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Partly Nonparametric Approach for Determining
the Limit of Detection

KrisTiaAN LINNET!” and MARINA KONDRATOVICH?

Background: According to recent International Organi-
zation for Standardization (ISO) standards, the limit of
detection (LoD) of an assay should be estimated taking
both type I () and II (B) errors into account. The
suggested procedure, however, supposes gaussian dis-
tributions of both blank and sample measurements and
a linear calibration curve. In clinical chemistry, asym-
metric, nongaussian blank distributions are common,
and the calibration curve may be nonlinear. We present
a partly nonparametric procedure that takes these as-
pects into account.

Methods: Using theoretical distribution models and
simulation studies, we developed a LoD estimation
procedure suitable for the field of clinical chemistry that
is partly based on nonparametric statistics.

Results: For sample size n, the nonparametrically deter-
mined 95th percentile of the blank measurements {ob-
tained as the value of the [n(95/100) + 0.5]th ordered
observation} defines the limit for results significantly
exceeding zero [limit of blank (LoB)]. The LoD is the
lowest value that is likely to yield a result exceeding the
LoB. LoD is estimated as: LoB + ¢z X SDg, where SDg is
the analytical SD of a sample with a low concentration;
cg = z;_pll1 — 1@ X f)]; z, _ g is the standard normal
deviate; and f is the number of degrees of freedom for
estimation of SDs. cg is approximately equal to 1.65 for
a type II error of 5%. Approaches and needed tabular
values for calculation of confidence limits are presented
as well as sample size. Worked examples are given to
illustrate estimation and verification of the limit of
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detection. Simulation results are used to document
performance.

Conclusion: The proposed procedure appears useful for
application in the field of clinical chemistry and pro-
motes a standardized approach for estimating LoDs of
clinical chemistry assays.

© 2004 American Association for Clinical Chemistry

The limit of detection (LoD)? of an assay is a performance
characteristic that is usually reported together with pre-
cision and bias. For some analytes, e.g., serum sodium, the
range of clinical interest does not include the area close to
zero, and the LoD is not a subject of clinical relevance. In
other contexts, e.g., drugs-of-abuse testing, the LoD is an
important characteristic. For quantitative assays, both a
LoD and a lower limit of quantification (LoQ) may be
considered. The latter specifies the lower limit at which
the assay is able to provide quantitative results of a stated
analytical quality. In this report, we focus on the LoD.
Frequently, this limit is given as the lowest value that
significantly exceeds the measurements of a blank sample.
Thus, conventionally the limit may be estimated on the
basis of repeated measurements of a blank sample and
reported as the mean plus 2 or 3 SD of the blank
measurements. When this approach is used, the question
of whether a given measurement exceeds the blank value
is addressed statistically. However, consideration of
whether a given measurement exceeds a statistically de-
rived limit for the blank measurements is only one part of
the LoD question. An additional aspect concerns the
lowest amount of analyte that is likely to yield a result
that exceeds the limit of blank (LoB) measurements and
therefore is declared larger than zero. Actually, repeated
measurements of a sample with a true value exactly equal
to the limit of statistical significance yield a distribution
with 50% of values below and 50% above the limit
because of random measurement error. Thus, the mean

3 Nonstandard abbreviations: LoD, limit of detection; LoQ, limit of quan-
tification; LoB, limit of blank; ISO, International Organization for Standardiza-
tion; and CI, confidence interval.
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plus 2 or 3 SD only specifies a limit that should be
exceeded for a result to be declared significantly higher
than a blank measurement; it does not, however, address
the lowest value that can be distinguished from a blank
value with reasonable assurance. Only if the true value of
the sample is higher than the significance limit can one be
sure that a measured value will exceed the limit with a
probability higher than 50%.

In a statistical sense, not only should the type I error
(the significance test) be taken into account, but also the
so-called type II error, i.e., the error of not detecting the
presence of analyte. Recently, the International Organiza-
tion for Standardization (ISO) published a set of guide-
lines concerning determination of the LoD that encom-
passes both type I and II errors related to detection (1-4).
This set of guidelines assumes (in line with most publica-
tions on determining the LoD) that distributions of values
are gaussian, and accordingly, parametric statistical ap-
proaches are applied (5, 6). Actually, in the field of clinical
chemistry, the distribution of blank measurements is
often truncated at zero and thus is asymmetric and
nongaussian. This is so because the raw analytical signal
is seldom provided. Instead, the user is presented with
direct read-out or black-box systems providing concentra-
tion results that are nonnegative. Furthermore, the cali-
bration function is often hidden in the apparatus; there-
fore, approaches based on specific forms of calibration
functions (linear, four-parameter logistic, or other types of
curves) often can not be applied (2,5,7). With this in
mind, we present here a nonparametric approach for
estimation of the LoD that is suitable for the field of
clinical chemistry. The procedure has the advantage of
being generally applicable without relying on special
distributional assumptions. The form of the calibration
function is not relevant for the suggested procedure. The
procedure is outlined, and we present tables with critical
values, worked examples for estimation and verification
of the LoD, and a performance study based on simula-
tions.

