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Abstract We present LO, NLO and NNLO sets of parton

distribution functions (PDFs) of the proton determined from

global analyses of the available hard scattering data. These

MMHT2014 PDFs supersede the ‘MSTW2008’ parton sets,

but they are obtained within the same basic framework. We

include a variety of new data sets, from the LHC, updated

Tevatron data and the HERA combined H1 and ZEUS data

on the total and charm structure functions. We also improve

the theoretical framework of the previous analysis. These

new PDFs are compared to the ‘MSTW2008’ parton sets. In

most cases the PDFs, and the predictions, are within one stan-

dard deviation of those of MSTW2008. The major changes

are the u − d valence quark difference at small x due to an

improved parameterisation and, to a lesser extent, the strange

quark PDF due to the effect of certain LHC data and a bet-

ter treatment of the D → μ branching ratio. We compare

our MMHT PDF sets with those of other collaborations; in

particular with the NNPDF3.0 sets, which are contemporary

with the present analysis.
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1 Introduction

The parton distribution functions (PDFs) of the proton are

determined from fits to the world data on deep inelastic and

related hard scattering processes; see, for example, [1–6].

More than 5 years have elapsed since MSTW published [1]

the results of their global PDF analysis entitled ‘Parton distri-

butions for the LHC’. Since then there have been significant

improvements in the data, including especially the measure-

ments made at the LHC. It is therefore timely to present a new

global PDF analysis within the MSTW framework, which we

denote by MMHT2014.1

In the intervening period, the predictions of the MSTW

partons have been compared with the new data as they have

become available. The only significant shortcoming of these

MSTW predictions was in the description of the lepton charge

asymmetry from W ± decays, as a function of the lepton

rapidity. This was particularly clear in the asymmetry data

measured at the LHC [9,10]. This deficiency was investi-

gated in detail in MMSTWW [11].2 In that work, fits with

extended ‘Chebyshev’ parameterisations of the input distri-

butions were carried out, to exactly the same data set as was

used in the original global MSTW PDF analysis. To be spe-

cific, MMSTWW replaced the factors (1 + ǫx0.5 + γ x) in the

MSTW valence, sea and gluon distributions by the Cheby-

shev polynomial forms (1 +
∑

ai T
Ch

i (y)) with y = 1−2
√

x

and i = 1 . . . 4. The Chebyshev forms have the advantage

that the parameters ai are well-behaved and, compared to the

coefficients of the MSTW parameterisation, are rather small,

with moduli usually ≤ 1. At the same time, MMSTWW

[11] investigated the effect of also extending, and making

more flexible, the ‘nuclear’ correction to the deuteron struc-

ture functions. The extended Chebyshev parameterisations

resulted in an improved stability in the deuteron corrections.

The main changes in the PDFs found in the ‘Chebyshev’

analysis, as compared to the MSTW fit, were in the valence

up and down distributions, uV and dV , for x � 0.03 at high

1 We note that preliminary reports on these new PDFs have been pre-
sented in [7,8].
2 The PDF sets in this article are often referred to as MSTWCPdeut, but
we will use the nomenclature MMSTWW, i.e. the initials of the authors
of the article, throughout this paper.

Q2 ∼ 104 GeV2, or slightly higher x at low Q2; a region

where there are weak constraints on the valence PDFs from

the data used in these fits. These changes to the valence quark

PDFs, essentially in the combination uV −dV , were sufficient

to result in a good description of the data on lepton charge

asymmetry from W ± decays. Recall that the LHC data for

the lepton asymmetry were not included in the MMSTWW

[11] fit, but are predicted. There were no other signs of signif-

icant changes in the PDFs, and for the overwhelming major-

ity of processes at the LHC (and the Tevatron) the MSTW

predictions were found to be satisfactory; see [11] (though

the precise shape of the W, Z rapidity data was not ideal,

particularly at NNLO) and e.g. [12,13].

Nevertheless, it is time to take advantage of the new data

in order to improve the precision of PDFs within the same

general framework of the MSTW analysis. This includes

a fit to new data from HERA, the Tevatron and the LHC,

where the data have all been published by the beginning

of 2014, which was chosen as a suitable cut-off point. It is

worth noting at the beginning of the article that there are no

very significant changes in the PDFs beyond those already

in the MMSTWW set, and all predictions for LHC processes

remain very similar to those for MMSTWW and in nearly all

cases to MSTW2008. Despite the inclusion of new data there

is a slight increase of PDF uncertainty in general (particu-

larly for the strange quark) due to an improved understanding

of the source of uncertainties. We also point out here that it

is expected that there will be another update of the PDFs in

the same framework with a time-scale consistent with the

release of the final combination of HERA inclusive structure

function data, more LHC data for a variety of processes, and

also the expected availability of the full NNLO calculation

of inclusive jet production and of top-quark pair production

differential distributions.

The outline of the paper is as follows. In Sect. 2 we

describe the improvements that we have in our theoreti-

cal procedures since the MSTW2008 analysis [1] was per-

formed. In particular, we discuss the parameterisation of the

input PDFs, as well as the improved treatments (i) of the

deuteron and nuclear corrections, (ii) of the heavy flavour

PDFs, (iii) of the experimental errors of the data and (iv)

in fitting the neutrino-produced dimuon data. In Sect. 3 we

discuss the non-LHC data which have been added since the

MSTW2008 analysis, while Sect. 4 describes the LHC data

that are now included in the fit, where we determine these

by imposing a cut-off date of publication by the beginning

of 2014. The latter section concentrates on the description of

W and Z production data, together with a discussion of the

inclusion of LHC jet production data.

The results of the global analysis can be found in Sect. 5.

This section starts with a discussion of the treatment of the

QCD coupling, and of whether or not to include αS(M2
Z ) as

a free parameter. We then present the LO, NLO and NNLO
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Fig. 1 MMHT2014 NNLO PDFs at Q2 = 10 GeV2 and Q2 = 104 GeV2, with associated 68 % confidence-level uncertainty bands. The
corresponding plot of NLO PDFs is shown in Fig. 20

PDFs and their uncertainties, together with the values of the

input parameters. These sets of PDFs are the end products of

the analysis – the grids and interpolation code for the PDFs

can be found at [14] and will be available at [15] and a new

HepForge [16] project site is foreseen. An example is given

in Fig. 1, which shows the NNLO PDFs at scales of Q2 =
10 GeV2 and Q2 = 104 GeV2, including the associated one-

sigma (68 %) confidence-level uncertainty bands.

Section 5 also contains a comparison of the NLO and

NNLO PDFs with those of MSTW2008 [1]. The quality of

the fit to the data at LO is far worse than that at NLO and

NNLO, and is included for completeness, and because of

the potential use in LO Monte Carlo generators, though the

use of generators with NLO matrix elements is becoming far

more standard. In Sect. 6 we make predictions for various

benchmark processes at the LHC, and in Sect. 7 we discuss

other data sets that are becoming available at the LHC which

constrain the PDFs, but that are not included in the present

global fit due to failure to satisfy our cut-off date; we refer to

dijet and W + c production and to the top quark differential

distributions. In Sect. 8 we compare our MMHT PDFs with

those of the very recent NNPDF3.0 analysis [17], and also

with older sets of PDFs of other collaborations. In Sect. 9 we

present our conclusions.

2 Changes in the theoretical procedures

In this section, we list the changes in our theoretical descrip-

tion of the data, from that used in the MSTW analysis [1].

We also glance ahead to mention some of the main effects

on the resulting PDFs.

2.1 Input distributions

As is clear from the discussion in the Introduction, one

improvement is to use parameterisations for the input dis-

tributions based on Chebyshev polynomials. Following the

detailed study in [11], we take for most PDFs a parameteri-

sation of the form

x f (x, Q2
0) = A(1 − x)ηxδ

(

1 +
n

∑

i=1

ai T
Ch

i (y(x))

)

, (1)

where Q2
0 = 1 GeV2 is the input scale and the T Ch

i (y) are

Chebyshev polynomials in y, with y = 1 − 2xk , where we

take k = 0.5 and n = 4. The global fit determines the values

of the set of parameters A, δ, η, ai for each PDF, namely

for f = uV , dV , S, s+, where S is the light-quark sea

distribution

S ≡ 2(ū + d̄) + s + s̄. (2)

For s+ ≡ s+s̄ we set δ+ = δS . As argued in [1] the sea quarks

at very low x are governed almost entirely by perturbative

evolution, which is flavour independent, and any difference

in the shape at very low x is very quickly washed out. Hence,

we choose to assume that this universality in the very low x

shape is already evident at input. For s+ we also set the third

and fourth Chebyshev polynomials to be the same as for the

light sea, as there are not enough data which can constrain

the strange quark, while leaving all four parameters in the

polynomial free leads to instabilities.

We still have to specify the parameterisations of the gluon

and of the differences d̄ − ū and s − s̄. For the parameteri-

sation of � ≡ d̄ − ū we set η� = ηS + 2, and we use the

parameterisation

x�(x, Q2
0) = A�(1 − x)η� xδ�(1 + γ�x + ǫ�x2). (3)

The (poorly determined) strange quark difference is taken to

have a simpler input form than that in (1). That is,

s− ≡ x(s − s̄) = A−(1 − x)η− xδ−(1 − x/x0) (4)
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where A−, δ− and η− are treated as free parameters, and

where the final factor in (4) allows us to satisfy the third

number sum rule given in (6) below, i.e. x0 is a crossing point.

Finally, it was found long ago [18] that the global fit was

considerably improved by allowing the gluon distribution to

have a second term with a different small x power

xg(x, Q2
0) = Ag(1 − x)ηg xδg

(

1 +
2

∑

i=1

ag,i T
Ch

i (y(x))

)

+ Ag′(1 − x)
ηg′ x

δg′ , (5)

where ηg′ is quite large, and concentrates the effect of this

term towards small x . This means the gluon has seven free

parameters (Ag being constrained by the momentum sum

rule), which would be equivalent to using five Chebyshev

polynomials if the second term were absent.

The choice k = 0.5, giving y = 1 − 2
√

x in (1), was

found to be preferable in the detailed study presented in [11].

It has the feature that it is equivalent to a polynomial in
√

x ,

the same as the default MSTW parameterisation. The half-

integer separation of terms is consistent with the Regge moti-

vation of the MSTW parameterisation. The optimum order

of the Chebyshev polynomials used for the various PDFs is

explored in the fit. It generally turns out to be n = 4 or 5.

The advantage of using a parameterisation based on Cheby-

shev polynomials is the stability and good convergence of

the values found for the coefficients ai .

The input PDFs are subject to three constraints from the

number sum rules
∫ 1

0
dx uV (x, Q2

0) = 2,

∫ 1

0
dx dV (x, Q2

0) = 1,

∫ 1

0
dx (s(x, Q2

0) − s̄(x, Q2
0)) = 0, (6)

together with the momentum sum rule

∫ 1

0
dx x[uV (x, Q2

0) + dV (x, Q2
0) + S(x, Q2

0)

+ g(x, Q2
0)] = 1. (7)

We use these four constraints to fix Ag, Au, Ad and x0 in

terms of the other parameters. In total there are 37 free (PDF)

parameters in the optimum global fit, and there is also the

strong coupling defined at the scale of the Z boson mass MZ ,

i.e. αs(M2
Z ), which we allow to be free when determining the

best fit. Checks have been performed on our procedure which

show that there is extremely little sensitivity to variation in

Q2
0 for either the fit quality or the PDFs extracted.

2.2 Deuteron corrections

It is still the case that we need deep inelastic data on deuteron

targets [19–24] in order to fully separate the u and d distribu-

tions at moderate and large values of x . Thus we should con-

sider the correction factor c(x) to be applied to the deuteron

data

Fd(x, Q2) = c(x)[F p(x, Q2) + Fn(x, Q2)]/2, (8)

where we assume c is independent of Q2 and where Fn is

obtained from F p by swapping up and down quarks, and

anti-quarks; that is, isospin asymmetry is assumed. In the

MSTW analysis, motivated by [25], despite the fact that the

fit included all the deuteron data present in this analysis, the

theory was only corrected for shadowing for small values of

x , with a linear form for c with c = 0.985 at x = 0.01 and

c = 1 just above x = 0.1; above this point it was assumed

that c = 1.

In Ref. [11] we studied the deuteron correction factor in

detail. We introduced the following flexible parameterisation

of c(x), which allowed for the theoretical expectations of

shadowing (but which also allowed the deuteron correction

factor to be determined by the data):

c(x) = (1 + 0.01N ) [1 + 0.01c1ln2(x p/x)],
x < x p, (9)

c(x) = (1 + 0.01N ) [1 + 0.01c2ln2(x/x p)

+ 0.01c3ln20(x/x p)], x > x p, (10)

where x p is a ‘pivot point’ at which the normalisation is

(1+0.01N ). For x < x p there is freedom for c(x) to increase

or decrease smoothly depending on the sign of the parameter

c1. The same is true above x = x p, but the very large power in

the c3 term is added to allow for the expected rapid increase

of c(x) as x → 1 due to Fermi motion. If, as expected, there

is shadowing at low x and also a dip for high, but not too

high, x (that is, if both c1 and c2 are found to be negative),

then x p is where c(x) will be a maximum, as expected from

antishadowing (provided N > 0). If we fix the value of x p,

then the deuteron correction factor c(x) is specified by the

values of four parameters: the ci and N . In practice x p is

chosen to be equal to 0.05 at NLO, but a slightly smaller

value of x p = 0.03 is marginally preferred at NNLO.

As already emphasised, the introduction of a flexible

parameterisation of the deuteron correction, c(x), coupled

with the extended Chebyshev parameterisation of the input

PDFs was found [11], unlike MSTW [1], to describe the

data for lepton charge asymmetry from W ± decays well,

and, moreover, to give a much better description of the same

set of global data as used in the MSTW analysis. The only

blemish was that for the best possible fit the four-parameter

version of c(x) had an unphysical form (with c1 positive), so

the preferred fit, even though it was of slightly lower quality,

was taken to be the three-parameter form with c1 = 0. In the

present analysis (which includes the post-MSTW data) this

blemish does not occur, and the four-parameter form of the
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Table 1 The values of the
parameters for the deuteron
correction factor found in the
MMSTWW [11] and the present
(MMHT) global fits

PDF fit N c1 c2 c3 × 108

MMSTWW, 3 pars. 0.070 0 −0.608 3.36

MMSTWW, 4 pars. −0.490 0.349 −0.444 3.40

MMHT2014 NLO 0.630 ± 0.831 −0.116 ± 0.507 −0.758 ± 0.324 3.44 ± 1.89

MMHT2014 NNLO 0.589 ± 0.738 −0.116 ± 0.996 −0.384 ± 0.182 0.0489 ± 0.0056
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Fig. 2 The deuteron correction factors versus x at NLO shown for the
fits listed in Table 1. The error corridor for the MMHT2014 curve is
shown in Fig. 3, together with the result at NNLO

deuteron correction factor turns out to be much as expected

theoretically. The parameters are listed in Table 1 and the

corresponding deuteron correction factors shown in Fig. 2.

The fit quality for the deuteron structure function data for

MMSTWW at NLO with three parameters was 477/513, and

it was just a couple lower when four parameters were used.

For MMHT2014 at NLO the value is 471/513 and at NNLO

is slightly better at 464/513. Hence, the new constraints on

the flavour decomposition from the Tevatron and LHC are, if

anything, slightly improving the fit to deuteron data, though

part of the slight improvement is due to a small change in the

way in which NMC data is used – see Sect. 2.7.

The uncertainties for the parameters in the MMHT2014

PDF fits are also shown in Table 1. These values are quoted

as three times the uncertainty obtained using the standard

�χ2 = 1 rule. In practice we use the so-called “dynamic

tolerance” procedure to determine �χ2 for each of our eigen-

vectors, as explained in Section 6 of [1], and also discussed

in Sect. 5 of this article, and a precise determination of the

deuteron correction uncertainty is only obtained from the

similar scan over χ2 as used to determine eigenvector uncer-

tainties. However, a typical value is three times the �χ2 = 1

uncertainty, and this should give a fairly accurate representa-

tion of the deuterium correction uncertainty.3 The correlation

matrices for the deuteron parameters for the NLO and NNLO

analyses are, respectively,

3 This choice works well for PDF uncertainties, as discussed in [26].
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Fig. 3 The deuteron correction factors versus x at NLO and NNLO
with uncertainties (top) and at NLO compared to the CJ12 corrections
(bottom)

cNLO
i j =

⎛

⎜

⎜

⎝

1.000 −0.604 −0.693 0.177

−0.604 1.000 0.426 −0.116

−0.693 0.426 1.000 −0.360

0.177 −0.116 −0.360 1.000

⎞

⎟

⎟

⎠

, (11)

cNNLO
i j =

⎛

⎜

⎜

⎝

1.000 −0.540 −0.692 0.179

−0.540 1.000 0.371 −0.118

−0.692 0.371 1.000 −0.341

0.179 −0.118 −0.341 1.000

⎞

⎟

⎟

⎠

. (12)

We plot the central values and uncertainties of the deuteron

corrections at NLO and at NNLO in the higher plot of Fig. 3.

One can see that the uncertainty is of order 1 % in the region

0.01 � x � 0.4 well constrained by deuteron data. Although

the best fits now correspond to a decrease as x becomes very

small this is not determined within even a one standard devi-

ation uncertainty band. The lack of deuteron data at high x ,
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x � 0.75, mean that the correction factor is not really well

determined in this region, and the uncertainty is limited by

the form of the parameterisation. However, the sharp upturn

at x ∼ 0.6 is driven by the data.

Until recently, most of the other groups that have per-

formed global PDF analyses do not include deuteron correc-

tions. An exception is the analysis of Ref. [27]. In the present

work, and in MMSTWW [11], we have allowed the data to

determine what the deuteron correction should be, with an

uncertainty determined by the quality of the fit. The CTEQ-

Jefferson Lab collaboration [27] have performed three NLO

global analyses which differ in the size of the deuteron correc-

tions. They are denoted CJ12min, CJ12med and CJ12max,

depending on whether they have mild, medium or strong

deuteron corrections. We plot the comparison of these to our

NLO deuteron corrections in the lower plot of Fig. 3. The

CJ12 corrections are Q2-dependent due to target mass and

higher-twist contributions, as discussed in [28]. These con-

tributions die away asymptotically, so we compare to the

CJ12 deuteron corrections quoted at a very high Q2 value of

6400 GeV2. In the present analysis it turns out that the data

select deuteron corrections that are in very good agreement

for x > 0.2 with those given by the central CJ set, CJ12med.

The behaviour at smaller values of x is sensitive to the lepton

charge asymmetry data from W ± decays at the Tevatron and

LHC, the latter of which are not included in the CJ12 fits.

