e s S e n

Z N
[87— §- ?f] | CERN~TH.4751/87
SIMHEE

PARTON DENSITIES FROM DEEP INELASTIC SCATTERING

TO HADRONIC PROCESSES AT SUPER COLLIDER ENERGIES

M. Diemoz, F. Ferroni, E. Longo

Dipartimento di Fisica, Universit3d "La Sapienza" di Roma
Istituto Nazionali di Fisica Nucleare, Sezione di Roma, Italy

and
G. Martinelli

CERN -~ Geneva

ABSTRACT

We give several sets of parton densities derived
from recent measurements of structure functions
in deep inelastic scattering. The difference
among these densities reflects the uncertainties
from deep inelastic data of different experi-
ments, allowing an estimate of the error band
for the predictions one may obtain for any given
hadronic process at higher energy. The densi-
ties are available at any scale Q2 < 5-107 Gev?2
and x > 5¢10~° and include next-to-leading cor—
rections as well as threshold effects due to
heavy flavours. A comparison with a large set
of data in a wide range of scales (Drell-Yan, W
and Z production, etc.)} is also presented.

CERN-TH.4751/87
June 1987



1. Introduction

High statistics experiments on deep inelastic scattering have been performed in the
last decade. As s consequence detailed information on the structure functions is now
available. This information can be used to derive quark and gluon densities in the
framework of the QCD improved parton mode! with a good degree of accuracy. These
densities are the fundamental ingredients to make quantitative predictions for hadronic

processes at very high energies.

In this paper we present new sets of parton parametrizations by analyzing recent
experimental results on deep inelastic scattering. Our study differs with respect to

previous works on the same subject [1,2,3] in many respects:

1) Valence quark, antiquark and gluon densities have been extracted from the data at
the reference scale Q2 = 10 GeV? taking consistently into account all the next to leading

corrections at order a,.

2) Several sets of parton parametrizations, obtained by comparing different
experimental determinations of the structure functions, are presented. Among them
we indicate our preferred one, called "average” in the following. However by using
the different sets presented below it is possible to give, for any hadronic process, an
estimate of the error which stems from the original uncertainties in the measurement of
the structure functions. We show in sect.5 that many experimental results coming from
processes different from deep inelastic scattering lie within the band of error determined
by using our different sets of parton densities. Thus we are confident that our theoretical
predictions at much higher and still unexplored energies (HERA and Super Colliders) will
constitute a reliable reference, within the band of error, for the experimental results still

to come.

3) The parton densities are evolved up to and including next-to-leading corrections
and heavy quark thresholds; these latter according to the recent theoretical analysis of
ref. [4] .

4) We do provide a computer program to evolve the parton densities at any scale
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Q? < 5-10° GeV? and z > 5-10-%, In this program it is possible to vary not only the
form of the input parton densities but also the definition (necessary beyond the leading
logarithms) of the parton densities themselves, which in our standard version is the one
suggested in refs. [5,6].

The paper is organized as follows: in sect.2 we recall the essential notation and
formulae for deep inelastic scattering in the framework of the parton model; in sect.3 the
evolution of the parton densities beyond the leading log approximation is discussed and
all the relevant formulae given; in sect.4 the determination of the parton densities and of
Agcp from the structure functions is presented; in sect.5 we compare the predictions
obtained by using our parametrizations with different experimental measurements in
a wide range of energies. Finally in sect.6 we discuss the consequences of the input
uncertainties when evolving the parton densities to scales appropriate for Super Collider
physics. A brief explanation of the available FORTRAN code for the calculation of the
evolution of the parton densities is finally provided in the Appendix.

2. Definition of the parton densities

In this section we specify the notation and give the definition of our parton densities
beyond the leading logarithmic approximation.

Let us introduce the well-known structure functions of deep inelastic scattering
Fyz,Q%) (1 = 1,2,3), as they enter in the neutrino and antineutrino cross sections.
Q? indicates the absclute value of g2, where ¢ is the momentum carried by the current,

and z = Q?/2P . q, where P is the nucleon momentum

diov¥  Gle v M - 1 5
= (rt (- ) s (- 5)er) )

where y = P+ ¢/P - k and k indicates the lepton momentum.
The structure functions can be written in the framework of the QCD improved parton
mode] as suitable convolutions of quark, sntiquark and gluon densities. At the leading

logarithmic approximation (LLA) the results of the QCD corrections can be interpreted
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by saying that the Fi(z,Q?) are given by the naive parton model formulae expressed in
terms of Q? dependent effective parton densities obeying to the first order Altarelli-Parisi

evolution equations.

Beyond the LLA the expressions of the Fi(z,Q?) deviate from the parton model
formulae by terms of order a, (coefficient functions) and the evolution equations for the
parton densities must include the next to leading terms of the anomalous dimensions.
The explicit form of the corrections to structure functions depends on the definition of
the effective parton densities beyond the LLA. Different definitions of the parton densities
will give of course the same physical results.

We chose our definition of quark densities by demanding that Fj(z,Q?) have to

maintain the same form as in the naive parton mode! [5,6]. More explicitly:
1
P00 == [ Hostn,01+7,0,0% (s0- D+ 2or))+
(@) 2
+22="2G(y,Q%)C? ( ) ~ zlg7(z, Q%) + 7 {z,Q%)]

C}, and C}; ere the coefficient functions for Fy and eq.(2.2) refers to one flavour, V-A
coupling. This choice guarantees that the quark densities obey the conservation of charge
because of the Adler sum rule, which is valid to all orders in perturbation theory:

[ delaste @) -76e.00 = o1 (23)

where vy is the valence value for a given flavour.

