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Abstract

We construct a model of household decision-making in which agents
consume a private and a public good, interpreted as children’s welfare.
Children’s utility depend on their human capital, which is produced from
parental time and human capital. We first show that as returns to hu-
man capital increase, couples at the top of the income distribution should
spend more time on children. This in turn should reinforce assortative
matching, in a sense we precisely define. We then embed the model into
a Transferable Utility matching framework with random preferences à
la Choo and Siow (2006) which we estimate on US marriage data for
individuals born between 1943 and 1972. We find that the preference
for assortative matching by education has significantly increased for the
white population, particularly for highly educated individuals; but not
for blacks. Moreover, in line with theoretical predictions, we find that the
“marital college-plus premium” has increased for women but not for men.
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1 Introduction

Recent decades have been a period of significant demographic changes in the US
and in other rich countries. The number of single-adult families has drastically
grown, particularly at the bottom of the income distribution; moreover, several
authors have argued that the degree of assortative matching among married
couples has increased significantly1. Even more important are the evolutions in
education and human capital, particularly in terms of composition by gender.
During the first half of the twentieth century, college attendance increased for
both genders, and slightly faster for men. According to Claudia Goldin and
Larry Katz (2008), male and female college attendance rates were about 10%
for the generation born in 1900, and reached respectively 55% and 50% for
men and women born in 1950. This common trend, however, broke down for
the cohorts born in the 1950s and later. This confronts economists with an
interesting puzzle. Individuals born in these later decades experienced a rate of
return on higher education in the labor market (the “college premium”) that was
substantially higher than their predecessors; therefore one would have expected
their college attendance rate to keep increasing, possibly at a faster pace. This
prediction is satisfied for women: 70% of the generation born in 1975 attended
college. On the contrary, the male college attendance rate increased at a much
slower rate, if at all. The phenomenon is especially striking for post-graduate
education (the so-called “college-plus” levels: MAs, MBAs, law and medicine
degrees, PhD), for which the labor-market premium has risen even more. The
fraction of women aged 30 to 40 with a college-plus degree rose from below 4%
in 1980 to above 11% in 2005, while the male proportion hardly changed over
the same period. As a result, in recent cohorts women have been more educated
than men, and by an increasing margin.

The main argument of the present paper is that these various demographic
phenomena are the by-products of a general trend: the increasing importance
of investment in education, particularly at the top of the distribution of hu-
man capital. As a result, the structure of household production has drastically
changed; and so have motivations for marriage. To illustrate it, we construct a
simple collective household model in which spouses consume two commodities,
a private consumption good and a public good which we interpret as children’s
(future) utility. This public good is produced by parental time and human
capital, using a Cobb-Douglas technology as in Daniela Del Boca, Christopher
Flinn and Matthew Wiswall (2014). In addition, an exogenous amount of time
must be devoted to basic chores (cleaning, cooking, etc.), activities for which
spousal times are perfect substitutes. We show that the combination of techni-
cal progress in domestic technology (what Jeremy Greenwood et al., 2005, called

1This view is supported by a recent sociological literature that concludes that homogamy
has increased in the US and several other countries (see for instance Schwartz and Mare,
2005). Burtless (1999) argues that this evolution complements the increase in the labor
market college premium in explaining increased interhousehold income inequality. This vision
has recently been emphasized by Greenwood et al (2014), who find that “if people matched in
2005 according to the 1960 standardized mating pattern there would be a significant reduction
in income inequality; i.e., the Gini drops from 0.43 to 0.35.” (p. 352).
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“engines of liberation”) and a larger return on investment in children’s human
capital (in terms of the children’s future income and ultimately well-being) has
contrasted implications for time use: while less and less time should be spent
on basic chores, time spent with children should increase, especially for high
income/high education couples.

Following Becker’s seminal contributions (see Gary Becker 1973, 1974, 1991),
we next embed this household model into a frictionless matching framework with
Transferable Utility (TU). From a theoretical perspective, this builds on and ex-
tends a recent contribution by Pierre-André Chiappori, Murat Iyigun and Yoram
Weiss (2009, from now on CIW). Their paper argued that the strikingly gender-
asymmetric changes in the demand for higher education could be explained by
recognizing that the returns to education comprise not only the standard labor
market college premium, but also the effect of education on marital outcomes.
Human capital affects not only future wages, but also the probability of getting
married, the characteristics of the future spouse, and the size and distribution
of the surplus generated within marriage. CIW advanced the hypothesis that,
unlike the labor market premium which is largely gender-neutral, this “marital
college (and college-plus) premium” may have evolved in a highly asymmetric
way between genders.

We provide a microfoundation to this argument by showing that as parents’
education is an important input in the production process of children human
capital, matching should be assortative on human capital. If economic returns
to investments in children’s human capital increase, particularly at the top of
the human capital distribution, then we should observe a corresponding increase
in assortative matching, in a sense that we define precisely. Moreover, and in
line with CIW, we show that such changes generate a positive feedback loop,
as the new equilibrium returns further increase the incentives of (future) par-
ents to invest in their own education. The intuition is that in addition to the
standard labor market returns, the increase in assortative matching makes a
higher stock of human capital even more valuable on the marriage market. Fi-
nally, as the importance of investment in children’s human capital grows and as
technological innovations reduce the time needed for domestic chores, the dis-
tribution of human capital changes within couples. The traditional pattern in
which the man was typically more educated than the wife becomes less and less
sustainable as the matching equilibrium generates an increased “marital higher
education premium” for women. This is reflected in the asymmetric responses
observed in the data. On this our analysis is in line with a recent contribution
by Shelly Lundberg and Robert Pollak (2013), who emphasize a shift in the pri-
mary source of the gains to marriage, from the production of household services
and commodities to investment in children2.

Establishing the empirical relevance of this theoretical argument is a chal-

2Mathias Doepke and Michelle Tertilt (2009) and Doepke, Tertilt and Alessandra Voena
(2011) have analyzed a different but related phenomenon, with the regards the political econ-
omy of womenâs rights. In their model, an increase in the return to human capital induces
men to vote for women’s rights, which is turn promotes growth in human capital. While this
mechanism is not explicit considered in our framework, it is compatible with it.
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lenging task. For one thing, the mere notion of “increased assortative matching”
is not easy to measure. There is no doubt that the percentage of couples in which
both spouses have a college or “college-plus” degree has significantly increased.
However, this evolution at least partly reflects the shifts in the number of ed-
ucated women; such a mechanical effect must be distinguished from possible
changes in the preference for homogamy. A precise definition of “changes in the
degree of assortative matching” has to disentangle these two effects; this is not
an easy task. In addition, while the returns to schooling in the labor market
can be recovered from observed wage data, neither the size of the surplus, nor
the subsequent returns to schooling within marriage are directly observed; they
can only be estimated indirectly from the marriage patterns of individuals with
different levels of schooling.

A second contribution of our paper is to provide an empirical estimation of
these various effects. We build upon a seminal contribution by Eugene Choo and
Aloysius Siow (2006, from now on CS)3. CS modelled the joint marital surplus
as the sum of a systematic, deterministic component that only depends on
observable traits (in our case education levels) and a stochastic part that reflects
unobserved heterogeneity. They assumed that this stochastic part is the sum of a
wife- and a husband-specific parts, each of which only depends on the education
of the potential spouse. Combined with a well–chosen distributional assumption,
this separability allowed them to translate the matching equilibrium conditions
into a simple, discrete choice structure It is well known that the values of the
utilities obtained by participants in equilibrium can be computed as multipliers
in the maximization of aggregate surplus over all possible matchings. We show
that in the CS framework, the stochastic distribution of these dual variables
can be fully characterized. In particular, one can identify the distribution of
expected utility for any possible choice of a spouse with a given education,
as well as for the optimal choice; one can therefore compute the increase in
expected utility resulting from a higher stock of human capital—a notion that
is directly related to the concept of marital college premium. We also propose a
precise definition of “preference for homogamy”: in our framework, it is simply
the supermodularity of the surplus along the diagonal.

More importantly, we extend the CS approach to a “multi-market” frame-
work4. This allows us both to relax the restrictive assumptions imposed by the
initial CS contribution, to estimate changes over time, and to test overidentify-
ing restrictions implied by the model. To do this, we assign successive cohorts
to different marriage markets. The changing proportions of men and women at
all education levels introduce exogenous variation that drives our identification.
In particular, our model is compatible with education-specific distributions of

3CS studied the response of the US marriage market to the legalization of abortion. See
Maristella Botticini and Siow (2008) and Siow (2015) for other applications. Alfred Galichon
and Salanié (2015) generalized the Choo and Siow framework to arbitrary separable stochastic
distributions; they also provide a theoretical and econometric analysis of multicriterial match-
ing under the same separability assumption. Isaac Mourifié and Siow (2014) extend the Choo
and Siow model in another direction, by allowing for peer effects in the joint surplus.

4See Jeremy Fox (2010a, 2016) and Fox and David Hsu and Chenyu Yang (2015) for
different approaches to pooling data from several markets.

4



unobserved heterogeneity, thus allowing for selection into education being cor-
related with preferences for marriage—a natural consequence of CIW5. It can
also incorporate class-specific temporal drifts in the systematic component of
the surplus. These features allow us to study the evolution of matching pat-
terns, and in particular changes in assortative matching, in a flexible context
where both gains from marriage and the intra-household allocation of these gains
change over time for each education class. The variation across cohorts makes it
possible to disentangle variations in the surplus generated by assortative match-
ing from the mechanical effects of the observed changes in distributions of male
and female education. We model this by allowing the supermodular part of
the surplus to evolve according to a linear, education-dependent time trend.
These features, together with the emphasis we put on the micro foundations
of our model (and their testable implications regarding household behavior),
distinguish our work from a recent paper by Siow (2015) which finds that su-
permodularity has not increased in the US between 1970 and 2000. The model
used by Siow is exactly identified in each year. This allows him to observe the
evolution of supermodularity (and in principle to test that the resulting esti-
mates are statistically different across years). But for lack of a more constrained
framework such as ours, it does not allow to elucidate the nature of the changes.
In contrast, our model is overidentified in a multi-market context. In particular,
we can identify trends over time and test their significance.

The empirical results we obtain for the white population corroborate our
model at two levels. First, time use data indicate that while time spent on
basic chores significantly decreased for women over the period (while it slightly
increased for men, a pattern predicted by theory), time spent on and with chil-
dren increased sharply for both spouses. This result is all the more striking
that female wages have increased over the period, raising their corresponding
opportunity cost; but it is fully compatible with our explanation based on the
large increase in the return on investment in children’s education. Regarding
the second set of theoretical predictions, we find strong evidence that the sur-
plus generated by assortativeness6 has increased, particularly at the top of the
education distribution. Finally, the evolution of marital returns to education is
highly gender-specific: while they did not change much for men, they increased
significantly for women.

The marriage patterns of the black population, however, present us with
intriguing differences. It is well–documented that after World War II, the mar-
riage patterns of whites and blacks started to diverge: the marriage rates of
blacks fell faster for both genders. Starting with Wilson and Neckerman (1986),
a growing literature has attributed these trends to the shortage of “marriage-
able” black men. We bring into this discussion differences across groups in
preferences for assortative marriage by education, and the resulting differences

5CIW implies a positive correlation between marital preferences and demand for education:
individuals who are more eager to marry an educated spouse (especially) have an additional
incentive to invest in their own education. Our framework, however, is agnostic on this point:
any correlation between marital preferences and demand for education is possible a priori.

6What we call later the “supermodular core” of the surplus.
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in the marital college premium. We find no evidence of changes in the surplus
generated by assortativeness among blacks: the supermodularity of the surplus
function hardly changed over time. Moreover, the “marital college premium”
evolved in pretty much the same way for men and women. These patterns are
consistent with another finding of the recent empirical literature—namely, that
black couples spend much less time with their children than whites 7. Many
other differences, of course, probably also come into play. There is definitely a
need for further research on this topic.

Section 2 presents some stylized facts. Then we introduce our theoretical
framework in Section 3, and section 4 describes the basic principles underlying
its empirical implementation. Section 5 explains how we conduct estimation
and testing. Our empirical findings are presented in Section 6.

2 The Data

2.1 Constructing the data

We begin by describing our data and some stylized facts about the evolution of
matching by education over the last decades in the US. We use the American
Community Survey, a representative extract of the Census, which we down-
loaded from IPUMS (see Steven Ruggles et al 2015.) Since 2008 the survey has
collected information on current marriage status, number of marriages, and year
of current marriage. Our analysis uses the 21,583,529 households in the 2008 to
2014 waves. From this population, we extract all white and black adults (aged
18 or more) who are out of school. We use the “detailed education variable” of
the ACS to define five subcategories:

1. High School Dropouts (HSD)

2. High School Graduates (HSG)

3. Some College (SC) — including two-year (associate) degrees

4. Four-year College Graduates (CG)

5. Graduate degrees (“college-plus” , or CG+.)

However, the black population in our sample is smaller and less educated;
therefore in our econometric analysis we will merge categories 4 and 5 into a
single, “college and college-plus” category.