2.3 Nuclear corrections for neutrino data

The neutrino structure function data are obtained by scatter-

ing on a heavy-nuclear target. The NuTeV experiment [29]

uses an iron target, and the CHORUS experiment [30] scatters

on lead. Additionally the dimuon data from CCFR/NuTeV

[31] is also obtained from (anti)neutrino scattering from an

iron target. In the MSTW analysis [1] we applied the nuclear

corrections R f , defined as

f A(x, Q2) = R f (x, Q2, A) f (x, Q2), (13)

separately for each parton flavour f using the results of a

NLO fit by de Florian and Sassot [32]. The f A are defined

to be the PDFs of a proton bound in a nucleus of mass num-

ber A. In the present analysis we use the updated results of

de Florian et al., which are shown in Fig. 14 of [33]. The

nuclear corrections for the heavy flavour quarks are assumed

to be the same as that found for strange quarks, though the

contribution from heavy quarks is very small. The updated

nuclear corrections are quite similar, except for the strange

quark for x < 0.1, though this does not significantly affect

the extracted values of the strange quark. The new correc-

tions improve the quality of the fit by ∼25 units in χ2, spread

over a variety of data sets, including obvious candidates such

as NuTeV F2(x, Q2), but also HERA structure function data

and CDF jet data which are only indirectly affected by nuclear

corrections.

As in [1] we multiply the nuclear corrections by a three-

parameter modification function, Eq. (73) in [1], which

allows a penalty-free change in the details of the normali-

sation and shape. As in [1] the free parameters choose values

� 1, i.e. they chose modification of only a couple of per-

cent at most away from the default values. Hence, for both

deuteron and heavy-nuclear corrections, we allow the fit to

choose the final corrections with no penalty; but in both cases

the corrections are fully consistent with expectation, i.e. any

penalty applied would have very little effect.

2.4 General mass – variable flavour number scheme

(GM-VFNS)

The treatment of heavy flavours – charm, bottom – has an

important impact on the PDFs extracted from the global anal-

ysis due to the data available for Fh
2 (x, Q2) with h = c, b,

and also on the heavy flavour contribution to the total struc-

ture function at small x . Recall that there are two dis-

tinct regions where heavy quark production can be readily

described. For Q2 ∼ m2
h the massive quark may be regarded

as being only produced in the final state, while for Q2 ≫ m2
h

the quark can be treated as massless, with the ln(Q2/m2
h)

contributions being summed via the evolution equations. The

GM-VFNS is the appropriate way to interpolate between

these two regions, and as shown recently [34–36], the use

of the fixed-flavour number scheme (FFNS) leads to sig-

nificantly different results in a PDF fit to the GM-VFNS,

even at NNLO. However, there is freedom to define differ-

ent definitions of a GM-VFNS, which has resulted in the

existence of various prescriptions, each with a particular rea-

son for its choice. Well-known examples are the original

Aivazis–Collins–Olness–Tung (ACOT) [37] and Thorne–

Roberts (TR) [38] schemes, and their more recent refine-

ments [39–41]. The MSTW analysis [1] adopted the more

recent TR’ prescription in [41].

Ideally one would like any GM-VFNS to reduce exactly to

the correct fixed-flavour number scheme at low Q2 and to the

correct zero-mass VFNS as Q2 → ∞. This has been accom-

plished in [34], by introducing a new ‘optimal’ scheme which

improves the smoothness of the transition region where the

number of active flavours is increased by one. The optimal

scheme is adopted in the present global analysis.4

In general, at NLO, the PDFs, and the predictions using

them can vary by as much as 2 % from the mean value due

4 We do not treat the top quark as a parton, i.e. even at high scale we
remain in a five flavour scheme. Even at LHC energies the mass of the
top quark is quite large compared to any other scale in the process, and
the expressions for the cross sections for top production are all available
in the scheme where the top appears in the final state.
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to the ambiguity in the choice of the GM-VFNS, and a sim-

ilar size variation feeds into predictions for e.g. W, Z and

Higgs boson production at colliders. At NNLO there is far

more stability to varying the GM-VFNS definition. Typical

changes are less than 1 %, and then only at very small x val-

ues. This is illustrated well by the plots shown in Fig. 6 of

[34]. Similarly predictions for standard cross sections vary

at the sub-percent level at NNLO.

2.5 Treatment of the uncertainties

All data sets which are common to the MSTW2008 and

the present analysis are treated in the same manner in both,

except that the multiplicative, rather than additive, defini-

tion of correlated uncertainties is used, as discussed in more

detail below. All new data sets use the full treatment of corre-

lated uncertainties, if these are available. For some data sets

these are provided as a set of individual sources of correlated

uncertainty, while for others only the final correlation matrix

is provided.

If only the final correlation matrix is provided, then we

use the expression

χ2 =
Npts
∑

i=1

Npts
∑

i= j

(Di − Ti )(C
−1)i j (D j − T j ), (14)

where Di are the data values Ti are the parametrised5 pre-

dictions, and Ci j is the covariance matrix.

In the case where the individual sources of correlated

errors are provided the goodness-of-fit, χ2, including the full

correlated error information, is defined as

χ2 =
Npts
∑

i=1

(

Di +
∑Ncorr

k=1 rkσ
corr
k,i − Ti

σ uncorr
i

)2

+
Ncorr
∑

k=1

r2
k , (15)

where Di +
∑Ncorr

k=1 rkσ
corr
k,i are the data values allowed to

shift by some multiple rk of the systematic error σ corr
k,i in

order to give the best fit, and where Ti are the parameterised

predictions. The last term on the right is the penalty for the

shifts of data relative to theory for each source of correlated

uncertainty. The errors are combined multiplicatively, that is,

σ corr
k,i = βcorr

k,i Ti , where βcorr
k,i are the percentage errors. Previ-

ously, in MSTW [1], the additive definition was employed for

all but the normalisation uncertainty. That is, σ corr
k,i = βcorr

k,i Di

was used.

To appreciate the consequence of the change we can think

of the shift of data relative to theory as being approximately

given by

5 The parameters are those of the input PDFs, the QCD coupling
αs(M2

Z ) and the nuclear corrections.

Ncorr
∑

k=1

rkσ
corr
k,i =

Ncorr
∑

k=1

βcorr
k,i Di (Ti ) ≈ δ f Di (Ti ), (16)

where δ f is the fractional shift in the data – this is exactly

correct for a normalisation uncertainty.

Defining 1 + δ f = f , effectively the difference between

the additive and multiplicative use of errors is that

Di +
Ncorr
∑

k=1

βcorr
k,i Di ∼ f ∗ Di or Ti −

Ncorr
∑

k=1

βcorr
k,i Ti ∼ Ti/ f.

(17)

So for the additive definition the data are effectively rescaled

by f while for the multiplicative definition the theory is

rescaled by 1/ f . This means that in the two cases the χ2

definition behaves like

χ2 ∼
(

f ∗ Di − Ti

σ uncorr
i

)2

or χ2 ∼
(

Di − Ti/ f

σ uncorr
i

)2

=
(

f ∗ Di − Ti

f ∗ σ uncorr
i

)2

. (18)

Hence, with our new choice, the uncorrelated errors effec-

tively scale with the data, whereas with the previous additive

definition the uncorrelated uncertainties remain constant as

the data are rescaled. The additive definition can therefore

lead to a tendency for the data to choose a small scaling f

to bring the data closer together and hence reduce the χ2,

as pointed out in [42] and discussed in [43]. Our previous

treatment of uncertainties guarded against this for the most

obvious case of normalisation uncertainty by using the mul-

tiplicative definition for this particular source. However, the

same type of effect is possible in any relatively large system-

atic uncertainty which affects all data points with the same

sign, e.g. the jet energy scale uncertainty, so the multiplica-

tive definition is the safer choice and is recommended by

many experiments.

The other change we make in our treatment of corre-

lated uncertainties is that we now use the standard quadratic

penalty in χ2 for normalisation shifts, rather than the quartic

penalty adopted in MSTW [1]. It is checked explicitly that

this makes essentially no difference in NLO and NNLO fits,

but there is a tendency for some data to normalise down in

a LO fit. In some cases the quality of the fit at LO would

be very poor without this freedom, though it could often be

largely compensated by a change in renormalisation and/or

factorisation scale away from the standard values.

2.6 Fit to dimuon data

Information on the s and s̄ quark distributions comes from

dimuon production in νμN and ν̄μN scattering [31], where

(up to Cabibbo mixing) an incoming muon (anti)neutrino

scatters of a (anti)strange quark to produce a charm quark,
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(a) (b)

Fig. 4 Diagrams for dimuon production in νμ N scattering. Only dia-
gram a was considered in [1], but here we include b, although it gives
a very small contribution

which is detected via the decay of a charmed meson into

a muon; see Fig. 4a. These data were included in the

MSTW2008 analysis, but here we make two changes to the

analysis, one far more significant, in practice, than the other.

2.6.1 Improved treatment of the D → μ branching ratio,

Bμ

The comparison of theory predictions to the measured cross

section on dimuon production requires knowledge of the

branching fraction Bμ ≡ B(D → μ). In the previous anal-

ysis we used the fixed value Bμ = 0.099 obtained by the

NuTeV collaboration itself [44]. However, this requires a

simultaneous fit of the dimuon data and the branching ratio,

which can be dependent on assumptions made in the analysis.

Indeed, in studies for this article we have noticed a significant

dependence on the parameterisation used for the input strange

quark and the order of perturbative QCD used. Hence, in the

present analysis, we avoid using information on Bμ obtained

from dimuon data. Instead we use the value obtained from

direct measurements [45]: Bμ = 0.092 ± 10 %, where we

feed the uncertainty into the PDF analysis. We note that this is

somewhat lower than the number used in our previous analy-

sis, though the two are easily consistent within the uncertainty

of this value. We find that the fits prefer

Bμ = (0.085 − 0.091) ± 15 %, (19)

where the variation in the first number is the variation

between the best value from different fits, and the uncer-

tainty of 15 % is the uncertainty within any one fit due to the

uncertainty on the data, i.e. the variation that provides a sig-

nificant deterioration in χ2 for dimuon data as determined

by the dynamical tolerance procedure used to define PDF

uncertainties. Hence, the preferred value is always close to

the central value in [45]. These lower branching ratios com-

pared to the MSTW2008 analysis lead to a small increase

in the normalisation of the strange quark. However, probably

more importantly, the large uncertainty on the branching ratio

allows for a much larger uncertainty on the strange quark than

in our previous analysis. Indeed, this is one of the most sig-

nificant differences between MMHT2014 and MSTW2008

PDFs.

2.6.2 Inclusion of the g → cc̄ initiated process with a

displaced vertex

We also correct the dimuon cross sections for a small miss-

ing contribution. In the previous analysis we calculated the

dimuon cross section ignoring the contribution where the

charm quark is produced away from the interaction point

of the quark with the W boson, i.e. the contributions where

g → cc̄ then (c̄)c+ W ± → (s̄)s, as sketched in Fig. 4b. Pre-

viously we had included only Fig. 4a and had (incorrectly)

assumed that the absence of Fig. 4b was accounted for by the

acceptance corrections. We now include this type of contri-

bution, but it is usually of the order 5 % or less of the total

dimuon cross section. The correction to each of the structure

functions, F2, FL and F3, is proportionally larger than this,

but if we look at the total dimuon cross section then it is

proportional to s + (1 − y)2c̄ (or s̄ + (1 − y)2c), where y

is the inelasticity y = Q2/(xs) and c(c̄) is the charm distri-

bution coming from the gluon splitting. However, c(c̄) only

becomes significant compared to s(s̄) at higher Q2 and low

x , exactly where y is large and the charm contribution in the

total cross section is suppressed. As such, this correction has

a very small effect on the strange quark distributions that are

obtained, being of the same order as the change in nuclear

corrections and much smaller than the changes due to the

different treatment of the branching ratio Bμ.

2.7 Fit to NMC structure function data

In the MSTW2008 fit we used the NMC structure func-

tion data with the F2(x, Q2) values corrected for R =
FL/(F2−FL) measured by the experiment, as originally rec-

ommended. However, it was pointed out in [46] that RNMC,

the value of R extracted from data by the NMC collabora-

tion [20], was used more widely than was really applicable.

For example it was applied without changing the value over

a range of Q2, and it was also often rather different from

the prediction for R obtained using the PDFs and pertur-

bative QCD. In Section 5 of [47] we agreed with this, and

showed the effect of using instead R1990, a Q2-dependent

empirical parameterisation of SLAC data dating from 1990

[24] which agrees fairly well with the QCD predictions in the

range where data are used. It was shown that the effect of this

change on our extracted PDFs and value of αS(M2
Z ) was very

small (in contradiction to the claims in [46] but broadly in

agreement with [48]), since the change in F2(x, Q2) was only

at most about the size of the uncertainty of a data point for a

small fraction of the data points, and negligible for many data

points. In this analysis we use the same treatment as in [47],

i.e. the NMC structure data on F2(x, Q2) with the FL(x, Q2)
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correction very close to the theoretical FL(x, Q2) value. This

has very little effect, though the change in Fd
2 (x, Q2) for

x < 0.1 does help the deuteron correction at low x to be

more like the theoretical expectation.

3 Non-LHC data included since the MSTW2008

analysis

Here we list the changes and additions to the non-LHC data

sets used in the present analysis as compared to MSTW2008

[1]. All the data sets used in the MSTW2008 analysis are still

included, unless the update is explicitly mentioned below.

We continue to use the same cuts on structure function data,

i.e. Q2 = 2 GeV2 and W 2 = 15 GeV2. In [1] we imposed a

stronger W 2 = 25 GeV2 cut on F3(x, Q2) structure function

data due to the expected larger contribution from higher-twist

corrections in F3(x, Q2) than in F2(x, Q2); see e.g. [49].

However, this still leaves a possible contribution from quite

small x values for rather low Q2. Hence we now impose a

cut on Q2 = 5 GeV2 for F3(x, Q2).

As an aside, we should comment on the very small x

domain. As usual we do not impose any cut at low x , although,

at present, there are essentially no (non-LHC or LHC) data

available probing the x � 0.001 domain.6 The present anal-

ysis is based entirely on fixed-order DGLAP evolution. So

when we show plots, like Fig. 1 going down to x = 10−4,

and, later, when we show comparison plots going down to

x = 10−5, we are going well beyond the available data,

and also entering a domain which is potentially beyond the

validity of a pure DGLAP framework. One possible source

of contamination is large higher-twist corrections. However,

even assuming these are small, in principle, the very small x

physics is influenced by the presence of large ln(1/x) terms in

the perturbative expansion, which can be obtained from solu-

tions of the BFKL equation (though this can include some

higher-twist information as well). When data constraints are

available at very small x , it is arguably the case that a uni-

fied fixed-order and resummation approach should be imple-

mented. In [57–59] splitting functions are derived in this

approach, with good agreement between groups. These sug-

gest that the resummation effects lower the splitting func-

tions for x ∼ 0.001–0.0001 before a rise at x < 10−5,

and the likely effect is a slight slowing of evolution at low

Q2 and x . Another related approach is to consider unified

BFKL/DGLAP evolution which has been derived for the

6 Exceptions are exclusive J/ψ production [50] and low-mass Drell–
Yan production [51] at high rapidity y at the LHC, but here the data
are sparse and, moreover, on the theory side, there are potentially large
uncertainties, particularly in the former case where it is not the standard
integrated PDFs which are being directly probed, and more work is
needed for data from these processes to be useful [52–56].

(integrated) gluon PDF in terms of the gluon emission open-

ing angle [60].

Having discussed the kinematic cuts that we apply, we are

now ready to discuss the fit obtained using only the non-LHC

data sets. We study the inclusion of a variety of LHC data in

the next section. We note that in the fits, performed in this

section, the coefficients of all four Chebyshev polynomials

for the s+ distribution are set equal to those for the light sea,

as without LHC data there is insufficient constraining power

in the data to fit these independently. This makes a completely

direct comparison between the full PDFs including LHC data

in the analysis and the PDFs without LHC data impossible.

We replace the previously used HERA run I neutral and

charged current data measured by the H1 and ZEUS collab-

orations, by their combined data set [61] and use the full

treatment of correlated errors. We use a lower Q2 cut of

2 GeV2 and break the data down into five subsets; σNC,e+ p

at centre-of-mass energy 820 GeV (78 points), σNC,e+ p at

centre-of-mass energy 920 GeV (330 points), σNC,e− p at

centre-of-mass energy 920 GeV (145 points), σCC,e+ p at

centre-of-mass energy 920 GeV (34 points) and σNC,e− p at

centre-of-mass energy 920 GeV (34 points). The fit to these

data is very good at both NLO and NNLO; with a slightly

better fit at NNLO, i.e. χ2/Npts = 644.2/621 at NNLO com-

pared to 666.0/621 at NLO. Most of this improvement is in

the σNC,e+ p data which is 16 units better at NNLO. We do not

include the separate H1 and ZEUS run II data yet, but wait for

the combined data set, which as for run I we anticipate will

produce improved constraints compared to the separate sets.

Similarly, we remove the previous measurements by

ZEUS and H1 of Fcc̄
2 (c, Q2) and include instead the com-

bined HERA data on Fc(x, Q2) [62] and use the full informa-

tion on correlated uncertainties. Unlike the inclusive struc-

ture function data these data are fit better at NLO than NNLO,

with χ2/Npts = 68.5/52 at NLO but χ2/Npts = 78.5/52 at

NNLO (this difference is less clear, and the values of χ2 are

lower, if the additive definition of correlated uncertainties is

used for this data set). As in the MSTW2008 analysis we use

mc = 1.4 GeV in the pole mass scheme. Preliminary inves-

tigation implies that if mc is varied, a value 1.2–1.3 GeV is

preferred at both NLO and NNLO.

We also include all of the HERA FL(x, Q2) measure-

ments published before the beginning of 2014 [63–65]. The

global fit undershoots some of the data a little at the lowest Q2

values, slightly more so at NNLO than at NLO, as seen in Fig.

5, but the χ2 values are not much more than one per point. For

the HERA FL(x, Q2) data we obtain χ2/Npts = 29.8/26 at

NLO and χ2/Npts = 30.4/26 at NNLO.

In the present analysis we include the CDF W charge

asymmetry data [66], the D0 electron charge asymmetry data

with pT > 25 GeV based on 0.75 fb−1 [67] and the new D0

muon charge asymmetry data with pT > 25 GeV based on

7.3 fb−1 [68]. These replace the Tevatron asymmetry data
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Fig. 5 The fit quality for the HERA data on FL (x, Q2) from [63–
65] at NLO (left) and NNLO (right). The dotted curve, shown for
illustration, is obtained from the prediction for the data in [64] below

Q2 = 45 GeV2 and from the prediction for the data in [65] above
this. The “Data/Theory” comparison is obtained for the individual data
points in each case
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Fig. 6 The fit quality for the two D0 lepton asymmetry data sets [67,68] at NLO (left) and NNLO (right)

used in the MSTW2008 analysis. Where the information on

correlated uncertainties is available we use this in the con-

ventional manner in calculating the χ2 values. The nominal

fit quality for each of these data sets appears quite poor with

χ2/Npts = 32.1/13, 30.5/12 and 20.3/10, respectively, at

NLO and χ2/Npts = 28.8/13, 28/12 and 19.8/10 respec-

tively at NNLO, but this seems to be mainly due to fluctua-

tions in the data making a very good quality fit impossible

(especially when fitting the data sets simultaneously), as seen

in Fig. 6. There is a tendency to overshoot the data at the very

highest rapidity, though this is a little less at NNLO than at

NLO (we use FEWZ [69] for the NLO and NNLO correc-

tions).We do get an approximately 2 sigma shift of data rel-

ative to theory corresponding to the systematic uncertainty

due to electron identification for the fit to CDF W charge

asymmetry data, but no large shifts for the new D0 muon

charge asymmetry data.