We introduce the notation:
I(z,Q%) = Y lar(2,Q%) + 7 ,(=,Q%)]
! .

and with the definition of eq.(2.2) we find:

2F(=,0") = [ l Y(2(.0?) (su -5)- 2(97) cg;(i)) |

— 2N, G(y ,Q’)a‘(Q) "( =)
Fa(z,Q%) = j 7%:(q;(v.o’)-a,(v,q’)) (6(1-3)- ‘éf’"q( ))

= Ff(zvqt) - AF;(!, Q’)

(2.4)



where the coefficient functions C},, computed in refs. [5.6], are:
Cl(z) =8:/3
Chi(z) =2:(1-12) (2.5)
Ci(s)=C3 -Cl=4(1+1)/3

From eqs.(2.2) and (2.4) one gets:

Fi(z,Q?) = F5(z,Q%) - 22F,(2,Q%) =

2 1 d z (2°6)
= 20, ['4 (3, @0ckC)+ WG @NCH())
x s ¥V v v
and the modified Gross-Llewellyn. Smith relation becomes
1 a
f dzFy=(1-2) Y vy . @)
0
7

We fix the gluon density beyond the LLA by demanding momentum conservation:
1
[ 450" + 70N + 6@ =1 (2.8)
0
)
To this purpose we redefine the gluon density as follows®*:

6(2,@%) ~G(x,Q") - 242)

) . . (2.9)
[ 2 (zmencat+ 2N;G(y,o=)c:a(;l) +0(a})

Note that at first order the expressions of F;(z,Q*) are not affected by the choice of

G(z,Q?) since the gluons first appear at order a, in deep inelastic scattering.

* A different and more appropriate definition of the gluon density can be found by
-considering the next to leading corrections to some strong interaction hard process where
gluons interact at the lowest non trivial order in a, such as, for example, the two jet

cross section in proton-proton and proton-antiproton collisions. These corrections have

not been computed so far.



3. Evolution of the parton densities

The evolution equations for the quark, antiquark and gluon densities can be written

Aas
=5 3,)+ Poa®G
d(‘ﬂq’) = -2; Z(PWQJ @ q; + Pq;'i’ e q’) + «G ®
. i |
4y _a, et p e ”
TineT) = 22 | 2P ®0s+ Fag, ®1,) + Fiic @ _
J
dc o _
d{inQ3) = E: (}:(P oe ®¢; + Pog, ® §;)+ Paa ® G)
J
where P @ [ denotes:
1 dz x
P® f(z) = f —PEI()

The solution of equations (3.1), together with the renormalization group equation for the

running coupling constant,

_de, _ _Boa_ B s
dnQh) = axe T 16x3°¢ (32)
where
Bo=11— 2N
0= 3Ny
38

ﬁlzlm—?Nf ’

allows the computation of the parton densities at any scale Q2 once the initial conditions

are known.

In the following, all results at NL order are derived assuming A3z = 300 MeV;
whereas for the evolution at leading order we used Az o = 200 MeV (for a review of recent
results see [7]).

A more convenient way of writing eqs. (3.1) is the following. We introduce the

quantities:
Vi(z: Q,) = Qi(zsq,) - i"(zl Q’) : (3'3)
5



and given g} = ¢; + §;, we define:
Te(z, Q%) = ut(2,Q?) + d*(z, Q") - 26*(2,Q)

Tye(z,@%) = u(%,Q%) + d*(2,Q") + #¥(2,Q%) - 3c¥(,Q)

Tau(z, Q) = w*(2,Q%) + d*(2,Q") + #+(z,Q%) + ¢*(2,Q%) - 4¥(,Q?)

Tas(z,Q%) = uH(z.Q") + 4*(2,@") + #%(2,Q%) + e+(2,Q") + 5*(2,@%) - 5¢*(,Q7)
u, d, 8, c, b, t, are respectively the up, down, strange, charm, bottom and top densities.
Defining

Poios = 8isPag+ Po

Py, = 6P+ PY

and using the following relations (valid at the next to leading order):

Pa=Pg
P, ey Piﬁ,'; P, %, = Pial’: (3 '4)
Puc=Pia=Pee;  Poy = Poy, = Poq-

egs. (3.1) become:

-———d,,‘,/{,(:ﬁ; )= 2o Vi(=,@")
(z.0% _
Tz g = 221ps 07i(=Q") (35)

amy (568) =5 (B Fo)e (S0E)=3:pe (B8
where:
Py= P} +P%

Prrp=P, + 2N;P'5;

Pra=2N;sP,q

Por= Pg,

We assume that at our reference scale Q32 the charm threshold is already open, namely

N; = 4, but ¢(z,Q2) ~ 0. The non singlet parton densities T3, and T35 will evolve like
the singlet density £ below the threshold for producing the b or ¢ quarks respectively.
The T; will be used to evaluate the ¢, b, and ¢t quark densities separately.
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Following reference [8] we change the evolution variable In(Q?) into:

= 3 (54) oo

and we expand the Altarelli-Parisi kernels P in powers of a,:
p=plory Sep)
2x
Eqs. (3.5) then become:

dV,' ,t ° [~ 4
—g—fl = [P+ 22(PD) - %FW)] ® Vi(z,1)

= (P + Z2R) @ Vilz,1)
dT(2,8) _ 1p(ey 4 Lerpt) _ B1 peo) .
~dt = [P( )4 . (P+ 2ﬁ°P )] ® T-(’:‘) (3.7)
= (PO + ZXR,) @ Ti(z,1)
b1 & o &y
-Pelle (5E3)

= (P + 22R)® (5

d (2= = 1p(e) 4 S2(pl1
z(aw) = [PC) 4 Z2(PO) -

where we have used P(°) = P_g") =pl),
Finally we have to modify the second order Altarelli-Parisi kernels P to include
into the definition of the parton densities the coefficient functions (as indicated in sec. 2).

Writing the matrix of the coefficient functions as:
G = G 4 Te40)
2x

then: 5
1 1 0
Py~ p - Bocg

8 (3.8)
P — p) 4 [6W), ()] — 226

In our case we simply redefine the quark and antiquark densities incorporating the next to

leading corrections to Fy in ¢, § and imposing the total momentum conservation. Then:

ew= (% o) ()
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It is & trivial change to define the parton densities with a different set of coefficient
functions. In particular we stress again the importance of using in the future a definition
of the gluon taken from some strong interaction process such as the two jet cross section
in hadron-hadron collisions.

Several methods to evolve the parton densities were used in the literature. We find
very convenient to Mellin transform the parton densities and to solve the equations in
Mellin space. This method was already used, at the leading logarithmic approximation in
ref. [9). The advantage with respect to the alternative method of evolving the densities by
discretizing the evolution time ¢ in eqs. (3.7) is that accumulation of the rounding errors,
when evolving at very large scales, is avoided. A drawback (however minor) is that an
analytic expression of the parton densities at the reference scale Q3 must be provided (see
section 4).