Overview of the LoD Concept

TYPE I AND II ERRORS IN RELATION TO THE LoD
CONCEPT

Schematic distributions of blank measurements and mea-
surements of a sample with a low concentration of analyte
for a given assay are presented in Fig. 1. In Fig. 1A, the
mean of the blank measurements is zero with a distribu-
tion of negative and positive values to each side. Many
instruments automatically convert negative values to zero
or a small positive value so that only nonnegative con-
centration values are provided as output, which corre-
sponds to the situation in Fig. 1B. In both cases, the 95th
percentile of the distribution of blank values indicates a
limit that is exceeded only with a probability of 5% for a
blank sample. If we define the null hypothesis as the
situation without analyte present, the 95th percentile of
the distribution of blank values corresponds to the limit
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Fig. 1. Distributions of blank and sample values.

In A, the blank distribution is symmetric around zero, whereas in B, the blank
values are truncated at zero. The @ in B represents the presence of zero values
originating from negative values.

for rejection of the null hypothesis given a 5% significance
level. Using this limit, we will falsely assume in 5% of all
measurements of blank samples that the analyte concen-
tration exceeds zero. This is the so-called type I error («).
On the other hand, we observe that some of the measure-
ments for a sample with a low amount of analyte fall
below this limit. Defining the alternative hypothesis as the
case with analyte present implies that the alternative
hypothesis is erroneously rejected in case of measure-
ments of the low sample falling below the 95th percentile
of blank measurements. Thus, we commit an error, the
so-called type II error (B3). We observe here that hypoth-
esis testing is one-sided.

Recently, the ISO recommended a definition of the
minimum LoD in relation to stated levels of type I and II
errors (1-4). The default level for these errors was set to
5%, ie.,, « = B = 5%. An «a value of 5% corresponds to
using the 95th percentile of the distribution of blank
values as the limit for declaring a measured value signif-
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icantly higher than the blank. Given a gaussian distribu-
tion of blank values (Fig. 1A), this limit corresponds to:

up t+ 1.650%

where ug and op are the mean and SD of the blank
measurements, respectively.

For the situation in Fig. 1B with an asymmetric distri-
bution of blank values, the 95th percentile is not estimated
correctly by a parametric approach. Using simulations,
we estimated the error for a sample size of 25. If the true
mean is 0 so that one-half of the blank values are negative
and are given the value 0, the average estimated SD
corresponds to 57% of the SD of the unmodified gaussian
distribution. The average estimated mean is 0.40, and the
average estimated 95th percentile corresponds to 1.37, i.e.,
83% of the anticipated value of 1.65. For a true mean equal
to 0.5 SD, the average estimated parametric 95th percen-
tile amounts to 91% of the true value of 2.15.

The most straightforward procedure to estimate the
95th percentile of an asymmetric distribution is to apply a
nonparametric principle based on the ordered values (8).
Let ng be the number of measurements of the blank
sample. When we rank ng values according to size, the
95th percentile may be estimated as the value of the
[ng(95/100) + 0.5] ordered observation (see the Appendix
that accompanies the online version of this article at
http:/ /www .clinchem.org/content/vol50/issue4/). In
case of a non-integer value, interpolation is carried out
between neighboring values (see the example later in the
text). The limiting percentile (Perc) of the blank distribu-
tion, which cuts off the percentage « in the upper tail of
the distribution, will in what follows be called the LoB,
ie.