We also include the final measurements for the CDF Z

rapidity distribution [70], since the final data changed slightly

after the MSTW fit. We also now include the very small pho-

ton contribution in our calculation. The effect of this second

correction was discussed in Section 11.2 of [1], although it

was not used in the extraction of the MSTW2008 PDFs. The

effect of both the final data set and the photon contribution is

to improve the fits quality, χ2/Npts = 36.9/28 at NLO and

39.6/28 at NNLO, compared to 49/29 at NLO and 50/29 at
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NNLO in [1], while having essentially negligible impact on

the PDFs.

These changes to the theoretical procedures, and additions

to the global data that are fitted, do not change the PDFs

very much from those in [1], except for the large change in

(uV −dV ) around x � 0.01, which was already found in [11].

The small changes can be seen in Figs. 21, 22, 23, 24 and

25 where we show the central values of these PDFs fit only

to non-LHC data with the comparison of the MMHT2014

and MSTW2008 PDFs. There is a moderate reduction in the

uncertainty on the very small x gluon distribution due to the

inclusion of the combined HERA data. Without the inclu-

sion of the error on the branching ratio in dimuon produc-

tion there is also a small improvement in the uncertainty on

light quarks, but this is lost when the branching ratio uncer-

tainty is included; as the increased uncertainty on the strange

quarks also leads to some increase in the uncertainty of the

up and down quarks. As seen in Fig. 13 of [11] the increased

parameterisation and improved deuteron corrections lead to

an increase in the uncertainty in the up and down valence

quarks, and this is far from compensated for by the inclusion

of the new non-LHC data in this analysis. There is also only

a small shift in the value of the QCD coupling extracted in

the best fit to data:

at NLO αS(M2
Z ) = 0.1200 from 0.1202 (20)

at NNLO αS(M2
Z ) = 0.1181 from 0.1171 (21)

4 The LHC data included in the present fit

We now discuss the inclusion of the LHC data into the PDF

fit. This includes a variety of data on W and Z production,

also the completely new process for our PDF determination

of top-quark pair production, and finally jet production. The

addition of these LHC data sets to the data already discussed

leads us to our final set of MMHT2014 PDFs. We make these

PDFs available at NLO and NNLO, but also at LO. The full

LO fit requires a much higher value of the strong coupling,

αS(M2
Z ) = 0.135, if the standard scale choices are made, i.e.

μ2 = Q2 in deep inelastic scattering, μ2 = M2 in Drell–Yan

production and μ2 = p2
T in jet production, the same choices

as made at NLO and NNLO. Even so the fit quality is much

worse at LO than at NLO and NNLO, both of which give

a similar quality of description of the global data. We will

present full details of the fit quality and the PDFs in the next

section, but first we present the results of the fit to each of

the different types of LHC data.

4.1 W and Z data

In order to include the LHC data on W and Z produc-

tion in a variety of forms of differential distribution we

use APPLGrid–MCFM [71–73] at NLO to produce grids

which are interfaced to the fitting code, and at NNLO we use

DYNNLO [74] and FEWZ [69] programs to produce precise

K -factors (as a function of αS) to convert NLO to NNLO. In

the vast majority of cases the NLO to NNLO conversion is a

very small correction, especially for asymmetries and ratios.

The quality of the description of the LHC W and Z data in

the present NLO and NNLO MMHT fits is shown in the last

column of Table 2. For comparison, we also show the quality

of the predictions of the MMHT fits and of the MMSTWW

fits [11], neither of which included these, or any other, LHC

data. We discuss the description of the data sets listed in Table

2 in turn.

4.1.1 ATLAS W and Z data

First we consider the description of the ATLAS W and

Z rapidity data [10]. These were poorly predicted by the

MSTW2008 PDFs (see e.g. [75]), primarily due to the incor-

rect balance between W + and W − production at low rapid-

ity, which is sensitive to the low-x valence quark difference,

and which shows up most clearly in the asymmetry between

W + and W − production. This particular issue was automat-

ically largely solved by the improved parameterisation and

deuteron corrections in the MMSTWW study [11]. Neverthe-

less, we see from Table 2 that the quality of the description

using the MMSTWW sets still has χ2 ∼ 1.6 per point for the

NLO fit, and χ2 > 2 per point in the NNLO fit. At NNLO

it turns out that uV (x) − dV (x) at small-x is still not quite

large enough to reproduce the observable charge asymmetry.

However, at both NLO and NNLO the shape of the rapidity

distribution (driven by the evolution of anti-quarks and hence

ultimately by the gluon) is not quite ideal, and also a slightly

larger fraction of strange quarks in the sea is preferred. The

inclusion of the non-LHC data, together with the changes in

theoretical procedure mentioned in Sect. 2 (not included in

[11]), already improves the fit quality, particularly at NNLO,

and after the inclusion of these ATLAS data, the χ2 improves

to about 1.3 per point at both NLO and NNLO. This appears

to be not quite as good as the best possible fits to these data,

which seem to require an even larger strange quark fraction

in the sea; indeed, the same fraction as the up and down sea

[76], or even larger (in the ‘collider-only’ fit in [3]). The fit

quality is shown in Fig. 7. One can see that there is a slight

tendency to undershoot the Z data at the lowest rapidity,

which could be improved by a slight increase in the strange

distribution for x ∼ 0.01, as seen in [76], but also verified in

our studies.

4.1.2 CMS asymmetry data

Next we discuss the description of the charge lepton asymme-

tries observed in the CMS data [9,77]. These data were also
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Table 2 The quality of the description (as measured by the value of
χ2) of the LHC W, Z data before and after they are included in the
global NLO and NNLO fits. We also show for comparison the χ2 val-

ues obtained in the CPdeut fit of the NLO MMSTWW analysis [11],
which did not include LHC data

Data set Npts MMSTWW

(Ref. [11])

MMHT2014

(no LHC)

MMHT2014

(with LHC)

NLO

ATLAS W +, W −, Z 30 47 44 38

CMS W asymm pT > 35 GeV 11 9 16 7

CMS asymm pT > 25 GeV, 30 GeV 24 9 17 8

LHCb Z → e+e− 9 13 13 13

LHCb W asymm pT > 20 GeV 10 12 14 12

CMS Z → e+e− 35 21 22 19

ATLAS high-mass Drell–Yan 13 20 20 21

CMS double-diff. Drell–Yan 132 385 396 372

NNLO

ATLAS W +, W −, Z 30 72 53 39

CMS W asymm pT > 35 GeV 11 18 15 8

CMS asymm pT > 25, 30 GeV 24 18 17 9

LHCb Z → e+e− 9 23 22 21

LHCb W asymm pT > 20 GeV 10 24 21 18

CMS Z → e+e− 35 30 24 22

ATLAS high-mass Drell–Yan 13 18 16 17

CMS double-diff. Drell–Yan 132 159 151 150

not well described by MSTW2008 PDFs, but as seen in Table

2, the prediction using the MMSTWW set at NLO is very

good. However, it is still not ideal when using the NNLO set.

If we implement the changes discussed above, in the present

article, but before including the LHC data, the prediction

for these data deteriorates at NLO (due to uV (x) − dV (x)

becoming too large at x ∼ 0.01) while it improves slightly at

NNLO. When the LHC data are included, we see from Table

2 that the fit quality becomes excellent. This is particularly

the case at NLO, where the fit is about as good as possible,

but the NNLO description is nearly as good. The fit quality

is shown in Fig. 8, and indeed the NLO fit is excellent, but

at NNLO there is a slight tendency to undershoot the low

rapidity data, but this is exaggerated by the fact that only

uncorrelated uncertainties are shown.

4.1.3 LHCb W and Z data

We also include the results for W ± production [78] and for

Z → e+e− [79] obtained by the LHCb experiment. These

data are both predicted and fitted well at NLO. At NNLO the

description is a little worse and is significantly under some

of the data points for rapidity y ≈ 3.5 for the Z → e+e−

data. However, this small discrepancy is not evident when we

compare with the preliminary higher precision Z → μ+μ−

data [80]. The fit quality is shown in Fig. 9. The tendency to

undershoot the high rapidity Z data is clear, but this is not an

obvious feature of the comparison to the W ± data. In princi-

ple, there are electroweak corrections, including those where

the photon distribution appears in the initial state, which are

potentially significant. However, the electroweak corrections

are still somewhat smaller than the data uncertainty, so we

use the pure QCD calculation in this article, though these

data, and further measurements, will be an essential feature

of a future update of [81] which will appear shortly; see also

[82].

4.1.4 CMS Z → e+e− and ATLAS high-mass Drell–Yan

data

In addition, we include in the fit the CMS data for Z → e+e−

[84], and the ATLAS high-mass Drell–Yan data [83]. Both
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Fig. 7 The fit quality of the ATLAS W −, W + data sets for dσ/d|ηl |
(pb) versus |ηl |, and of the Z data set for dσ/d|yZ | versus |yZ | [10],
obtained in the NLO (left) and NNLO (right) analyses. The points shown

are when the shift of data relative to the theory due to correlated system-
atics is included. However, this shift is small compared to the uncorre-
lated error for the data, so the comparison before shifts is not shown
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Fig. 8 The fit quality for the CMS electron asymmetry data for pT >

35 GeV in [9] at NLO and NNLO. Note that correlated uncertainties
are made available in the form of a correlation matrix, so the shift of
data relative to theory cannot be shown, and makes a comparison of
data with PDF uncertainties less useful

are well described, again slightly better at NLO than at

NNLO. The fit quality for the ATLAS high-mass Drell–Yan

data is shown in Fig. 10. The correlated uncertainties clearly

play a big part in allowing the good quality fit, particularly at

NLO. However, these are presented in the form of correlation

matrices so it is not possible to illustrate shifts of data relative

to theory. For these data sets the variation of the theory predic-

tions within the range of PDF uncertainties is smaller than the

data uncertainties. As in the previous subsection, in princi-

ple there are electroweak corrections, including those where

the photon distribution appears in the initial state, which is

particularly relevant for this type of process, and they are

included in the analysis of [83], which takes the photon PDF

from [81], and used as a very weak constraint on the photon

PDF in [85]. However, as in the last subsection these are still

much smaller than the data uncertainty, though this may well

not continue with future measurements.

4.1.5 CMS double-differential Drell–Yan data

Finally, we include the CMS double-differential Drell–

Yan data [86] extending down to relatively low masses,

M(ℓ+ℓ−) ∼ 20–40 GeV. (Again there is some sensitivity

to electroweak corrections away from the Z -peak, but we do

not include these corrections in the theoretical calculations.)

The fit to these data is extremely poor at NLO, as shown

in Table 2, and this is largely due to the comparison in the

two lowest mass bins 20–30 and 30–45 GeV; see Fig. 11.

The data/theory comparison in the other mass bins is similar

at NLO and NNLO, being very good in both cases. The fit

quality can only be improved marginally if this data set is

given a very high weighting in the fit – the PDFs are probed

at similar values of x in adjacent mass bins, and if the nor-

malisation is changed to improve the match to data in one

mass bin it affects the quality in the nearby bins. The fit qual-

ity is hugely improved at NNLO, as shown in Fig. 11. This

might be taken as an indication that NNLO corrections are

particularly important for low-mass Drell–Yan production.

However, it is a little more complicated than this. The pT cut

on one lepton in the final state is 14 GeV (the other is 9 GeV),

meaning that at LO the minimum invariant mass is 28 GeV,

and most of the lowest mass bin in the double-differential

cross section receives a contribution of zero from the LO

calculation, and in this region the first non-zero results are at

O(αS) when an extra particle is emitted. Hence, the K -factor

going from LO to NLO is over 6 in the 20–30 GeV region,

and is still large ∼1.3 when going from NLO to NNLO. The

K -factors are much smaller in higher-mass bins. Hence, it is

perhaps more correct to say that the NLO fit is poor because

for the lowest mass it is effectively (nearly) a LO calculation,

rather than because the NNLO correction is intrinsically very

important. A similar effect is noted in the low-mass single-

differential measurement in [87], where the prediction using

MSTW2008 PDFs at NNLO is very good, but it is poor at

NLO at low mass, and fits performed in this paper work well

at NNLO, but not at NLO.

4.1.6 Procedure for LO fit to Drell–Yan data

At LO we follow the procedure for fitting Drell–Yan (vec-

tor boson production) data given in [1]. In this, and other

previous studies, it has been found that it is not possible

to obtain a good simultaneous fit of structure function and

Drell–Yan data, since the quark (and antiquark) distributions

are not compatible due to NLO corrections to coefficient

functions being much larger for Drell–Yan production. This

is because of a significant difference between the result in

the space-like and time-like regimes; that is, there is a fac-

tor of 1 + (αS(M2)/π)CFπ2/2 at NLO in the latter regime.

Even for Z production this is a factor of 1.25. Hence, as

in [1] we include this common factor for all vector boson

production in the LO fit. Doing this enables a good fit to

the low-energy fixed-target Drell–Yan data [88] (though it

is less good for the asymmetry [89]). However, the general

fit quality to rapidity-dependent data from the LHC and the

Tevatron is generally poor (with some exceptions, which are

generally ratios, e.g. the D0 Z -rapidity data [90], and the

CMS lepton asymmetry data), with neither the precise nor-

malisation or the shape being correct. Nevertheless, the fit

is distinctly better when including the correction factor than

without it, while the normalisation is consistently very poor.
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Fig. 9 The fit quality for the LHCb data for W and Z production in
[78] and [79] at NLO and NNLO. Note that correlated uncertainties are
made available in the form of a correlation matrix, so the shift of data

relative to theory cannot be shown. The plots show dσ/dημ versus ημ,
and dσ/dyZ versus yZ

We do not include the CMS double-differential Drell–Yan

data at LO, since, as mentioned above, in the lowest mass

bins the LO contribution is an extremely poor approxima-

tion.

4.2 Data on t t̄ pair production

We include in the fit the combined measurement of the D0

and CDF experiments for the t t̄ production cross section as

measured at the Tevatron [91]

σ(t t̄) = 7.60 ± 0.41 pb with mt = 172.5 GeV, (22)

together with published t t̄ cross-section measurements from

ATLAS and CMS at
√

s = 7 TeV [92–102] and at 8 TeV

[103].7 We use APPLGrid–MCFM at NLO and the code from

[104] for the NNLO corrections. We take mt = 172.5 GeV

(defined in the pole scheme) with an error of 1 GeV, with the

7 We note that the measurement at 8 TeV is actually published after the
beginning of 2014 (although submitted at the end of 2013), and hence
officially does not satisfy our cut-off on the date for data included.
However, this data point is extremely well fit at both NLO and NNLO,
with the contribution to the χ2 much less than 1 unit, and has extremely
little pull on the PDFs. It is effectively included as a comparison rather
than as a constraint.
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Fig. 10 The fit quality for the ATLAS high-mass Drell–Yan data set
[83] at NLO (left) and NNLO (right). The red points represent the ratio
of measured data to theory predictions, and the black points (clustering

around Data/Theory = 1) correspond to this ratio once the best fit has
been obtained by shifting theory predictions relative to data by using
the correlated systematics

corresponding χ2 penalty applied. A variation of 1 GeV in

the mass is roughly equivalent to a 3 % change in the cross

section. A number of the measurements of the cross section,

including the most precise [99], use the same value of the

mass as default. Some also parameterise the measured cross

section as a function of mt , and in these cases the cross sec-

tion falls with increasing mass, as for the theory prediction.

However, the dependence is weaker, typically ∼1 % per GeV

or less, and so this variation is outweighed significantly by

the variation in the theory (though one can assume that the

1 GeV uncertainty on the top mass used in the theory cal-

culation is partially accounting for the variation of the cross

section data as well, and the uncertainty on the top mass

applied is consequently slightly less than 1 GeV in practice).

The predictions and the fit are very good, as shown in Table

3, and in Fig. 12, with a slightly lower mass mt = 171.7 GeV

preferred in the NLO fit, and a slightly higher value mt =
174.2 GeV in the NNLO fit. Using the dynamical tolerance

method both NLO and NNLO fits constrain the top mass to

within about 0.7–0.8 GeV of the best-fit values, though the

best value and uncertainties cannot be interpreted as inde-

pendent determinations as a preferred value and uncertainty

for mt is input in the analysis. Nevertheless, it is encouraging

that the preferred mass at NNLO is consistent with the world

average of 173.34 ± 0.76 GeV [105], whereas the NLO pre-

ferred value is a little low, highlighting the importance of

the NNLO corrections, even though the fit quality is similar

at both orders. There is a significant interplay between the

gluon distribution, the top mass and the strong coupling con-

stant. It is very clear that as the top quark mass increases the

predicted cross section decreases, which can be compensated

for in the cross section by an increase in both the gluon and

in αS(M2
Z ). This will be discussed further in a forthcoming

article, which presents the variation of PDFs with αS(M2
Z ) in

detail and illustrates the constraint on the coupling. However,

we note here that although the fit quality to the t t̄ production

cross section does depend quite strongly on the values of mt

and αS(M2
Z ), the small size of the data set is such that the

value of αS(M2
Z ) for the best fit depends very little on vari-

ation of mt , or even on the inclusion of the top data, i.e. of

order 0.0003 at most.

The fit quality at LO is very poor, with χ2/Npts = 53/13.

This is because the LO calculation is too low and mt =
163.5 GeV is preferred, even though this incurs a very large

χ2 penalty.

