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I. Introduction 

The parton d e l  has recently been extended to e r i b e  the 

production of hadmns with d l  J+ in the fragwnkticjn region of the 

incident particle. (l - 6, In the fr-mrk of a s-le quark-anti-:< 

r d i n a t i m  d e l  the description of the shapes ard ratios of h a f i r m  

speztra is quite successful. In this m3del a fast (valence) quark, vkse 

mmntum distribution is assurred to be the sam as &veal=d in deep 

inelastic scattering, reannbines w i t h  a slow (sea) anti-qxrk to produce 

the detected n&m. In fi t t ing the data, one is led to a desc r i~ t im of 

the mms~tum distribution of the non-strange sea whi.31 is s i c p i f h t l y  

him in nonnalisation than that obserired in deep iielas-ic 

scattering. (2,3) 

Of course when a and antiquark reccanbine in this rrdel, 

there is no reason why they should not form a resonance - i c h  in +-urn 

decays, producing the detected particle. It has been d i s e d  ky 

several authors ( 3 , 5 r 6  ') that this resonance "cantanination" &d be 

included in  the model and s- rough estimates (5'7) of i3.e effezt of F. 

production have indicated corrections of 20-30% for x > 0.5. 

Independent of the cansiderations of any specific &l, it is 

important to  know what proportion of pions, for example, ax pelted 

directly or f m  rescmance decays. A detailed quark mz&l calculation 
(a) 

predicted t h a t  90% of all produced pions should be decay pxducts of 

resanances and there so~tin-es appears to be experimmtal rxlfin-~tion 

for dcaninan~ by vectomson production. (9f10) mever  m e  eqxcts -ti% 

proportion of mtamination be highest in the central -ion, -re 

the pion cross-section is largest and so this proportion w e l l  be 

much d l e r  in the fragmntatian regions. 

In this paper, we make a detailed estimate, using -he reaxbina- 
+ + 

tion rrodel, of the effects of vector-nEson pr~x2uction on the a- K- 

fragmnts £ram the proton. M? carefully examine a l l  'fie data on ficllasive 

PO, K* production in order to f ix  up the pmbability of the 4 ffcrning a 

vecto- or directly a pseudoscalar mson. We k ~ s t i g a e  t k  effscts 

of varying the an4a.r distributions of the vecto-ans, of which wz 

amsider p, w and K*. Nucleon resonance decays can be e i l y  shorn 'a 

have a negligible effect on the mson' spectrum. 

1 

.\t x = 0.5 v e  find tlut vectomon decays acmunt for a b u t  

one-third ES m y  pions 3r kaans wfiicii are directl~f produced. As 

~ e c t e d ,  this proportixi rises as x decreases and the meson spectrum 

wren by t k  rea&ina-i-2n &el is thsreby enhanced for x below 0.5. 

AI.th0~gl-1 o m  cannot find any tendency of the exprimntal x distributions 

t o  have a slope consistezt with such a2 amunt of resonance contamination 

a t  &L x, one does not really e w c t  the recabination mdel to 4 

valic in t h a t  region. T b s  inclusion of the resonance &cay ampnent 

certaiily ~~ the R/p0 ratio. Ps x decreases the ratio increams 

insufficiently rapidly amparsd with Cats i f  that omrpanent is not 

i n c l w .  

me interestion questbn is whsthex the inclusion of resonance 

contamh3Aon can affect ?he ammt of non-strange sea quarks which 

the r d i r - a t i o n  uses tc f i t  the expechmtal data. It has been . 
mjectured '3' rhat resmance effects could signif~cantly rec?uce the - 
ratio 'caf -h mnst.range,~~ange sea caqments. We find that 'chis 

ratio is not very d i f f e r e ~ t  when resonaxe effects are switched on ht 

'ht it is pss ible  to rrdee m- adequate f i t  to the Cats for x > 0.5 \d.th 

nonstrange and strange sez caponents each reduced hy roughly one-half. 

D- the next s e c t i a  we w r i t e  down the fondism for describing 

the resmae contarninaticn. In sectim I11 he nake a detailed 

a m l u a t h  of the qxxim9tal situaticn and in the final section we 

make fi-s the various ,*. and make our conclusions. 