When empirically studying matching patterns, one has to address several
practical issues. The first one is what constitutes “marriage”. We treat as mar-
ried households who define themselves as such; we do not attempt to include
cohabitation with marriage. Cohabitation has grown over time, but it was rarer
for the cohorts we consider (up to women born 1971). The National Survey of

7See for instance Georges-Levi Gayle et al (2015).
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Family Growth (NSFG) gives more information on marital/cohabitation histo-
ries; we looked more closely at individuals aged 40 or more in the 2011–13 waves
of the survey. 20% of these women and one quarter of these men had never mar-
ried. Among them, 26% of white women and 16% of white men were currently
cohabiting; the corresponding numbers are 5% and 18% among blacks. Higher
education individuals were less likely to cohabit; but this difference affects such
a small proportion of the population (to fix ideas, 20% of 20% is 4%) that it
is very unlikely to have a significant impact on our findings. The distinction
between marriage and cohabitation could in principle be analyzed within our
framework. We tend to agree with Lundberg and Pollak (2013) that marriage
entails an additional degree of commitment that is particularly helpful for long-
term investments such as children education. Unfortunately, our data does not
allow us to investigate this choice margin8.

Then we need to decide which matches to consider: the current match of
a couple, or earlier unions in which the current partners entered? Also, do we
define a single as someone who never married, or as someone who is currently
not married? It is notoriously hard to model divorce and remarriage in an
empirically credible manner9. Since this is not the object of this paper, we
chose instead to only keep first unions, and never-married singles. Given this
sample selection, in each cohort we miss those individuals who died before the
survey; and we discard those who are single in the survey year but were married
before, as well as those who married during the year in which they were surveyed.

We also discard “institutional households”; these correspond to correctional
institutions, but also military and mental care facilities. We also do not know
whether a given individual we observe in a normal household in 2010, say, was
incarcerated when (s)he was younger. Since incarceration rates more than dou-
bled, over the period, this is a serious concern for some subpopulations: at
any point in time in the 1990s, a quarter of young black men without a high
school diploma were incarcerated10. This is still probably better than the alter-
native, which would include institutionalized singles in the population available
for marriage.

Another standard problem is truncation: young men and women who are
single in the survey year may marry in future years. In our figures (and later
in our estimates) we circumvent this difficulty by stopping at the male cohort
born in 1968 (1963 for blacks); this choice is motivated by the fact that the
first union occurs before age 40 (45 for blacks11) for most men and women. To
examine marriage patterns, we also drop the small number of couples where one

8If one agrees with Lundberg and Pollak’s view, then classifying cohabiting couples as
singles (as we do) is probably an acceptable solution. Their argument indeed suggests that
the decision not to marry is indicative—at least for the cohorts under consideration—of a
lesser willingness to invest in children education, a key driver of marriage.

9Information on marital dissolution by education of the partners is available in the PSID,
SIPP and NSFG but these samples are much smaller than the IPUMS sample that we use to
analyze marriages.

10See Derek Neal and Armin Rick 2014.
11The data show that blacks continue to marry later than whites.
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partner married before age 16 or after age 40 (45 for blacks)12.
Our final sample consists of

• 1,502,157 white couples

• 78,759 black couples

• 542,677 white singles

• 136,052 black singles.

The sample of singles is slightly skewed towards males (52.8% vs 47.2%).
This conceals a large difference between races: males are only 39.5% of black
singles, but they constitute 56.1% of white singles.

Finally, we need to define “cohorts”. Ideally, each cohort should represent
a “market” (or a matching game), involving specific populations; and we would
relate changes in matching patterns to variations in the distribution of education
by gender across cohorts as well as to changes in surplus. As always, reality is
more complex, and the various “cohorts” tend to mix. For instance, if we define
a cohort by the year of birth, then the spouse of a man born in 1957 is most likely
to be born in 1958: the modal age difference is one year in our data. Yet such a
man may well marry a woman born in 1956 or in 1960. Defining broader cohorts
(e.g., men born between 1955 and 1960) does not solve the mixing problem; and
it has the additional drawback that it reduces the number of cohorts. We have
two approaches to this problem. Our benchmark model concentrates on couples
in which the difference takes some fixed value (the modal value of one year in
our case.) Then we consider men born between 1940 and 1967 and women born
between 1941 and 1968, a total of 28 cohorts. We also impelment an extension
that explicitly models the age difference as a choice parameter, the difference
between husband’s and wife’s age as a choice parameter, which can take six
values; in this case the cohorts become 1940-1967 for men and 1940-1971 for
women. Reassuringly, the two approaches give similar results.

2.2 Patterns in the data

2.2.1 White couples

The trends in education levels of white men and women are shown in Figures 1
and 2. In cohorts born after 1955, women are more likely than men to attend col-
lege; for those born after 1965, they are also more likely to achieve a college-plus
degree. Not coincidentally, the proportion of marriages in which the husband
is more educated than the wife has fallen quite dramatically. Indeed, Figure 2
shows that the percentage of couples in which spouses have the same education
is remarkably stable (slightly below 50%) over more than three decades. How-
ever, there are now more couples in which the wife is more educated than the
opposite.

12Recall that these are first unions.
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[Figure 1 about here.]

[Figure 2 about here.]

Figure 3 illustrates the decline in marriage among whites by plotting the
percentage of individuals who never married by cohort and education. They
show that, for both genders, a higher education has tempered the decline in
marriage. High-school dropouts, on the other hand, have faced a very steep
decline in marriage rates. For the older cohorts of our sample, a college-plus
degree had a strong, negative effect on the probability of getting married for
women, but not for men. This gender difference has largely disappeared in
recent cohorts: college-plus women now marry as much as college graduates,
and much more than high-school educated women.

[Figure 3 about here.]

Figures 4 and 5 describe marital patterns by education. They show that
college-educated men are now much less likely to “marry down” (about 25%,
against 50% for men born in the early 1940s). The pattern for women is opposite;
for instance, the proportion of college-educated women who marry up (with a
college-plus husband) has dropped from 40% to 20% over the period.

[Figure 4 about here.]

[Figure 5 about here.]

2.2.2 Black couples

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

The education and marriage patterns of blacks show some striking differences
from whites. Black women have been at least as likely as men to get a college or
a college-plus degree in every cohort. In contrast with the white population, the
proportions of a cohort with at least a college degree evolve in a very similar way
for men and for women (Figure 6.) As a consequence and in striking contrast to
white couples, Figure 7 shows that in black couples of every cohort the wife is
likely to be more educated than the husband; and this difference has increased
in recent years.

Marriage rates have also declined much faster for blacks than for whites (see
Figure 8.) For the cohorts born in the mid 1960s, the fraction of never married
at age 45 is above 40% for all education classes, and exceeds 80% for high
school drop-outs. Thirdly, for the older cohorts, one does not observe the same
difference between genders as for whites. While the percentage of couples with
equal education are similar for blacks and whites (a stable proportion around
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45%), in unequally educated couples the wife is always more likely to be the
more educated person among blacks. Finally, the proportion of college educated
individuals who never marry was much larger for men than women in the older
cohorts; recent percentages are quite similar. In other words, the spectacular
differences across genders that characterize the white population cannot be seen
in the African-American sample13.

[Figure 9 about here.]

[Figure 10 about here.]

It is also worth noting that the marital patterns by education of black men
and women who do marry are not that different from those of whites (compare
Figures 9 and 10 to Figures 4 and 5.) The main difference is that fewer men
“marry down” in the black population.

2.2.3 Age differences

Finally, the evolution of age differences between spouses for the white and black
populations is shown in Figures 11 and 12, where “early” and “late” refer to the
first and the last three cohorts respectively. The age difference has decreased
slowly over time. Men are still more likely to be the older partner; but couples
in which the woman is older are quite common in more recent cohorts (29%
of white couples and 33% of black couples are to the left of the dashed line in
the rightmost panel.) The proportion of couples in which the (absolute) age
difference is larger than ten years has become very small.

[Figure 11 about here.]

[Figure 12 about here.]

A large literature has evaluated the changes in the value of a higher edu-
cation on the labor market. While this labor market college premium seems
to have evolved in very similar ways across genders and races, the patterns
documented here clearly suggest that the effects of a higher education on mari-
tal prospects have diverged much more. Yet descriptive statistics alone cannot
measure changes in the joint surplus of matches and in its division between the
partners; a more precise evaluation of this “marital college premium” requires
an explicit structural model.

13We should also note here the increase in interracial marriages that started around 1960
and accelerated recently. Black men are much more likely than black women to marry a white
spouse—see Gullickson (2006) and Cherlin (1992, Chapter 4.) Our model does not consider
these additional dimensions, as interracial marriage was less frequent in our sample period.
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3 Theoretical Framework

Our model derives from CIW, who consider an economy with two periods and
large numbers of men and women. In period one, agents draw costs of invest-
ment in human capital and marital preferences from some random distributions;
then they invest in education by choosing from a finite set of possible educational
levels. In period 2, agents match on a frictionless marriage market with trans-
ferable utility; they each receive a wage, the realization of which depends on
the agent’s education; and they consume according to an allocation of resources
that was part of the matching agreement.

When investing in human capital, agents must anticipate the outcome of
their investment. This outcome has two distinct components. One is a larger
future wage. In our framework, this effect is taken to be exogenous, and to
benefit single and married agents alike. Second, a higher educational level has
an impact on marital prospects; it affects the probability of getting married,
the expected income of the future spouse, the total utility generated within
the household, and the intra-couple allocation of this utility. These marital
gains, however, depend on the equilibrium reached on the marriage market;
this in turn depends on the distribution of education in the two populations,
and ultimately of the investment decisions made in the first period. As usual,
the model can be solved backwards using a rational expectations assumption;
equilibrium is reached when the marital gains resulting from given distributions
of education for men and women trigger first period investment decisions that
exactly generate these distributions. Note that even if marital preferences and
investment cost were independent ex ante, education decisions made during the
first period must be correlated with preferences for marriage ex post: since
agents with stronger preferences for marriage are more likely to receive the
marital gain than agents who prefer to stay single, they have stronger incentives
to invest in education.

In the present paper, we aim at estimating and testing the second period
behavior described by this model. This choice is mostly dictated by available
data: while private costs of human capital investment are not observable, the
resulting distribution of education by gender is. In addition, concentrating on
the second period allows us to introduce a slightly more general framework while
addressing the empirical content of the key theoretical concept: the notion of a
marital college premium. We therefore consider the situation at the beginning
of the second period. Agents are each characterized by their chosen level of ed-
ucation, which belongs to some finite set and is observable by all, and by their
preferences for marriage, which are observed by their potential mates but not
by the econometrician. Our goal is to identify the underlying structure from
observed matching patterns; and we are particularly interested in the marital
gains associated with each educational level. Lastly, and as explained in the in-
troduction, we follow the literature14 by assuming that the utility of each agent
is the sum of a deterministic component, which reflects the agent’s consump-

14See for instance Chiappori and Salanié (2016) for a survey.
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tion and investment choices, and a shock that reflects the agent’s idiosyncratic
marital preferences.

3.1 Preferences: the economic component

The economy consists of a male population M and a female population F ,
who only differ by their human capital. Education is the outcome of individual
choices made before the matching stage. At the beginning of the matching
game, these classes are therefore considered by the agents as exogenously given.
However, the outcome of the matching game will, in equilibrium, impact the
investment decision; this is the gist of CIW’s contribution.

3.1.1 Producing children’s human capital

In our model, the primary purpose of marriage is the production of a public
good, namely children’s (future) welfare. For simplicity, we assume that each
couple has exactly one child. We are mostly interested here in human capital
accumulation; therefore we assume that a child’s future well being is a function
of the child’s human capital Q:

UC = Qα

where α is a parameter that summarizes the impact of human capital on the
child’s future wages, income dynamics, and ultimately welfare.

For simplicity, we assume that each couple has one child. The child’s human
capital is produced using parental time; other inputs could be introduced with-
out changing the main conclusions. Following the recent literature on human
capital production, we assume that the impact of parental time is proportional
to the parent’s own human capital, and that mother’s and father’s time inputs
are complements in the production of the child’s human capital.15 In practice,
we use a Cobb-Douglas form:

Q = (H1t1)
β

(H2t2)
1−β

where Hi and ti respectively denote parent i’s human capital and time spent
with the child.