We define the following Mellin transforms:

1
1) = [ deem-1(a)
. vico (3.10)
fz) = f dnz~"f(n)

2x3 -0

In Mellin space the convolution P ® f reduces to a product:

Pes@)=[ Lr@ND ~ PEIE= P
Eqs. 3.7 become*
d—‘f“(i—:‘"—) = [PCYn) + Z2R_(m)Viln, 1)
TdnD _ (po)(n) + 22 R (WITn, ) (3.11)
3 (500) = 1P + 2] ( Zie)

The solution for the non-singlets V;(n.t} and T;(n,t) is immediately found:

Viln,) = (1+ %‘-’-‘-ﬁ’—ﬁ-)e""* Vi(n,0) (3.12)

* P4(n) are related to even (0dd) momenta of the anomalous dimensions computed in

the framework of the operator product expansion
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Tin,t)=(1+ E%&ﬂRgcpw' Ti(n,0) (3.13)

We have imposed initial conditions different from those of ref. [8], namely without any
extra term of order a,(0) at the reference scale.
The solution of the evolution equations for the sea and gluon densities is somehow

more complicated. Given the eigenvalues of the matrix P

2s = 3(PENR) + PE3() £ V(PENm) ~ PEY(m)* + 4PE3(mIPE )

we define two projection matrices:

P)(n) - A_1 —Plo)(n) + 2,1
= ——= M_= :
Ay - A Ap— Ao

where 1 is the 2x2 unity matrix. The projectors M have the following properties:
Mi=My Mi=M_ MM_=M_M,=0 M;+M_=1
Tke solution for ¥ and G is then:
(2((:3) = [(My + —— '(t) - S‘.:%})Mdp-i-'*‘ﬂ-))"‘*'

a,(t) -(0) a-t) [ E(n,0)
+ (M_+ 2r P~ 2% M_(ps+p-))e ](a(n,o)

(3.14)

In eq. (3.14) terms of order a,(t}a,(0) have been eliminated. The matrices p e p_ are
defined as:

2 M_ERM
=-—M_RM, + =3
Pt g Y T X = A- = Bo/2

2 M_BM.
_=-—M_RM_+ =
=" "Fa W Wy Y

From eqs. (3.14) it is easy to verify that £(n,t = 0) = £(n,0) and G(n,t = 0) = G(n,0).

The A function, the anomalous dimensions and the coefficient functions depend on
N;. For this reason a further complication arises when the bottom and top flavours are
activated. Short of a complete treatement of threshold effects, we have changed all the ¥
dependent quantities when crossing a conventional threshold taken to be Q3 1= m? §- For

Q? > Q}, we have verified that our results for the b and ¢ densities are not too sensitive
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to the precise value we have used for my ¢ (m, = 4.5 GeV, my = 40 GeV) when varying
m, ¢ in a reasonably small range around their central values (e. 5. 4 < my <5 GeV).
We conclude this section with two technical details. The evolution of the Mellin
transforms of the parton densities needs only multiplication by suitable complex matrices
and factors as it can be seen from eqs. (3.12), (3.13) and (3.14). However, to obtain
the densities in z we have to perform numerically the inverse Mellin transform of these

equations. In practice we performed the integral:

Ro R4+
J(z)= 2—1;; (./;_‘a f(n)z~"dn + ].o“ f(n).z""dﬂ)

Ro, R and & were chosen in a different way for non-singlet and singlet densities and for
z < 0.5 or z > 0.5 in order to maximize stability and precision of the results. The values
of Ry, R and © are reported in tab. 3.1.

Finally we have used for the anomalous dimensions and the coefficient functions the

results of [10].

4. Input parton densities

4.1 Data sets.

Deep inelastic muon and neutrino experiments [11 — 17] are the main source of high
statistics data samples. In principle, both classes of experiments represent a powerful
tool to determine, within the frame of the QCD improved parton model, the parameter
Agcp, the gluon density and the flavour content of the nucleons. However, although
muon experiments measure Fy in & very precise way, they cannot determine zFy which
is a unique feature of parity violating weak interaction. Therefore we have used the
results coming from the neutrino experiments BEBC [14], CCFRR [15], CDHS [16] and
‘CHARM [17] as input for QCD evolution of the gluon, the valence and the sea densities.
Nevertheless we do not discard the information coming from muon experiments, paying
attention to the poasible influence of the so called * EMC effect”, by monitoring our input

densities on the available muon data as well as on precise data coming from other processes

10



(Drell-Yan) [18 — 20] in & region not far from our input scale Q3% =10 GeV? (see sect. 5).
4.2 The valence distribution

To determine the valence quark distributions zu, and zd, we have combined the
results obtained for zFy from the experiments BEBC [14], CCFRR (15}, CDHS [16} and
CHARM [17] at the scale Q3. |

To separate the u, and the d, contributions to zFy we assume to be valid the relation

d, '
“— = I'(l - 2). (4'1)

This choice is well founded because of the measurement ratio published by BEBC [21]
and CDHS [22]. Moreover recent results by BEBC [14] indicate that the relation in eq.
" (4.1) is to a large extent scale independent in the Q* range 1— 100 GeV2,

With our definition of the parton densities at the next to leading approximation (see
section 2) the experimentally determined zFy and the valence quark densities are in the

relation:

tF:”(z,Q’) = z“v(z:Q=) + ’dv(zaQ’)_
2 1
S2ed@), Pl conrameniard

We have then carried out a fit to zFy at Q} in order to extract a parametrization for zu,
imposing:

/:(u., +d,)dz=3

1
j udr=2
0

so that the modified Gross-Llewellin Smith sum rule fol Fydz = 3(1 — a,/x) is
automatically satisfied.

(4.3)

As a result for the combined average we obtain:
zu, = 2.262084(1 — 2)353[1 — 1.617(1 - z) + 3.647(1 — z)? — 1.998(1 — z)®%]  (4.4)

and r = 0.57. The parameter r comes out to be approximatively fixed to this value by
the form (4.1) assumed for the d,/u, ratio and by the behaviour Fy ~ (1-z)3for z — 1
(23].
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Concerning the evaluation of the uncertainties on the valence distribution we notice
that egs. (4.3) impose a strong constraint, once an analytical form for u, is fixed. This
strongly reduces the possibility to vary t.he. parameters of the distribution itself inside the
statistical errors of the data. .