4.3 LHC data on jets

In the present global analysis at NLO we include the CMS

inclusive jet data at
√

s = 7 TeV with jet radius R = 0.7

[106], together with the ATLAS data at 7 TeV [107] and at

2.76 TeV with jet radius R = 0.4 [108]. For the latter we use

cuts proposed in the ATLAS study, which eliminate the two

lowest pT points in each bin, due to the large sensitivity to

hadronisation corrections in these bins, and some of the high-

est pT points.8 We perform the calculations within the fitting

procedure using FastNLO [110] version 2 [111], which uses

NLOJet++ [112,113], and APPLGrid. The jet data from

the two experiments appear to be extremely compatible with

each other. The data are both well predicted and well fit, as

shown in Table 4. Before these data are included in the fit we

find χ2 = 107 for 116 data points for ATLAS and χ2 = 143

for the 133 CMS jet data points at NLO, very similar to

the values of χ2 obtained from the earlier MMSTWW NLO

8 In the analysis of [109] we cut two more ATLAS points at the edge of
rapidity bins due to very poor fits to these points. This was much more of
an issue when using the additive definition for correlated uncertainties,
and we have reinstated these points here. Indeed the whole fit quality
for this data set is much better using the multiplicative definition.
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Fig. 11 The fit quality for the CMS double-differential Drell–Yan data
for (1/σZ ) · dσ/d|yZ | versus |yZ |, in [86], for the lowest two mass
bins (20 < M < 30 and 30 < M < 45 GeV) (top), the mass bins
(45 < M < 60 and 60 < M < 120 GeV) (middle) and the mass bins

(120 < M < 200 and 200 < M < 1500 GeV) (bottom), at NLO and
NNLO. Note that correlated uncertainties are made available in the form
of a correlation matrix, so the shift of data relative to theory cannot be
shown
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Table 3 The quality of the description (as measured by the value of χ2)
of Tevatron and LHC t t̄ data before and after they are included in the
global NLO and NNLO fits. We also show for comparison the χ2 values
obtained in the CPdeut fit of the NLO MMSTWW analysis [11], which

did not include LHC data. Note that the subprocess qq̄ → t t̄ dominates
at the Tevatron with x1, x2 ∼ 0.2, while at the LHC gg → t t̄ gives the
major contribution with x1, x2 ∼ 0.05

Data set Npts MMSTWW

(Ref. [11])

MMHT2014

(no LHC)

MMHT2014

(with LHC)

NLO

Tevatron, ATLAS, CMS σ(t t̄) 13 8 10 7

NNLO

Tevatron, ATLAS, CMS σ(t t̄) 13 8 11 8

PDF set. Including these jet data in the NLO fit leads to more

improvement in the χ2 for CMS than for the ATLAS data,

i.e. 143 → 138 as opposed to 107 → 106. However, in both

cases the possible improvement is rather small. We note that

the treatment of the systematic uncertainties for the CMS jet

data has been modified to take account of an increased under-

standing by the experiment since the original publication of

the data [106]. Initially the the single pion related correlated

uncertainties were all correlated. However, in [114] a deci-

sion was made to decorrelate single pion systematics, i.e. to

split the single pion source into five separate parts. This low-

ers the χ2 obtained in the best fit significantly, from about

170 to about 135. However, it leads to no real change in

PDFs extracted in the global fit, though it allows a slightly

higher value of αS(M2
Z ). The fit quality for the LHC jet data

is shown at NLO in Figs. 13, 14 and 15. One can see that the

correlated uncertainties play a significant role in enabling the

good fit quality, with the shift of data against theory being

larger than the uncorrelated uncertainties. However, for each

of the three data sets the shape of the data/theory compari-

son is very good even before the correlated systematics are

applied, with only a small correction of order 10 % at most

needed, this being relatively independent of pT , rapidity, or

even data set.9

Of course, the full NNLO QCD calculation is not avail-

able for jet cross sections, either in DIS or in hadron–hadron

collisions. The NNLO calculation of jet production is ongo-

ing, but not yet complete. It is an enormous project and much

progress has been made; see [115–117], and it will hopefully

be available soon.

9 It has very recently been brought to our attention that there is a change
in the luminosity determination for the data in [10,107], and the cross
sections should be multiplied by a factor of 1.0187 and the uncertainty
on the global normalisation (“Lumi”) increases slightly from 3.4 to
3.5 %. This was too late to be included explicitly in our PDF determi-
nation. However, we note that this corrections results in the χ2 for the
best fits at NLO and NNLO both reducing by about half a unit, and any
changes in the PDFs are very much smaller than all uncertainties.
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Fig. 12 The fit quality of the cross section data for t t̄ production (σ(t t̄))
at NLO (top) and NNLO (bottom)

Despite the absence of the full NNLO result, in the

NNLO MSTW analysis the Tevatron jet data [118,119] were

included in the fit using an approximation based on the

knowledge of the threshold corrections [120]. It was argued

that although there was no guarantee that these give a very

good approximation to the full NNLO corrections, in this

case the NLO corrections themselves are of the same order

as the systematic uncertainties on the data. The threshold cor-

rections are the only expected source of possible large NNLO

corrections, so the fact that they provide a correction which

is smooth in the pT of the jet and moderately small compared

to systematic uncertainties in the data strongly implies that

the full NNLO corrections would lead to little change in the
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Table 4 The quality of the description (as measured by the value of
χ2) of the LHC inclusive jet data before and after they are included in
the global NLO and NNLO fits. We also show for comparison the χ2

values obtained in the CPdeut fit of the NLO MMSTWW analysis [11],

which did not include LHC data. Also the LHC jet data are not included
in the final NNLO MMHT global fit presented in this paper. However,
the NNLO χ2 numbers and K factors mentioned in the table correspond
to an exploratory approximate NNLO study described in Sect. 4.3.1

Data set Npts MMSTWW

(Ref. [11])

MMHT2014

(no LHC)

MMHT2014

(with LHC)

NLO

ATLAS jets (2.76 + 7 TeV) 116 107 107 106

CMS jets (7 TeV) 133 140 143 138

NNLO small K -factor

ATLAS jets (2.76 + 7 TeV) 116 (107) (123) (122) 115

CMS jets (7 TeV) 133 (142) (137) (138) 137

NNLO large K -factor

ATLAS jets (2.76 + 7 TeV) 116 (117) (132) (132) 126

CMS jets (7 TeV) 133 (145) (137) (139) 139

PDFs. Since these jet data are the only good direct constraint

on the high-x gluon it was decided to include them in the

NNLO fit judging that the impact of leaving them out would

be far more detrimental than any inaccuracies in including

them without knowing the full NNLO hard cross section.

In fact the threshold corrections to the Tevatron data gave

about a 10 % positive correction; see for example Fig. 50

in [109]. We also see from the same figure that the thresh-

old corrections for the LHC data are similar to those at the

Tevatron for the highest x values at which jets are measured,

but blow up at the low x values probed, that is, when they

are far from threshold. Recent detailed studies exploring the

dependence of the threshold corrections on the jet radius R

values at NLO and NNLO show that the true corrections in

the threshold region show a significant dependence10 on R

at NLO [121,122], but that this is rather reduced at NNLO

[122]. However, the improved NNLO threshold calculations

in [122] show that there are still problems at low and mod-

erate values of jet pT .

In the present global analysis, as a default at NNLO, we

still include the Tevatron jet data in the fit. This seems reason-

able, since they are always relatively near threshold, and the

corrections do not obviously break down at the lowest pT val-

ues of the jet.11 On the other hand, we omit the LHC jet data,

10 The dependence on R was not accounted for in [120].
11 We realise that, strictly speaking, the D0 jet data are difficult to
include in an NNLO fit since the mid-point algorithm used becomes
infrared unsafe at this order [123]. However, the whole “NNLO” jet
treatment is approximate at present. We will revisit the question of
whether to include these data in future fits when the full NNLO calcula-
tion is known. At this time presumably there will also be more precise
LHC jet data and the D0 jet data would play a diminishing role in the
fit anyway.

since at the lowest pT measured the threshold corrections are

not stable and, moreover, have large uncertainties at the high-

est rapidities observed. This is slightly more blunt, but quite

similar in practice to the conclusion of [124] which compares

the degree of agreement between the approximate threshold

calculation and the exact calculation for the gg → gg chan-

nel, where the latter is known. It is found that the agreement is

good for high values of pT (relative to centre-of-mass energy√
s) and relatively central rapidity. These regions of agree-

ment are then deemed to be the regions where the approxi-

mate NNLO is likely quite reliable. They correspond to most

of the Tevatron data, except at high rapidity (where the sys-

tematic errors on data are large), much of the CMS jet data,

but little of the ATLAS jet data. Hence, we feel confident

including the Tevatron jet data using approximate NNLO

expressions, especially given that in [109] we investigated the

effect of rather dramatic modifications of these corrections,

finding only rather moderate changes in PDFs and αS(M2
Z ).

We could arguably include (much of) the CMS jet data, but

for the moment err on the side of caution.

4.3.1 Exploratory fits to LHC jet data at ‘NNLO’

Despite leaving the LHC jet data out of the PDF determina-

tion at NNLO we have explored the effect of including very

approximate NNLO corrections to the LHC data based on

the threshold corrections and the known exact calculations

so far available. To do this, we applied a 5–20 % positive

correction, growing at the lower pT values, that is, similar to

the shape of the NNLO/NLO corrections in Figures 2 and 3

of [116]. In detail, we have used

KNNLO/NLO = (1+k(9.2−0.5 ln(p2
T ))/9.2), CMS, (23)
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Fig. 13 The fit quality for the ATLAS 7 TeV jet data in various rapid-
ity intervals [107] at NLO. The red points represent the ratio of mea-
sured data to theory predictions, and the black points (clustering around

Data/Theory = 1) correspond to this ratio once the best fit has been
obtained by shifting theory predictions relative to data by using the
correlated systematics
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Fig. 14 The fit quality for the ATLAS 2.76 TeV jet data in various
rapidity intervals [108] at NLO. The red points represent the ratio of
measured data to theory predictions, and the black points (clustering

around Data/Theory = 1) correspond to this ratio once the best fit has
been obtained by shifting theory predictions relative to data by using
the correlated systematics
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Fig. 15 The fit quality for the CMS 7 TeV jet data in various rapid-
ity intervals [106] at NLO. The redpoints represent the ratio of mea-
sured data to theory predictions, and the black points (clustering around

Data/Theory = 1) correspond to this ratio once the best fit has been
obtained by shifting theory predictions relative to data by using the
correlated systematics

KNNLO/NLO = (1 + k(8.0 − 0.5 ln(p2
T ))/8.0),

ATLAS 7 TeV, (24)

KNNLO/NLO = (1 + k(8.0 − 0.5 ln((7/2.76)2 p2
T ))/8.0),

ATLAS 2.76 TeV. (25)

We tried two alternatives, a ‘smaller’ and ‘larger’ K -factor,

i.e. k = 0.2 and k = 0.4, with corrections of about 10 and

20 % at pT = 100 GeV, independent of rapidity. The quality

of the comparison to the data is shown in Table 4 using both

the smaller and larger K -factors. The numbers in brackets

represent predictions rather than a new fit. Clearly for both

MMSTWW and MMHT PDFs the quality of the prediction

for the CMS data is similar to that for the predictions, and

the best fit, at NLO, using either choice of K -factor. For the

ATLAS data the prediction using MMSTWW PDFs is also

similar to the best NLO results with the smaller K -factor,

but it deteriorates a little with the larger K -factor. The pre-

dictions using MMHT are slightly worse, and again there
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is more deterioration with increasing K -factor. The greater

deterioration for ATLAS data seems to be due to the fact that

while the fit to data is not changed much by K -factors of

10–20 % at NNLO, the ATLAS data are sensitive to the rel-

ative change of the theoretical calculation between the two

energies, which is rather difficult to approximate/guess accu-

rately. Even so, in this case the comparison to data is still quite

good, even with the larger K -factors. The fit quality for the

LHC jet data is shown at NNLO, using the larger K -factor,

in Figs. 16, 17 and 18. One can see that the shape of data rel-

ative to theory remains very good, but the discrepancy before

correlated uncertainties are applied is now larger in magni-

tude. This seems to cause little problem for the fit quality

for CMS data, but the fact that the relative size of the mis-

match between “raw” theory and data is different for the two

energies for the ATLAS measurement leads to some limited

deterioration in the fit quality.

We have also tried the experiment of including the CMS

and ATLAS jet data into the MMHT2014 fit with each of

the K -factors. The quality is then shown by the unbracketed

numbers in the right-hand column of Table 4. The fit quality

to the jet data improves slightly, mainly for ATLAS data,

though it is still slightly worse than for the NLO fit. The

PDFs and αS(M2
Z ) change extremely little when the LHC jet

data are included in the NNLO fit (discussed a little more

later), and the fit quality to the other data increases by at

worst a couple of units in χ2. 12

4.3.2 Jet data in the LO fit

In the LO fit, where the cross section is calculated at order

O(α2
S), the jet data are all included. The fit quality to both

LHC and Tevatron data is worse than at NLO, but only with

an increase in χ2 of 10–20 %, except for ATLAS data where

we obtain χ2/Npts = 162/116. The fit does normalise the

Tevatron data downwards quite significantly, but this is not so

apparent for the LHC data, partially due to the much smaller

normalisation uncertainties at the LHC.

5 Results for the global analysis

The previous section shows the quality of the description of

the LHC data before and after they are included in both the

NLO and the NNLO global fit. In this section we discuss

the overall fit quality and the resulting parton distributions

functions. We also compare the results with the MSTW 2008

PDFs.

12 We note, however, that the stability of the fit quality to CMS jet
data with inclusion of NNLO K -factors was less apparent before the
improved treatment of systematics advocated in [114] was incorporated,
and a fit with the data included did tend to lower αS(M2

Z ) slightly.

The parameterisation of the input PDFs is as discussed

in Sect. 2.1, and we now treat the coefficients of the first

two Chebyshev polynomials for the s+ distribution as free,

unlike the case before inclusion of LHC data. At LO we

make some changes to the parameterisation to stop the PDFs

behaving peculiarly in regions where they are not directly

constrained – there is a tendency for a large negative con-

tribution in a very limited region of x which would provide

a negative contribution to the momentum sum rule, and for

s+ to become extremely large at very small x . Hence, we

only allow the first Chebyshev polynomial for s+ to be free

at LO and parameterise the gluon with four free Chebyshev

polynomials, but no second term. This means that both s+
and the gluon have one fewer free parameter at LO than at

NLO or NNLO.

5.1 The values of the QCD coupling, αS(M2
Z )

At both NLO and at NNLO the value of αS(M2
Z ) is allowed

to vary as a free parameter in the fit. At NLO the best value

of the QCD coupling is found to be

αS,NLO(M2
Z ) = 0.1201. (26)

This is extremely similar to the value of 0.1202 found in [1].

At NNLO the best value of the QCD coupling is found to be

αS,NNLO(M2
Z ) = 0.1172, (27)

again very similar to that of 0.1171 in [1] – to be precise

only 0.00015 larger. The difference between the NLO and

NNLO values has decreased slightly. At LO it is difficult to

define an absolute best fit, but the preferred value of αS(M2
Z )

is certainly in the vicinity of 0.135, so we fix it at this value.

It is a matter of considerable debate whether one should

attempt to extract the value of αS(M2
Z ) from PDF fits or

simply use it as in input with the value taken from else-

where – for example, simply to use the world average value

[129]. We believe that useful information on the coupling

can be obtained from PDF fits, and as our extracted values of

αS(M2
Z ) at NLO and NNLO are quite close to the world aver-

age of αS(M2
Z ) = 0.1185 ± 0.0006 we regard these as our

best fits. We will discuss the variation with αS(M2
Z ) and the

uncertainty in a PDF fit determination in a future publication.

However, we elaborate slightly here.

As well as leaving αS(M2
Z ) as a completely independent

parameter, we also include the world average value (with-

out the inclusion of DIS data to avoid double counting) of

αS(M2
Z ) = 0.1187 ± 0.0007 as a data point in our fit. This

changes the preferred values to

αS,NLO(M2
Z ) = 0.1195 and αS,NNLO(M2

Z ) = 0.1178.

(28)
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Fig. 16 The fit quality for the ATLAS 7 TeV jet data [107] at NNLO,
using the ‘larger’ K -factor described in the text. The red points represent
the ratio of measured data to theory predictions, and the black points

(clustering around Data/Theory = 1) correspond to this ratio once the
best fit has been obtained by shifting theory predictions relative to data
by using the correlated systematics
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Fig. 17 The fit quality for the ATLAS 2.76 TeV jet data [108] at
NNLO, using the ‘larger’ K -factor described in the text. The red points

represent the ratio of measured data to theory predictions, and the black

points (clustering around Data/Theory = 1) correspond to this ratio once
the best fit has been obtained by shifting theory predictions relative to
data by using the correlated systematics
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Fig. 18 The fit quality for the CMS 7 TeV jet data [106] at NNLO,
using the ‘larger’ K -factor described in the text. The red points represent
the ratio of measured data to theory predictions, and the black points

(clustering around Data/Theory = 1) correspond to this ratio once the
best fit has been obtained by shifting theory predictions relative to data
by using the correlated systematics

Each of these is about one standard deviation away from the

world average, so our PDF fit is entirely consistent with the

independent determinations of the coupling. Moreover, the

quality of the fit to the data other than the single point on

αS(M2
Z ) increases by about 1.5 units at NLO and just over

one unit at NNLO when the coupling value is added as a

data point. It is ideal to present PDF sets at common, and

hence round values of αS(M2
Z ) in order to compare with, and

combine with, other PDF sets, for example as in [75,130–

132]. At NLO we hence choose αS(M2
Z ) = 0.120 as the

default value, which is essentially identical to the value for the

best PDF fit when the coupling is free, and still very similar

when the world average is included as a constraint. At NNLO,

when αS(M2
Z ) = 0.118 is chosen, the fit quality is still only

1.3 units in χ2 higher than that when the coupling is free. This

value is extremely close to the value determined when the

world average is included as a data point. Hence, we choose

to use αS(M2
Z ) = 0.118 as the default for our NNLO PDFs,
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Fig. 19 The dark arrows indicate the optimal values of αS(M2
Z ) found

in NLO and NNLO fits of the present analysis (MMHT2014). The
dashed arrows are the values found in the MSTW2008 analysis [1].
These are compared to the world average value, which was obtained
assuming, for simplicity, that the NLO and NNLO values are the same
– which, in principle, is not the case. The short arrows indicate the
NLO and NNLO values obtained from the present global analyses if
the world average value (obtained without including DIS data) were
to be included in the fit. However, the default values αS,NLO = 0.120
and αS,NNLO = 0.118 are used for the final MMHT2014 PDF sets
presented here; the values of �χ2 are the changes in χ2

global in going
from the optimal to the default fit

a value which is very consistent with the world average. The

summary of this discussion is shown above in Fig. 19. At

NLO we also make a set available with αS(M2
Z ) = 0.118,

but in this case the χ2 increases by 17.5 units from the best-fit

value.

5.2 The fit quality

The quality of the best fit is shown at LO, NLO and NNLO in

Table 5. Note that at NNLO the values are for the absolute best

fit with αS(M2
Z ) = 0.1172, though the values are generally

extremely similar when αS(M2
Z ) = 0.118 and the total is

2718.6 rather than 2717.3. It has already been noted that

both at NLO and NNLO (with the exception of the CMS

double-differential data at NLO) the fit quality is excellent.

In most cases there is little improvement in the quality of the

fit from the inclusion of the LHC data (the ATLAS W, Z and

CMS asymmetry data being minor exceptions). It is clear that

the inclusion of the LHC data has not spoilt the fit to any of

the non-LHC data in any way at all. The fit quality is very

similar to that in [11] for the data sets that are common to

both fits, with some small differences being attributable to the

changes in the procedure applied in this study, as outlined in,

for example, Sects. 2.6 and 2.7. The fit quality for non-LHC

data is within a handful of chisquared units of the fit when

only non-LHC data were included. In fact, in some cases

the two extra free parameters in the total strange distribution

in the fit including LHC data leads to an improvement in

non-LHC data, despite the extra constraint from new data.

For example, at NNLO χ2/Npts = 637.7/621 for the HERA

combined structure function data in the full fit compared to

χ2/Npts = 644.2/621 in the non-LHC fit (at NLO the non-

LHC fit gives 666.0/621 compared to 678.8/621 in the full

fit). At NNLO the main deterioration, about six units, is in

NuTeV structure function data, which is in some tension with

ATLAS W, Z data. This is not an issue at NLO.

Overall the quality of the NNLO fit is 247 units in χ2 lower

when counted for the data which are included in both fits,

though this is reduced to only 25 units when the CMS double-

differential Drell–Yan data are removed from the compari-

son. Some of the data sets within the global fit have a lower χ2

at NLO than at NNLO. It would be surprising if the total χ2

were lower at NLO, but this is not impossible: even though

one would expect NNLO to be closer to the “ideal” theory

prediction fluctuations in data could allow an apparently bet-

ter fit quality to a worse prediction. On the other hand, given

that NLO and NNLO are in general not very different pre-

dictions for most quantities it is quite possible that the shape

of the PDFs obtained by the best fit at NNLO results in a best

fit where the improvement in fit quality to some data sets is

partially compensated by a slight deterioration in the fit to

some other data sets. As already noted with the LHC data,

the LO fit is sometimes very poor, in particular for the HERA

jet data where NLO corrections are large.