Alternatively, agents may use available time to work on the market or to
accomplish domestic chores. On the labor market, an agent’s wage is directly
proportional to her human capital:

wi = WHi

where W is some aggregate shock. We assume for simplicity that chores require
some fixed amount of time τ ′, for which male and female time are perfect sub-
stitutes; and that they involve no human capital. As a result, chores will be

15Recent work incorporating such complementarities includes del Boca, Flinn and Wiswall
(2012).
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entirely performed by the spouse whose market wage is lower, whom we number
as spouse 2. The spouses’ respective time constraints are therefore:

t1 + l1 = 1 and t2 + l2 = τ = 1− τ ′

where li denotes i’s market work and τ is total time available for agent 2.

3.1.2 Preferences, surplus and individual welfare

Continuous version Individual utilities consist of an economic and a non
economic, predetermined component. The economic component depends on
private and public consumptions according to a Cobb-Douglas form:

ui (qi, UC) = qiUC = qiQ
α

where qi denotes i’s private consumption. The couple’s budget constraint is
therefore:

q1 + q2 = WH1 (1− t1) +WH2 (τ − t2)

or equivalently

q1 + q2 +WH1t1 +WH2t2 = (H1 + τH2)W (1)

These Cobb-Douglas preferences are of the Bergstrom and Cornes’ gener-
alized quasilinear form16; therefore they imply transferable utility. It follows
that any efficient allocation maximizes the sum of utilities under the budget
constraint:

G (H1, H2) = max (q1 + q2)Qα

under (1). The solution is:

H1t1 =
αβ

1 + α
(H1 + τH2) , H2t2 =

α (1− β)

1 + α
(H1 + τH2) (2)

and q1 + q2 =
1

1 + α
(H1 + τH2)W.

In particular, we see that both t1 and t2 are increasing in α and in τ . That is,
the larger the importance of children’s human capital for their future welfare, the
more time both parents will invest in producing this human capital. Moreover,
a reduction in the time devoted to chores, by raising total available time τ , will
have the same impact. Also note that the value of the sum of utilities at the
optimum is

G (H1, H2) = K (H1 + τH2)
1+α

W

where

K =
ααβαβ (1− β)

α(1−β)

(1 + α)
1+α

16See Ted Bergstrom and Richard Cornes (1983).
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Similarly, let Gi (Hi), i = 1, 2, denote the utility of person i when single, so
that the economic surplus generated by marriage is

S (H1, H2) = G (H1, H2)−G1 (H1)−G2 (H2) .

It follows that:

∂2S

∂H1∂H2
(H1, H2) =

∂2G

∂H1∂H2
(H1, H2) = α (1 + α) τKW (H1 + τH2)

α−1
> 0

(3)
We conclude that the function S is supermodular in the spouses’ human cap-

ital. In particular, in the absence of the non-monetary component of individual
utilities, matching should be strictly positive assortative on human capital.

Lastly, equilibrium conditions determine the surplus allocation between spouses.
Specifically, let U (H1) and V (H2) respectively denote, in a couple (H1, H2),
the share of surplus received by spouse 1 and 2. Feasibility implies that:

U (H1) + V (H2) = S (H1, H2)

while stability requires that for all (H ′1, H
′
2):

U (H1) + V (H2) ≥ S (H ′1, H
′
2) .

It follows that
U (H1) = max

H2

(S (H1, H2)− V (H2))

and by the envelope theorem:

U ′ (H1) =
∂S

∂H1
(H1, H2) .

This expression becomes

U ′ (H1) = (α+ 1)KW (H1 + τH2)
α

and similarly
V ′ (H2) = τ (α+ 1)KW (H1 + τH2)

α
.

These derivatives are important because they represent the additional gain
generated, in the marriage market, by a marginal increase in the stock of human
capital. As such, they determine individuals’ incentives to invest in their own
human capital.

We see that
U ′ (H1)

V ′ (H2)
=

1

τ
> 1.

In other words, while both spouses gain ifrom investing in education (both
derivatives are positive), the marginal gain is higher for the more educated
spouse (i.e., U ′ (H1) > V ′ (H2)). This conclusion is a direct consequence of
the specialization pattern, whereby the low-wage spouse is in charge of chores:
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the benefits of a larger stock of human capital do not extend to time spent on
chores. In that sense, the equilibrium is, as argued above, “self-reinforcing”: in
a world in which one gender is more educated, the equilibrium logic leads to
specialization on chores, which in turn results in stronger incentives to invest
for the educated gender—thus reinforcing the initial asymmetry. Equilibrium
phenomena tend therefore to exacerbate initial differences, typically resulting in
strong responses to even minor changes in the economic context. Note, however,
that the discrepancy decreases when time devoted to chores is reduced (i.e., in
our model, when τ increases); and also that the identity of the lower-wage spouse
depends on H1 ≷ H2.

Discrete version In the empirical application below, individual human cap-
ital will be proxied by the person’s education. Each individual i belongs to
an education class I = 1, . . . ,K which is observed by the econometrician. Let
SIJ denote the economic surplus generated by the matching of spouses with
respective educations I and J .

To measure supermodularity with discrete types, cross derivatives must be

replaced with cross differences. We call a 2× 2 matrix

(
a b
c d

)
supermodular

if a+ d− b− c ≥ 0. Then the K×K matrix S is supermodular on the diagonal
iff all its 2× 2 diagonal submatrices are supermodular.

Equivalently, define the cross-difference operator DIJ,KL by:

DIJ,KL (A) = AIJ +AKL −AIL −AKJ (4)

for any matrix A. In particular, let the supermodular core of the surplus matrix
S be the set of numbers

D (S) =
(
DII,KK (S) , I,K = 1, ...,K, I < K

)
(5)

Then the surplus is supermodular on the diagonal if and only if all components
of its supermodular core are positive (this is very similar to the definition in
Siow 2015.)

3.1.3 Comparative statics: general results

Driving forces The theoretical model presented above generates clear-cut
comparative statics results. As argued in the introduction, we concentrate on
two major changes that affected household technology over the recent decades.
One is the sustained rate of technological advance in the household sector—what
Greenwood et al. (2005) called “engines of liberation”. Although the process
started early (around the beginning of the twentieth century, for instance, for
refrigerators), progress continued regularly since then. The latest wave of tech-
nological innovations includes dishwashers (whose current penetration rate is
around 80% in the US, against 45% in 1990 and less than 10% in the sixties)
and microwaves (which appeared in the 80s, for a current penetration rate over
95%). Greenwood et al. convincingly argue that “technological progress in the
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household sector played a major role in liberating women from the home” (p.
109). In our model, the direct translation is a significant reduction of the time
τ ′ devoted to chores—or, equivalently, an increase in available time τ .

A second and major evolution is the increased importance of human capital
for wages and income. This trend is well summarized by Goldin and Katz (2009,
p. 2):

[. . . ] much of the rising wage inequality in recent history can be
traced to rising differences between the wages of the highly educated
and the less educated17.

In other words, while a child’s future (expected) well-being has always been
an increasing function of the accumulated stock of human capital, this rela-
tionship is stronger and steeper now than it was fifty years ago. In our model,
the direct implication of this trend is that the coefficient α, which summarizes
the impact of human capital on future income and well-being, has increased
significantly over the period under consideration.

Note, however, that the increased importance of human capital has a double
effect. Not only does it boost the returns on investment on children, but it
also directly affects the link between the parents’ stock of human capital and
the wage they receive on the market. Again, the theoretical framework delivers
precise predictions regarding this impact. The parameter governing the rela-
tionship between wages and human capital is the aggregate wage shock W ; in
our comparative statics analysis, we shall therefore investigate the consequences
of an increase in W , particularly for more educated people.

Lastly, the higher level of female human capital implies that the opportu-
nity cost of the time women devote to non market activities—both chores and
children—is much higher. Moreover, wives have become more likely to earn
more than their husbands. While the fraction of couples where husband and
wife have the same education has remained more or less constant, couples with
a more educated wife now outnumber those exhibiting the opposite pattern;
and in more than 20% of couples, the wife’s income exceeds the huband’s. Note
that these trends are by no means specific to the US; they affect all developed
economies, and many developing ones as well.

Implied predictions: domestic time use Given our structural model,
these evolutions should generate two types of testable consequences. A first
set of predictions can directly be tested on available data. According to our
model, the total time devoted to chores should decrease. Moreover, and given
our assumption that male and female time are perfect substitutes, the special-
ization patterns should shift, with fewer women and more men devoting time
to such domestic activities.

17Goldin and Katz estimate that increases in the economic returns to investments in edu-
cation from 1973 to 2005 account for about 60 percent of the rise in wage inequality over that
period. For a detailed analysis, see Goldin and Katz (2008)
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Next, consider investment in children in a couple in which the husband earns
higher wages. A first prediction is that the time spent by the husband should
increase. Indeed, efficiency implies that:

t1 =
αβ

1 + α

(
1 + τ

H2

H1

)
.

The right-hand side is increasing in α, τ , and in the ratio H2/H1—all of which
have increased over the period—and is independent of the wage coefficient W .
Things are more complex for women as (2) gives

t2 =
α (1− β)

1 + α

(
H1

H2
+ τ

)
.

Here, t2 is increasing in α and τ and does not depend on W ; but it decreases
with the ratio H2/H1. Therefore, the time the wife spends with children will
increase only if the first two effects—increased importance of these investments
and more time available—dominate the third, i.e. the shift in the education
profile within couples. All in all, we expect the increase (if any) to be smaller
than for men.

Implied predictions: supermodularity and its evolution A second set
of predictions relates to the evolution of matching patterns. Our model gener-
ates a supermodular surplus, and it is natural to ask whether this supermod-
ularity is strengthened or weakened by the various trends we just described.
To answer this question, let us first see how the second cross derivative—whose
sign determines super- or submodularity—changes with the key parameters. (3)
gives:

∂3S

∂τ∂H1∂H2
(H1, H2) =

αα+1βαβW (H1 + τH2)
α−2

(H1 + ατH2)

(α+ 1)
α

(1− β)
α(β−1) > 0

and

∂3S

∂α∂H1∂H2
(H1, H2) =

βαβαα+1τW (H1 + τH2)
α−1

(1− β)
α(β−1)

(α+ 1)
α

(ln (H1 + τH2) + L (α, β))

where

L (α, β) =
2α+ 1

α (α+ 1)
+ ln

α

α+ 1
+ ln

(
(1− β)

1−β
ββ
)

It follows that an increase in τ always makes the surplus function S more su-
permodular. So does an increase in α, since the expression L (α, β) is always
positive for α, β ∈ [0, 1]. Moreover, these impacts increase with both levels of
human capital. Finally,

∂3S

∂W∂H1∂H2
(H1, H2) = α (1 + α) τK (H1 + τH2)

α−1
> 0

so that an increase in the market reward to human capital (as summarized by
the factor W ) also increases the supermodularity of the surplus.
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Differences by human capital An implicit assumption of this comparative
statics exercise is that the importance of human capital (either for children,
as summarized by the coefficient α, or for parental wages, as indicated by the
wage coefficient W ) has increased uniformly for all educational levels. In prac-
tice, the impact is mostly visible at the top of the distribution. The college and
college-plus premiums have drastically increased since the 1980s. According
to David Autor (2014), the earnings gap between the median high-school edu-
cated and college-educated US males working full-year, full-time jobs doubled
between 1979 and 201218. On the contrary, the return to education at a lower
level (say, between high-school drop-out and high-school graduate) have proba-
bly increased much less, if at all. While an exact quantification is plagued with
selection issues, Lawrence Mishel et al. (2013) estimate that the “high school
premium” remained fairly stable (between 20 and 25%) over the same period.
Similarly, raw data indicate (again without controlling for selection) that the
wage difference between high school graduates and “some college” actually de-
clined over the same period.

This suggests that investment in human capital has become even more im-
portant for higher-education couples. In our model, this would correspond to a
more convex ui functions, and to larger increases of the wage factor W for in-
dividuals with nmore education. Therefore our comparative statics conclusions
should apply with more force at the top than at the bottom of the distribution.

The discrete setting Our first set of predictions, which regard intra-household
allocation of domestic time, are readily tested. On the other hand, predictions
regarding assortative matching must be translated into our discrete setting. The
crucial tool is the supermodular core matrix defined in (4) and (5). In particular,
we submit that the somewhat vague notion that “assortative matching creates
more surplus now than it used to in the past” should be formally defined as
follows. Suppose that we observe the surplus matrix S over two periods, T = 1
and T = 2; in particular, we can compute the supermodular core D (S) at each
period. Then

Definition 1 (Additional surplus generated by assortativeness)
The surplus generated by assortativeness does not change between T = 1 and

T = 2 if and only if the array D (S) is the same at T = 1 and T = 2.
The surplus generated by assortativeness increases if and only if all compo-

nents of the array D (S) increase between T = 1 and T = 2; equivalently, the
matrix (S2 − S1) is supermodular.