. Fedination bfiL wiL5 2 s o n a ~ e  Contributions 

In tke xecmbinatim -1 (2) d - ~  inclusive spectrum for a =son 

Mij (i, j tk qua& lakls) fragnen+ig f m  an incident hadmn is 

x, xl, :.z2 .:2 the thetun fractions of the pnduced mson and of 

the parbns. In (1) the idsa of h p d s e  approximzticn has been used. 

Although nco l a y e  mm+ntun transfer is involved, it is justified an tks 

wmds of shcrt-mge cornlation arrmcj the partons. F. . (x1,x2) is the 
17 

joint &stribution of t w  -s, i quark a t  xl and j antiquark a t  x2. 
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In ~ f .  2 the simple factorizable form for Fij was adom, i.e. 

F. . (x1,x2) = Fi(xl)Fj (3) p(xlr3)  
13 

(2) 

where 

p(x1,x2) = B ( 1  - x1 - 3) (3) 

6 being a constant. The simple form of (2) is ccarmensurate with the 

simple picture of the reson production process in tern of.  the ream- 

binat~on of a quark and an antiquadc. A &.ssi!Ae interpretation o f .  (1) 

and (2) is that j ...represents an " e f f e c t i ~  parton" which carries the 

necessary quantum nurber to forh the mson M. . but may in  -itself m t a i n  
11 

gluons. Eq. (2) is a aude way of &timating the rcamentum distribution in 

a kinematical region *re l i t t l e  is k n w  about such joint probabilities. 

In Ref.  4 an atten@ is Iuade to lrcdi£y (2) to t form that sat isf ies  the 

nmentum sum rules by wing the independent emission &.el. In our view 

such a rrodificat&m, while'suggesting an interesting poss.ibility for Fij, 

does not imgow the c-ikty of the rrodel. Although the integrations 

in (1; extends over all values of xl and x2 between 0 an6 1, the integrand 

is physically manjng£d a t  best over a l imi tec i  region of the integration 

aspace. which, one h-, makes the dcanjnant mntribution to the inbqral. 

In thak limited region the nquixemnt of sum rules (involving integration 

over =-e whole phase spaspace) my  not be d g f u l  for Fij. The necessity 

of an s-nhansed sea (2r5) is an indication that the usual parton distribu- 

ticns in the central plateau are inadequate for our purpose. Thus we 

shall tmtinue to use 12) and relinquish the possibility of detemhing 

thE n m l i z a t i o n  of Fij on acmunt of the unknown constant 6. 

The recanbination £unction was assumed in  Ref. 2 to be 

XI th= basis that-it should have the sm functional dependence on xl/x 

and q x  as t h a t  for the valence partons in a mson. Counting rule is 
2 

used to determine the factor xlx2/x in (4). It is important to remgnke 

that  %, specifies the range of interaction (in rapidity) armg the 

partccs that contribute to t?e formation of the m m .  The range wuld be 

longe. i f  R~~ vanishes as ( ? 3 l a w i t h 0  < a  <I.. ~ t ~ a ~ l d  stretch OW 

into *'wee region of the catral plateau .i£ a wixe zero, and divergent 

short-range correlation, which in turn is crucial for the justification 

of the inpulse appmxhation eqloyed in (1). ' 

To generalize the recanbination function to the case that  includes 

the mtr ibu t i an  f m  vector rtgsons, we w r i t e  

The f i r s t  tenn represents the direct recabination into the 

detected mson and the second t e r m  represents production and decay of 

the vector mson. 9 and RYj are defined by the r.h.s. of Eq. (4) with 
11 

the coefficients % and % respectively; % includes the spin factor 3 

and the w s  effect. 

i 
. . The cij, %j are just the squares of Clebsch-Gordon coefficients 

while D(x/y) describes the nature of the vec tomson  decay Vik into the 

pseudoscalar meson M. . with the n o d i s a t i o n  
17  

7 
1 I;(z) dz = 1 (6) 