LoB = Perc, _,

To address the type II error level, one has to consider
the minimum sample concentration that provides mea-
sured concentration values exceeding the LoB with a
specified probability. If the type II error level, B, is set to
5%, 95% of the measurements should exceed the LoB. Fig.
2 illustrate two cases: one with a true sample concentra-
tion equal to the LoB, and another with a true sample
concentration at a value so that the 5th percentile of the
distribution of sample measurements equals the LoB. In
the first case, 50% of the sample measurements are below
the LoB with the other 50% of values exceeding the LoB.
Only the latter 50% will be declared as significantly
exceeding the blank value. In Fig. 2B, on the other hand,
95% of the measurements exceed the LoB and are declared
significantly higher than the blank value. Thus, only 5% of
the measurements are erroneously declared not signifi-
cantly different from the blank, which is the type II error.
According to the ISO definition, the true analyte concen-
tration of this sample is the minimum detection limit, or
the LoD. Usually, the sample distribution is gaussian, and
in this case the 5th percentile of the distribution can be
derived from the mean and SD as:
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Fig. 2. Effect of location of the sample distribution.

When the mean of the sample distribution equals the LoB, 50% of the
measurements exceed LoB (A). At a sample concentration equal to the LoD,
(100% — ) of the sample measurements (here 95%) exceed the LoB (B). The @
represents the presence of zero values originating from negative values.

Ms — 1.650-5

where ug and og are the mean and SD of the sample
measurements, respectively. Overall, we have:

LoD = LoB + 1.650¢

If the sample distribution is not gaussian, the 5th
percentile of the sample distribution can be estimated
nonparametrically in the same way as the LoB. However,
parametric estimation is more efficient and should be
used when possible (see the online Appendix).

ESTIMATION OF LoB AND LoD

The outline given above was based on theoretical (popu-
lation) distributions. In practice, one has to deal with real
sample distributions. Thus, LoB must be estimated from
repeated (ng) measurements of one or several blank
samples, and the SD of sample measurements from re-
peated measurements (ng) of sample(s) with a relevant
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concentration. Thus, an estimate (indicated with the sub-
script EST) of the LoD is then obtained as:

LoDggr = LoBggr + ¢ X SDg

where SDg is the estimated SD of the sample distribution
with f degrees of freedom, and cg is z; - g X o/E(SDg).
z, — g is the (1 — B) percentile of the standard gaussian
distribution, and E(SDg) is the mean value of SDg. If the
number of repeated measurements (ng) is not too small,
the mean value of SDg can be approximated by o X [1 —
1/(4 X f)] (for details, see the section on “Estimation of
SDg” in the online Appendix), and LoDggr = LoBggr +
zy _g/[1 — 1/(4 X f)] X SDg is an unbiased estimate of
LoD = LoB + z; _g X os.

The uncertainty of the estimates is considered next.
With regard to LoB, the standard error of estimates for
theoretical distributions can be derived (see the online
Appendix). With actual data, the user may obtain the 95%
confidence interval (CI) limits from the ranked blank
values according to Table 1 (9). The uncertainty of the
LoD estimate is composed of a component originating
from the uncertainty of the LoB estimate and a part from
the sample measurements. As detailed in the online
Appendix, an approximate 95% CI of the LoD can be
derived by combining the 80% CI for the LoB and SDg,
supposing ng = ng. The 80% CI limits for the LoB can be
derived from the ranked values by use of Table 1, and
multiplication factors that provide the 80% CI limits for
SDg are presented in Table 2. The suggested procedure
can be applied down to a sample size of ngy = ng = 50. An
alternative to the described procedure that also may apply
at lower sample sizes is the bootstrap principle (10).

In relation to estimation of the LoD, a problem may be
that o5 often is nonconstant because it frequently in-
creases with sample concentration. However, over the
limited range of low concentration values that are of
interest in the present context, o5 may be approximately
constant, and the outlined procedure is then straightfor-
ward (see the example later in the text). Otherwise, a more

Table 1. Rank number corresponding to upper and lower
80% and 95% CI limits of the LoB.?

80% Cl 95% CI
n Lower Upper Lower Upper
50 n—4 n n—>5 n
60 n—-5 n n—=6 n
70 n—>5 n—1 n—17 n
80 n—6 n—1 n—8 n
90 n—7 n—1 n—8 n
100 n—7 n—2 n—9 n
150 n—11 n—3 n—12 n—1
200 n—14 n—-5 n— 16 n—3
250 n— 17 n—7 n—19 n—->5
300 n— 20 n— 10 n— 22 n—-7

Z LoB = 95th percentile of the distribution of blank measurements.

Table 2. Factors corresponding to 80% and 95% CI limits of
an estimated SD.