We believe that the best evaluation of the experimental uncertainties on these
densities is to assume the harder zFy (the higher in the high z region) represented by
BEBC data and the softer zF; (the lower in the high z region) given by CHARM data,
maintaining the normalization of Fy, as the two extreme possible cases representing the
systematic uncertainty on the average distribution. The statistical error on the valence
density is then neglected. The BEBC data come from a light target while the CHARM
ones from a heavy target: our evaluation of the uncertainties somehow includes also
possible nuclear effects as those observed by the EMC collaboration [24]. In fact what can
be said without invoking any model is that in the reéion z > 0.35, where the contribution
of the sea distribution is negligible and where the EMC, SLAC [25,26] and BCDMS [27]
data agree, the valence measured inside a heavy target is softer than the one measured
inside a light target.

Performing the fits to BEBC and CHARM data, under the conditions previously

discussed, we obtain for the harder case:
zu, = 0.237z%28(1 — 2)2 111 4+ 17.724(1 — z) ~ 9.993(1 — z)* — 4.439(1 — z)¥] (4.5)
with r = 0.574, and for the softer one:
zu, = 3.852°°5(1 — 2)2®°(1 — 1.057(1 — z) + 0.243(1 ~ z)? + 0.897(1 - z)¥]  (4.6)

with r = 0.568. zFy from the three valence distributions (hard, soft, average) are shown
in fig. 4.1 together with the experimental data.

The effect of the O(a,) corrections on the valence quark distribution z{u, +d,) are
tiny and they are shown in fig. 4.2.
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4.3 The antiquark distribution

The measurements performed by neutrino experiments give through the combination

of cross sections

2x  d%0¥ gd3o”
G dzdy -(1-y) da:dy)

the experimenta! antiquark distribution §° = &+ d + 28.

The experimental results obtained for this quantity from CDHS [16] and CHARM
[17] are in good agreement. A quite precise determination of the antiquark distribution
can then be obtained by combining the existing data at different values of Q? in an
appropriate QCD analysis and calculatiné via interpolation the values at Q3 = 10 GeV?3,

To disentangle the flavour composition of the antiquark distribution we assumed
@ = d [14] and from dimuon event analysis [28] we have fixed the strange quark density
to be

7=02(3+d) =04u

The maximum variation of the percentage of & quarks was evaluated by the CDHS
collaboration to be of the order of 20%.

" Data on charmed sea [29] are still very poor. We have assumed that at Q* = 10
GeV? this density is negligible although the threshold for the production of ¢ quarks is
already crossed. 1

Finally the correction due to Fr as expected by QCD as well as the one due to Fy
have been included.
The experimentally determined distribution g” is related to the NL defined antiquark

distribution in the following way:
- 3
zq(z, Q,) = z-q-v(z’ql) + %FL(z:Q') - -;-AF.(S,Q’) {(4.7)

The two corrections are both of the order of 10% at z ~ 0.01 but cancel each other
at the level of 1%.

We have fitted the overall corrected points obtaining the following distribution:

z7 = 0.70(1 — z)*5(1 — 4.18z + 20.3z2 — 15.32%) (4.8)
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The shape of § has been fixed by taking also into account the data for Drell-Yan
proceases in proton-nucleon collisions (cfr. sect. 5.2). Actually these processes are rather
sensitive to 7, since they involve valence-sea annihilation. The uncertainty on the sea
resulting from statistical and systematical experimental errors, from the uncertainty on
the strange sea contribution and on the measurements of the pneutrino and antineutrino
total cross sections [30], owing to the circumstance that t;.he sea is not on its own
constrained by any sum rule, can be quantified as a possible variation of the normalization
coefficient by +15%, —10%.

4.4 The gluon distribution

Contrary to quark densities, the gluon density is correlated, beside a particular set of
data, to a specific QCD analysis. Probably due to this fact, the existing results obtained
by the CDHS [16] and CHARM [17] collaborations are not in agreement especially in the
low z region. For this reason we have not found worthwhile to combine the results on the
determination of G and we will consider them separately.

We have fitted the gluon as determined by CHARM directly to its Mellin transform
G(n) = fol z"~1G(z)dz choosing for G(n) the following expression:

Ma+n-1)T(A+1)
T{a+8+n)

G(nA,a,8,8)=A ezp|—6in(n)in(in(n))] (4.9)

and obtaining:

A=146, a=-0.145 F=398, &=0.926

The term depending on § in eq. (4.9) has been included trying to take into account
the fact that zG(z) behaves effectively like (1 — z)¥'(*), with 5’ varying with z
asz— 1%

The evaluation of the uncertainties on the gluon distribution at the input scale is very
important. At Q% = 10% GeV?2, very far from @3, the amount of the gluon density coming

solely from the evolution of the input valence at reasonable values of z is negligible with

* A good fit to the data is given in {31]
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respect to the entity of the whole distribution and the echo of the input gluon is still the
most relevant contribution. '

The experimental uncertainties on the gluon distribution is expressed by the CHARM
collaboration as a {10) confidence belt that contains also the one due to the error on
the determination of the parameter Aqcp. Inside this belt we determined the softer and
the harder distribution fixing the normalization to the central value 0.52 with a tolerance

of £10%. For the parameters of the soft distribution we obtained
A=137, a=-0.235 pf=494, §=0780
and for those relative to the hard distribution
A=144, a=-0126, S=3.55 &=0860

We have parametrized the gluon density determined by the CDHS collaboration[32]

with the simple form:
zG(z,Q}) = 3.34(1 - z)*%%(1 - 0.177z) . - {4.0)

The curves for G inside the CHARM confidence belt are shown in fig. 4.3 together
with the parametrization derived from the CDHS data.

4.5 Comparison with other parametrizations at Q3

In this subsection we compare our results for the parton densities at the reference
scale Q2 with the parametrizations given by Duke and Owens [2] (DO, set 1, Azo = 200
MeV) and by Eichten, Hinchliffe, Lane and Quigg [3] (EHLQ, Ao = 200 MeV).