Note that this definition is of independent interest: it provides an explicit
characterization of the somewhat hazy notion of “increased preferences for
assortativeness”—which, in our context, corresponds to changes in the addi-
tional surplus generated by assortativeness. Moreover, this characterization is

18From 17, 000 to 34, 000 constant 2012 dollars.
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structural: it relies on a model in which assortativeness naturally relates to di-
agonal supermodularity of the surplus function, and it exploits this relationship
to provide a formal definition.

Also note that the definition can be restricted to a subset of the categories.
For instance, we shall say that the additional surplus generated by assortative-
ness has increased for more educated people (say, individuals at education level
L and above) if the corresponding (K − L+ 1) × (K − L+ 1) submatrix of S
exhibits the property in Definition 1. More precisely, define the matrix SLc by

SLc =
(
SIJc

)
I,J=L,...,K

then we require that the matrix SLc′ − SLc be supermodular on the diagonal for
c′ > c. Equivalently, we require all components of the matrix

D
(
SLc
)

=
(
DII,KK

(
ScL

)
, I,K = L, . . . ,K, I < K

)
(6)

to increase with c.
With this definition, the previous comparative statics results predict that

the additional surplus generated by assortativeness must have increased over the
period, particularly for higher levels of education. In practice, if we estimate
the economic surplus matrix SLc over two periods, c and c′, with c < c′, the
array D

(
SLc
)

should increase with c for L “large enough”.

3.2 Preferences: non monetary component

In addition to preferences over commodities, each individual has non-monetary
marital preferences which we model by random vectors. Following Choo and
Siow (2006), we assume that preferences over potential spouses are individual-
specific and only depend on the spouse’s education class. For instance, a woman
j belonging to class J has a vector of marital preferences

bJj =
(
b∅Jj , b1Jj , ..., bKJj

)
where bKJj denotes the utility j derives from marrying a spouse with an educa-

tion K (and where, by convention, b∅Jj denotes the utility j derives from staying
single). Similarly, man i’s idiosyncratic marital preferences are described by the
vector

aIi =
(
aI∅i , a

I1
i , ..., a

IK
i

)
where I denotes i’s education. Note that the distribution of an individual’s vec-
tor of marital preferences may depend on the individual’s own education; more
educated men may value an educated wife differently than less educated men.
Not only is this assumption quite plausible empirically, but it is also needed to
reflect the endogeneity of education. In CIW, for instance, individual tastes for
marriage influence investment in education, because they affect the probability
that an individual reaps the benefits of education on the marriage market. Since
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individuals with different marital tastes invest differently, the conditional dis-
tribution of taste given education will typically vary with education, reflecting
the selection into educational choices. Consequently, we define

AIJ = E
(
aIJi |i ∈ I

)
and BIJ = E

(
bIJj |j ∈ J

)
.

It should be stressed thatin this framework, these idiosyncratic, additively sep-
arable shocks are the only source of unobserved heterogeneity. This assumption
is crucial in order to apply the Choo-Siow approach; see Chiappori and Salanié
(2016) for a detailed discussion.

Finally, and still following Choo and Siow (2006), we assume that economic
and marital preferences are additively separable. To be more precise, the marital
surplus sij generated by the match of man i with education I and woman j
with education J is the sum of two components. One is the expected economic
surplus SIJ generated by joint consumption; the other consists of the sum of
the spouses’ idiosyncratic preferences for marriage with each other, relative to
singlehood.

sij = SIJ + (aIJi − aI∅i ) + (bIJj − b∅Ji ). (7)

or, using the previous definitions:

sij =
(
SIJ + (AIJ −AI∅) + (BIJ −B∅J)

)
+
(

(aIJi −AIJ)− (aI∅i −AI∅)
)

+
(

(bIJj −BIJ)− (b∅Jj −B∅J)
)
.

The component on the first line

ZIJ = SIJ + (AIJ −AI∅) + (BIJ −B∅J) (8)

is the conditional expectation of the total surplus for matches between classes
I and J . Within it, SIJ is the conditional expected economic surplus, while
(AIJ − AI∅) + (BIJ − B∅J) represents the conditional expected surplus from
marital preferences. By definition, the components on the last two lines have
zero expectation across all hypothetical matches. We use

αIJi = aIJi −AIJ and βIJj = bIJj −BIJ

to denote the within-class variation of marital preferences; note that, by con-
struction,

E
[
αIJi

]
= E

[
βIJj

]
= 0 for all i, j, I, J

Finally, the total surplus generated by the match between i ∈ I and j ∈ J is:

sij = ZIJ +
(
αIJi − αI∅i

)
+
(
bIJj − b∅Jj

)
(9)

The matrix Z =
(
ZIJ

)
will play a crucial role in what follows. As we shall

see, the equilibrium matching will depend on preferences through the matrix Z
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and the distribution of the α’s and β’s. From the definitions above, ZIJ reflects
the distribution of income and preferences over commodities of spouses who
chose education levels I and J (and each other), as well as the distribution of
their marital preferences. It is therefore a complex object; but it is the crucial
construct that determines marital patterns in our context. Our goal is to find
reasonable conditions under which it is identifiable from observed matching
patterns.

3.3 Matching

A matching consists of

(i) a measure dµ on the set M× F , such that the marginal of dµ over M
(resp. F) is dµM (dµF ); and

(ii) a set of payoffs (or imputations) {ui, i ∈M} and {vj , j ∈ F} such that

ui + vj = zij for any (i, j) ∈ Supp (dµ)

In words, a matching indicates who marries whom (note that the allocation
may be random, hence the measure), and how each married couple shares the
surplus zij generated by their match. The numbers ui and vj are the expected
utilities man i and woman j get on the marriage market, on top of their util-
ities when they remain single;. In any pair (i, j) that marries with positive
probability, ui and vj must add up to the total surplus generated by the union.

3.3.1 Stable Matchings

A matching is stable if one can find neither a man i who is currently married but
would rather be single, nor a woman j who is currently married but would rather
be single, nor a woman j and a man i who are not currently married together but
would both rather be married together than remain in their current situation.
Formally, we must have that:

ui ≥ 0 for any i ∈M (10)

vj ≥ 0 for any j ∈ F (11)

ui + vj ≥ zij for any (i, j) ∈M×F . (12)

The two conditions in (10) and (11) implies that married agents would not prefer
remaining single. Condition (12) states that for any possible match (i, j), i and
j could not both strictly increase their utility by matching together.

As is well known, stable matchings maximize the total joint surplus 19.
Specifically, consider the set DM×F of measures dµ over the product space

19See for instance Chiappori, McCann and Nesheim (2010) or Chiappori (2017) for a detailed
exposition.
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M×F whose marginal over M (resp. F) is dµM (resp. dµF ); and within this
set, find the measure that maximizes total surplus:

Σ = max
µ∈DM×F

∫
zdµ

This is an optimal transportation problem, which is linear in its unknown (i.e.
the measure µ). It therefore admits a dual, which consists in finding {ui, i ∈M}
and {vj , j ∈ F} that minimize∫

uidµM (i) +

∫
vjdµF (j)

under the constraints (10), (11) and (12).
One can show that if a matching is stable, the corresponding measure dµ

solves the surplus maximization problem. Conversely, if the surplus maximiza-
tion problem has a solution dµ, then the dual problem has solutions {ui, i ∈M}
and {vj , j ∈ F}, and the matching defined by dµ, {ui, i ∈M} and {vj , j ∈ F}
is stable.

A first consequence is that existence of a stable matching is guaranteed under
mild continuity assumptions: we simply need the (linear) surplus maximization
problem to have a solution. Moreover, the dual of this maximization problem
generates, for each man i (resp. woman j), a dual variable or “shadow price”
ui (resp. vj); and these dual variables exactly coincide with payoffs associated
to the matching problem. Finally, note that with finite populations, the payoffs
ui and vj are not uniquely defined: they can be marginally altered without
violating the finite set of inequalities (10)–(12). However, when the populations
become large, the intervals within which ui and vj may vary typically shrink;
in the limit of continuous and atomless populations, the distributions of the
individual payoffs are exactly determined.

3.3.2 A basic lemma

From an economic perspective, our main interest lies in the dual variables u and
v. Indeed, vj is the additional utility provided to woman j by her equilibrium
marriage outcome. This value is individual-specific, as it depends on Ms j’s
preferences for marriage; but its expected value conditional on j having reached
a given level of education J is directly related to the marital premium associated
with education J (more on this below).

In our context, there exists a simple and powerful characterization of these
dual variables:

Lemma 2 For any stable matching, there exist numbers U IJ and V IJ , defined
for I, J = 1, . . . ,K, with

U IJ + V IJ = ZIJ (13)
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satisfying the following property: for any matched couple (i, j) such that i ∈ I
and j ∈ J ,

ui = U IJ + (αIJi − α0J
i )

and (14)

vj = V IJ + (βIJj − β
0J
j )

Proof. Assume that i and i′ both belong to I, and their partners j and j′ both
belong to J . Stability requires that:

ui + vj = ZIJ + (αIJi − α0J
i ) + (βIJj − β

0J
j ) (15)

ui + vj′ ≥ ZIJ + (αIJi − α0J
i ) + (βIJj′ − β

0J
j′ ) (16)

ui′ + vj′ = ZIJ + (αIJi′ − α0J
i′ ) + (βIJj − β

0J
j ) (17)

ui′ + vj ≥ ZIJ + (αIJi′ − α0J
i′ ) + (βIJj′ − β

0J
j′ ) (18)

Subtracting (15) from (16) and (18) from (17) gives

(βIJj′ − β
0J
j′ )− (βIJj − β

0J
j ) ≤ vj′ − vj ≤ (βIJj′ − β

0J
j′ )− (βIJj − β

0J
j )

hence
vj′ − vj = (βIJj′ − β

0J
j′ )− (βIJj − β

0J
j )

It follows that the difference vj − (βIJj − β
0J
j ) does not depend on j, i.e.:

vj − (βIJj − β
0J
j ) = V IJ for all i ∈ I, j ∈ J

The proof for ui is identical.

In words, Lemma 2 states that the dual utility vj of woman j, belonging
to class J and married with a husband in education class I, is the sum of two
terms. The first one is woman j’s idiosyncratic preference for a spouse with
education I over singlehood, βIJj −β

∅J
j ; the second term, V IJ , only depends on

the spouses’ classes, not on who they are. In terms of surplus division, therefore,
the U IJ and V IJ denote how the deterministic component of the surplus, ZIJ ,
is divided between spouses; then a spouse’s utility is the sum of this share of
the common component and of his or her idiosyncratic contribution.

Finally, for notational consistency, we define U I∅ = V ∅J = 0 for all I and J .

3.3.3 Stable matching: a characterization

An immediate consequence of Lemma 2 is that the stable matching has a simple
characterization in terms of individual choices:

Proposition 3 A set of necessary and sufficient conditions for stability is that
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1. for any matched couple (i ∈ I, j ∈ J) one has

αIJi − αIKi ≥ U IK − U IJ for all K = ∅, 1, . . . ,K (19)

and
βIJj − β

KJ
j ≥ V KJ − V IJ for all K = ∅, 1, . . . ,K (20)

2. for any single man i ∈ I one has

αIJi − αI∅i ≤ −U IJ for all J (21)

3. for any single woman j ∈ J one has

βIJj − β
∅J
j ≤ −V IJ for all I (22)

Proof. See Appendix A.

Stability thus readily translates into a set of inequalities in our framework;
and each of these inequalities relates to one agent only. This property is crucial,
because it implies that the model can be estimated using standard statistical
procedures applied at the individual level, without considering conditions on
couples. This separation is possible because the endogenous factors U IJ and
V IJ adjust to make the separate individual choices consistent with each other.

3.4 Interpretation and comparative statics

3.4.1 The marital college premium

Labor economists define the “college premium” as the percentage increase in the
wage rate that can be expected from a college education. This wage premium
can readily be measured using available data, after controlling for selection
into college; existing work suggests that it is similar for singles and married
persons and for men and women20 . We used the PSID to estimate a simple
Mincer equation, separately for each gender and race but without any attempt
to control for selection. Figure 13 shows the resulting estimates of the labor
market college premium for both genders, for whites and for blacks. Our paper
is mostly concerned with changes in the college premium over time. It is worth
noting at this stage that these (admittedly coarse) estimates suggest that if
anything, the labor market college premium has increased more for men than
for women. Also note the striking discrepancy between whites and blacks, and
in particular the decrease in the labor market value of a college degree for black
women over time.

CIW point out that in addition to this wage premium, there exists a marital
college premium: a college education enhances an individual’s marital prospects,
via the probability of being married and the expected education (or income) of
the spouse, but also the size of the surplus generated and its division within

20See for instance Bronson (2014, Figure 3B).
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the couple. In other words, it is well-understood that college education bene-
fits individuals in terms of higher wages, better career prospects, etc; but our
goal here is to capture the additional benefits that college-educated individuals
receive on the marriage market.