80% CI 95% Cl
n Lower Upper Lower Upper
50 0.881 1.140 0.835 1.243
60 0.897 1.138 0.848 1.217
70 0.904 1.126 0.857 1.198
80 0.909 1.116 0.865 1.183
90 0.914 1.109 0.872 1.171
100 0.918 1.102 0.878 1.161
150 0.932 1.082 0.898 1.128
200 0.941 1.070 0.911 1.109
250 0.947 1.062 0.919 1.096
300 0.951 1.056 0.926 1.087

2 The number of degrees of freedom is n — 1.

complicated approach can be undertaken in which it is
assumed that the sample SD is a function of the concen-
tration (2).

VERIFYING A CLAIMED LoD

In addition to estimation of the LoD, one may also be
interested in primarily verifying a claimed LoD, e.g., a
laboratory may want to assure that an assay fulfills the
claim of a given LoD stated by a manufacturer. In that
case, it is necessary to distinguish between a full and a
partial verification procedure. A full procedure consists of
estimating the LoB, performing repeated measurements
of sample(s) with a concentration equal to the claimed
LoD, and estimating the proportion of results exceeding
the LoB. If the recorded proportion is in agreement with
the expected 95%, then the data support the claim of the
LoD. A partial procedure consists of applying the LoB
stated by the manufacturer and recording the proportion
of results exceeding the LoB for sample(s) with a concen-
tration equal to the claimed LoD. Shown in Table 3, for
sample sizes of 20-1000, are the lower bounds for the
recorded proportion that are in accordance with a = 8 =
5% for the full and partial procedures. The interval is
slightly wider for the full verification procedure because,
in this case, the LoB is a random variable (see the online
Appendix). Notice that the bounds for partial verification
of the LoD can also be applied as bounds for verification
of a claimed LoB. If the proportion of blank measurements
below a claimed LoB is equal to or higher than the
proportion listed in Table 3, the claimed LoB is supported.
An example of verification is shown in the Examples
section.

CHARACTERISTICS OF BLANK AND SAMPLE

The blank sample(s) should be as similar as possible to the
natural patient samples, e.g., for a drug assay a suitable
blank sample would be a serum or plasma sample free of
drug, and not just a buffer solution. To assure that the
measurements are representative, compilation of mea-
surements on several blank samples is preferable. Thus,
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Table 3. Lower bounds (one-sided 95% CI) of observed
proportions of results exceeding the LoB in a verification
procedure that are in accordance with the hypothesis of

1- B =95%.7

Proportion of results exceeding the LoB, %

n Full verification Partial verification
20 85 85
30 87 87
40 88 90
50 88 90
60 88 90
70 89 90
80 89 91
90 90 91

100 90 91
150 91 92
200 92 93
250 92 93
300 92 93
400 93 93
500 93 93
1000 94 94

2 For the full verification procedure, it is assumed that og/0g = 1.5 and n =
ng = ng. Table values are based on 10 000 simulation runs for each parameter
combination.

instead of repeated measurements of only one particular
serum sample, a set of 5-10 or more blank serum samples
would be preferable because matrix differences exist from
sample to sample. With regard to endogenous com-
pounds, it may be difficult to obtain blank samples. In
some situations, e.g., for tumor markers, samples from
nondiseased individuals may be appropriate. For hor-
mones, blank samples may in some cases be provided
from diseased individuals or individuals with suppressed
hormone concentrations attributable to pharmacologic
treatments, assuming that these samples have character-
istics otherwise similar to the routine test samples. Oth-
erwise, blank samples might be samples stripped of the
component, e.g., by precipitation by an antibody, by
enzymatic degradation, or by adsorption to charcoal.
However, such treatments may also remove potential
interfering compounds and thus give a too optimistic
picture of assay performance.

With regard to the sample(s) with low analyte concen-
trations, it may be preferable to add analyte, e.g., a drug,
to a set of serum samples from different patients rather
than to just one serum sample or a serum pool. For
endogenous compounds, ideally a set of patient samples
with concentrations in the low range might be used. A
pooled SDg estimate can then be derived from repeated
measurements of the set of samples, e.g., 5-10 measure-
ments of each of 5-10 samples (see the example presented
later). Measurements on different days should be carried
out, so that SDg reflects the total analytical variation.