5.3 Central PDF sets and uncertainties

The parameters for the central PDF sets at LO, NLO and

NNLO are shown in Table 6. In order to describe the uncer-

tainties on the PDFs we apply the same procedure as in

[1] (originally presented in [133]), i.e. we use the Hessian

approach with a dynamical tolerance, and hence obtain a set

of PDF eigenvector sets each corresponding to 68 % confi-

dence level uncertainty and being orthogonal to each other.

5.3.1 Procedure to determine PDF uncertainties

In more detail, if we have input parameters {a0
i } =

{a0
1 , . . . , a0

n}, then we write

�χ2
global ≡ χ2

global − χ2
min =

n
∑

i, j=1

Hi j (ai − a0
i )(a j − a0

j ),

(29)

where the Hessian matrix H has components

Hi j =
1

2

∂2 χ2
global

∂ai∂a j

∣

∣

∣

∣

∣

min

. (30)

The uncertainty on a quantity F({ai }) is then obtained from

standard linear error propagation:
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Table 5 The values of χ2/Npts for the data sets included in the global
fit. For the NuTeV νN → μμX data, the number of degrees of free-
dom is quoted instead of Npts since smearing effects mean nearby points

are highly correlated. The details of corrections to data, kinematic cuts
applied and definitions of χ2 are contained in the text

Data set LO NLO NNLO

BCDMS μp F2 [125] 162/153 176/163 173/163

BCDMS μd F2 [19] 140/142 143/151 143/151

NMC μp F2 [20] 141/115 132/123 123/123

NMC μd F2 [20] 134/115 115/123 108/123

NMC μn/μp [21] 122/137 131/148 127/148

E665 μp F2 [22] 59/53 60/53 65/53

E665 μd F2 [22] 52/53 52/53 60/53

SLAC ep F2 [23,24] 21/18 31/37 31/37

SLAC ed F2 [23,24] 13/18 30/38 26/38

NMC/BCDMS/SLAC/HERA FL [20,24,63–65,125] 113/53 68/57 63/57

E866/NuSea pp DY [88] 229/184 221/184 227/184

E866/NuSea pd/pp DY [89] 29/15 11/15 11/15

NuTeV νN F2 [29] 35/49 39/53 38/53

CHORUS νN F2 [30] 25/37 26/42 28/42

NuTeV νN x F3 [29] 49/42 37/42 31/42

CHORUS νN x F3 [30] 35/28 22/28 19/28

CCFR νN → μμX [31] 65/86 71/86 76/86

NuTeV νN → μμX [31] 53/40 38/40 43/40

HERA e+ p NC 820 GeV [61] 125/78 93/78 89/78

HERA e+ p NC 920 GeV [61] 479/330 402/330 373/330

HERA e− p NC 920 GeV [61] 158/145 129/145 125 /145

HERA e+ p CC [61] 41/34 34/34 32/34

HERA e− p CC [61] 29/34 23/34 21/34

HERA ep Fcharm
2 [62] 105 /52 72/52 82/52

H1 99–00 e+ p incl. jets [126] 77/24 14/24 –

ZEUS incl. jets [127,128] 140/60 45/60 –

DØ II p p̄ incl. jets [119] 125/110 116/110 119/110

CDF II p p̄ incl. jets [118] 78/76 63/76 59/76

CDF II W asym. [66] 55/13 32/13 30/13

DØ II W → νe asym. [67] 47/12 28/12 27/12

DØ II W → νμ asym. [68] 16/10 19/10 21/10

DØ II Z rap. [90] 34/28 16/28 16/28

CDF II Z rap. [70] 95/28 36/28 40/28

ATLAS W +, W −, Z [10] 94/30 38/30 39/30

CMS W asymm pT > 35 GeV [9] 10/11 7/11 9/11

CMS asymm pT > 25 GeV, 30 GeV [77] 7/24 8/24 10/24

LHCb Z → e+e− [79] 76/9 13/9 20/9
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Table 5 continued

Data set LO NLO NNLO

LHCb W asymm pT > 20 GeV [78] 27/10 12/10 16/10

CMS Z → e+e− [84] 46/35 19/35 22/35

ATLAS high-mass Drell–Yan [83] 42/13 21/13 17/13

CMS double-diff. Drell–Yan [86] – 372/132 149/132

Tevatron, ATLAS, CMS σt t̄ [91–97] 53/13 7/13 8/13

ATLAS jets (2.76 +7 TeV) [107,108] 162/116 106/116 –

CMS jets (7 TeV) [106] 150/133 138/133 –

All data sets 3706/2763 3267/2996 2717/2663

�F = T

√

√

√

√

n
∑

i, j=1

∂ F

∂ai

Ci j

∂ F

∂a j

, (31)

where C ≡ H−1 is the covariance matrix, and T =
√

�χ2
global is the “tolerance” for the required confidence

interval, usually defined to be T = 1 for 68 % confidence

level.

It is very useful to diagonalise the covariance (or Hes-

sian) matrix [133], and work in terms of the eigenvectors.

The covariance matrix has a set of normalised orthonormal

eigenvectors vk defined by

n
∑

j=1

Ci jv jk = λkvik, (32)

where λk is the kth eigenvalue and vik is the i th compo-

nent of the kth orthonormal eigenvector (k = 1, . . . , n). The

parameter displacements from the global minimum can be

expanded in terms of rescaled eigenvectors eik ≡
√

λkvik :

�ai ≡ ai − a0
i =

∑

k

eik zk, (33)

i.e. the zk are the coefficients when we express a change

in parameters away from their best-fit values in terms of

the rescaled eigenvectors, and a change in parameters cor-

responding to �χ2
global = 1 corresponds to zk = 1. This

results in the simplification

χ2
global = χ2

min +
∑

k

z2
k . (34)

Eigenvector PDF sets S±
k can then be produced with param-

eters given by

ai (S±
k ) = a0

i ± t eik, (35)

with t adjusted to give the desired T =
√

�χ2
global. In the limit

that Eq. (29) is exact, i.e. there are no significant corrections

to quadratic behaviour, t ≡ T . We limit our number of eigen-

vectors so that this is true to a reasonable approximation. This

results in the PDF eigenvector sets being obtained by fixing

some of the parameters at their best-fit values, otherwise the

large degree of correlation between some parameters would

lead to significant violations in t ≈ T .

As in [1] we do not determine the size of the eigenvectors

using the standard �χ2 = 1 or T = 1 rule. Rather, we

allow T �= 1 to account, primarily, for the tensions in fitting

the different data sets within fixed-order perturbative QCD.

Neither do we use a fixed value of T . Instead we use the

“dynamical tolerance” procedure devised in [1]. In brief, we

define the 68 % confidence-level region for each data set n

(comprising N data points) by the condition that

χ2
n <

(

χ2
n,0

ξ50

)

ξ68, (36)

where ξ68 is the 68th percentile of the χ2-distribution with

N degrees of freedom, and ξ50 ≃ N is the most probable

value. For each eigenvector (in each of the two directions)

we then determine the values of t and T for which the χ2
n for

each data set n are minimised, together with 68 % confidence

level limits defined by values at which Eq. (36) ceases to be

satisfied. For a perfect data set we would only need the value

of ξ68, but for a number of data sets χ2
n,0 is not very close to

ξ50 (ξ50 ∼ npts), being potentially both higher and lower, as

seen in Table 5. For more details of the “dynamical tolerance”

procedure see Section 6.2 of [1].

5.3.2 Uncertainties of the MMHT2014 PDFs

The increase in the parameterisation flexibility in the present

MMHT analysis leads to an increase in the number of param-

eters left free in the determination of the PDF uncertainties,
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Table 6 The optimal values of
the input PDF parameters (as
defined in Sect. 2.1) at Q2

0 = 1

GeV2 determined from the
global analyses. Au , Ad , Ag and
x0 are determined from sum
rules and are not fitted
parameters. Similarly, A� is
determined from
∫ 1

0 dx �(x, Q2
0)

Parameter LO NLO NNLO

αS(M2
Z ) 0.135 0.120 0.118

Au 1.3358 4.2723 3.8539

δu 0.34430 0.74687 0.70900

ηu 2.2318 2.7421 2.8773

au,1 −0.26767 0.26349 0.80527

au,2 −0.51620 −0.00256 −0.19419

au,3 0.47167 0.25858 0.27225

au,4 −0.12224 0.05000 −0.01211

Ad 3.6009 3.3002 7.5602

δd 0.25049 0.90012 1.1147

ηd − ηu 2.3847 −0.58802 −0.25180

ad,1 −1.3817 1.2898 1.2663

ad,2 0.49690 0.60385 0.78475

ad,3 −0.040740 0.33590 0.32372

ad,4 −0.03926 0.26150 0.25099

AS 18.597 31.329 43.726

δS −0.09018 −0.13358 −0.03946

ηS 10.922 11.945 12.776

aS,1 −1.5611 −1.6020 −1.5979

aS,2 0.85903 0.86538 0.87445

aS,3 −0.30427 −0.29923 −0.30196

aS,4 0.07061 0.06022 0.006227
∫ 1

0 dx �(x, Q2
0) 0.15782 0.09531 0.081983

A� 0.29972 7.1043 25.408

δ� 0.60594 1.7116 2.1602

γ� 13.029 10.659 8.1584

ǫ� 46.611 −33.341 −36.418

Ag 17.217 0.88746 0.53411

δg −0.33293 −0.45853 −0.56889

ηg 5.3687 2.8636 1.3022

ag,1 −1.664 −0.36317 0.56995

ag,2 0.99169 0.20961 0.37592

ag,3 −0.42245 – –

ag,4 0.10176 – –

Ag′ – −1.0187 −0.09827

δg′ – −0.42510 −0.57405

ηg′ – 32.614 22.417

A+ 2.2447 4.6779 8.2868

η+ 14.055 11.588 13.752

a+,1 −1.5090 −1.5910 −1.5958
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Table 6 continued Parameter LO NLO NNLO

a+,2 – 0.86501 0.88792

A− −0.53737 −0.01614 −0.011373

η− 14.402 7.1599 6.4376

δ− 0.91595 −0.26403 −0.26403

x0 0.056131 0.026495 0.028993

as compared to the MSTW2008 analysis. Indeed, we now

have 25 eigenvector pairs, rather than the 20 in [1] or even

the 23 in [11]. The 25 parameters13 left free for the deter-

mination of the eigenvectors consist of: η, δ, a2 and a3 for

each of the valence quarks, A, η, δ, a2 and a3 for the light

sea;
∫ 1

0 dx �(x, Q2
0), η and γ for d̄ − ū; η, δ, η− and δ− for

the gluon (or η, δ, a2 and a3 at LO); A, η and a2 for s+ (or

A, η and a1 at LO); and A and η for s−. During the determi-

nation of the eigenvectors all deuteron parameters, free coef-

ficients for nuclear corrections and all parameters associated

with correlated uncertainties, including normalisations, are

allowed to vary (some with appropriate χ2 penalty).

The most constraining data set for each eigenvector direc-

tion, and also the values of t and T are shown for the NLO fit

in Table 7. The fractional contribution to the total uncertainty

of each PDF is then also shown in summary in Table 8. The

same information is shown for the NNLO fit in Tables 9 and

10. One can see that for the vast majority of cases there is

good agreement between t and T at both NLO and NNLO.

Hence, within the region of 68 % uncertainty confidence lev-

els for the PDFs, the χ2 distribution is quite accurately a

quadratic function of the parameters. There is, however, a

reasonable degree of asymmetry between the t and T values

in the two directions for a single eigenvector, and it is nearly

always the case that it is a different data set which is the main

constraint in the two directions. In fact, the data set which

has the most rapid deterioration in fit quality in one direction

is often improving in fit quality until quite a high value of t

along the other direction. This is an indication of the tension

between data sets, with nearly all eigenvectors having some

data sets which pull in opposite directions. The values of t

and T for the 68 % confidence levels are on average about

t ≈ T ≈ 3, i.e. �χ2
global ≈ 10, though T 2 does vary between

about 1 unit and at most T 2 ≈ 40.

We comment briefly on the manner in which the values

of t and T arise for some illustrative cases. For a number of

eigenvectors there is one data set which is overwhelmingly

most constraining. Examples are eigenvectors 17 and 25 at

NLO and 7 and 25 at NNLO. A number of these are where

the constraint is from the E866/NuSea Drell–Yan ratio data,

13 The expressions for the input PDFs in terms of the parameters are
given in Sect. 2.1.

since this is one of the few data sets sensitive to the d̄ − ū

difference. In these cases the tolerance tends to be low. For

the cases where the tolerance is high there are some defi-

nite examples where this is due to tension between two data

sets. One of the clearest and most interesting examples is

eigenvector 13 at NLO. In this case the fit to HERA e+ p NC

820 GeV improves in one direction and deteriorates in the

other, while the fit to NMC structure function data for x < 0.1

deteriorates in one direction and improves in the other. In

this case the NMC data are at low Q2 and the HERA data at

higher Q2 and the fit does not match either perfectly simulta-

neously. The effect is smaller at NNLO though is evident in

eigenvector 3. Other cases where t is high and data sets are in

very significant tension are eigenvector 4 at NLO, where DØ

electron and muon asymmetry compete and eigenvector 20 at

NLO where CCFR and NuTeV dimuon data prefer a different

high-x strange quark. This complete tension is less evident in

NNLO eigenvectors. However, there are some cases where

one data set has deteriorating fit quality in one direction and

improving quality in the other, while another data set dete-

riorates quickly in one direction, but varies only slowly in

the other. Examples of this are eigenvectors 1 and 23 at NLO

and eigenvector 1 at NNLO. Often the variation of χ2 of all

data sets is fairly slow except for one data set in one direction

and a different data set in another direction. Examples of this

are eigenvector 22 at NLO and eigenvectors 10, 22 and 24 at

NNLO. A final type of cases is similar, but where one data

set deteriorates in both directions but one other deteriorates

slightly more quickly in one direction but very slowly in the

other. Examples are eigenvector 4 at NNLO, where BCDMS

data deteriorates in both directions but SLAC only in one

direction and eigenvector 21 at NNLO, where ATLAS W, Z

data deteriorates in both directions, but HERA data only in

one direction.

We do not show the details of the eigenvectors at LO since

we regard this as a much more approximate fit. However, we

note that at LO the good agreement between t and T breaks

down much more significantly, particularly for eigenvectors

with the highest few eigenvalues. This is a feature of even

more tension between data sets in the LO fit, and indeed, in

the NLO and NNLO fit we would regard these eigenvectors

as unstable, and discount them. However, we wish to obtain
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Table 7 Table of expected
√

�χ2 = t and true
√

�χ2 = T values for 68 % confidence-level uncertainty for each eigenvector and the most
constraining data sets for the MMHT2014 NLO fits

Eigen-vector +t T Most constraining data set −t T Most constraining data set

1 4.00 3.97 HERA e+ p NC 920 GeV 4.30 4.66 HERA e+ p NC 820 GeV

2 2.50 2.84 HERA e+ p NC 920 GeV 1.80 1.53 NMC μd F2

3 3.80 4.00 NMC.....HERA FL 3.70 3.69 NMC μd F2

4 4.05 4.00 DØ II W → νe asym. 5.00 5.11 DØ II W → νμ asym.

5 3.40 3.35 DØ II W → νμ asym. 4.20 4.45 NuTeV νN → μμX

6 1.85 1.88 NuTeV νN → μμX 3.70 3.71 DØ II W → νμ asym.

7 1.55 1.67 E866/NuSea pd/pp DY 2.15 2.03 E866/NuSea pd/pp DY

8 2.75 2.64 DØ II W → νμ asym. 1.90 2.01 E866/NuSea pd/pp DY

9 3.40 3.46 E866/NuSea pd/pp DY 3.80 3.78 BCDMS μp F2

10 3.15 3.47 NuTeV νN → μμX 2.40 2.13 NuTeV νN F2

11 3.80 3.86 CDF II W asym. 4.00 3.96 E866/NuSea pd/pp DY

12 3.70 3.53 SLAC ed F2 3.60 3.81 BCDMS μp F2

13 4.30 5.47 HERA e+ p NC 820 GeV 5.30 4.33 NMC μd F2

14 3.30 3.36 DØ II W → νe asym. 2.80 3.42 CMS W asym. pT > 35 GeV

15 2.90 3.08 NuTeV νN x F3 3.30 3.12 E866/NuSea pp DY

16 3.65 3.70 CDF II p p̄ incl. jets 2.65 2.64 NuTeV νN x F3

17 1.80 1.85 E866/NuSea pd/pp DY 2.40 2.16 E866/NuSea pd/pp DY

18 1.15 1.42 CMS asym. pT > 25, 30 GeV 2.60 3.19 BCDMS μp F2

19 2.60 2.86 CMS asym. pT > 25, 30 GeV 2.10 3.35 DØ II p p̄ incl. jets

20 1.60 1.72 CCFR νN → μμX 1.55 1.45 NuTeV νN → μμX

21 2.80 3.45 NuTeV νN → μμX 3.30 3.47 ATLAS W +, W −, Z

22 4.70 6.48 NuTeV νN x F2 4.00 3.67 NuTeV νN x F3

23 1.90 1.96 NuTeV νN → μμX 4.85 3.50 CCFR νN → μμX

24 2.35 3.13 HERA e+ p NC 920 GeV 3.75 4.27 HERA e+ p NC 920 GeV

25 2.50 2.63 E866/NuSea pd/pp DY 1.30 2.15 E866/NuSea pd/pp DY

a conservative uncertainty on the PDFs at LO, so keep the

same number of eigenvectors as at NLO and NNLO.

We see that there is some similarity between the eigen-

vectors for the NLO and NNLO PDFs, with some, e.g. 1, 5,

7, 19, 20, being constrained by the same data set and corre-

sponding to the same type of PDF uncertainty. In some cases

the order of the eigenvectors (determined by size of eigen-

value) is simply modified slightly by the changes between

the NLO and NNLO fit e.g. 3 at NLO and 2 at NNLO, 23 at

NLO and 24 at NNLO. However, despite the fact that the data

fit at NNLO is very similar to that at NLO, and the param-

eterisation of the input PDFs is identical, the changes in the

details of the NLO and NNLO fit are sufficient to remove

any very clear mapping between the eigenvectors in the two

cases, and some are completely different. We present the

details of the eigenvectors at NLO here for the best-fit value

of αS(M2
Z ) = 0.120. However, we also make available a

NLO PDF set with αS(M2
Z ) = 0.118 with both a central

value and a full set of eigenvectors (though the fit quality is

17 units worse for this value of αS(M2
Z )). It is perhaps com-

forting to note that there is a practically identical mapping

between the NLO eigenvectors for the two values of αS(M2
Z ),

with the main features of PDF uncertainties being the same,

without any modification of the order of the eigenvectors.

