n + 1
1 The author is indebted to Professor B. M. Stewart for the correction of an error in

the original proof.
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Thus, for all i9 equality signs hold throughout. In particular,

m( fl Hλ = —-—
\0SJ^n J U + 1

for all i (i.e., the support of m is contained in the ''vertex-regions'' of
the simplex S = f\tH*)9

 a n ( * it i s immediately verified that

This ends the proof of Theorem 1.

3. Proof of Theorem 2. Let Gk denote the centroid of the convex
body K c En. We shall prove Theorem 2 by establishing the stronger
statement Gκ e <^(K, an), where an = (nftn + l))n. Assuming, to the
contrary, that Gk $ r^{K, an), there exists a hyper plane L containing
Gκ such that the volume of the part of K contained in one of the half-
spaces determined by L is less than an V{K). We shall obtain a
contradiction from this assumption.

Let Gκ be the origin of an orthogonal system of coordinates (x19

• ••, xn) of En, such that L is the hyperplane determined by xx = 0.
Let H+ be the half-space {(xl9 , xn); xx >̂ 0} and H~ the other

closed half-space determined by L. We may assume that V(K Π H~) <
an V(K). For any set S cz En we shall use the notations S~ = S Π H'
and S + — *S Π J&Γ+. Let K be the set obtained from K by spherical
symmetrization ("Schwarzsche Abrundung", Bonnesen-Fenchel [1, p. 71];
"Schwarz rotation process", Eggleston [5, p. 100]) with respect to the
αJi-axis (i.e., K is the union of the (n — l)-dimensional spheres obtained
by taking in each hyperplane Lt = {(x19 . , χn); xλ = t} an (n — 1)-
dimensional sphere with center (ί, 0, , 0) and (n — l)-dimensional
volume equal to that of K n Lt). It is well known that K is a convex
body, and obviously V(K~) = V(K~), V(K+) = V{K+) and G^ = Gκ.
Therefore V(K~) < an . V(K) and Gj <£ &(K9 an). Let C~ denote the
(orthogonal) hypercone with base K Γ\ L and vertex (c, 0, , 0) e if",
where c is chosen in such a way that V(C~) = V(K~). Let C be the
hypercone obtained by extending C~ (along its generators) into H+ in
such a way that V(C+) = V(K+). With C thus defined, it is easily
verified that the ^-coordinate of Go- (resp. Go+) is not greater than
that of Gk- (resp. G&+). Therefore, Gΰ e H~, and thus the hyperplane
L*, parallel to L and passing through Go, divides C into two parts in
such a way that the part contained in H~ has a volume smaller than
«n V(C). But by a simple computation we find (since the centroid of
a hypercone divides its height in the ratio 1: n) that the volume in
question equals an V(C). The contradiction reached proves the theorem.
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4 Remarks* ( i ) It is very easy to find examples which show
that the bounds in Theorems 1 and 2 are the best possible. From the
proofs given, it is also easy to deduce that if ^(K, an + ε) = φ for all
ε > 0 then K is a simplex, and that ^ ( m , lj(n + 1) + ε) = φ for all
ε > 0 only if the support of m is contained in the " vertex-regions" of
some (possibly degenerate) simplex, and all the "vertex-regions" have
the same measure.

(ii) The proof of Theorem 1 may be somewhat simplified if the
measure m is assumed to be continuous (as in Theorem (A)). The
advantage of the more general form is that it includes, e.g., measures
generated by finite point-sets, surface-area etc.

(iii) The following obvious corollary of Theorem 2 is interesting
because of its independence on the dimension:

For any convex body K c En we have

Gκ e ςf(K, e-1) = C{K, 0.3678-. •) .

(iv) It would be interesting to find the analogue of Theorem 2
obtained by substituting the (n — l)-dimensional surface area A(K) for
the volume V(K) of K c En. The problem seems to be unsolved even
for n = 2.

(v) It is easily proved that for any continuous mass-distribution in
the plane there exists a pair of orthogonal lines such that each ' 'quad-
rant' ' determined by them contains 1/4 of the total mass. The analo-
gous statement is not true for n mutually orthogonal hyperplanes in En\
does it become true if the condition of orthogonality is omitted?

(vi) It is well known (Buck and Buck [2]) that for any continuous
mass-distribution in the plane there exist three concurrent straight lines
such that each of the six '"wedges" determined by them contains 1/6 of
the total mass. Does this fact generalize to £ n when the three lines
are replaced by n + 1 hyperplanes with a common (n — 2)-dimensional
intersection?

Added in proof. After submitting the present note for publication,
the following facts came to our attention:

( i ) Theorems (A) and B are proved, and Theorem 1 suggested, in
I. M. Jaglom—W. G. Boltjanski, Konvexe Figuren, Berlin, 1956, pp. 16,
18, 27, 104-106, 116, 135-136 (this is a translation of the Russian origi-
nal, which appeared in 1951); Theorem (b) is there attributed (without
references) to A. Winternitz.

(ii) A proof of Theorem 1 (using Brouwer's fixed-point theorem),
together with some related results, was given in B. J. Birch, On 3N
points in a plane, Proc. Cambridge Philos. Soc, 55 (1959), 289-293.

(iii) A proof of Theorem 2, very similar to the one given in the
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present paper, was found independently by P. C. Hammer; it is contained
in a paper ''Volumes cut from convex bodies by planes", submitted to
"Mathematika".

(iv) The relation ^ (m, —) φ φ (resp. %~Yκ, — J Φ φ holds for

any distribution of masses (resp. convex body) with a center of sym-

metry. Obviously, r^{m, —j Φ ψ is possible also for mass-distributions

without a center. The conjecture (trivial for the plane) that r^ίκ, — ) Φ Φ

characterizes centrally symmetric convex bodies was first established
Professor F. J. Dyson; it is hoped that a proof will be published soon,

(v) Results generalizing Theorem 1 were established by R. Rado
in the paper, "A theorem on general measure", J. London Math. Soc,
21 (1946), 291-300. Rado's proof also uses Helley's theorem, but in a
fashion different from the one used in the present paper.
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