For the estimates of LoB and LoD to be meaningful, the

measurements by the method in question should be
unbiased. When a reference method for the analyte exists,
comparison of measurements in the low range with this
method should be undertaken. Alternatively, measure-
ments of samples to which analyte has been added might
be used to demonstrate that realistic measurements are
obtained. This prevents a spuriously low LoD from being
reported because if the assay provides values that are
lower than the true analyte concentration, other factors
being equal, a too-low LoD is going to be estimated.

SAMPLE SIZE CONSIDERATIONS

The optimum ratio between the number of blank and
sample measurements in the estimation procedure is
related to the uncertainties of the estimated LoB and SDg
of the sample measurements. Nonparametric estimation
of LoB is roughly half as effective as a parametric estima-
tion procedure (see the online Appendix). The uncertain-
ties of percentile or SD estimates will also tend to be
proportional to the dispersion of the distributions. Thus,
nonparametric estimation of the LoB would suggest that
the number of blank measurements should exceed that of
the sample measurements. However, the dispersion of
sample measurements is likely to exceed that of the blank
measurements. Overall, an approximately equal number
of blank and sample measurements is likely to be near
optimal in many cases (see the online Appendix). Concern-
ing the precision of estimates of LoB and LoD in relation
to the number of measurements, see the Simulation sec-
tion.

REPORTING OF RESULTS

In a laboratory, the LoB may be used to determine how
patients” results will be reported: i.e., as substance de-
tected or not detected. It should be kept clear what the
exact meanings of “detected” and “not detected” are. Not
detected, i.e., a result below the LoB, means that the true
concentration is likely to be less than the LoD. “Likely”
refers to the type Il error level (), which often is set to 5%.
Thus, a result less than the LoB should be reported as
“<LoD” and not as “<LoB” or “zero”. A result exceeding
the LoB, i.e., detected, means that the true concentration is
likely to exceed zero, and the reporting could be “>zero”
or “detected”. Likely refers here to the type I error (w),
which often is set to 5%.

A modification of the above-mentioned principles for
reporting results might be considered in cases in which
results are to be used in scientific studies. Here, unbiased
results for the groups of individuals being investigated
are obtained by reporting the concentrations actually
measured irrespective of whether the values are below or
above the LoB. Otherwise, biased results for groups may
be obtained.

The relative uncertainty of measurements at or just
exceeding the LoD is often large, and usually a quantita-
tive result is not reported. The lower limit for reporting
quantitative results (LoQ) relates to the relative impreci-

220z 1snBny |z uo 1snB AQ ZE8BEIS/ZE L/F/0G/I0IIE/WBLOUIO/WO0" dNO"oIWSPEdE//:SARY WOl papeojumod



Clinical Chemistry 50, No. 4, 2004 737

sion (CV) considered acceptable by the laboratory. From a
precision profile for the assay, the LoQ may be deter-
mined, e.g., corresponding to a CV of 10% or 20% (5). The
possible bias of the method at this level might also be
taken into consideration, so that an upper limit of the total
error determines the LoQ. The LoQ will constitute the
lower limit of the reportable range for quantitative results
for the assay. The LoQ is not considered further here.

Examples

EXAMPLE OF ESTIMATING THE LoD OF AN ASSAY

We consider an assay based on HPLC with ultraviolet
detection for an antidepressant drug, mirtazapine, in
serum that is used in the laboratory of one of the authors.
The method is based on automated solid-phase extraction
with online injection of the eluate into the HPLC appara-
tus. A serum pool with the drug added is used for
calibration. Trimipramine serves as internal standard. The
peaks for the analyte and internal standard are well
separated, and no background peaks interfere. When
deriving the LoD, the default values o = B = 5% were
used. The blank measurements consisted of four measure-
ments on each of five sera from patients not taking the
drug, and the low-sample measurements were based on
four measurements on each of five other sera from pa-
tients not taking the drug, to which 10 nmol/L of the drug
had been added (Fig. 3). The distribution of blank mea-
surements deviated significantly from the normal form
(P = 0.04, Anderson-Darling test), and the LoB was
estimated nonparametrically as the 95th percentile of the
measurements. The 95th percentile corresponds to the
19.5th ordered observation [20 X (95/100) + 0.5]. Linear
interpolation between the 19th and 20th observations
yielded a LoB estimate of 6.85 nmol/L. A pooled estimate
of the SDg was 2.85 nmol/L (see the online Appendix). An
estimate of the LoD was then obtained:

15~‘

O 00
[0

10 4

nmol/L
o

roden @

B S1 82 83 S84 S5

Fig. 3. Blank and low sample values for the LoD estimation example.