In fig. 4.4 our valence distributions (average, harder and softer) are given together
with those of DO and EHQL. The latter are contained in the error band but in the region
£ > 0.7 where the experimental data are scarce and the curves are determined only by
the choice of the functional dependence of the parametrization on z.

Fig. 4.5 shows the distributions for the CHARM gluon density; DO and EHLQ make
both use of different sets of data, all including the CDHS determination and this explains

the difference, especially at low z.
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In fig. 4.6 our antiquark density is given with its error band. The difference with
the corresponding result from DO is poasibly due to the fact that these authors apply a
rescaling factor to data from different experiments.

§. Comparison with other experimental data

In this section the parton densities derived from the analysis of neutrino and
antineutrino deep inelastic scattering will be used to predict other quantities of
experimental interest and compared with existing results. In some cases we will also
compare our results with those obtained by using other parametrizations (DO {2} and
EHLQ [3)).

5.1 Electroproduction.

In fig. 5.1 the ratio F¥?(z,Q?)/(1 — z®) at Q% = 20 GeV? is shown. F}* has been
measured by the EMC collaboration on a Hj target [11]. Our prediction is represented by
a solid curve, those by DO and EHLQ by a dashed and by a dotted curve respectively. At
small z the difference in shape between our result and the experimental data originates
from the different behaviour observed on light targets with respect to heavy targets by
the EMC collaboration. This effect however has not been observed in electroproduction
at SLAC [25,26] and it has not been confirmed by the more recent measurements by the
BCDMS collaboration [27], nor by the latest EMC data [33]. The curve by DO shows a
better agreement: in fact they normalized their parametrization precisely on these data.
A better agreement is found if we use our *hard” valence p#rametrization, as shown in
fig. 5.2. In fig. 5.3 the EMC measurement [12] for F:N on an iron target at Q2 = 22.5
GeV? is given. In this case there is good agreement between the curve obtained with
the "average” parametrization and the data. DO and EHLQ results deviate from the

experimental points at large and small z respectively.

Fig. 5.4 shows the data from [34] and [35] and theoretical predictions for the ratio
FI"[F}* at Q? = 10 GeV2. Given the difference between the measurements of the two
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groups, one can say that our curve is in reasonable agreement with the data. The dashed
curve (DO) is systematically above the experimenta! points. The reason for this is that
DO fixed the d,/u, ratio by fitting the low Q* data [25,26] (SLAC). These data can
bardly be accommodated in a coherent way with the more recent results at highest Q?
from muon deep inelastic scattering [35] (fg. 5.5). DO parametrizations badly fail in
reproducing d,/u, as measured by BEBC [21] and CDHS [22] as shown in fig. 5.6. On
the other hand it is not surprising that our curve fits nicely these data since we imposed
do/u, x (1 ~ z)¢ with § = 1. To evaluate the sensitivity of the results to this condition
we also varied § between 1.2 and .8. No appreciable difference is seen for F3™"/F{* while
the best fit to the points in fig. 5.6 is always obtained with § = 1.

5.2 Drell-Yan processes.

Drell-Yan processes in proton-nucleon and proton-proton collisions are very
interesting because the theoretical predictions depend crucially on the antiquark content
of the nucleons. In fig. 5.7 we compare the experimental data at the two different values
of the center of mass energy /2 = 27.4 GeV (fixed target at FNAL) {18] and /s = 62 GeV
(ISR) [19,20] with the predictions obtained using our parametrizations (solid curves)*.
The computation of the cross section includes the corrections of order a,. To check the
sensitivity of the results on the shape of the antiquark density we varied the power in
(1 — z) (cfr. eq. (4.8)) between 6 and 9.5. The corresponding results (dashed curves) are
also reported in the figure. We recall that the result of our fit to deep inelastic data gave:

E(LQ%) x (1 - 3)8.5

This choice appears to reproduce very well the experimental data. The agreement in
shape with the experimental results is even more significative at /& = 27.4 GeV, where
highest values in z are probed.

5.3 Parton densities from the two jets croes section.

To a good degree of accuracy the differential two jet cross section in pp processes can

* This analysis has already been performed in ref. [36].
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be written as:
d*o . F(z,) F(z3) do (5.1)
dzﬂ.‘it;dﬂ)ﬂ’ z; T dcosf

Where F(z) is the combination [37]:

F(z) = G(2) + 5(3(=) + a(=)) (52)

The typical scale at which the partons are probed is of the order of the invariant mass (or
transverse momentum) of the two jet system (Q2 ~ 2000 GeV?) i.e. much higher thar
the reference scale at which the parton densities are measured in deep inelastic scattering.

In fig. 5.8 we show F(z,Q?) from the measurement of the UA1 collaboration (38, 39}
at the CERN SppS Collider, compared with our theoretical predictions.

5.4 Single photon production in pp processes.

In fig. 5.9 we report the data from the UA2 collaboration {40] together with the
theoretical predictions obtained using our parton densities. Next to leading corrections
have also been included [41] *.

5.5 W and Z° production cross sections and neutrino counting.

In fig. 5.10 we report the experimental W and Z° prociuct.ion cross sections times
the branching ratic in ev and ete™ respectively at /o = 546 and 630 GeV [42]. The
curves are the predictions obtained using our parton parametrizations; the dashed areas
represent the estimated theoretical uncertainty discussed in [43].

In table (5.1) the W and Z° production cross sections obtained using the present
parton parametrizations in the range /s = 0.546 < 40.0 TeV are also reported.

The ratio
_o¥B(W —ev)
R= Bz = (5:3)

is related both to the number of light neutrino families and to the top quark mass as firat

discussed in {44]. A comparison of the experimental results with the theoretical prediction

* We thank P. Aurenche who provided to us the comput',er program and for many

illuminating discussions.
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on R allows to derive some considerations on m; and to calculate an upper limit on the
additional number of peutrino 8avours. The major source of error on the theoretical
prediction comes from the use of structure functions in the calculation of R/ = f;—';— even
if moat of the uncertainties which affect the absolute value of o%:Z cancel out.
We estimate '
R'=3.28%0.15 : (5.4)

where the error comes mainly from the uncertainties on the valence quarks; those on
the antiquark distribution and on #in0y are also taken into account. The error in eq.
(5.4) is smaller than the error quoted in [45], which was obtained by comparing different
parametrizations and not directly by evolving low epergy deep inelastic data as we do
here. In figs. (5.11) and (5.12) the ratio R is reported ns a function of m, together with
the combined experimental results of UA1 and UA2 both at /& = 546 GeV and /2 = 630
GeV [46] respectively for N, = 3 and N, = 4. The dashed line corresponds to the 85%
upper limit derived from experimental results, the shaded region around the theoretical
prediction for R represents the corresponding 1o uncertainty belt. No conclusion on m,
can be drawn from the case N, = 3 considering the agtual experimental errors. On the
cc-mtrary, considering the central theoretical prediction, the N, = 4 case (fig. 5.12) brings
to an upper bound for m, of about 65 GeV at 95% c.l.