The scaled variable z = x/y is sinply related to the "helicity" 

angle 8;1 which is the direction of the decay product, in the ve- 

meson wt-£ ram,  with respect to the initial hadron direction: 

where q is the =tun of the detected mson i n  the vecto-n rest 

frame, and' A is a ans t an t  depending on the masses involved. Thus i f .  

w know the angular distribution for the relevant vector-msm, which 

is usually translated' into estimates of the density-matrix elemnts for  

the decay, the D(z) is N l y  &te.nnined. Un£ortmately, while there are 
* 

very good experktal data for the p, w, K d e n s i t y - ~ ~ t r i c e s  produced 

in the incident mson direction, there is virtually no exprmtal 

infmtion on the backw& prod- process which is the relevant 

kinamtic region here. 

result ~ u l d  ensue. for (1) . Thus a = 1 is consistent with the usual 

3 
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. 
In the appendix, we write dam exprssians for D(z) for the two- 

* 
body decays p + 2a, K + Kir, and w + 3a for various possibilities of the 

helicity angular distribution, which we use in the section IV. 

Feeding in  expressions (4) to equation (51,. we 3t 

substituting into (11,  using E q s .  (21, (3) gives 

X 

~ ( l  - ( dxl Fi(xl) Fj(x - I) = cij9a x 

111. The D a t a  

and then 

WE found N = 3 sufficient to give a good fit. There is a sig- 

nificantdifference in the shapes of the m u l t i a g  spedra, say for a', 

betwen the two i s  -qt in a direct cmpzison of 
3 3 

the &-a on Ed a/@ at at = 0.75 GeV even allowhg for a shift  in 

normaliszzion for eitl-er set  of data. This is damnstrate6 in Fig. 7 

where -he two sets of 3ata show a different x dependence. Since we have 

no prejudice against e t h e r  set we nake separate f i t s  and extract two 

interplated spect-a, s i n g  Eqs. (10) and (11) , for each detected rtleson 

to ccmpxe with the m i e l  in the next section. 

IV. Ccnparison of iWdel wit21 Data and Conclusions 

SLwe the fast which remr&ines -rTitf. an antiquark to fonn 

W e  shall be amparing the expressions (9) for + n ' ~  ad ~ 5 ,  
' * 

including the effect8 of p, u and K m a n o e s ,  hitb t3e data at high 

energies on those reactions which cover the large x rqim. ?liere are 

tim recent eqerimmts qn nf, K* inclusive production the protan ' 

fragmntatian region; a Fennilab-Illinois collaboration (11) a t  

plab = 103, 2CO and 400 W/c and an ISR ekpr imr t  by the CHll4 

collaboration (12) a t  fi = 45 GeV. 

The expression (9) refers to the $ integrated qmtitp 

(E/uTOT)do/% and since both exprinwts masure data m l y  a t  specific 

values and over d i f f m t  ranges of x a t  each %, ' r ~ e  wt f i r s t  

2 interpolate and extrapolate the data t o  do the inteeation. To do this 

w perfonred a f i t  to the data of each expriment in tua, us- a 

parmtrisation 

5 

the detected reson is =sun@ to  havz the Sam? -turn fraction 
2 

distribution as seen ir: deep inelastic scattering, but a t  "law" Q before 

the anset of scdling .Jiolation, we take a parmetrisation for the valence 
' 

quark frcan a good f i t  zo eat data, in our case w take that given by 

Field and Feynman. (I3:' We shall paz-trise the sea-quark distributions 

by mle p e r  l aw  Haviciurs, i.e. 

"u "d 
F;(x) = y,(l - x) , %(x) = doll - X) , %(XI = Fs(x) = so(l - X) 

"s 

(12) 

and ad-us: the parw+ns uo, nu etc. by f i t t ing the inclusive data. 