Four measurements of each of five blank sera are displayed together (B). The
LoB limit (horizontal bar) was estimated to be 6.85 nmol/L (95th percentile of
the blank distribution). The O for S1-S5 indicate the four values obtained for
sera 1-5, to which 10 nmol/L drug had been added.

_ “1-p
LODEST_LOBEST+1_1/(4><f)><SDS

=6.85 + 1.645 X 2.85=11.6

- 1-1/60" 77 °*

Notice that the degrees of freedom for SDg are 5 X (4 —
1) = 15.

This is a point estimate, and the true LoD may be
somewhat lower or higher. The 95% CI for the LoD can
not be derived as described above because of the small
sample sizes used here. The usual steady-state serum
concentrations for patients in treatment with the drug
extend from 50 to 350 nmol/L. Accordingly, a LoD of 11.6
nmol/L is acceptable for clinical use of the assay.

EXAMPLE OF VERIFYING A CLAIMED LoD OF AN

ASSAY

A given analytical procedure is claimed by the manufac-
turer to have a LoD of 45 U/L with @ = B = 5%. The user
decides to carry out a full verification procedure on the
basis of 25 blank measurements (5 measurements of 5
blank samples over 5 days) and 25 measurements of
samples to which 45 U/L of the analyte had been added
(5 measurements of 5 samples over 5 days; Fig. 4). Visual
inspection reveals that the distribution of blank values is
asymmetric (nine 0 values), and accordingly the LoB is
estimated nonparametrically. The blank values are ranked
according to size, and the 95th percentile corresponds to
the 24.25th ordered observation (25 X 0.95 + 0.5). Linear
interpolation between the 24th and 25th observations
yields 19.17 U/L [18.01 + 0.25 X (22.65 — 18.01)].

The proportion of sample measurements that exceed
the LoB is 96% (24 of 25). From Table 3 we see that 96% is
above the lower bound for agreement (87%; full verifica-
tion procedure). Thus, the observed proportion is in
accordance with the expected one of 95% according to the

80
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60 8 (o] o
o
Q o
o
:3 40 °
5 p
o o o
o
o © ©
20 4 o
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S$1 §2 S3 S4 S5

Fig. 4. Example illustrating the LoD verification procedure.

The 25 blank measurements (B) and 5 X 5 measurements of samples to which
45.0 U/L of the analyte had been added (S1-S5) are shown. The LoB limit
(horizontal bar) was estimated to be 19.17 U/L (95th percentile of the blank
distribution). Ninety-six percent (24 of 25) of the sample measurements ex-
ceeded the LoB.
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claim, and the present evaluation does not contradict this
claim.

Evaluation of the Performance of the LoD
Estimation/Verification Procedures by Simulation
ESTIMATION OF LoB AND LoD
The parameters of the model outlined in Fig. 2B are
considered as a basis.

The blank distribution follows a standard gaussian
distribution (ug = 0 and og = 1) with negative values
assigned the value zero. The sample distribution is gaus-
sian with ug = 4.1125 and o5 = 1.5. Under this model, the
population LoB is 1.645, and the LoD is 4.1125 [1.645 +
1.5 X 1.645 (e = B = 5%)]. It is assumed that oy is constant
in a region around the LoD. Thus, the estimation proce-
dure consists in estimating the LoB and adding cz SDs.

The performance of the suggested LoD estimation
procedure can be evaluated as a function of the sample
size by drawing pseudo-random numbers from these
distributions. The bias and precision of LoB and LoD
estimates are recorded (Table 4).

Observe that the nonparametric LoB estimate has con-
siderable uncertainty. At a sample size of 25, the SE
amounts to 38% of o in the model, decreasing to ~20% of
op at a sample size of 100. The SE of the LoD exceeds that
of the LoB for a given sample size, illustrating that both
the uncertainty with regard to the LoB estimation and that
associated with SDg estimation contribute to the overall
uncertainty. Thus, if a manufacturer wishes to assure a
reasonably precise estimate of the LoD, a fairly large
sample size is needed. At least 100 blank measurements
and 100 measurements of samples with low amounts of
analyte should be considered. Given an automated assay,
this may not constitute a problem, but for manual assays,
e.g., a hormone assay, a large number of repetitions may
represent a considerable task. When estimating the LoD,
one should ideally keep the conditions near routine
operating conditions, e.g., the measurements should be
dispersed over several days and not restricted to a single
run.