The precise values of t and T are modified a little, and in a

couple of cases the most constraining sets changed (always

for one which was almost the most constraining set at the

other coupling value). The uncertainties (defined by changes

in χ2 relative to the best-fit values in each case) are very

similar.
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Table 8 The three numbers in each entry are the fractional contribution
to the total uncertainty for the g, uv, . . . input distributions in the small
x (x < 0.01), medium x (0.01 < x < 0.1) and large x (x > 0.1)
regions, respectively, arising from eigenvector k in the NLO global fit.
Each number has been multiplied by ten; for example, 4 denotes 0.4. For

a precise value of x the sum of each column should be 10. However, the
entries shown are the maximum fraction in each interval of x , so often
do not satisfy this condition. In general we do not show contributions
below 5 %, but for the first two eigenvectors at NLO no uncertainty
contribution is this large, so we show the largest contributions

Eigen vector g uv dv S(ea) d̄ − ū s + s̄ s − s̄

1 – – – 0 0.3 0 – – –

2 – – – 0 0.4 0 – – –

3 4 0 0 – – – – – –

4 2 0 0 0 0 2 – – – – –

5 1 0 0 – – 1 0 0 – – 1 0 0

6 – – – – – – 2 1 2

7 – – – – 0 2 2 – –

8 – – 0 0 2 – 0 1 2 – –

9 – 1 2 3 – – 0 1 2 – –

10 – – – 2 1 0 – 2 3 1 –

11 – 0 1 2 2 3 4 – 0 1 1 – –

12 – 4 3 5 1 2 2 0 1 0 – – –

13 8 5 2 1 1 1 0 0 1 1 1 0 – – –

14 – – 2 3 7 – – – –

15 1 2 2 1 1 2 2 1 2 0 0 1 1 1 0 – –

16 0 1 5 1 2 2 0 1 2 0 3 3 1 2 0 – –

17 – – – 0 0 1 2 3 4 – –

18 – 4 4 0 0 1 0 – – – –

19 – – 2 3 2 – – – –

20 – – – 0 0 1 1 0 0 0 0 6 1 0 0

21 0 0 1 1 2 0 2 1 2 4 4 4 0 1 0 5 6 6 4 3 3

22 1 2 0 1 0 1 2 2 2 4 2 4 0 0 1 2 1 2 1 0 0

23 – 0 1 0 0 0 1 1 0 3 1 0 0 1 2 2 2 8 10

24 0 5 6 – 0 1 1 0 1 0 0 0 1 – –

25 – – – – 7 4 9 – –

5.3.3 Data sets which most constrain the MMHT2014

PDFs

It is very clear from Tables 7 and 9 that a wide variety of dif-

ferent data types are responsible for constraining the PDFs.

At NLO 6 of the 50 eigenvector directions are constrained by

HERA structure function data, 13 by fixed-target data struc-

ture function data, and 4 by the newest LHC data. Three of

the LHC driven constraints are on the valence quarks and

come from lepton asymmetry data. One is a constraint on

the strange quark from the ATLAS W and Z data. There are

still nine constraints from Tevatron data, again mainly on

the details of the light-quark decomposition. The CCFR and

NuTeV dimuon data [31] constrain eight eigenvector direc-

tions because they still provide by far the dominant constraint

on the strange and antistrange quarks, which have five free

parameters in the eigenvector determination. Similarly, the

E866 Drell–Yan total cross section asymmetry data constrain

10 eigenvector directions mainly because the asymmetry data

are still by far the best constraint on d̄ − ū, which has three

free parameters.

At NNLO the picture is quite similar, but now HERA

data constrain 11 eigenvector directions. Fixed-target data

are similar to NLO with 10, but the Tevatron reduces to

six. The LHC data now constrain eight eigenvector direc-

tions. As at NLO, this is dominantly lepton asymmetry data
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Table 9 Table of expected
√

�χ2 = t and true
√

�χ2 = T values for 68 % confidence-level uncertainty for each eigenvector and the most
constraining data sets for the MMHT2014 NNLO fits

Eigen-vector +t T Most constraining data set −t T Most constraining data set

1 3.50 3.41 HERA e+ p NC 920 GeV 4.50 4.78 HERA e+ p NC 820 GeV

2 3.95 3.92 NMC.....HERA FL 3.95 4.03 HERA e+ p NC 920 GeV

3 3.85 4.10 HERA e+ p NC 920 GeV 1.55 1.37 NMC μd F2

4 5.00 5.07 BCDMS μp F2 5.00 4.99 SLAC ed F2

5 2.50 2.48 DØ II W → νμ asym. 2.40 2.46 NuTeV νN → μμX

6 5.30 5.47 CCFR νN → μμX 2.30 2.31 NuTeV νN → μμX

7 1.40 1.46 E866/NuSea pd/pp DY 1.70 1.64 E866/NuSea pd/pp DY

8 2.50 2.60 DØ II W → νμ asym. 2.70 2.61 DØ II W → νe asym.

9 5.70 6.00 HERA ep Fcharm
2 3.20 3.04 CCFR νN → μμX

10 3.40 3.13 E866/NuSea pd/pp DY 4.60 4.67 CDF II W asym.

11 4.30 4.41 E866/NuSea pd/pp DY 3.00 2.92 NuTeV νN → μμX

12 4.85 5.25 HERA ep Fcharm
2 4.70 4.44 BCDMS μp F2

13 1.85 2.14 CMS asym. pT > 25, 30 GeV 4.70 4.34 NuTeV νN x F3

14 2.85 3.01 BCDMS μd F2 2.55 2.79 CMS W asym. pT > 35 GeV

15 1.20 0.95 Tevatron, ATLAS, CMS σt t̄ 3.30 3.72 CDF II p p̄ incl. jets

16 1.75 2.01 CMS asym. pT > 25, 30 GeV 3.55 3.43 BCDMS μp F2

17 1.75 1.90 CMS asym. pT > 25, 30 GeV 3.30 3.12 E866/NuSea pd/pp DY

18 3.10 3.11 BCDMS μp F2 1.40 1.87 CMS asym. pT > 25, 30 GeV

19 1.80 1.84 CMS asym. pT > 25, 30 GeV 2.55 3.26 DØ II p p̄ incl. jets

20 2.00 2.20 CCFR νN → μμX 1.50 1.51 NuTeV νN → μμX

21 3.00 3.03 ATLAS W +, W −, Z 4.70 5.49 HERA e+ p NC 920 GeV

22 1.20 1.60 E866/NuSea pd/pp DY 6.90 5.31 NMC μn/μp

23 2.20 2.86 HERA e+ p NC 920 GeV 1.85 3.73 HERA e+ p NC 920 GeV

24 4.30 3.38 CCFR νN → μμX 1.75 1.86 NuTeV νN → μμX

25 1.90 3.39 HERA e+ p NC 920 GeV 1.60 2.78 HERA e+ p NC 920 GeV

constraining valence quarks (winning out over Tevatron data

compared to NLO in a couple of cases) but also ATLAS

W, Z data constrain the sea and strange sea in one eigen-

vector direction and σ(t t̄) provide a constraint on the high-x

gluon. The dimuon and E866 Drell–Yan data provide similar

constraints to NLO with nine and six, respectively, though

in the latter case it is always the asymmetry data which

contribute.

We do not make 90 % confidence-level eigenvectors

directly available, as was done in [1], but we simply advo-

cate an expansion of the 68 % confidence-level uncertain-

ties by the standard factor of 1.645. This is true to a rea-

sonably good approximation. There was not a very obvi-

ous demand for explicit 90 % confidence-level eigenvectors

in the last release, and some cases where the availability

of two different sets of eigenvectors led to mistakes and

confusion.

5.3.4 Availability of MMHT2014 PDFs

Recall that the NNLO set of PDFs that we present corre-

spond to the default value of αS(M2
Z ) = 0.118. These NNLO

PDFs at scales of Q2 = 10 and 104 GeV2 were shown in

Fig. 1. The corresponding NLO PDFs with a default value

αS(M2
Z ) = 0.120 are shown in Fig. 20. As Q2 increases

we expect the uncertainties on the PDFs to decrease, partic-

ularly at very small x . This is well illustrated in the plots

by comparing the PDFs at Q2 = 10 GeV2 with those at

Q2 = 104 GeV2. We also make available a second set of

NLO PDFs with αS(M2
Z ) = 0.118. In addition, we pro-

123



Eur. Phys. J. C (2015) 75 :204 Page 35 of 53 204

Table 10 The three numbers in each entry are the fractional contribution to the total uncertainty for the g, uv, . . . input distributions in the small
x (x < 0.01), medium x (0.01 < x < 0.1) and large x (x > 0.1) regions, respectively, arising from eigenvector k in the NNLO global fit

Eigen vector g uv dv S(ea) d̄ − ū s + s̄ s − s̄

1 1 0 0 – – – 1 0 0 – –

2 4 0 0 – – – – – –

3 – – – 0 1 0 – – –

4 1 0 0 0 0 2 – – 1 0 0 – –

5 – – – – 1 0 0 – 1 0 1

6 1 1 0 0 0 1 0 0 1 1 1 0 – – 2 1 2

7 – – – – 1 2 2 – –

8 – – 0 0 3 – – – 1 1 1

9 2 2 0 1 1 1 0 0 1 0 1 1 – 1 2 1 1 0 1

10 – 1 1 2 0 1 1 1 1 1 0 3 3 1 2 1 –

11 – – 1 1 2 1 1 1 0 1 1 1 2 2 1 1 1

12 4 3 2 0 1 3 1 2 2 0 3 1 1 1 1 – –

13 1 1 1 5 4 4 1 1 1 0 1 0 1 0 0 – –

14 – – 2 2 6 – – – –

15 1 2 4 1 1 1 1 1 1 – 1 0 0 – –

16 0 0 2 2 2 1 0 1 1 0 2 2 1 1 1 – –

17 – 2 1 0 – – 2 3 4 – –

18 0 0 1 3 3 1 0 1 1 0 0 10 0 0 10 – –

19 – – 5 4 2 – – – –

20 – – – 0 0 1 – 0 0 5 1 0 1

21 0 0 2 1 2 1 2 2 2 3 3 5 0 0 2 4 6 6 3 3 3

22 – 0 1 1 0 0 1 0 0 1 8 6 9 – –

23 1 2 5 – – 1 1 1 – 1 2 0 –

24 0 0 1 – 0 0 1 0 0 1 1 0 0 0 1 1 2 10 10

25 1 2 2 – – 1 0 0 1 0 0 – –

vide a LO set of PDFs, which have αS(M2
Z ) = 0.135,

though these give a poorer description of the global data; see

Table 5.

These four sets of PDFs are available as program-callable

functions from [14], and from the LHAPDF library [15]. A

new HepForge [16] project site is also expected.

Although we leave a full study of the relationship between

the PDFs and the strong coupling constant αS to a follow-up

publication we also make available PDF sets with changes

of αS(M2
Z ) of 0.001 relative to the PDF eigenvector sets, i.e.

at αS(M2
Z ) = 0.117 and 0.119 at both NLO and NNLO, and

also at αS(M2
Z ) = 0.121 at NLO. We also make sets available

at αS(M2
Z ) = 0.134 and 0.136 at LO. This is in order to

enable the αS variation in the vicinity of the default PDFs to

be examined and for the uncertainty to be calculated if the

simple procedure of addition of αS(M2
Z ) errors in quadrature

is applied.14

5.4 Comparison of MMHT2014 with MSTW2008 PDFs

We now show the change in both the central values and the

uncertainties of the NLO PDFs at Q2 = 104 GeV2 in going

from the NLO MSTW analysis. The ratio of the MMHT2014

PDFs, along with uncertainties, to the MSTW2008 PDFs is

shown in Figs. 21, 22 and 23. We also show the central value

of the MMHT2014 fit before LHC data are added in the top

14 See [134], where it is shown this is equivalent to treating αS(M2
Z )

as an extra parameter in the eigenvector approach in the limit that the
Hessian formalism is working perfectly.
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Fig. 21 The change, in the g and light-quark PDFs at NLO for Q = 104 GeV2, in going from the MSTW values to those in the present global
NLO fit, which includes the LHC data. Also shown are comparisons of the percentage errors in the two analyses

plot in each case. In the lower plots we simply compare the

uncertainties of the MMHT2014 PDFs and the MSTW2008

PDFs.

5.4.1 Gluon and light quark

In Fig. 21 we compare the gluon and total light-quark dis-

tributions. In this and subsequent plots we show uncer-

tainty bands for the full MMHT2014 and MSTW2008 PDFs,

but only show the central value of the MMHT2014 PDFs

obtained without LHC data. This is because it is interesting

to see the (usually quite small) direct effect on the best PDFs

from LHC data, but we note that the parameterisation for

the strange quark is more limited when LHC data are not

included as without LHC Drell–Yan type data there is insuf-

ficient constraint on the details of the shape of the strange

quark. This means it is not possible to properly reflect the

change in strange quark uncertainty in MMHT2014 PDFs
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before and after LHC data is added, which is actually the

dominant change in PDF uncertainties between MSTW2008

and MMHT2014 PDFs, and which feeds into the total light-

quark uncertainty. Really, it is only the addition of the LHC

data which allow us to present an uncertainty on the strange

PDFs with full confidence. We do note, however, that the

gluon uncertainty is essentially unchanged by the addition of

LHC data except to a very minor improvement at high-x at

NLO.

The change in the central value of the gluon is almost the

same with and without LHC data. It is slightly softer at high

x and a little larger at the smallest x values shown, but within

uncertainties, particularly when the LHC data are included.

This slight change in shape is due to the inclusion of the

combined HERA data, as indicated in [135]. However, the

slight softening at high x is also exhibited when the default

heavy flavour scheme is replaced by the optimal scheme in

[34] and when LHC jet data are included in [109]. Hence, it

seems that a variety of new effects all prefer this slight change

in shape, but even the combination of all of them only results

in a small change. The gluon and light-quark uncertainty

decreases a little at lowest x , due to the combined HERA

data, and the gluon uncertainty decreases very slightly at

x > 0.1 due to inclusion of LHC jet data. The light sea is a

little larger at the smallest x , driven by the same shape change

in the gluon distribution and the evolution. We note that there

are few data for x < 10−4, but there is some, which acts to

constrain the small-x sea. There is less direct constraint on

the gluon at very small x and Q2, though still some from

dF2(x, Q2)/d ln Q2 and FL(x, Q2) and the uncertainty is

very large. However, at much higher Q2 most of the gluon

and light sea at x = 10−5 is determined by evolution from

higher x , and even a very large uncertainty at input is largely

washed out by this.

The changes in detailed shape at high x are mainly due to

individual quark flavour contributions and will be discussed

below. The uncertainty is reduced for x < 0.0001, mirroring

the same effect in the gluon. The increase in uncertainty at

very high x is due to the improved parameterisation flexibil-

ity. The slight increase in uncertainty over a wide range of

x is due to the large uncertainty introduced into the branch-

ing ratio, Bμ, for charmed mesons decaying to muons (as

discussed in Sect. 2.6), which increases the strange quark

uncertainty and hence that of the entire light sea.

5.4.2 Up and down quark

In Fig. 22 we compare the up and down quark distributions.

The very small x increase has already been explained, and

is common to all quarks. The increase around x = 0.01

compared to MSTW2008 was already apparent in [11], and

is due to the improved parameterisation (and to some extent

improved deuteron corrections) and the increase is mainly in

the up valence distribution. The increase is very compatible

with fitting ATLAS and CMS data on W ± production at low

rapidity, but is not actually driven by this at all. In fact, we

see that the increase is actually significantly larger before the

inclusion of LHC data. The down quark has changed shape

quite clearly. The decrease for x ∼ 0.05 and increase at high

x was again already apparent in [11] and is due to improved

deuterium corrections and parameterisation. The fine details

are modified by the inclusion of LHC data, but the main

features are present in the fit without LHC data. The change

in the uncertainties is similar to that for the total light sea,

though the flexibility in the improved deuteron corrections

does contribute to the increase in uncertainty of the down

distribution.

5.4.3 uV − dV and s + s̄ distributions

In Fig. 23 we compare the uV (x, Q2) − dV (x, Q2) and

s(x, Q2)+ s̄(x, Q2) distributions. The very dramatic change

in the former was already seen in [11]. In fact Ref. [11]

was able to give a reasonable description of the observed

lepton charge asymmetry at the LHC, whereas MSTW2008

gave a poor prediction. This is really the only blemish of

the MSTW2008 [1] predictions. The change in uV − dV for

x � 0.03 is very evident in the figure. This change is not

driven by the LHC data, but rather by the improved flexibil-

ity of the MMHT (and MMSTWW [11]) parameterisations

(and improved deuteron corrections). Indeed, as seen with

the up quark, the change, from the MSTW2008 partons, is

larger before the inclusion of LHC data. The uncertainty in

uV (x, Q2)−dV (x, Q2) increases very significantly at small

x due to the increased flexibility of the MMHT parameteri-

sation. However, there is a decrease near x = 0.01 due to the

constraint added by the LHC asymmetry data, which is the

only real change compared to the MMSTWW distribution.

There is a very significant increase in the uncertainty in

the s + s̄ distribution (at all but the lowest x where the distri-

bution is governed mainly by evolution from the gluon), due

mainly to the freedom allowed for the branching fraction Bμ,

see Sect. 2.6, though there is also one more free parameter for

this PDF in the eigenvector determination. The central value

of the total strange distribution is very similar to MSTW2008

before LHC data are included, with only the common slight

increase at lowest x . This is despite the correction of the

theoretical calculation of dimuon production and a change

in nuclear corrections, showing the small impact of these

two effects (though they do actually tend to pull in oppo-

site directions). There is a few percent increase when the

LHC data are included, mainly driven by the ATLAS W, Z

data. The central value is outside the uncertainty band of the

MSTW2008 distribution. However, the MSTW2008 distri-

bution is included comfortably within the error band of the

MMHT2014 distribution.
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Fig. 22 The change, in the u and d PDFs at NLO for Q = 104 GeV2, in going from the MSTW values to those in the present global NLO fit,
which includes the LHC data. Also shown are comparisons of the percentage errors in the two analyses
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Fig. 24 The change, in the (d̄ − ū) and (s − s̄) PDFs at NLO for Q = 104 GeV2, in going from the MSTW values to those in the present global
NLO fit, which includes the LHC data

5.4.4 d̄ − ū and s − s̄ distributions

In Fig. 24 we show the comparison of d̄(x, Q2) − ū(x, Q2)

and s(x, Q2)− s̄(x, Q2). In this case showing the percentage

uncertainties is not useful, due to the fact that both distribu-

tions pass through zero. One can see that there is no very sig-

nificant change in either the central values or uncertainties.

There is a fairly distinct tendency for d̄(x, Q2) − ū(x, Q2)

to be negative for x ∼ 0.3 in the MSTW2008 set, which

may be a sign of the overall more restricted parameterisa-

tion in this case, but other than this the MSTW2008 and

MMHT2014 d̄(x, Q2)−ū(x, Q2) distributions are very con-

sistent. This is unsurprising as the dominant constraint is still

the E866/NuSea Drell–Yan ratio data [89]. The MMHT2014

s(x, Q2) − s̄(x, Q2) distribution has a tendency to peak at

slightly higher x , but the MSTW2008 and MMHT2014 dis-

tributions are very consistent and have similar size uncertain-

ties. The main constraint is still overwhelmingly the CCFR

and NuTeV νN → μμX data [31], and the change in the

treatment of the branching ratio has little effect on the asym-

metry. There is some small constraint from W asymmetry

data, and the new data from the LHC provides some pull,

and contributes to the MMHT2014 uncertainty being a little

smaller for x < 0.05. This constraint will improve in the

future.