Finally in fig. 5.13 we report the 95% c.l. upper limit on AN, as a function of m,
that can be obtained using the combined data of UA1 and UAZ2 at /s = 546 GeV and
/2 = 630 GeV [46] and our prediction.

6. Parton densities at very high Q?*

This section is devoted to a detailed discussion of the parton densities evolved at scales
"much larger than Q3 = 10 GeV?. We study the indetermination of the parton densities
at large scales standing from the errors (and differences among different experiments) in
low energy measurements of structure functions. Then we compare our results with DO

and EHLQ. Finally we show separately and comment the results of the leading and next
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to leading logarithmic evolution of the densities, obtained using our definition beyond the
leading order (cfr. sect.2). The discussion on these points is important to monitor the
error involved in theoretical predictions for cross sections at Super Collider energies. If
pot stated otherwise all figures refer to distributions evolved using only the lowest order
Altarelli-Parisi kernels.

As described in sect.4.2 we have derived for valence quarks hard distribution ( from
BEBC data }, a soft distribution (from CHARM data ) and an average one. In fig. 6.1
we show the valence distribution z(u,(z) + d,(z)) in these three cases at Q? =10* GeV?
(intermediate vector boson scale) together with the corresponding curves obtained by
DO and EHLQ. We see that the difference among the three different input distributions
becomes smaller at higher scales. :

In the case of the antiquark density there are two main sources of error. The first
one comes directly from the measurement error on the overall normalization discussed
in sect. 4.3; the second derives from the effect of ¢¢ pairs due to different initia! gluon
distributions. Since it is not possible to reconcile the CHARM and CDHS determination
for the gluon we give separately in fig. 6.2 curves for zf = zu + zd + =7 corresponding
to the gluon distribution from CDHS and the band obtained by varying the input gluon
distribution within the confidence belt of the CHARM results. We also show in fig. 6.3
z7 obtained in the extreme case in which the gluon distribution is fixed to zero at the

initial scale Q2 as a test of the importance of the gluon density in the evolution of the

antiquarks.

In fig. (6.4) we report the gluon distribution at Q? = 10* GeV, derived from the
band given by the three input gluon densities discussed in sec. (4). The results from
the parametrization by DO and EHLQ are also given. The differences are reduced by
the evolution: the distribution EHLQ is very similar with the hard gluon and the one
from DO is contained in our band. For very small z the distribution determined by DO
shows an unphysical growth; this is not surprising since the authors limit the validity of
their parametrizations at z = 10~3. In fig. (6.5) we also compare our results with those
obtained by using at the input scale the gluon of CDHS. The difference observed at the
reference scale (see fig. 4.3) is shifted down to smaller values of z but it is still present.
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For the heavy flavour distributions ( charm, bottom and top quarks ) we assume that
they are generated by the evolution process in QCD perturbation theory at the threshold
Q3% = m} asrecently suggested in (4]. This relation is probably not appropriate beyond the
leading logarithmic approximation. In any case we do not pretend to be able to describe
the production of heavy quarks near the threshold or to be accurate beyond the LLA for
these densities. We only want to have reasonable predictions at scales @ 3> m}. In fig.
6.6 we show the bottom and top distributions at Q2 = 10° GeV? assuming m;, = 4.5 GeV
and m, = 40 GeV. By changing the physical threshold from m} to 4m} we have found a
variation of about 30% at most for the top density at Q% = 10% GeV32, The effect we find
on the second moment of the gluon is at most of ~ 7%,; this result is at variance with the
numerical results of [4].

We have already discussed in detail the difference between our parametrizations and
those by DO and EﬁLQ at Jow energy. To compare them at large scales we consider,

following [3], the partonic luminosities

ot = ¢ [ L ipap D) 6.1)

for the following combinations of densities:
r
99 = G(z)G(2)

9 = [uu(z) + B@)][uu(2) + T + (u ~ ) + 28(=)a(D)
49 = 2fu,(z) + du(2) + 25(2)]G(Z) (6:2)
u = 2[u,(z) + T)a()
dd = 204, (z) + I)A(Z)

In fig. 6.7 we give our results in pp collisions at Q3 = 10° GeV?. In figs. 6.8a, 6.8b, 6.9a
and 6.9b we compare as an example the results obtained for the luminosities rdf,,/dr
and rdl,,/dr together with those of DO and EHLQ.

We finally consider the effects of the next to leading corrections on the evolution.
The effect is very tiny for valence quarks and we will not show the corresponding figure.
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In figs. 6.10 and 6.11 we report instead the results of antiquark and gluon distributions
evolved at Q? = 10* GeV? using the leading and next to leading order QCD formulae
of sect. 2. The effect of the coefficient functions is, with our choice, very small and the
correction is mostly due to the anomalous dimension. The two loop corrections become
important in the very low z region which is relevant only in the production of relatively
light objects (as is the case for W’s and Z 0’5 at Super Collider energies) and at very large
(positive or negative) values of the rapidity.
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Appendix

A) The fast interpolating routines
A set of routines which produces the value of any parton density at a point in
z,Q? requested by the user is provided. The value is the results of a two-dimensional
interpolation in the z,Q? plane. '
The routines provided are one for each foreseen case:
FXAVER with the results from average valence density, average CHARM gluon,
evolution at leading order (LO)
FXVSOF the same, soft valence density, LO
FXVHAR the same, hard valence density, LO
FXGSOF the same, soft gluon density, LO
FXGHAR the same, hard gluon density, LO
FXCDGL with the results from average valence density, CDHS gluon, LO
FXNLLA with the results from average valence density, average CHARM gluon,
evolution performed at next-to-leading order.
All the routines have the same structure and are called in the same way. They have
three arguments of input and one of output:
FXAVER (X,Q2,STRFU,VAL) where
X is the value of z (5-10~% + 0.95) (real variable)
Q2 is the value of Q2 (10 + 10%) GeV? (real variable)
STRFU is the desired parton density (character variable) to be chosen amongst:
'UPVAL' u, quark distribution
'DOVAL’ d, quark distribution
'‘GLUON’ G distribution
'QBAR ' 7 distribution
'UBAR ' (= d) distribution
'SBAR ' #(=3) distribution
’CBAR ’ ¢(= ) distribution
‘BBAR °* b(=b) distribution
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'TBAR ’ t(=1) distribution.
VAL is the return argument containing the interpolated value.
Protections are put in such a way that values outside boundaries or negligibly small

are set to zero.