Table 4. Performance of the LoD estimation procedure as a
function of sample size evaluated by simulation for the
given data model.?

LoB LoD
Sample size” Mean SE SE of SDg Mean SE
10 1.53 0.58 0.35 4.02 0.84
25 1.63 0.38 0.21 4.10 0.52
50 1.63 0.29 0.15 4.10 0.39
100 1.64 0.21 0.11 4.10 0.27
200 1.64 0.15 0.075 4.11 0.19
500 1.65 0.094 0.047 4.11 0.12

“Table values are based on 10 000 simulation runs for each parameter

combination.

bng = ng.

Table 5. Power to detect that the claimed LoD is 25% less
than the true LoD (claimed LoD = 0.75 X true LoD).

0s/0g
Sample size,” n 1.0 1.5 2.0 5.0
20 56% 45% 38% 24%
30 64% 54% 47% 32%
40 73% 64% 56% 38%
50 7% 69% 62% 43%
60 83% 74% 67% 48%
70 85% 78% 71% 51%

2 Table values are based on 10 000 simulation runs for each parameter
combination.
bn =ng = ng.

PERFORMANCE OF THE VERIFICATION PROCEDURE

The performance of the full and partial verification pro-
cedures can be studied by simulations. Two aspects are of
interest here. One is the ability to verify a claimed LoD
that is equal to or higher than the true LoD, and the other
is to discover a claimed LoD that is too low. Concerning
the first point, the use of Cls in the verification procedures
defines the probability of verifying a true LoD. A one-
sided 95% CI assures 95% probability of verifying a
claimed LoD equal to or higher than the true LoD,
according to the either partial or the full verification
procedure. We studied the other problem, discovering a
claimed LoD as being too low, by simulations.

The ability (power) of detecting a claimed LoD as being
too low depends on the sample size and the ratio between
the dispersions in the sample and the blank, og/05. We
chose to study the detection of a claimed LoD that was
25% lower than the true LoD according to the full proce-
dure (Table 5). For sample sizes ranging from 20 to 70, the
power of detection ranged from 24% to 85%. The highest
range of power (56—85%) was observed for os/o5 = 1.
Given a slightly higher ratio, os/0p = 1.5, the range of
power decreased to 45-78%. For the highest ratio studied,
os/og = 5, the range of power was lowest, 24-51%.

EVALUATION OF THE COVERAGE OF THE SUGGESTED
PROCEDURE FOR ESTIMATION OF THE CI OF LoD

The suggested procedure for estimation of the 95% CI for
a LoD relies on some approximations outlined in the
online Appendix. To study the performance of the proce-
dure, we evaluated the coverage by simulations (10 000
runs for each parameter combination). The same model
situations as considered above were investigated. The
coverage indicates the frequency with which the true
value of the LoD for a given model is included in the
estimated 95% CI. Ideally, the frequency should be 95%.
As may be observed from Table 6, the actual coverage
ranged from 87% to 96%. The best results were obtained
for low og/op values. Thus, the estimated limits were
approximately correct. An alternative to the suggested
procedure is to apply the bootstrap approach, which,
however, requires computerized calculations.
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Table 6. Coverage of the approximate procedure for
estimation of 95% CI for the LoD.?

0s/0g
Sample size,” n 1.0 1.5 2.0 5.0
50 93% 93% 93% 90%
100 96% 96% 95% 91%
200 95% 95% 95% 89%
300 92% 93% 92% 87%

@ Table values are based on 10 000 simulation runs for each parameter
combination.
bn=ng = ng.

Discussion

The LoD concept has been the subject of considerable
interest over the years. The focus has generally been on
how to declare a measurement result significantly higher
than a blank measurement. Kaiser (11) addressed this
issue, suggesting that the LoD be given as the mean plus
the SD of blank measurements multiplied by a factor,
conventionally set to 2 or 3, initially without clear-cut
probability considerations. Thus, in the early literature on
the subject, the focus was on the question of significance
in relation to blank measurements. This approach is
probably still the most widely used procedure in practice,
as supported in the “Instructions to Authors” sections of
many laboratory journals, including Clinical Chemistry.
Later it was recognized that in addition to the significance
aspect, one should also take into account the lowest
amount of analyte that was likely to be declared signifi-
cantly higher than zero, i.e., the type II error (12-15).
Recently, the latter concept has been recommended in a
set of ISO guidelines incorporating procedures reported
in the more recent literature (1-4).