5.4.5 Comparison with MSTW2008 at NNLO

The changes in the NNLO PDFs going from MSTW2008

to MMHT2014 are very similar to those at NLO. However,

the g and s + s̄ changes are shown in Fig. 25. The gluon

has now become a little harder at high x and a bit smaller

between x = 0.0001 and x = 0.01. The slight decrease

in the NNLO gluon between x = 0.0001 and x = 0.01

(which, via evolution, shows up to some extent in the sea

quarks) is driven largely by the fit to the combined HERA

data, while the increase at very high x is related to the use

of multiplicative uncertainties for the Tevatron jet data, and

by the momentum sum rule. The change in the MMHT2014

s + s̄ distribution is similar to that at NLO, except that there

is a slight decrease near x = 0.1 as opposed to an increase at

all x . This is due to a slightly larger correction to the dimuon

cross section in this region at NNLO than at NLO, but also,

this seems to be the preferred shape to fit the ATLAS W, Z

data at NNLO.

Part of the change in the gluon distribution is due to the fact

that the MMHT2014 PDFs were defined at αS(M2
Z ) = 0.118

while the MSTW2008 PDFs are defined at αS(M2
Z ) =

0.1171. Recall that the gluon increases at very high x and

decreases at lower x with an increase in αS(M2
Z ), as seen

in Fig. 11(f) of [136]. However, this is responsible for only

a relatively minor part of the total difference between the

MMHT2014 and MSTW2008 NNLO gluon distributions.

The gluon distribution for the MMHT optimal fit value

of αS(M2
Z ) = 0.1172 is shown in Fig. 26. As one sees

the gluon for αS(M2
Z ) = 0.1172 is much closer to the

MMHT2014 gluon (for the default αS(M2
Z ) = 0.118) than to

the MSTW2008 gluon, and is always well within the uncer-

tainty band. For the up and down quark distributions the dif-

ference between the results for the default value αS(M2
Z ) =

0.118 and the optimal αS(M2
Z ) = 0.1172 at Q2 = 104 GeV2

agree to within 0.5 % for all 0.0001 < x < 0.6, as one can

also see in Fig. 26. We also see, by comparing to Fig. 22,

that the change in the up quark distribution in going from

MSTW2008 to MMHT2014 is indeed very similar at NNLO

to that at NLO.

Just as at NLO, the only real impact on the quark uncer-

tainties due to the LHC data is a slight improvement in the

flavour decomposition near x = 0.01. However, the fact that

LHC jet data is absent at NNLO means the very slight reduc-

tion in uncertainty in the high-x gluon due to the inclusion

of LHC data is absent at NNLO.

We also show the effect of including the LHC jet data

in the NNLO fit with the use of both the smaller and larger

K -factors described in Sect. 4.3.1. In both fits the preferred

value of αS(M2
Z ) is close to 0.1172. The resulting gluon dis-

tribution in each case is shown in Fig. 27. One can see that
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Fig. 25 The change, in the g and s + s̄ PDFs at NNLO for Q = 104 GeV2, in going from the MSTW values to those in the present global NNLO
fit, which includes the LHC data. Also shown are comparisons of the percentage errors in the two analyses
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Fig. 26 The change in the g and u PDFs at NNLO for Q = 104 GeV2, in going from the MSTW values to those in the present global NNLO fit
[with default αS(M2

Z ) = 0.118], which includes the LHC data. Also shown is the NNLO fit for the optimal value αS(M2
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the change in the gluon is very small (indeed it is very sim-

ilar to that in the αS(M2
Z ) = 0.1172 fit, as can be seen by

comparing with Fig. 26) and fairly insensitive to the over-

all size of the K -factor. As was seen in Fig. 18, a relatively

smooth and moderately sized correction to theory can be

largely accommodated by a larger shift of data compared to

theory using correlated systematics, with little, if any extra

penalty. As noted in Sect. 4, however, this is not as easy to do

with jet data taken at two different energy scales, and it will

also not be as successful with reduced correlated systematic

uncertainties.

5.4.6 Comparison between NLO and NNLO

The comparison between some of the NLO and NNLO PDFs

is shown in Fig. 28. One can see that the NNLO gluon is a

little higher at highest x and becomes smaller at the lowest x

values. The latter effect may be understood as being due to

the slower evolution of the gluon at very small x at NNLO as

a consequence of the correction to the splitting function. This

is mirrored in the very small-x behaviour of the light quarks

and the up sea quark, where the evolution is driven by the

gluon. The change in shape of uV between NLO and NNLO is
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Fig. 27 The change in the g PDF at NNLO for Q = 104 GeV2, in
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included with both the larger and smaller approximate K -factors; these
two curves are almost indistinguishable from each other

a consequence of the NNLO non-singlet coefficient function

which is positive at very large x , leading to fewer quarks,

and then becomes negative near x = 0.1, leading to more

valence quarks. The effect at high x is less clear in the dV

distribution due to the freedom for the deuteron correction to

be different at NNLO than at NLO. The sea quark is larger at

NNLO for all x < 0.1 until the lowest values. This is due to a

negative NNLO structure function coefficient function in this

region, which means the fit to data requires more sea quarks.

The shape is common to all light sea quarks, not just ū. This

is also evident in the change in the light-quark distribution.

The heavy quarks are generated almost entirely by evolution

from the gluon, so their shape change is extremely similar

to that of the gluon. The uncertainties at NLO and NNLO

are very similar to each other, depending primarily on the

uncertainties in the data.

6 Predictions and benchmarks

In Tables 11 and 12 we show the predictions for various

benchmark processes at the LHC for the MSTW PDFs [1]

and the MMHT sets of PDFs, also showing the results before

LHC data are included in the fit for comparison (though the

uncertainties are not calculated in this case). We calculate

the total cross sections for Z → l+l−, W → lν, Higgs

production via gluon–gluon fusion and t t̄ production. For

W, Z and Higgs production we use the same approach to

calculation as used15 in [1], and improved in [132]. For the

Z → l+l− branching ratio we use 0.033658 and for the W →
lν we take 0.1080 [129]. We use LO electroweak perturbation

15 We use the code provided by Stirling, based on the calculation in
[137], [138] and [139].
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Table 11 The values of various cross sections (in nb) obtained with
the NLO MSTW 2008 parton sets [1] and the NLO MMHT 2014 sets.
We show the values before and after the LHC data are included in the

present fits, but not the uncertainty in the former case. The uncertainties
are PDF uncertainties only

MSTW08 NLO MMHT14 NLO no LHC MMHT14 NLO

W Tevatron (1.96 TeV) 2.659+0.057
−0.045 2.685 2.645+0.058

−0.049

Z Tevatron (1.96 TeV) 0.2426+0.0054
−0.0043 0.2486 0.2442+0.0049

−0.0043

W + LHC (7 TeV) 5.960+0.129
−0.097 6.107 5.974+0.092

−0.086

W − LHC (7 TeV) 4.192+0.092
−0.071 4.181 4.163+0.069

−0.061

Z LHC (7 TeV) 0.931+0.020
−0.014 0.941 0.932+0.013

−0.013

W + LHC (14 TeV) 12.07+0.24
−0.21 12.43 12.17+0.20

−0.18

W − LHC (14 TeV) 9.107+0.19
−0.16 9.16 9.10+0.15

−0.14

Z LHC (14 TeV) 2.001+0.040
−0.032 2.035 2.016+0.031

−0.033

Higgs Tevatron 0.658+0.021
−0.027 0.636 0.644+0.021

−0.022

Higgs LHC (7 TeV) 11.39+0.16
−0.19 11.26 11.28+0.21

−0.20

Higgs LHC (14 TeV) 37.93+0.42
−0.60 37.67 37.63+0.67

−0.59

t t̄ Tevatron 6.85+0.19
−0.13 6.89 6.82+0.18

−0.17

t t̄ LHC (7 TeV) 162.0+4.3
−5.4 157.0 158.6+4.5

−4.5

t t̄ LHC (14 TeV) 903.8+16
−17 886.7 891.9+18

−18

Table 12 The values of various cross sections (in nb) obtained with the
NNLO MSTW 2008 parton sets [1] and the NNLO MMHT 2014 sets.
We show the values before and after the LHC data are included in the

present fits, but not the uncertainty in the former case. The uncertainties
are PDF uncertainties only

MSTW08 NNLO MMHT14 NNLO no LHC MMHT14 NNLO

W Tevatron (1.96 TeV) 2.746+0.049
−0.042 2.803 2.782+0.056

−0.056

Z Tevatron (1.96 TeV) 0.2507+0.0048
−0.0041 0.2574 0.2559+0.0052

−0.0046

W + LHC (7 TeV) 6.159+0.111
−0.099 6.214 6.197+0.103

−0.092

W − LHC (7 TeV) 4.310+0.078
−0.069 4.355 4.306+0.067

−0.076

Z LHC (7 TeV) 0.9586+0.020
−0.014 0.9695 0.9638+0.014

−0.013

W + LHC (14 TeV) 12.39+0.22
−0.21 12.49 12.48+0.22

−0.18

W − LHC (14 TeV) 9.33+0.16
−0.16 9.39 9.32+0.15

−0.14

Z LHC (14 TeV) 2.051+0.035
−0.033 2.069 2.065+0.035

−0.030

Higgs Tevatron 0.853+0.028
−0.029 0.877 0.874+0.024

−0.030

Higgs LHC (7 TeV) 14.40+0.17
−0.23 14.54 14.56+0.21

−0.29

Higgs LHC (14 TeV) 47.50+0.47
−0.74 47.61 47.69+0.63

−0.88

t t̄ Tevatron 7.19+0.17
−0.12 7.54 7.51+0.21

−0.20

t t̄ LHC (7 TeV) 171.1+4.7
−4.8 176.5 175.9+3.9

−5.5

t t̄ LHC (14 TeV) 953.3+16
−18 969.0 969.9+16

−20
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theory, with the qqW and qq Z couplings defined by

g2
W = G F M2

W /
√

2, g2
Z = G F M2

Z

√
2, (37)

and other electroweak parameters are as in [1]. We take the

Higgs mass to be m H = 125 GeV, and the top pole mass

mt = 172.5 GeV. For the t t̄ cross section we use the cal-

culation and code in [104]. In all cases we use the particle

mass as the renormalisation and factorisation scale. The main

purpose of the presentation is to investigate how both the

central values and the uncertainties of the predictions have

changed in going from MSTW2008 PDFs to MMHT2014

PDFs, so we provide results for the Tevatron and LHC with

centre-of-mass energies 7 and 14 TeV. This gives quite a

spread of energies whereas relative effects at 8 and 13 TeV

would be very similar to those at 7 and 14 TeV. We do not

intend to present definite predictions or compare in detail

to other PDF sets as both these results are frequently pro-

vided in the literature with very specific choices of codes,

scales and parameters which may differ from those used

here.

For the NLO PDFs one can see that there are no shifts

in W or Z cross sections as large as the uncertainties

when going from the MSTW2008 predictions to those of

MMHT2014. The NLO values of the cross section for Z

production at the Tevatron and of W + production at the

LHC do change by slightly more than one standard devi-

ation on the non-LHC MMHT2014 fit, but the inclusion

of LHC data brings these cross sections back towards the

MSTW2008 predictions. The uncertainties are generally

slightly smaller when using the MMHT2014 PDFs, but this is

a fairly minor effect. For Higgs production via gluon–gluon

fusion at NLO the changes are all within one standard devi-

ation, with a slight decrease in the MMHT2014 sets due to

the slightly smaller high-x gluon distribution. The uncer-

tainties are slightly decreased with the new PDFs at low

energy, but increase a little at higher energy. For t t̄ produc-

tion there is a slight decrease in the predicted cross section for

the MMHT2014 set at the LHC, and as with Higgs produc-

tion this is more of an effect before LHC data are included.

As with Higgs production this is due mainly to the smaller

gluon at high-x , with σt̄ t probing higher x than Higgs pro-

duction.

The trend is the same for the predictions for W and Z

cross sections at NNLO. There is generally a slight increase

from the use of the MMHT2014 sets, but, with the marginal

exception of Z production at the Tevatron, this change is

always within one standard deviation for the full MMHT2014

PDFs. It is sometimes slightly more than this when using

the non-LHC data MMHT2014 sets, and again the inclu-

sion of LHC data brings MMHT2014 closer to MSTW2008.

For the Higgs cross sections via gluon–gluon fusion there

is consistently a very small increase. This is because even

though the gluon distribution decreases in the most relevant

x region, i.e. x ≈ 0.06 for
√

s = 1.96 TeV and i.e. x ≈ 0.009

for
√

s = 14 TeV, the coupling constant has increased, and

this slightly overcompensates the smaller gluon. If the pre-

dictions are made using the absolutely best-fit PDFs with

αS(M2
Z ) = 0.1172 the Higgs predictions decrease compared

to MSTW2008, but again by much less than the uncertainty.

As at NLO the MMHT2014 uncertainties have reduced a lit-

tle at the highest energies but increased at higher energies.

For t t̄ production there is an increase in the cross section for

the MMHT PDFs of about 4–5 % at the Tevatron and 2–3 %

at the LHC, with again the effect being slightly larger before

LHC data are included. This is partially due to the larger

coupling in the MMHT sets, with the change being reduced

to about 3 % at the Tevatron and 1–2 % if the MMHT2014

absolute best-fit set with αS(M2
Z ) = 0.1172 is used. The

remainder of the effect is due to the enhancement of the very

high−x gluon at NNLO in MMHT2014. The change is in

some cases more than one standard deviation from the best

MSTW prediction, but only when compared to just the PDF

uncertainties. If predictions with common αS(M2
Z ) are com-

pared, or PDF + αS(M2
Z ) uncertainties taken into account

the changes are at most about one standard deviation.

7 Other constraining data: dijet, W + c, differential t t̄

As well as improvements in the type of data we currently

include in the PDF analysis there are currently a variety of

new forms of LHC data being released, which will also pro-

vide new, sometimes complementary, constraints on PDFs.

Some of the most clear examples of these are dijet data

[106,107,140], top quark differential distributions [141,142]

and W − + c (and W + + c̄) production [143,144]. The first

two should help constrain the high-x gluon and the last is

a direct constraint on the strange quark distribution. None

of these have been included in our current analysis, either

because suitably accurate data satisfying our cut-off on the

publication date, was not available or because there is some

limitation in the theoretical precision, or both. Nevertheless,

we briefly comment on the comparison with each set of data.

7.1 Dijet production at the LHC

The comparison to the dijet data in [106,107] was studied in

[109]. It was clear that at high rapidity there was a significant

difference in conclusions depending on which scale choice

was used, i.e. one depending just on pT or one with rapidity

dependence as well. There is also double counting between

the events included in the inclusive and the dijet data. In [140]

the data are limited to relatively low rapidity, and full account

of correlations between data sets is taken. The analysis in

[140] shows that for the full data sample MSTW2008 PDFs

123



204 Page 44 of 53 Eur. Phys. J. C (2015) 75 :204

fit extremely well, better than most alternatives, and, as seen

in this article, there should be little change if the MMHT2014

PDFs are used. We will include appropriate dijet data sam-

ples in the future. However, we will probably wait for the

complete NNLO formulae for the cross sections to become

available, before including them in the NNLO analysis. We

also note that MSTW2008 PDFs give an excellent descrip-

tion of the higher luminosity 7 TeV ATLAS jet data [145],

so presumably MMHT2014 PDFs will as well.

7.2 W+ charm jet production

We also compare to the CMS [144] W plus charm jet data

with total cross section on W plus charm jets, satisfying

p
jet
T > 25 GeV and |ηjet| < 2.5, for two values of the cut on

the W decay lepton: p
lep
T > 25 GeV and p

lep
T > 35 GeV. The

results are shown in Table 13 for the total W +c cross section

and for the ratio R±
c ≡ σ(W + + c̄ + X)/σ (W − + c + X).

The predictions are calculated using MCFM, and we get com-

pletely consistent results with the data in [144] when using

the NNLO MSTW 2008 PDFs and mc = 1.5 GeV. However,

since the cross section is calculated at NLO, we use NLO

PDFs, and we take our default mass to be mc = 1.4 GeV.

(This change in mass increases the cross sections by about

1 %, though a little more in the lower than the higher p
lep
T

bin.) The cross sections are then slightly larger than quoted

in [144], but still below the data. The ratio of c to c̄ pro-

duction is slightly lower than the data, but consistent. When

using MMHT2014 the cross sections increase by a few per-

cent, and they are actually slightly larger than the data, though

well within the data uncertainty. The PDF uncertainty in the

cross section is now very much larger, reflecting the increase

in the uncertainty on the total s + s̄ production. The ratios are

slightly lower, and the uncertainty is very similar to that with

MSTW2008, reflecting the fact that the uncertainty on s − s̄

is essentially unchanged. The ATLAS measurements [143]

are not corrected to the parton level, so cannot be directly

compared. However, they appear to be a few percent higher

than the CMS measurements. This is in reasonable disagree-

ment with MSTW2008 PDFs, but appears very likely to be

fully consistent with MMHT2014 PDFs. The ratio, where

non-perturbative corrections presumably largely cancel, is

close to 0.90, so is again likely to be very compatible with

the MMHT2014 prediction.

7.3 Differential top-quark-pair data from the LHC

Finally we compare to some recent differential top quark data

[142]. The comparison between NLO theory, with the calcu-

lation performed using MCFM [146], and data are shown for

both MSTW2008 and MMHT2014 in Fig. 29 as functions

of pt
T , of mt t̄ and of yt t̄ . One can see that the pt

T distribu-

tion of the data falls more quickly than the prediction. The

same is arguably true, to a lesser extent, for the mt t̄ distribu-

tion, except for the last point, while the rapidity distribution

matches data very well. The same trend is true for the other

‘top’ data sets. However, there is an indication [147] that

NNLO corrections soften the pt
T distribution in particular,

so the relatively poor comparison may be due mainly to the

missing higher-order corrections.