[Figure 13 about here.]

The notions previously defined allow a clear definition of the marital college
premium. Indeed, the surplus is computed as the difference between the total
utility generated within the couple and the sum of individual utilities of the
spouses if single, thus capturing exactly the additional gains from education
that only benefit married people. Regarding individual well-being, an intuitive
interpretation of U IJ (or equivalently of V IJ) would be the following. Assume
that a man randomly picked in class I is forced to marry a woman belonging
to class J (assuming that the populations are large, so that this small deviation
from stability does not affect the equilibrium payoffs). Then his expected util-
ity is exactly U IJ (the expectation being taken over the random choice of the
individual—therefore of his preference vector—within the class).

Note, however, that this value does not coincide with the average utility of
men in class I who end up being married to women J in a stable matching.
The latter value is larger than U IJ , reflecting the fact that agents choose their
spouses. The expected surplus of an agent with education I is in fact

ūI = E max
J=0,1,...,K

(
U IJ + αIJ

)
,

where the expectation is taken upon the distribution of the preference shock α.
This expected surplus depends on the distribution of the preference shocks; it
will be computed below under a specific assumption on this distribution.

4 Empirical implementation

We now describe the econometric model we shall take to data. Galichon and
Salanié (2015) proved that separable models are just identified under the strong
condition that the econometrician has exact knowledge of the probability dis-
tributions of α and β. This is an obvious weakness, since it implies that the
model is simply not testable from cross-sectional data. A crucial feature of
our approach is that we analyze multiple markets; in practice, we shall consider
several cohorts indexed by c = 1, . . . , T and exploit the time variations in the ed-
ucation profiles of the populations at stake. Such a setting, in principle, should
allow us to relax some restrictions while still generating overidentification tests.

Our first task is to describe how the structural components of our statistical
framework evolve across cohorts. We start, as a benchmark, with an immediate
generalization of CS. We show that this benchmark version generates strong
overidentifying restrictions, and we describe a set of overidentification tests.
This model fits the data well for the black population, but it is strongly rejected
for whites. We then discuss several further extensions of the model, which we
go on to test.
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4.1 The benchmark version

4.1.1 The structural framework

In a static version of CS, the surplus generated by the match of man i, belonging
to class I, with woman j, belonging to class J , takes the form:

zij = ZIJ +
(
αIJi − αI∅i

)
+
(
βIJj − β

∅J
j

)
In a multi-cohorts setting, it is natural to assume that the shocks are in-

dependent across cohorts. How the deterministic part ZIJ varies with time is
less clear. Allowing the entire Z matrix to vary freely across cohorts would
amount to independently repeating static versions of CS, with no gain in terms
of testability. Our benchmark model, therefore, introduces category-specific
drifts, whereby the ZIJ terms vary according to:

ZIJc = ζIc + ξJc + ZIJ (23)

so that
zij,c = ZIJ + ζIc + ξJc +

(
αIJi,c − αI∅i,c

)
+
(
βIJj,c − β

∅J
j,c

)
.

In practice, the drifts ζIc and ξJc capture possible changes over time in the
surplus generated by marriage. There are several reasons to expect the surplus
to vary across periods. One is that technological innovations have drastically
altered the technology of domestic production, therefore the respective gender
roles within the household (see Greenwood et al 2005.) Other important factors
were the evolution of fertility control, as emphasized by Michael (2000) and
Goldin and Katz (2002) among others; and improvements in medical techniques
and in infant feeding (Albanesi and Olivetti 2016.) Finally, remember that in
our framework, the systematic part of the surplus, ZIJ , can be interpreted as a
reduced form for more dynamic interactions, including divorce and remarriage;
as a consequence, changes in divorce laws or remarriage probabilities may affect
the surplus.

It is important to stress what the proposed extension allows and what it
rules out. Under (23), the benefits of marriage may evolve over time; and these
evolutions may be both gender- and education- specific. We allow, for instance,
the reduction in the gains generated by marriage to be different for an educated
women and for an unskilled man.21

However, all models of the form (23) satisfy an important property: the
supermodular core is the same for all cohorts. To see why, simply note that

21In addition, the coefficients ξ and ζ can also capture changes in the correlation between
education and mean marital preferences across cohorts (e.g., single women gaining more from
education over time).
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under (23):

DIJ,KL (Zc) = ZIJc − ZILc − ZKJc + ZKLc

=
(
ζIc + ξJc + ZIJ

)
−
(
ζIc + ξLc + ZIL

)
−
(
ζKc + ξJc + ZKJ

)
+
(
ζKc + ξLc + ZKL

)
= ZIJ − ZIL − ZKJ + ZKL = DIJ,KL (Z) .

In this new setting, Lemma 2 has an immediate generalization:

Corollary 4
For any cohort c, there exist numbers U IJc and V IJc , I, J = 1, . . . ,K, with

U IJc + V IJc = ZIJc (24)

satisfying the following property: for any matched couple (i, j) in cohort c such
that i ∈ I and j ∈ J ,

ui = U IJc + (αIJi − αI∅i )

and (25)

vj = V IJc + (βIJj − β
∅J
j ).

4.1.2 Distributions

Next we need to describe the probability distributions of the random terms α
and β. Having transformed the problem into a standard discrete choice problem,
it is natural to make the following assumption:

Assumption 5 (Gumbel) The random terms αIJi and βIJj follow independent
Gumbel22 distributions G (−k, 1), with k ' 0.5772 the Euler constant.

In particular, the αIJi and βIJj have mean zero and variance π2

6 . The model
can easily be extended to allow for covariates; this extension is fully described
in Chiappori, Salanié and Weiss (2011).

A direct consequence of Proposition 3 is that, for any I and any i ∈ I in
cohort c :

γIJc ≡ Pr (i matched with a woman in J)

=
exp

(
U IJc

)∑
K exp (U IKc ) + 1

and

γI∅c ≡ Pr (i single) =
1∑

K exp (U IKc ) + 1

22This distribution is also referred to as the “type-I extreme value distribution.” While it
has been used in economics since Daniel McFadden (1973), Dagsvik (2000) and Choo and
Siow (2006) were the first to apply it to the study of marriage markets.
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Similarly, for any J and any woman j ∈ J in cohort c:

δIJc ≡ P (j matched with a man in I) (26)

=
exp

(
V IJc

)∑
K exp (V KJc ) + 1

and (27)

δ∅Jc ≡ P (j single) =
1∑

K exp (V KJc ) + 1

These formulas can be inverted to give:

U IJc = ln

(
γIJc

1−
∑
K γ

IK
c

)
(28)

and

V IJc = ln

(
δIJc

1−
∑
K δ

KJ
c

)
. (29)

In what follows, we assume that there are singles in each class (a claim

obviously supported by the data); therefore γI∅c > 0 and δ∅Jc > 0 for each I, J ,
implying that

∑
K γ

IK
c < 1 and

∑
K δ

KJ
c < 1 for all I, J .

We can readily compute the class-specific expected utilities

ūI = E

[
max

J=∅,1,...,K

(
U IJc + αIJi

)]
Under our assumptions, the difference ūI−ūK denotes the difference in expected
surplus obtained by reaching the education level I instead of K. It therefore
represents exactly the marital premium generated by that change in education
level—that is, the gain that accrues to married people, on top of the benefits
that singles also receive.

From the properties of Gumbel distributions, we have

ūI = E
[
max
J

(
U IJc + αIJi

)]
= ln

(∑
J

exp
(
U IJc

)
+ 1

)
= − ln

(
γI∅c

)
(30)

and similarly

v̄J = ln

(∑
I

exp
(
V IJc

)
+ 1

)
= − ln

(
δ∅Jc

)
. (31)

These results illustrate a well-known property of homoskedastic multino-
mial logit models: the expected utilities of participants are fully summarized by
their probability of remaining single23. Two remarks can be made at this point.
First, it is important to stress that there is no automatic relationship between
changes in population composition (say, an exogenous increase in the proportion
of women with a college degree) and their impact on expected utility. Even in

23As we will see, this property no longer holds in an heteroskedastic version of the model.
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this benchmark version, such an increase may either boost or deflate expected
utility of educated women, depending on its actual consequences on probability
of singlehood. Second, the one-to-one relationship between expected marital
gain (by gender and education) and the corresponding percentage of singles is
not robust to a generalization of the stochastic framework. Two possible gen-
eralizations seem of particular interest. First, as emphasized by Galichon and
Salanié (2015), our theoretical approach could apply to any stochastic distri-
bution; one simply has to compute the corresponding “generalized entropy”, at
the cost of an increase in the complexity of estimation. Less ambitiously, an
heteroskedastic version of CS remains identifiable in our multi-market approach;
we explore this idea in section 4.2.2.

Looking back at the descriptive statistics presented in section 2.2, one strik-
ing fact is the much smaller decline in marriage probability for educated women
than uneducated ones. The theoretical interpretation is that, although the gain
from marriage declined for all women, the decline was less pronounced for edu-
cated women; this translates into a strong increase in the marital college (and
college-plus) premium, which directly reflects the difference between these gains.
Moreover, this pattern is gender-specific for the white population, but not for
African-Americans; we shall return to this difference.

4.1.3 Empirical tests

Observing several cohorts generates strong overidentifying restrictions on the
benchmark model. One can actually give a simple representation of these re-
strictions. Start with the basic relation (23). Together with (28) and (29), this
gives:

ln

(
γIJc

1−
∑
H γ

IH
c

)
+ ln

(
δIJc

1−
∑
H δ

HJ
c

)
= ζIc + ξJc + ZIJ (32)

Now remember the cross-difference operator we introduced in (4):

DIJ,KL (A) = AIJ +AKL −AIL −AKJ ,

and apply it to (32). The term ln
(
1−

∑
H γ

IH
c

)
on the left-hand side only

depends on c and I, and taking it through the cross-difference operator gives
zero. Similarly, the term ln

(
1−

∑
H γ

HJ
c

)
also contributes zero, as do the terms

ζIc and ξJc on the right-hand side. We are left with

DIJ,KL (ln γc + ln δc) = DIJ,KLZ,

denoting γc, δc and Z the matrices that collect respectively the γIJc , δIJc and
ZIJ terms.

But since the right-hand side does not depend on the cohort index c, it
follows that the expression

dIJ,KLc = DIJ,KL (ln γc + ln δc) (33)

should not depend on c.
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Two remarks can be made at this point. First, these conditions are necessary
and sufficient; if they are satisfied, then one can always find some matrices
U, V and Z and some vectors ζ and ξ such that all previous conditions are
satisfied. Second, they are quite restrictive. It is easy to see that with 5 classes,
there are only 4 × 4 = 16 a priori independent cross-differences (see Fox, Hsu
and Yang 2015.) Take the corresponding 16 T -dimensional vectors dIJKL =(
dIJ,KLc , c = 1, . . . , T

)
; our assumption (23) amounts to requiring that each of

them be constant (proportional to (1, . . . , 1).) This generates 16 × (T − 1)
restrictions, a large number since we use several decades of yearly data.

4.2 Extensions

We shall now consider three extensions of the model that we will take to the
data.

4.2.1 Linear and Quadratic Supermodularity Trends

Our benchmark model posits that preferences for assortativeness do not change
over the period. As we shall see, this hypothesis is not rejected for the African-
American sample; but it is excessively restrictive for the white population. A
natural extension is to allow preferences for assortativeness to change over the
period. This should be done parsimoniously, since we want to preserve the
strong testability of the model. We first introduce linear time trends in the
supermodular core of the deterministic matrix. To do this, we assume that:

ZIJc = ζIc + ξJc + aIJ + bIJ × c. (34)

Then (32) implies that

dIJ,KLc = DIJ,KL (ln γc + ln δc)

is a linear function of the cohort index c.
Given the choice of the reference categories, the number of parameters is

increased by 4 × 4 = 16, and the model remains testable: the 16 a priori in-
dependent T -dimensional vectors dIJ,KL =

(
dIJ,KLc , c = 1, . . . , T

)
must now all

belong in the space spanned by the two vectors (1, . . . , 1) and (1, . . . , T ). The
resulting 16× (T − 2) conditions are again necessary and sufficient. Moreover,

DIJ,KL (Zc) = ZIJ − ZIL − ZKJ + ZKL +
(
bIJ − bIL − bKJ + bKL

)
c

and it follows from Definition 1 that the surplus generated by assortativeness
increases if and only if the matrix B =

(
bIJ
)

is supermodular on the diagonal,
that is if and only if

bII − bIK − bKI + bKK > 0

for all I < K. In what follows, we therefore pay a particular attention to the
supermodularity of B, and especially to the submatrix corresponding to higher
education levels.
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Going one step further, one can introduce a quadratic trend in the time
variation of the deterministic component of the surplus. Then the vectors dIJ,KL

must lie in the space spanned by the three vectors (1, . . . , 1), (1, . . . , T ) and
(1, . . . , T 2), for a total of 16× (T − 3) testable predictions.