B) The FORTRAN code

The FORTRAN code of the program that generates the parton densities at a given
Q3, starting from their Mellin transform at a reference Q3 value is also available, and is
maintained under PATCHY to ensure full portability. The code is designed in order to
provide the user with a complete control of the inputs for the evolution, at three different
levels:

a) To change the run parameters, as the scale Q2, the interval in z, the value of Aqep,

etc.

b) To change the parameters of the densities, keeping the functional form given in the
text.

¢} To change even the functional form of the densities, providing the Mellin transform
to the program.

The PAM file is organized in 3 patches: RUNDATA, PARTOSEQ and EVOL2. The
patch EVOL2 contains the hard structure of the program and should never be modified
by the user.

The variables controlling a specific run are defined in the RUNDATA patch, in form
of DATA statements:

LOOPEYV = 1 or 2 sets the calculations to one or two loops.

Q2ZIN defines the reference Q2 scale in GeV for the input parton densities.

Q2FIN is the @? value at which the  parton densities are computed.

NPOINX is the number of points in z from XMIN to XMAX. According to the value
of OPTION the intervals are equally spaced in z (OPTION=1) or in Inz (OPTION=2).

" The charm, bottom and top masses are defined by MASCH, MASBO, MASTO, and
ETA defines the corresponding threshold values, @} according to the formula Q¥=n -m¥.
Finally, the Agcp is defined by LAMBDA.
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This way of defining all the parameters by DATA statements makes the resulting program
entirely self consistent, not requiring any external file to be read. However a special
dummy sequence called READPAR is also provided to allow the user to define, if needed,
his/her own way to input the run parameters from a file, a terminal etc.

In the same patch another dummy sequence , called WRITEOUT, is also defined. It is
called at the end of the program and can be replaced by user code to write out an output
file, containing the parton density distributions at the final scale, in a format suitable for
subsequent use. The user has just to know that the distributions are contained in the
array PARTON (N,I), with N=1,NPOINX and I=1,9 with the following meaning:

= 1 u, quark distribution

I= 2 d, quark distribution
I = 3 G distribution
I = 4 § distribution
I = 5 @(= d) distribution
I =6 s(=73) distribution
I =17 e{=%) distribution
" 1= 8 b(= 1) distribution
I =9 t(={) distribution.

The NPOINX z values are stored in the array XX(NPOINX).

The sequences defining the input parton distributions are contained in the patch
PARTOSEQ. The user can operate at two different levels: the simplest one is to change
the parameters keeping the functional definition of the densities. The parameters are
contained in the sequence PARTPAR, where the parameter names are such 3o as to
translate the text formulae in the following FORTRAN expressions:

eq. (4.4) divided by z, describing u,:
AAsX«+ALF#(1-X)++BETA#(1+APIC#(1-X)+BPIC«(1-X)*#2+CPIC#(1-X)*s3)

eq. (4.1}, d,/uy:

RPIC#(1-X)

eq. (4.8),z- (T+d+3):

XAAM#(1-X)++BETMx(1+XAPIM+X+XBPIM*X¢#2+XCPIM+¢X#+3)
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For the gluon two alternatives are foreseen, corresponding to the fits respectively to
the CHARM data and to the CDHS data. The latter form, where 2G is given by eq.
(4.10), is translated into:

A1GL#(1-X)**B1GL#(1+AG1+X).

The fit to CHARM data is given directly in the Mellin space by the equation (4.9),
with the following correspondence between symbols and variables:

A: AGL, a: ALFGL, g8: BETGL, §: DELGL.

The choice is made activating one of the two sequences:
+KEEP,GLUON,IF=CHARMGLU
or

+KEEP,GLUON,IF=EXPGLU,IF=-CHARMGLU.
the CHARM fit is then selected by defsult, with a cradle like:

+USE.

+EXE.

The exponential form can be selected by

+USE.

+USE,CHARMGLU, T=INHIBIT.

+EXE.
or, alternatively, by

+USE,RUNDATA ,PARTOSEQ,EVOL2,EXPGLU.

+EXE.

A deeper modification of the parton densities can be obtained directly changing the
definition of their Mellin transforms. The default code is contained in the sequences
UPVAL, DOVAL, QQBAR (and QQBARJ)‘ and GLUON respectively for u,, d,,
z-(T+ d+7) and 2G. The rules to be strictly followed are the following:

1) The Mellin trasform must be put at the end of the sequence in the variables UPVAL,

DOVAL, QQBAR, and GLUEN respectively.

2) The user FORTRAN parameters must go in the commons PARVAL, PARQUB and
' PARGLU, that are placed in the same patch.

3) These parameters must be defined in PARTPAR or read in READPAR, with the
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same rules as given before.

4) The printout of the parameters, contained in the sequence PRINPART in the same
patch, must be modified accordingly.
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FIGURE CAPTIONS

The experimental points are the results from BEBC, CCFFRR, CDHS and
CHARM at a Q% ~ 10 GeV? for the measurement of 2Fs. The solid line is the
best, fit to all points. The dashed (dotted) curve represents the fit to CHARM
(BEBC) only.

The solid curve is the ”average” valence distribution to leading order. The
dashed curve includes our next to leading definition of the parton densities.
The three solid curves are the soft, the hard and the central gluon distributions
extracted from CHARM determination, the dashed one represents the result of
CDHS.