8 Comparison of MMHT with other available PDFs

Here we compare the MMHT14 PDFs to PDF sets obtained

by other groups. The most direct comparison is with the

NNPDF3.0 PDFs which have very recently been obtained in

a new global analysis performed by the NNPDF collabora-

tion [17]. This involves a fit to very largely the same data sets,

including much of the available LHC data, and also uses a

general mass variable flavour number scheme which has been

shown to converge with that used in our analysis as the order

increases [148]. There do, however, remain some significant

differences in the two theoretical approaches. For example,

NNPDF3.0 does not apply deuteron and heavy-nuclear target

corrections. Moreover, the MMHT and NNPDF collabora-

tions use quite a different procedure for the analysis. The

NNPDF collaboration combine a Monte Carlo representa-

tion of the probability measure in the space of PDFs with the

use of neural networks to give a set of unbiased input distri-

Table 13 The values of the total W + c cross section (in pb), and the W +/W − ratio R±
c , measured by CMS [144], compared with the predictions

obtained using MSTW2008 and MMHT2014 NLO PDFs. The charm jet is subject to the acceptance cuts p
jet
T > 25 GeV and |ηjet| < 2.5

GeV Data MSTW2008 MMHT2014

σ(W + c) p
lep
T > 25 107.7 ± 3.3 (stat.) ± 6.9 (sys.) 102.8 ± 1.7 110.2 ± 8.1

σ(W + c) p
lep
T > 35 84.1 ± 2.0 (stat.) ± 4.9 (sys.) 80.4 ± 1.4 86.5 ± 6.5

R±
c p

lep
T > 25 0.954 ± 0.025 (stat.) ± 0.004 (sys.) 0.937 ± 0.029 0.924 ± 0.026

R±
c p

lep
T > 35 0.938 ± 0.019 (stat.) ± 0.006 (sys.) 0.932 ± 0.030 0.904 ± 0.027
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Fig. 29 The CMS differential top quark data as functions of pt
T (top pair of plots), of mt t̄ (middle plots), and of yt t̄ (bottom plots), compared to

the predictions of the MSTW2008 PDFs (left) and MMHT2014 PDFs (right). The dotted lines represent the PDF uncertainties
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Fig. 30 The comparison between NNLO NNPDF3.0 and MMHT14
PDFs at Q2 = 104 GeV2 showing the g and light-quark PDFs. Also
shown (without error corridors, which would be similar to those of the

newer sets in most cases) are the NNPDF2.3 and MSTW08 PDFs (left)
which they supersede and (right) CT10 HERAPDF1.5 and ABM12
PDFs

butions. On the other hand, here, we use parameterisations

of the input distributions based on Chebyshev polynomials

where the optimum order of the polynomials for the various

PDFs is explored in the fit.

Although the most direct comparison is between the

MMHT14 and NNPDF3.0 sets of PDFs, we also compare

to older PDF sets; i.e. the MSTW08 [1] and NNPDF2.3 [3]

sets, which MMHT14 and NNPDF3.0 supersede, and with

the ABM12 [5], CT10 [2] and HERAPDF1.5 [4] sets which

are obtained from a smaller selection of data.16

8.1 Representative comparison plots of various PDF sets

As a representative sample, we show in Figs. 30, 31 and

32 the comparison of MMHT14 and NNPDF3.0 for six

PDFs: namely the g, light quark, uV , dV , ū and s + s̄, at

Q2 = 104 GeV2 at NNLO. All the plots show the MMHT14

and NNPDF3.0 PDFs with their error corridors. The plots on

the left of the figures also show the MSTW08 and NNPDF2.3

PDFs (but now without their error corridors), which have

been superseded by the MMHT14 and NNPDF3.0 sets,

respectively, The plots on the right of the figures show the

16 The ABM12 analysis does include some of the LHC W, Z data.

comparison with the central values of ABM12, CT10 and

HERAPDF1.5 PDFs. These representative plots of PDFs are

sufficient to draw general conclusions concerning the com-

parisons, which we discuss in the subsections below.

As noted above, the treatment of the input distributions

and the uncertainties are quite different in the NNPDF and

MMHT analyses. However, remarkably, we see from Figs.

30, 31 and 32 that in regions where the NNLO PDFs are

tightly constrained by the data, with a few exceptions, the val-

ues, and also the error corridors, are very consistent between

the two analyses.

8.2 Comparison of gluon PDFs and sea quark PDFs

We may conclude (at Q2 = 104 GeV2) that to within 2 %

accuracy, the NNLO gluon is determined in the domain

3 × 10−4 � x � 5 × 10−2. There is much better agree-

ment between MMHT14 and NNPDF3.0 for the gluon than

between MSTW08 and NNPDF2.3.17 In the region x ∼ 0.01

NNPDF2.3 is outside the combined error band of the two

17 We note that NNPDF3.0 uses a charm pole mass of mc = 1.275 GeV
rather than the value mc =

√
2 GeV used for NNPDF2.3. As noted in

[149] (see Fig. 4), and [150] (see Fig. 40) this type of change has some
effect on the gluon, potentially of order 1 % at Q2 = 104 GeV2 (except
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Fig. 31 The comparison between NNLO NNPDF3.0 and MMHT14 PDFs at Q2 = 104 GeV2 showing the ū and s + s̄ quark PDFs. Also shown
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newer sets (leading to the reduced cross section for Higgs

production via gluon fusion for the NNPDF update noted in

[17]). For x ∼ 0.0001–0.001 MSTW08 is outside the com-

bined error band (though quite close to NNPDF2.3).

The CT10 and HERAPDF1.5 gluons are in good agree-

ment with MMHT14/NNPDF3.0, except for HERAPDF near

x = 0.1–0.2, though at the edge of the error band pre-

cisely at the central Higgs rapidity x values of 0.01–0.02.

ABM12 is much larger below x ∼ 0.05 and much smaller

for x > 0.1. Part of this is due to the much smaller strong

coupling obtained by ABM12, but the general effect persists

even if αS(M2
Z ) = 0.118 is used. It was argued in [36] that

this difference with ABM12 is primarily due to their use of

a fixed-flavour number scheme (FFNS).

The very good agreement in the MMHT14 and NNPDF3.0

gluon distributions is responsible for the comparably good

agreement in the small-x (x < 0.01) light-quark, ū and

s + s̄ distributions, which are driven at small x by evolution

mainly from the gluon. For these values of x the superseded

MSTW08 and NNPDF2.3 distributions for these PDFs also

show good agreement, although there has been a noticeable

transfer from ū to s + s̄ quarks in going from MSTW08

to MMHT14. It would be surprising to see much change

in the sea quarks in this region, as a linear combination of

them is very tightly constrained by HERA structure function

data. Indeed, there is also generally good agreement with

ABM12, CT10 and HERAPDF1.5 distributions. CT10 lies a

little higher at very small x , consistent with the similar fea-

ture for the gluon distribution. HERAPDF has a distinctly

higher ū distribution at lower x , but this is compensated, to

some extent, by a smaller s + s̄ distribution.

Perhaps the most surprising discrepancy between MMHT14

and NNPDF3.0 is in the total light-quark distribution at

x ∼ 0.05; see Fig. 30. This seems to be a particular feature of

NNPDF, with NNPDF2.3 and NNPDF3.0 being very similar,

while all the other PDF sets are very similar to MMHT14 in

this region. The difference is ∼ 3 %, but the PDF uncertainty

is only ∼ 1 % here. The main reason for this difference

seems to be that NNPDF have the smallest strange quark

in this region, as well as smaller valence quarks than other

PDF sets. NNPDF are the only sets of PDFs which have used

HERA-II data, which constrain this x range, so this may have

some effect. Also, the singlet-quark distribution is probed in

charged-current neutrino DIS by F2(x, Q2), and some dif-

ference may be due to nuclear corrections being or not being

included when fitting to these data. The smaller NNPDF

light-quark distribution for x ∼ 0.05 is perhaps apparent

in NNPDF3.0 having smaller quark–quark luminosity than

CT10 and MSTW08 in Fig. 59 of [17] for MX ∼ 600 GeV

at very high and low x), but very little change near x = 0.01. The value
of mb is also changed, but this should have negligible change on the
PDFs, except for the b distribution.

at the LHC with 13 TeV centre-of-mass energy. However,

in the luminosity plot the error bands easily overlap due to

sampling a range of x values for each MX .

8.3 Comparison of s + s̄ distributions

The MMHT14 and NNPDF3.0 s + s̄ distributions are fully

compatible, but NNPDF3.0 has a lower distribution. The lat-

ter observation is due to the increase in the strange frac-

tion in MMHT14 arising from the improved treatment of the

D → μ branching ratio Bμ, whereas NNPDF3.0 is similar

to NNPDF2.3 (and also to MSTW08, except at fairly high

x values). The improved treatment of Bμ means MMHT14

has a rather larger uncertainty for s + s̄ than previously, and

this also seems to be larger than that for NNPDF3.0.

MMHT14 also has a larger total strange distribution than

HERAPDF (as already noted at small x), but the two are com-

patible. There is quite good agreement with ABM12 except

for x > 0.2, where there is little constraint from data. CT10

has the largest s + s̄ distribution, and the central value is even

outside the MMHT14 error band near x = 0.05, though their

uncertainty band is large. However, it was recently reported

in [151] that a sign error was discovered in the CT10 heavy

flavour contribution to charged-current DIS. This led to a

considerable underestimate of the dimuon cross section, and

hence a larger strange distribution. A significant reduction of

s + s̄ is therefore expected in future CT PDF sets.

8.4 Comparison of valence quark distributions

There is, perhaps unsurprisingly, more difference in the PDFs

for valence distributions, as seen in Fig. 32, since there is less

direct constraint from the data. MMHT14 and NNPDF3.0

agree well for both uV and dV at x > 0.05 where the valence

quarks provide the dominant contribution to the structure

function data. However, at lower x values. Where sea quarks

dominate, the PDFs start to differ significantly. Both the

uV and dV of NNPDF3.0 become smaller than those of

MMHT14 for x ∼ 0.01 (though more so for dV ), and then

become larger at very small x as a result of the quark number

constraint.

The same sign difference for both valence quarks for

x ∼ 0.01 allows uV − dV to be similar for MMHT14 and

NNPDF3.0, so both fit the LHC lepton asymmetry data at

low rapidity, which is sensitive to uV − dV at x ∼ 0.01. It

may be the case that the absence of deuteron corrections in

NNPDF3.0 compared to the relatively large ones now used

in the MMHT14 analysis leads to a difference in the dV

distribution which also impacts on the uV distribution due

to the constraint on the difference between them. Indeed,

MSTW08 (which had a more restricted deuteron correction)

and NNPDF2.3 agree quite well for dV . However, there is

also some direct constraint on valence distributions from
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Fig. 33 The comparison between NLO NNPDF3.0 and MMHT14 PDFs at Q2 = 104 GeV2. The two plots show the g and light-quark PDFs.
Also shown (without error corridors) are the NNPDF2.3 and MSTW08 PDFs which they supersede

nuclear target data, and also sensitivity to the F3(x, Q2)

structure function. Here MMHT apply nuclear correction fac-

tors, while NNPDF do not, and also they employ a larger Q2

cut for F3(x, Q2) than for F2(x, Q2) due to the probable

large higher-twist corrections at lower x values. As already

commented on, the valence distributions in MMHT14 and

MSTW08 are quite different due to the extended parameter-

isation and to the deuteron corrections – the main features of

the change are already present in [11]. Note that there are also

some quite significant changes in going from NNPDF2.3 to

NNPDF3.0 at smaller x .

The MMHT14 uV distribution agrees quite well with that

of both CT10 and HERAPDF1.5. The ABM12 uV distribu-

tion is very different in shape to all the rest, perhaps due to

the approach of fitting higher-twist corrections, rather than

employing a conservative kinematic cut as the other groups

do. MMHT14 also exhibits reasonable agreement with the

CT10 dV distribution, but both HERAPDF1.5 and ABM12

have quite different shapes (though similar to each other).

HERAPDF has little constraint on dV and the uncertainty

is large, though it is not influenced by assumptions about

deuteron corrections or by imposing isospin symmetry con-

servation. The reason for the difference for ABM12 may be

similar to that proposed for the difference in uV . The valence

quarks are very different as x → 0, perhaps suggesting an

underestimation of the uncertainty here, even by NNPDF.

However, it is not clear what experimental data would be

sensitive to the very small x valence quark differences.

8.5 Comparison at NLO

The same type of PDF comparison is made between

NNPDF3.0 and MMHT14 at NLO in Fig. 33. For the gluon

(left-hand plot) this shows less agreement between the val-

ues of the MMHT14 and NNPDF3.0 PDFs than the com-

parison at NNLO, though the width of the error corridors

are still comparable. NNPDF3.0 is larger for x ∼ 0.1 but

becomes considerably smaller at very low x . Even so, the

plots show that there is now closer agreement than between

the MSTW08 [1] and NNPDF2.3 [3] PDFs that they super-

sede, though the form of the difference is the same. For the

quarks the differences between PDF sets are largely similar at

NLO as at NNLO (an exception being that HERAPDF1.5 has

a smaller high-x gluon at NLO and larger high-x sea quarks

compared to its NNLO comparison to other sets). The main

additional difference between NNPDF3.0 and MMHT14

(and between NNPDF2.3 and MSTW08) is simply that inher-

ited from the gluon difference, i.e. the smaller NNPDF gluon

at low x leads to smaller low x sea quarks. This is illustrated in

the NLO comparison of the light-quark distributions shown

in the right-hand-side plot of Fig. 33, and is similar for all

sea quarks at low x .

So far we have compared the PDF sets at Q2 = 104 GeV2.

The comparison of MMHT14 and NNPDF3.0 (and other)

PDFs at lower Q2, say Q2 = 10 GeV2, shows the same gen-

eral trends, but now the error corridors are wider, particularly

at very small x , as illustrated for MMHT2014 PDFs in Figs.

1 and 20, respectively.

9 Conclusions

We have performed fits to the available global hard scattering

data to determine the PDFs of the proton at NLO and NNLO,

as well as at LO. These PDF sets, denoted MMHT2014,

supersede the MSTW2008 sets, that were obtained using a

similar framework, since we have made improvements in the

theoretical procedure and since more data have become avail-

able in the intervening period. The resulting MMHT2014

PDF sets may be accessed, as functions of x, Q2 in com-

puter retrievable form, as described in Sect. 5.3.4.

How has the theoretical framework been improved? This

was the subject of Sect. 2. First, we now base the parameter-

isation of the input distributions on Chebyshev polynomials.

It was shown in [11] that this provided a more stable determi-

nation of the parameters. We now also use more free param-

eters than previously, i.e. an additional two for each valence
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quark, for the overall sea distribution and the strange sea.

However, we only use five more in determining PDF eigen-

vectors as there is some still some redundancy in parame-

ters. Next, note that even with the advent of LHC data, we

find we still need the fixed-target nuclear data to determine

the flavour separation of the PDFs. So our second improve-

ment is to use a physically motivated parametric form for the

deuteron correction, and to allow the data to determine the

parameters with the uncertainties determined by the qual-

ity of the fit. The first step in this direction was taken in

[11], but now we find that the global fit results in a correc-

tion factor even more in line with theoretical expectations;

see Fig. 3. There are similar improvements for the heavy-

nuclear corrections for the deep inelastic neutrino scattering

data, with an update of the corrections used, and again allow-

ing some freedom to modify these corrections and for the fit

to choose the final form. The third improvement concerns

the treatment of the heavy (c, b) quark thresholds. We use an

optimal GM-VFNS to give improved smoothness in the tran-

sition region where the number of active flavours increases

by one. The fourth improvement is to use the multiplicative,

rather than the additive, definition of correlated uncertainties.

Another important change in our procedure is the treatment

of the D → μ branching ratio, Bμ, needed in the analysis

of (anti)neutrino-produced dimuon data. These data give the

primary constraints on the s and s̄ PDFs. In the present analy-

sis we avoid using the determination of Bμ obtained indepen-

dently from the same dimuon data, but instead, in the global

fit, we include the value, and its uncertainty, obtained from

direct measurements. It turns out that the global fit deter-

mines a consistent value of Bμ, but with a larger uncertainty

than the direct measurement, leading to a much larger uncer-

tainty on the strange quark PDFs than that in the MSTW2008

PDFs; see Figs. 23 and 25.

What data are now included that were not available for

the MSTW08 analysis? This was the subject of Sects. 3 and

4. First, we are now able to use the combined H1 and ZEUS

run I HERA data for the neutral and charged current, and

for the charm structure functions. Then we have W charge

asymmetry data updated from the Tevatron experiments and

new from the LHC experiments. We also have LHC data for

W, Z , top-quark-pair and jet production. It is interesting to

see which data sets most constrain the PDFs. This is discussed

in Sect. 5.3.3; and displayed in Tables 7 and 9 for the NLO

and NNLO PDF sets, respectively. It is still the case that

the constraints come from a very wide variety of data sets,

both old and new, with LHC data providing some important

constraints, particularly on quark flavour decomposition.

Some LHC data are not included in the present fits; namely

dijet production, W+charm jet data and the differential top-

quark-pair distributions. However, as shown in Sect. 7, these

data seem to be well predicted by MMHT14 partons, except

for the behaviour of t t̄ production at large pt
T (using NLO

QCD), see Sect. 7.3. In all these cases full NNLO corrections

are still awaited, and it will be interesting to see how they

change the predictions we have at NLO.

The new MMHT14 PDFs only significantly differ from

the MSTW08 PDF sets for uV − dV for x ∼ 0.01; see

Fig. 23. The only data probing valence quarks in this region

are the W charge asymmetry measurements at the Tevatron

and the LHC. The MSTW08 partons gave a poor description

of these data. This was cured by changing to a Chebyshev

polynomial parameterisation of the input distributions, with

more free parameters, and by a better treatment of the form

of the deuteron corrections, as first noted in [11], and fur-

ther improved here. It is therefore not surprising that the

MSTW08 PDFs still give reliable predictions for all other

data; see Tables 11 and 12 for some NLO and NNLO predic-

tions, respectively. The only other significant change is in the

total strange quark distribution, with a moderate increase in

magnitude (larger than the MSTW2008 uncertainty) for the

best-fit value, but a very significant increase in uncertainty.

Thus, we may conclude that one is unlikely to obtain an inac-

curate prediction for the vast majority of processes using

MSTW08 PDFs, but we recommend the use of MMHT14

PDFs for the optimum accuracy for both the central value

and uncertainty.

As we enter an era of precision physics at the LHC, it is

crucial to have PDFs determined as precisely as possible. So

improvements to the MSTW08 PDFs are valuable. In this

respect, it is important to notice that the values and error cor-

ridors of the two very recent sets of PDFs (the MMHT14 and

NNPDF3.0 sets, obtained with very different methodologies)

are consistent with each other at NNLO, with only a few dif-

ferences of more than one standard deviation, and that the

values are closer together than hitherto; see Figs. 30, 31 and

32. Hence, although it appears that the intrinsic uncertainties

from individual PDF sets are not shrinking at present, with

new data being balanced by better means of estimating full

PDF uncertainty, the PDF uncertainties from combinations

of PDFs, for example as in [130], are very likely to decrease

in the future.

We note that the current strategy is to upgrade and to

run the LHC at
√

s = 14 TeV, with increasing integrated

luminosity from 30 fb−1 (already taken at
√

s = 8 TeV) to

300 fb−1 at the first stage, and eventually, in the High Lumi-

nosity LHC (HL-LHC), to 3000 fb−1 [152]. The increase

in luminosity means that we can increase the mass reach

for the direct search of new particles. For example, the last

factor of 10 gain in luminosity means the centre-of-mass

energy reach goes from about 7.5 to 8.5 TeV [152], while

HL-LHC continues to operate at
√

s = 14 TeV. However, the

knowledge of the PDFs at large x will also have to improve.

From the present study, we see that gluon PDF at NNLO at

Q2 = 104 GeV2 is known to within a small number of %

for 0.001 � x � 0.2, but that, at the moment, we have little
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constraint from the data in the larger x domain. For the two

processes which constrain the high x gluon PDF, that is, jet

production and the differential distributions for top-quark-

pair production, it will be important to complete the NNLO

formalism. There are already some results for the former pro-

cess in [115–117] and for the latter process in [153]. On the

experimental side it will be important to reliably measure

the distributions for these processes, particularly for values

of pt
T and rapidity yt , which are as large as possible.
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