4.2.2 Heteroskedasticity

A second generalization introduces class-dependent heteroskedasticity. Specifi-
cally, we consider a stochastic formulation of the type:

zij,c = ZIJ + σIαIJi,c + µJβIJj,c

where the variance of the stochastic component for a man belonging to educa-
tion class I depends on the parameter σI , and the variance of the stochastic
component for a woman belonging to education class J is determined by the
parameter µJ . Note that we need to normalize one of these parameters.

The previous relationships can be extended to this more general setting; the
reader is referred to Chiappori, Salanié and Weiss (2011). In particular, the
expected surplus of a male agent in education class I now is

ūI = σI ln

(∑
J

exp
(
U IJ/σI

)
+ 1

)
= −σI ln

(
γI0c
)

so that the marital education premium between classes I and K (representing
the gain in expected surplus from belonging to I instead of K) becomes:

ūI − ūK = σK ln
(
γK0
c

)
− σI ln

(
γI0c
)

An important result, proved in Chiappori, Salanié and Weiss (2011), is that this
model is again (over) identified.

In practice, we will test whether the introduction of heteroskedasticity (re-
sulting in 2× 5− 1 = 9 additional parameters) significantly improves the fit.24

4.2.3 Age differences

Finally, we may want to consider the age difference within the couple as a
choice variable. The natural way to proceed is to assume that the determin-
istic component of the surplus, Z, also depends on the age difference between
husband and wife, which we denote d. Our benchmark model, which allows for
category-specific drifts, therefore becomes:

ZIJc,d = ζIc,d + ξJc,d + ZIJ (35)

24A model with both linear trends in supermodularity and heteroskedastic random prefer-
ences is in principle identifiable. Empirically, however, it appears to raise serious robustness
issues (at least for the data under consideration), reflecting a possible overparametrization.
Given our focus on the evolution of supermodularity across cohorts, we chose to concentrate
on the first aspect and ignore the second.
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so that

zIJc,d = ZIJ + ζIc,d + ξJc,d +
(
αIJi,c,d − αI∅i,c,d

)
+
(
βIJj,c,d − β

∅J
j,c,d

)
Obviously, this model differs a lot from the initial one in both the number

of observations and the number of parameters: the set of marriages of a man
with education I, born in cohort c, to a woman with education J is now divided
into seven subcategories, each representing a specific age difference (-4 or less,
-3 or -2, -1 to 1, 2 or 3, 4 or 5, 6 or more.) In order to compare the results of
this specification with those of the initial version, we concentrate on the same
margins we were trying to fit initially. That is, we take a weighted average of
the errors within each cell (I, J, c) over the age differences d, and we use this
averaged error to run our tests.

5 Estimation and tests

In order to estimate the constituent parts of our various models and to test the
corresponding hypotheses, we use the minimum distance framework.

5.1 The Benchmark Model

Start from our benchmark model of section 4.1, with constant supermodular
core and homoskedasticity. It is characterized by equation (32), which can be
rewritten as

log (Pr(J |I, c) Pr(I|J, c)) = ZIJc ≡ AIJ +BIc + CJc . (36)

This is an algebraic identity, which bears on unknown parameters. In statistical
terms, it is a mixed hypothesis that constrains the unknown parameters (ZIJc ):

∃ (AIJ , B
I
c , C

J
c )IJc s.t. ∀(I, J, c), ZIJc = AIJ +BIc + CJc .

it becomes a statistical model once we take into account the sampling variation
that comes from our estimates of the probabilities on the left-hand side. We ob-
tain an estimate of the deterministic part of the joint surplus ZIJc by combining
estimates of the conditional matching probabilities:

ẐIJc = log
(

P̂r(J |I, c)P̂r(I|J, c)
)
. (37)

The estimated probabilities are simple averages; for instance, if there are Nm
Ic

men of education I in cohort c, the estimator of the probability that one of
them marries a woman of education J is simply the proportion of that group of
men that married a women of that education.

Let Ω be the asymptotic variance-covariance of the vector Ẑ that stacks
all estimates (ẐIJc ). Note that by construction, the elements of Ω that relate
to different cohorts are all zero: Ω is a collection of T square matrices of di-
mension K2, which we denote Ωc. To obtain a minimum distance estimator of
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the parameters AIJ , B
I
c and CJc , we will simply choose (AIJ , B

I
c , C

J
c ) so as to

minimize
T∑
c=1

ε′cWcεc (38)

where εc = ẐIJc − AIJ − BIc − CJc and the positive definite matrices Wc are
well-chosen.

This is simply minimum distance estimation, with the ZIJc as “auxiliary
parameters” and the AIJ , B

I
c and CJc as “parameters of interest”. From the

general theory of MDE it follows that under the null (mixed) hypothesis, the
resulting estimators are consistent and asymptotically normal. Their precision
is highest when Wc converges to Ω−1c as the sample size gets large; and we can
then test for the null hypothesis using as test statistic the minimized value of
the criterion in (38). Let nZ be the number of auxiliary parameters (that is,
nZ = CK2) and nr be the number of parameters of interest. Then under the
null this test statistic is distributed asymptotically as a χ2(nZ − nr). It is easy
to see that for the benchmark model,

nr = K2T −K2 − (2K − 1)(T − 1)

and the test has
K2 + (2K − 1)(T − 1)

degrees of freedom. For whites for instance, K = 5 and T = 28. The uncon-
strained model has 700 degrees of freedom, and the benchmark model only has
268. Under the null, the test statistic should be approximately drawn from a
χ2(432).

In practice, within each cohort c we use the estimated covariance matrix of
the estimated matching probabilities to compute an estimate of the matrix Ωc
(see Appendix B for details.) Minimizing the expression in (38) is very simple
since the εc terms are linear in the unknown parameters. The only (minor)
difficulty is to keep track of the necessary location normalizations.

5.2 The extensions

5.2.1 Changing complementarities

The models with time-varying complementarities of section 4.2.1 can be dealt
with in exactly the same way, and so can the models with preferences for age
differences of section 4.2.3. Only the numbers of degrees of freedom of the χ2

differ, because these extensions have more parameters, and because (for the
model with age differences) we fit more margins.
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5.2.2 The Heteroskedastic Model

Introducing heteroskedasticity as in section 4.2.2 only complicates inference
slightly. With time-invariant heteroskedasticity, our basic identity now is

ZcIJ = σI log
Pr(J |I, c)
Pr(0|I, c)

+ µJ log
Pr(I|J, c)
Pr(0|J, c)

.

First assume that complementarities are constant across cohorts. Then the null
hypothesis is:

(H0) : ∃(σI , µJ , AIJ , BIc , CJc ) s.t. σI log Pr(J |I, c)+µJ log Pr(I|J, c) = AIJ+BIc+CJc .

Note that this involves (2K− 1) additional parameters (we need to keep one of
the σ, µ’s equal to one.)

The more important change is that the asymptotic covariance matrix Ωc now
involves the unknown parameters σI and µJ . But we are especially interested in
testing the null hypothesis of homoskedasticity (our Choo and Siow benchmark)
within the broader hypothesis (H0). Alain Monfort and Roger Rabemananjara
(1990) show that this can be done by simply

1. choosing Wc as we did for the benchmark model;

2. minimizing
C∑
c=1

ε′cWcεc

where this time εIJc = σI log P̂r(J |I, c)+µJ log P̂r(I|J, c)−AIJ −BIc −CJc
and we minimize over the (σ, µ,A,B,C) parameters

3. and subtracting the value of this minimized criterion from that of the
minimized benchmark criterion.

Under the null of homoskedasticity, the resulting statistic is a difference of
two χ2 statistics. The results in Monfort–Rabemananjara show that these two
χ2 statistics are asymptotically independent, so that their difference also follows
a χ2, with (2K − 1) degrees of freedom here.

6 Results

6.1 Investment in children’s human capital

It is clear that investments in children’s human capital, particularly at a younger
age, are more important than ever; several authors have written extensively
on the topic25. Let us start with our first set of predictions, relative to time
spent on various domestic and children-related activities. Table 1, borrowed

25See for instance Heckman (2006, 2011, 2014).
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from Browning, Chiappori and Weiss (2015), gives the evolution of time spent
by spouses on chores and child care over three decades in the US, as well as
Canada and the UK. Two patterns emerge from these data. First, the time
women spend on chores decreases significantly, while the time spent by men
increases slightly. This pattern fully supports the assumption of substituability
between male and female time; and it is consistent with the increase in female
opportunity cost. Second, the time women spend with children has increased
(by 65 to 75%, depending on children’s age, in the US); and men are spending
much more time with chidren than they used to—about three times more in the
US. This is exactly in line with the predictions we derived earlier.

[Table 1 about here.]

A second prediction was that this evolution should be stronger among more
educated couples. The following graph is based on data in Altintas (2016);
it plots the average time spent daily in developmental child care activities by
parental education. While an increase can be seen at all education levels, it is
much larger for parents with college education and above.

[Figure 14 about here.]

Next, we come to the core of our contribution; that is, we test and estimate
the matching models described above.

6.1.1 Tests of the benchmark model

We start with the benchmark model, tested on the white population. Recall our
prediction that each of 16 T -dimensional vectors dIJ,KL =

(
dIJ,KLc , c = 1, ..., T

)
be constant. These requirements can readily be checked on the data. Here we
take reference categories to be K = L = 3 and we plot the dIJ,33c demeaned over
cohorts. Figure 15 shows the graphs corresponding to the “diagonal” elements
dII,33c , I = 1, 2, 4, 5 of assortatively matched white couples. Under the null, the
blue curve (and the dashed smoothed blue curve) should be identically 0; the
dotted curves give the 95% confidence band. The property is clearly violated
for college and college-plus educated pairs, for which the trend is clearly ascend-
ing. This suggests an increase in assortativeness, at least for the more educated
fraction of the population.

Altogether, the graphs suggest that the benchmark model is rejected by the
data. The formal test described in section 5.1 has 432 degrees of freedom, and
gives a χ2 statistic of 1573.7, way above the 5% critical value of 481.5 (the
p-value is 2e− 129.)

We also estimate and test the version allowing for age differences. The
conclusions are similar: when we average errors over age differences as discussed
above, the χ2 statistic has value 1526.5 with 405 degrees of freedom, while
the 5% critical value is 452.9, leading to a p-value that the computer cannot
distinguish from zero.

[Figure 15 about here.]
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[Figure 16 about here.]

Our findings are totally different for black couples. Given the much smaller
sample size, especially for higher education, we only use four education cate-
gories, aggregating college and college-plus. Figure 16 shows little evidence for
deviations from the benchmark model. The formal test confirms this visual im-
pression. The number of degrees of freedom is now 198, leading to a 5% critical
value of 231.8. The χ2 statistic is 185.9, which corresponds to a p-value of 0.72.
We therefore fail to reject the null that preferences for assortativeness have not
changed over the period among the African-American population.

Our test of course has less power on a smaller sample; and there are twenty
times fewer black couples than white couples in our data. For any given devi-
ation from the null hypothesis, the χ2 statistic is known to scale linearly with
sample size. Multiplying the value of the χ2 statistic for black couples by 20
would lead to a clear rejection of the null. However, the value of the χ2 statistic
we obtained in an earlier version of the paper with five rather than seven waves
of the ACS was actually larger. Figure 16 also shows no clear pattern of devia-
tions over time, unlike Figure 15. This suggests to us that our result for black
couples is not simply due to low power.

6.1.2 White sample: extensions

[Figure 17 about here.]

Since the benchmark model is rejected for the white population, we next
consider the linear and quadratic extensions. Figure 17 gives, again for diag-
onal pairs (I, I), the standardized residuals of three regressions of the dII,33c ,
corresponding respectively to the benchmark model, the linear trend, and the
quadratic trend extensions. Since the variance is normalized to be 1, theory
would require these residuals to remain between -1.96 and 1.96 for 95% of ob-
servations. The linear trend models appear to fit data significantly better than
the benchmark. Moreover, while the quadratic component further increases the
fit, its contribution is much more incremental.

While the model is still rejected, the rejection is much less drastic than
previously. Specifically, the χ2 statistic is 677.7, while the 5% critical value (for
416 degrees of freedom) is 464.6. The spectacular decrease in the χ2 statistic
indicate that preferences did change over the period; an exact description of
these changes is provided in the next subsection. Under the quadratic version,
the number of degrees of freedom is now 400, giving a 5% critical value of 447.6;
the test statistic equals 527.9. The null that all quadratic terms are zero is
rejected. The test using age differences gives very similar results.

[Table 2 about here.]