The soft, average and hard valence distributions (solid lines) used as input in this
work are compared with DO (dashed line) and EHLQ {dotted line} at Q3 = 10
GeV3,

The soft, average and hard gluon distributions (solid lines) used as input in this
work are compared with DO (dashed line) and EHLQ (dotted line) at Q3 = 10
GeV?2,

The antiquark distribution shown with its uncertainity belt (solid lines) used as
input in this work is compared with DO (dashed line) and EHLQ (dotted line)
at Q2 = 10 GeV?2.

The experimental points are from ref.[11]; the solid curve has been obtained
by using our "average” parton parametrizations from eqs.(4.4} and (4.8). The
dashed and dotted curves have been obtained using the parametrizations of DO
and EHLQ respectively.

The experimental points are the same as in fig. (5.1). The solid curve has been
derived using the "hard” valence quark parametrization (eq.(4.5)).

F ;‘N on a heavy target from ref.[12] compared with our *average” predictions
(solid curve), DO {dashed curve} and EHLQ (dotted curve).

Comparison of F§*"/F}* from refs.[33, 34] with the theoretical predictions: from
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Fig. 5.5

Fig. 5.6

Fig. 5.7

Fig. 5.8

Fig. 5.9

the present analysis (solid curve), from DO (dashed curve) and EHLQ (dotted
curve).

Data from refs.[25,26] (SLAC1 and SLAC2) and [33] (BCDMS) compared with
the predictions obtained by using the DO parametrizations.

The ratio d,/u,, measured in refs.[21] and {22] is compared with our predictions
(solid curve), DO (dashed curve} and EHLQ (dotted curve).

Lepton pair production at fixed target energies (/3 = 27.4 GeV), (ref.[18]) and
ISR energies (/2 = 62 GeV), refs.[19,20], are compared with our predictions
(solid curves). Dashed curves g, b, ¢, d are the predictions obtained by assigning
to the power of the term (1 — z) of § respectively the values 6, 6.6, 7.5, 9.5.
F(x,Q%) defined in eq. 5.2 as measured by the UA1 Collaboration [38,39]. The
dots are the points corresponding to a scale @2 ~ 2000 GeV2. The squares are
results obtzined at a lower scale Q2 ~ 200 GeV3. The solid line has been derived
using our parton densities evolved at Q% = 2000 GeV?. The dashed line is the
quark contribution alone. In the low z region the result is not very sensitive to
scaling violations in the range Q2 = 200 — 2000 GeV? as can be seen from the
dotted curve representing F(z) at Q% = 200 GeV3.

Single photon production in Py collisions at /s = 630 GeV. The data are from the
UA2 collaboration, the solid curve has been obtained using our parton densities
and the parton cross sections includes higher order corrections computed in
ref.[40]. The scale for the running coupling constant and the parton densities
has been chosen to be p}./2.

Fig. 5.10 Experimental cross sections times branching ratios, o% B* and gZ B, are

Fig. 5.11

compared to our results. For these curves we have chosen sin?fy = 0.229,
My = 80.8 GeV and Mz = 92 GeV. The shaded area represents the uncertainty
coming from the error on parton densities and on sin3fy,, the ambiguity on the
scale and of higher order terms contribution.

The ratio R = ¢" B** /g % B*¢ experimentally determined (UA1+UA2) (straight
solid line) with its 95 % upper limit (dashed line) is compared to the theoretical

expectation (shaded region) from our parametrization as a function of top quark
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mass for 3 neutrino families.

Fig. 5.12 The ratio R = o™ B**/oZ B** experimentally determined (UA1+UA2) (straight

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

5.13

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

solid line) with its 95 % upper limit (dashed line) is compared to the theoretical
expectation (shaded region) from our parametrization as a function of top quark
mass for 4 neutrino families.

The 95% c. 1. upper limit on the additional number of light neutrino families
obtained, as a function of the top quark mass, from the comparison of the
experimentally determined value of R and our prediction. The allowed region is
the one below the curve.

Our soft, average and hard valence distributions (solid lines) evolved at Q% = 104
GeV? are compared with DO (dashed line) and EHLQ (dotted line) predictions.
Antiquark distribution from average gluon (solid curve), soft gluon (dotted
curve), hard gluon (dashed-dotted curve) and CDHS gluon (dashed curve).
Our antiquark distribution at Q% = 104 GeV? (solid curve). The dashed curve
represent the antiquark distribution in the case in which the gluon is assumed
to be zero at the initial scale. '

Our soft, average and hard gluon distributions (solid curves) evolved at Q3 =
10* GeV? are compared with DO (dashed curve) and EHLQ (dotted curve)
predictions.

Our soft, average and hard gluon distributions (solid lines) are compared with
CDHS gluen distribution (dotted line) at Q2 = 104 GeV?2 .

Bottom (solid line) and top (dashed line) densities are shown for a threshold
value Q3 , = m}, at Q* = 10° GeV?2.

The luminosities relevant in pp collisions (eqs.(6.2)) computed using our
parametrization are shown as a function of r.

The quark-quark luminosity computed using our parametrizations (solid curve)
is compared to the one from EHLQ (dashed curve) and DO (dashed-dotted curve)
in the range 10~% < r < 0.25 (a) and 10-4 < r < 10-2 (3).

The gluon-gluon luminosity computed using our parametrizations {solid curve) is

compared to the one from EHLQ (dashed curve) and DO (dashed-dotted curve)in
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the range 1075 < r < .25 (o} and 5-10-3 < r < 0.1 ().

Fig. 6.10 Antiquark distribution from one loop (d#shed curve) and two loop (solid curve)
evolution at Q2 = 104 GeV?. |

Fig. 6.11 Gluon distribution from one loop (da.shed. curve) and two loop (solid line)
evolution at Q3 = 104 GeV?, .
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Tab. 3.1: Integration limits

N-S N-S S 8
z <05 >05 <05 >05
Ro 1 3 2 3
® -14 3 -7 3
Q 25 100 25 100

Tab. 5.1: W and Z cross sections
V& (TeV) oV (nb) o% (nb)

.54 4.3 1.3

63 5.6 1.7

1.6 18 5.2

2.0 23 6.6

5.0 b4 16

10 100 30

20 180 54

40 310 95
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