Although one part of the problem is the general
concept of the LoD, another part involves the statistical
techniques applied. Somewhat surprisingly, all of the
publications cited here, except Brown et al. (7), suppose
gaussian distributions of both blank and sample measure-
ments. The background may be that most authors deal
with the signal response (y) rather than the concentration
scale (x). Having determined the statistical limits on the
response scale, the authors may subsequently transform
values to the concentration scale on the basis of the
calibration function. Accordingly, procedures linked to
linear or nonlinear calibration functions have been de-
scribed, the latter mainly in connection with immunoas-
says (2,5,7,14,15). When one is working on a response
scale, symmetric distributions of blank responses may
occur frequently, and a fully parametric approach is
appropriate. In clinical chemistry, however, the instru-
ment response is usually hidden, and one has access only
to the final concentration output. Given a symmetric
distribution of blank responses, transformation to concen-
tration values may give both positive and apparently
negative concentration values. The latter are usually con-
verted to zero or a small positive number by the instru-

ment, which leads to asymmetric distribution of blank
concentration values. As mentioned earlier, this is the
background for the procedure suggested here. To apply
the proposed procedure, it is necessary to have concen-
tration values down to zero available. If the instrument
software truncates results at a higher value, it is not
possible to carry out a meaningful assessment of the LoD.

The present procedure has the advantage of being able
to deal with asymmetric blank distributions. In addition,
the procedure conforms to currently accepted concepts for
establishing the LoD, as outlined in the ISO guidelines,
primarily in regard to both type I and II errors. Further-
more, by focusing on concentration or amount of analyte
directly, the procedure becomes general and does not
depend on a particular type of calibration function. Vari-
ations in terminology that exist in this field can create
confusion. Several reports, including the ISO guidelines,
use the term critical limit (x.) for the significance limit of
blank measurements. Because “critical” in laboratory
medicine often has another meaning, i.e., an alarm value
that should be reported immediately, we prefer another
term, the LoB. With regard to LoD, many variations exist,
e.g., minimum detectable level (MDL) and lower limit of
detection (LLoD); these variations are of minor signifi-
cance as long as the precise definition is clear and the
probability levels are indicated. A drawback of the
present procedure is that it gives a less precise estimation
of the LoB values than may be obtained by fully paramet-
ric procedures. It is possible to increase the precision of
the nonparametrically estimated percentile slightly by
applying modern computer-based statistical methods,
e.g., a resampling principle (bootstrap method) (10, 16),
weighted percentile estimation (17), or smoothing tech-
niques (18). The bootstrap principle is the simplest and
most generally applicable procedure of those mentioned
and has the advantage of also providing confidence limits
for the percentile estimate. The gain in precision corre-
sponds to saving 10-15% of the observations compared
with the simple nonparametric procedure (16). The boot-
strap method also represents an alternative procedure for
estimation of the CI of the LoD.

The LoD of a method should not be confused with the
so-called sensitivity. According to ISO, the analytical
sensitivity relates to the slope of the calibration function
(19). The steeper the slope, the more sensitive the assay is
to slight changes in the amount of analyte. This definition
of sensitivity expresses an entirely different concept than
the LoD. The distinction between the LoD and the LoQ
should also be kept clear (5). A laboratory may choose to
report results at or only slightly above the LoD as being
detected and restrict the reporting of quantitative results
to values at or exceeding the LoQ (20). The LoQ indicates
the lowest value at which the analytical procedure fulfills
claimed imprecision or total error specifications and will
often be a more important characteristic for a quantitative
analytical procedure than the LoD. The LoD may be of
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particular interest in relation to detection of drugs of
abuse and in relation to tumor markers.

It is important that measurements of blanks and sam-
ples be carried out in a comparable way. If only a buffer
solution is used as a blank, a falsely low LoB may be
obtained because the dispersion of measurements often is
larger in the real matrix (21). Concerning sample(s) with
low concentrations, estimation of the dispersion (SDg)
from several samples is an advantage to assure that
average performance is assessed. Finally, total assay vari-
ation should be reflected by measurements performed on
different days.

Manufacturers may compete with regard to producing
assays with the lowest possible LoD. Thus it is important
to have a standardized procedure with expressed levels of
type I and II errors for determining the capability of
detection. Use of this procedure could allow a fair com-
parison of competing assays.

We thank the members of the NCCLS subcommittee on
protocols for determination of LoD and LoQ for stimulat-
ing discussions.
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