We therefore conclude that in the white population, the surplus generated
by assortativeness changed significantly over the period. The direction of these
changes is quite interesting. Remember from section 4.2.1 that these changes
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push towards more assortativeness if and only if the matrix b formed by the
coefficients of the linear trends in (34) is supermodular on the diagonal; that
is iff each DII,KKb is positive when 1 ≤ I < K. There are 10 such numbers;
and our results, as shown in Table 2, are unambiguous. Of these 10 numbers,
7 are significantly different from zero (despite the fact that, in the end, these
coefficients represents third differences); strikingly, all are positive. A formal
test of the null hypothesis that these numbers are zero (the least-favorable case
for our predictions) confirms this conclusion. If we only use the three values
generated from the restricted submatrix with 3 ≤ I < K, the evidence for
changes towards more assortativeness at the top of the distribution of human
capital is overwhelming26.

All in all, our findings provide a strong confirmation to our basic prediction.
For the more educated part of the sample, the supermodularity of the Z matrix
has increased over time, indicating higher gains from assortativeness. Decreases
in supermodularity are actually observed, but only for couples at the bottom of
the distribution and where the wife is less educated than the husband.

6.1.3 Heteroskedasticity

We next test for heteroskedasticity along the lines suggested in 4.2.2. Remember
that our test statistic is the difference of two χ2 statistics, one of which is
computed over the best heteroskedastic model. Unfortunately, we haven’t been
able to estimate a fully heteroskedastic model: some of the µJ ’s (the dispersion
parameters for women) go to the lower bound of zero. We settled on an approach
in which we only allow the dispersions for one gender to deviate from the value
of one. These two semi-heteroskedastic models converged without difficulty.
The evidence for hetoroskedasticity is strong, with p-values smaller than 1e −
30 for both genders. However, allowing for this semi-heteroskedasticity does
not improve the fit of the model much: the χ2 statistic only decreases from
its “homoskedastic” value of 1573.7 to 1390 for the men-heteroskedastic and
1414 for the women-heteroskedastic models. The data still spectacularly rejects
models with constant complementarities.

A heteroskedastic model with time trends affecting the supermodular core
is in principle identifiable; but in practice the empirical estimates are not ro-
bust, possibly indicating an overparametrization. Given our emphasis on the
evolution of assortativeness across cohorts, we keep the trends but omit het-
eroskedasticity in what follows.

26We base our tests on the minimum of the standardized values of the estimated DII,KKb;
and we simulate the one-sided 5% critical value under the null using the estimated covariance
matrix. A “minimum statistic” smaller than the critical value would reject the hypothesis
that the matrix b is supermodular on the diagonal. The statistic on the 10 numbers equals
−1.808, with a critical value of −2.54; the p-value of the test is 0.73. The minimum statistic
is 4.44 for the restricted submatrix, while the critical value is −2.06. The p-value of the test
is indistinguishable from 1.
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6.2 The marital college premium: the African-American
sample

Since the benchmark model is not rejected for Afro-Americans, we can directly
analyze its implications. For any education group, we define the “marital edu-
cation premium” as the gain in expected utility an individual would obtain on
the marriage market if this individual had the level. For a man of group I < K,
for instance, the education premia is simply (ūI+1 − ūI).

Figures 18 and 19 show the evolution of our estimated male and female
marital education premia for blacks. The plots are noisy, for college-educated
men in particular; and even one standard-error confidence bands are wide. Still,
none of these lines seem to be sloping up or down. Fitting linear trends confirms
the visual impression. The marital value of acquiring a high-school degree has
a significant negative trend for both men and women, and the marital value of
acquiring a college degree has a significant positive trend for women; but they
are very small, as the scales suggest.

To rephrase this: the marital education premia stayed almost constant for
black men as well as for black women. In particular, the additional marital
expected utility from a college degree hardly changed over the period for either
gender.

[Figure 18 about here.]

[Figure 19 about here.]

This finding can be related to the specific evolution of the demand for higher
education among African-Americans over the period: as discussed earlier, no
significant difference appears between men and women. While a precise in-
vestigation of the causes for that difference is beyond the scope of this paper,
differences in investment in children education may be one of them. In a recent
contribution, Gayle, Golan and Soytas (2014) show for instance that married
black women spend less time with children than their white counterparts, de-
spite little difference in education level and only a slightly larger number of
children27. This difference can be explained in a number of different ways. It
may reflect differences in the costs of education perceived by black and whites,
as suggested by Neal (2006) in his extensive survey of the topic28; or it may re-

27“[. . . ] Married black females on average have slightly more children than married white
females (1.43 for blacks versus 1.27 for whites) but spend 30 percent less time with young
children than married white females. [. . . ] Thus in terms of demographic characteristics,
black and white married females are similar but black married females spend less time with
young children.” (Gayle et al 2015, p. 7).

28“[. . . ] there is some evidence that blacks attend less effective schools than white students,
and although this racial gap in school quality cannot be linked to racial differences in school
funding levels, it may indicate that blacks pay higher implicit, if not explicit, costs to attend
quality schools” (p. 562), and “[. . . ] the fact that parenting behaviors differ greatly by
race among families that are similar with respect to wealth, neighborhood quality, family
structure, and measured maternal human capital raises the possibility that norms concerning
child rearing differ among blacks and whites in important ways” (p. 568).

38



flect a less precise knowledge of the production function of child human capital,
as argued by several authors29. This remains an underinvestigated question.

6.3 The white population

6.3.1 The marital college premium: evolution over cohorts

Figures 20 and 21 represent our estimated marital education premia for white
men and women. Two facts stand out. First, the marital premia of a college
education (SC, CG, or CG+) increase over time. Second, and more interestingly
for our purpose, male and female profiles are dissimilar.

[Figure 20 about here.]

[Figure 21 about here.]

For men, the graph of the marital education premium for the highest levels
of education—college-plus—is rather flat: the “college-plus premium”, defined
as the difference in marital utility between college and college-plus, is roughly
constant over the period.

For women, however, the picture is very different. While women of older
cohorts had negative marital college premia, they have become positive for re-
cent cohorts. Even more interesting is the reduction of the difference between
college and college-plus women, which translates into a notable increase in the
college-plus premium for women.

As a result of these contrasted findings for men and women, the (double)
difference between female and male marital college-plus premia increases sig-
nificantly over the period. Using the same notation as above, if ūIc (resp. v̄Ic )
denotes the expected marital gain for men (women) with education I in cohort
c, we consider the evolution of the double difference

∆I
c =

(
v̄I+1
c − v̄Ic

)
−
(
ūI+1
c − ūIc

)
over cohorts. For I = 4 for instance, ūI+1

c − ūIc thus represents the college-plus
premium for men, and ∆I

c is the difference in the college-plus premia of women
and men. Our prediction of a significant asymmetry between the respective
evolutions of male and female college-plus premia should translate into a increase
in this double difference over time. Figure 22 tests this by plotting the estimated
∆I
c , with 95% error bars and a smoother. The increase in ∆4

c over time is highly
significant, both in statistical and economic terms. In contrast, ∆1

c and ∆3
c

show no significant change. The transition from high-school graduate to “some
college”, as represented by ∆2

c , also shows some increase over time, but at as
slower rate.

[Figure 22 about here.]

29See for instance Cunha et al. (2013).
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In summary, we see a significant increase in the college-plus premium for
women, whereas no such evolution is apparent for men or for other educational
transitions. It bears repeating that this conclusion obtains from the sole analysis
of matching patterns over time, without any other data on intrahousehold al-
locations. It nevertheless strongly supports CIW’s suggestion that the increase
in female demand for higher education could be motivated in part by the diver-
gences between the respective evolutions of male and female marital college-plus
premia.3031

6.3.2 Decomposition

The marital college premium can be decomposed into several components. First,
education affects the probability of being married. Second, conditional on being
married, it also affects the education of the spouse (or more exactly its prob-
ability distribution); intuitively, we expect educated women to find a “better”
husband, at least in terms of education, and conversely. Third, the impact on
the total surplus generated by marriage is twofold. Take women for instance.
A wife’s education has a direct impact on the surplus; this impact can be mea-
sured, for college-plus education, by the difference (ZI5c −ZI4c ). In addition, since
a more educated woman is more likely to marry a more educated husband, the
husband’s higher expected education further boosts the surplus, by the average
of the (Z5J

c − Z4J
c ) terms weighted by the difference in probability of marry-

ing a college-plus educated husband instead of a college graduate. Finally, the
share of the surplus going to the wife in any given match is also affected by her
education. This share is given by the ratio

v̄Jc
ūIc + v̄Jc

for a woman of education J who marries a man of education I.

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

All these components are readily computed from our estimates; they are
summarized in Tables 3 to 7. The first three tables summarize patterns that we

30As noted before, a limitation of our analysis is the lack of adequate data on divorce. The
study by Schwartz and Han (2014) reports that for recent cohorts, being more educated than
the husband is no longer a handicap for women in terms of divorce probability. Although
based on very small samples, this finding is consistent with the rising incentive of women to
invest in schooling that our model predicts.

31A possible concern is related to the frictionless nature of our setting. If, in practice,
individuals are more likely to meet potential mates who belong to the same education class,
then an increase in the population of educated women might in principle have a mechanical
impact on matching patterns independently of the evolution of the surplus. However, recent
work by Jaffe and Weber (2016) argue that this cannot be the case.
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already discussed in the introduction. The marriage probabilities decline, very
sharply for less educated individuals, and much less for college-educated women
especially. Educated men are more likely to marry an educated wife than they
used to. The pattern is opposite for college-educated women; in partiuclar they
are much less likely to marry a college-plus husband.

[Table 6 about here.]

[Table 7 about here.]

More interesting are the last two tables, which are specific to our structural
approach. The joint surplus declines in 17 of the 25 cells. Of the eight positive
cells (in bold in Table 6), seven concern couples formed by college or college-
plus educated women; and in all of these eight cells, the wife is at least as
educated as the husband. The decline in surplus is always smaller (or inverted)
for more educated couples, which is consistent with the increased preferences
for assortativeness at the top of the distribution.

Lastly, the intra-household distribution of the surplus also varies signifi-
cantly, and with a striking pattern: the share of the wife increases in matches
in which she at least as well-educated as her husband. This corresponds to the
cells on and above the diagonal in Table 7. One can go further: the gains in
surplus sharing of the wives are strongest in couples with a large educational
advantage of the wife. On the other hand, highly educated men who continue
to “marry down” have gained a larger share of a joint surplus which has become
smaller over the years, as shown in Table 6.

Conclusion

It has long been recognized (at least since Becker’s 1973 seminal contributions)
that the division of the surplus generated by marriage should be analyzed as
an equilibrium phenomenon. As such, it responds to changes in the economic
environment; conversely, investments made before marriage are partly driven by
agents’ current expectations about the division of surplus that will prevail after
marriage. Theory shows that such considerations may explain the considerable
differences in male and female demands for higher education. When deciding
whether to go to college, agents take into account not only the labor market
college premium (i.e., the wage differential resulting from a college education)
but also the “marital college premium”, which represents the impact of educa-
tion on marital prospects; the latter includes not only marriage probabilities,
but also the expected “quality” of the future spouse and the resulting size and
distribution of the marital surplus. While the first aspect—the labor market
college premium—has been abundantly discussed, the second—the marital col-
lege premium—has been all but ignored. We argued in this paper that this
omission may have severely hampered our understanding of recent evolutions in
the demand for higher education.
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We provided a simple but rich model in which the marital college premium
can be econometrically identified. Our framework generalizes the original contri-
bution by Choo and Siow (2006); it can be (over)identified using temporal vari-
ations in the compositions of the populations. Applying the model to US data,
we find gender- and race-specific evolutions. There is no evidence of changes
in preference for assortativeness among the black population; among whites,
on the contrary, we find a highly significant increase, particularly among the
most educated subsample. The evolution of the marital college and college-plus
premium is similar across genders for the African-American population; this
sharply contrasts with the white sample, where the marital college-plus pre-
mium increases much more for women that for men. All in all, our findings
support the claim that the marriage market has played an important role in the
demand for higher education in the recent decades.

We claim that these evolutions can be explained by basic economic argu-
ments. The value of investment in children’s human capital has drastically
increased over the period, while the amount of time available was boosted by
technological innovations that freed households—mostly women—from spend-
ing much of their time on basic chores. A first consequence has been a drastic
change in time allocation patterns: less time was spent on chores and much more
on children. As theory predicts, these shifts have resulted in significant changes
in matching patterns. They can explain in particular the significant increase in
assortative matching that several authors observed—and that our more struc-
tural estimation confirms—at the top of the human capital distribution. This
impact was amplified by the self-reinforcing nature of the equilibrium. An initial
impulse affecting a gender’s stock of human capital, added to a slight difference
in initial ability (as described by Gary Becker, William Hubbard and Kevin
Murphy 2010) results in higher incentives to invest in education, and ultimately
in significant changes in both education profiles and marital patterns.

All in all, this period exhibits a boost in returns to human capital invest-
ments, which resulted not only in higher incentives to invest, but in a general
reshuffling of equilibrium patterns on the marriage market. Our belief is that
explicit modelling can help shed light on these complex mechanisms.
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A Proof of Proposition 2

The proof is in several steps. Let (i ∈ I, j ∈ J) be a matched couple. Then:

1. First, man i must better off than being single, which gives:

U IJ + αIJi − αI∅i ≥ 0

hence αIJi − αI∅i ≥ −U IJ and the same must hold with woman j.

2. Take some woman j′ in J , currently married to some i′ in I. Then i must
be better off matched with j than j′, which gives:

U IJ +
(
αIJi − αI∅i

)
≥ zij′ − vj′

= ZIJ +
(
αIJi − αI∅i

)
+
(
βIJj − β

∅J
j

)
−
(
V IJ +

(
βIJj′ − β

∅J
j′

))
and one can readily check that this inequality is always satisfied as an
equality, reflecting the fact that i is indifferent between j and j′, and
symmetrically j is indifferent between i and i′.

3. Take some woman k in K 6= J , currently married to some i′ in I. Then
“i is better off matched with j than k” gives:

U IJ+
(
αIJi − αI∅i

)
≥ zik−vk = ZIK+

(
αIJi − αI∅i

)
+βIKk −

(
V IK + βIKk

)
which is equivalent to

αIJi − αIKi ≥ U IK − U IJ

and we have proved that the conditions (19) are necessary. The proof is
identical for (20).

4. We now show that these conditions are sufficient. Assume, indeed, that
they are satisfied. We want to show two properties. First, take some
woman j′ in J , currently married to some l in L 6= I. Then i is better off
matched with j than j′. Indeed,

U IJ +
(
αIJi − αI∅i

)
≥ zij′ − vj′

= ZIJ +
(
αIJi − αI∅i

)
+
(
βIJj − β

∅J
j

)
−
(
V IJ +

(
βIJj′ − β

∅J
j′

))
is a direct consequence of (20) applied to l. Finally, take some woman
k in K 6= J , currently married to some l in L 6= I. Then i is better off
matched with j than j′. Indeed, it is sufficient to show that

U IJ + αIJi ≥ zik − vk = ZIK +
(
αIJi − αI∅i

)
+ βIKk −

(
V IK + βIKk

)

46



But from (20) applied to k we have that:

βLKk − βIKk ≥ V IK − V LK

and from (19) applied to i:

αIJi − αIKi ≥ U IK − U IJ

and the required inequality is just the sum of the previous two.

B Estimating the variance-covariance matrix Ωc

Our tests rely on an estimate Ω̂c of the variance-covariance matrix of the esti-
mated surplus matrix

(
ZIJc

)
I,J

. Recall equation (37):

ẐIJc = log
(

P̂r(J |I, c)
)

+ log
(

P̂r(I|J, c)
)
.

When constructing this estimate, we take into account the sampling weights in
the American Community Survey. To estimate P̂r(J |I, c), we take a ratio:

• the numerator is the sum of the sampling weights wh of the households
that correspond to a married couple in which the husband belongs to
group I and cohort c, and the wife belongs to group J

• the denominator is the sum of the sampling weights of all households in
which the man belongs to group I and cohort c.

That is, in hopefully transparent notation,

P̂r(J |I, c) =

∑
h wh11(h ⊇ I, J, c)∑
h wh11(h ⊇ I, c)

.

where the sum is over all households h in our sample.
Similarly, we estimate P̂r(I|J, c) by

∑
h wh11(h ∈ I ∩ J)/

∑
h wh11(h ∈ I).

Note that as explained in the text, we take women to be one year younger,
to allow for the modal age difference. An incidental advantage of this proce-
dure is that it guarantees that our estimates of P̂r(J |I, c) and of P̂r(I|J, c) are
statistically independent. As a consequence,

Ωc(IJ,KL) = cov
(
ẐIJc , ẐKLc

)
= cov

(
P̂r(J |I, c), P̂r(L|K, c)

)
+ cov

(
P̂r(I|J, c), P̂r(K|L, c)

)
.

Moreover, in large markets the estimated matching patterns of men of two dif-
ferent groups I and K are also statistically independent, as are the estimated
matching patterns of women of two different groups J and L. Denoting V mIc
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(resp. V wJc) the asymptotic variance-covariance matrix of the estimated proba-

bilities P̂r(·|I, c) (resp. P̂r(·|J, c)) for each (J, c) (resp. for each (I, c)), we obtain

Ωc(IJ,KL) = 11(I = K)
V mIc (J, L)

Pr(J |I, c) Pr(L|I, c)
+ 11(J = L)

V wJc(I,K)

Pr(I|J, c) Pr(K|J, c)
.

To turn this equation into an estimator, we plug in our estimates of the matching
patterns described above; and we estimate their variances by the Huber–Eicker–
White formula:

V̂ mIc (J, L) = k̂mIcP̂r(J |I, c)
(

11(J = L)− P̂r(L|I, c)
)

and
V̂ wJc(I,K) = k̂fJcP̂r(I|J, c)

(
11(I = K)− P̂r(K|J, c)

)
where the factors k̂ account for the sampling weights: for instance,

k̂mIc =

∑
h w

2
h11(h ⊇ I, c)

(
∑
h wh11(h ⊇ I, c))2

.

48



C Figures and Tables
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USA Canada UK

Year of survey 1975 2003 1971 1998 1975 2000

Domestic chores

Married men, child 5-17 1.18 1.52 1.56 1.63 0.97 1.70
Married women, child 5-17 3.63 2.83 4.55 3.29 4.01 3.37
Married men, child < 5 1.10 1.38 1.83 1.66 0.90 1.42
Married women, child < 5 3.67 2.64 4.79 3.03 4.13 3.03

Child care

Married men, child 5-17 0.20 0.57 0.14 0.41 0.06 0.26
Married women, child 5-17 0.65 1.13 0.64 0.77 0.30 0.58
Married men, child < 5 0.40 1.24 1.21 1.47 0.28 1.04
Married women, child < 5 1.63 2.67 2.16 2.97 1.28 2.57

Table 1: Time use (Source: Browning, Chiappori and Weiss 2015)
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Education levels DII,KKb
I K Value

(Standard error)
1 2 0.91

(0.12)
1 3 0.57

(0.18)
1 4 0.11

(0.27)
1 5 0.51

(0.40)
2 3 −0.09

(0.05)
2 4 0.30

(0.07)
2 5 0.39

(0.13)
3 4 0.35

(0.08)
3 5 0.70

(0.10)
4 5 0.37

(0.08)

Table 2: Estimated trends in complementarities for whites
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Men Women
Early Late Change Early Late Change

HS Dropouts 0.85 0.48 -0.37 0.86 0.61 -0.25
HS Graduates 0.90 0.62 -0.27 0.92 0.77 -0.15
Some College 0.90 0.67 -0.22 0.90 0.78 -0.12
College 0.89 0.75 -0.13 0.88 0.81 -0.07
College-plus 0.90 0.80 -0.10 0.79 0.77 -0.03

Table 3: Probabilities of marriage
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Wife → HSD HSG SC CG CG+
Husband ↓ Early Cohorts
HSD 0.37 0.47 0.14 0.02 0.01
HSG 0.09 0.65 0.20 0.04 0.02
SC 0.05 0.41 0.41 0.09 0.05
CG 0.01 0.21 0.33 0.32 0.13
CG+ 0.01 0.10 0.24 0.34 0.32
Husband ↓ Late Cohorts
HSD 0.29 0.39 0.26 0.05 0.02
HSG 0.04 0.46 0.33 0.12 0.04
SC 0.01 0.20 0.46 0.23 0.09
CG 0.00 0.07 0.21 0.52 0.20
CG+ 0.00 0.03 0.12 0.42 0.42
Husband ↓ Change
HSD -0.08 -0.08 0.12 0.03 0.01
HSG -0.05 -0.18 0.13 0.08 0.02
SC -0.03 -0.21 0.06 0.14 0.04
CG -0.01 -0.14 -0.12 0.20 0.07
CG+ -0.00 -0.07 -0.11 0.08 0.11

Table 4: Partners of men (men in rows, women in columns)

53



Husband → HSD HSG SC CG CG+
Wife ↓ Early Cohorts
HSD 0.48 0.34 0.14 0.02 0.02
HSG 0.13 0.48 0.25 0.10 0.05
SC 0.05 0.21 0.37 0.21 0.16
CG 0.01 0.07 0.14 0.36 0.41
CG+ 0.01 0.06 0.11 0.22 0.60
Wife ↓ Late Cohorts
HSD 0.42 0.37 0.15 0.04 0.02
HSG 0.09 0.53 0.26 0.10 0.03
SC 0.04 0.26 0.41 0.20 0.08
CG 0.01 0.10 0.19 0.46 0.24
CG+ 0.01 0.06 0.14 0.34 0.45
Wife ↓ Change
HSD -0.06 0.03 0.01 0.02 -0.00
HSG -0.04 0.05 0.01 0.00 -0.02
SC -0.01 0.06 0.05 -0.01 -0.08
CG -0.00 0.02 0.05 0.10 -0.17
CG+ -0.00 0.01 0.03 0.12 -0.15

Table 5: Partners of women (women in rows, men in columns)
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Wife → HSD HSG SC CG CG+
Husband ↓ Early Cohorts
HSD -6.48 -7.55 -9.91 -13.24 -14.17
HSG -7.76 -5.36 -7.54 -9.95 -11.13
SC -9.90 -6.90 -6.60 -8.86 -9.95
CG -12.65 -8.25 -7.11 -6.59 -8.04
CG+ -13.67 -9.46 -7.48 -6.14 -6.04
Husband ↓ Late Cohorts
HSD -7.69 -8.92 -10.27 -13.10 -14.81
HSG -9.23 -6.18 -7.30 -9.09 -10.56
SC -11.47 -8.10 -6.85 -8.08 -9.41
CG -13.44 -9.61 -7.84 -6.01 -7.38
CG+ -14.89 -11.42 -9.12 -6.72 -6.23
Husband ↓ Change (positive values in bold)
HSD -1.21 -1.37 -0.36 0.14 -0.64
HSG -1.47 -0.82 0.23 0.86 0.57
SC -1.58 -1.20 -0.25 0.78 0.54
CG -0.80 -1.36 -0.74 0.58 0.65
CG+ -1.22 -1.95 -1.63 -0.58 -0.19

Table 6: Joint surplus (men in rows, women in columns)
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Wife → HSD HSG SC CG CG+
Husband ↓ Early Cohorts
HSD 0.51 0.57 0.55 0.53 0.45
HSG 0.47 0.53 0.51 0.48 0.41
SC 0.46 0.53 0.51 0.48 0.41
CG 0.48 0.54 0.52 0.49 0.42
CG+ 0.46 0.53 0.51 0.48 0.41

Husband ↓ Late Cohorts
HSD 0.59 0.69 0.70 0.72 0.69
HSG 0.49 0.60 0.61 0.63 0.60
SC 0.46 0.56 0.57 0.59 0.56
CG 0.40 0.51 0.52 0.54 0.51
CG+ 0.37 0.48 0.49 0.51 0.48
Husband ↓ Change (positive values in bold)
HSD 0.08 0.12 0.15 0.19 0.24
HSG 0.03 0.07 0.10 0.14 0.19
SC -0.01 0.04 0.07 0.11 0.16
CG -0.07 -0.03 0.00 0.05 0.09
CG+ -0.09 -0.05 -0.02 0.03 0.07

Table 7: Surplus share of wife (men in rows, women in columns)
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Figure 1: Educations of white men and women
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Figure 2: Comparing partners in white couples
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Figure 3: Never married white men and women
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Figure 5: Marriage patterns of white women who marry
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Figure 6: Educations of black men and women
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Figure 7: Comparing partners in black couples
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Figure 8: Never married black men and women
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Figure 9: Marriage patterns of black men who marry
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Figure 10: Marriage patterns of black women who marry
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Figure 11: Difference in ages of partners (husband-wife) in white couples
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Figure 12: Difference in ages of partners (husband-wife) in black couples
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Figure 13: Estimated labor market college premia
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Figure 14: Average minutes spent daily in developmental child care, US (Source:
Altintas 2016)
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Figure 15: Testing the benchmark model for whites
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Figure 16: Testing the benchmark model for blacks
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Figure 17: Testing various models for whites
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Figure 18: Education premia of black men (one standard error confidence bands)
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Figure 19: Education premia of black women (one standard error confidence
bands)
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Figure 20: Education premia of white men
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Figure 21: Education premia of white women
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Figure 22: Estimated excess premia for white women
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