This has jeen the procdure ir! previous attempts to ampare the 

r e d i n a t i o n  rrodel with the inclusive Because we are 

including vector-mson resmar-ces, ue haw, in addition to the parirmeters 

%, % which gwen. the prdbability of a specific & pair folming 3 pion 

or lax:, additional pazc~ters ap, cut cy which are the c o m ~ * g  . 
6 
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IV. Ccnparison of iWdel wit21 Data and Conclusions 

SLwe the fast which remr&ines -rTitf. an antiquark to fonn 

W e  shall be amparing the expressions (9) for + n ' ~  ad ~ 5 ,  
' * 

including the effect8 of p, u and K m a n o e s ,  hitb t3e data at high 
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tim recent eqerimmts qn nf, K* inclusive production the protan ' 
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5 

the detected reson is =sun@ to  havz the Sam? -turn fraction 
2 

distribution as seen ir: deep inelastic scattering, but a t  "law" Q before 
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' 
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"u "d 
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"s 

(12) 

and ad-us: the parw+ns uo, nu etc. by f i t t ing the inclusive data. 

This has jeen the procdure ir! previous attempts to ampare the 
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%, % which gwen. the prdbability of a specific & pair folming 3 pion 

or lax:, additional pazc~ters ap, cut cy which are the c o m ~ * g  . 
6 



quantities for the vector-msons, whose spin f a m r  is included in the 

*£initions of the a's. 

First,  we fiX up tie value of a /a by l c c ihg  a t  the data on' 
P a 

inclusive p0 production. a s m  that p0 w i l l  z produced coi~y by 

3irect m i n a t i o n ,  not as decay products of hi* mass resonances. 

-& hat= fu s t  the f i r s t  term of 4. (9) with replaced by up. 

There exists n w  a great deal (14) of data on p0 and K* inclusive 

production. In Fig. 2, wr, take the data in  the poton  fragmntation 

region and show the situation for the ;atio of ths processes ap + <X 
+ - '. 

and ap -+ pox for a = a , a , K-, p. There is a dear tendency for the 

r ~ t i o  td fall with increasing x, as expected f m  the different c ! s  

of the a and p ,  but tke precise magnitude of the ra t io  is  not w e l l  

determined. As fa r  as the n ~ & l  is amemed, th i s  rat io is not 

sensitive tp the details of the sea-quark d i s t r i h t i ons  etc. but d y  to 

the rat io a /u Also it is sensitive to the ef£ect of including the 
P a' 

vectomnesans i n  the production of pions. The lxst f i t  is obtained 

by taking ap/ua = 0.45 which means, d l y  speaking, that a given @- 

.antiquad: pair is twice as likely td directly recombine into a a as 
, 

into a p. m e  ra t io  of inclusive production of i0 to K*+ is essentially 

Iletennined by the product of the ratios up/%* arid d P o .  This l a t t e r  

rat io is usually taken to be around 10 and i f  w e  look a t  the exg~rimmtdl 

p3,&*' ra t io  given by E~&EIWI (14) we find that this is consistent with 

takiry cy = apr which is in l ine w i t h  our assumption a,, = %. Likewise 

.w shall assum aw = a 
P' 

N e x t  we turn to the inclusive a*, I? distributions ~ v e ~ ,  

and as pointed out in the previous section we separate camparisons . 

wi%h the F'ennilab-Illinois data (11) and the CHLEB data (I2) f m  the ISR 

In Fig. 3, ve shew a aanparison with the £om when? we toak the anti- 

quark di*ibutions corresponding to the p a r a t e r s  

u =0.45, n u =  7; d = 0.60, nd = 7; so = 0.057, ns = 4.5. 
0 

(13) 
O 

As we have stated before the valence quark distributions were taken f m  

an3 Feynman (I3). There is, of course, the iree parmter B which 

decicks the overall n o d i s a t i o n  for a l l  detected =sons. This has been 

adjusted so as to give the best f i t  for the curves corresponding to the 

- inc lmim of resonance "mntamination"; We also show the curves 

7 .  

wrresponding fo direct production of B, K only. We see that  the q% 
rat io debermined above implies that a t  x = 0.5, for, example, about 26% 

of all 8- are the result of vector-meson decays (97% of the decay n- 
o 

ccane f m  p-1. As e x p c b d ,  when x b e m s  smaller the proprt ian of 

resonance cmtaminatian increases significantly. The reambination 

mdel howver is expcted to be less  valid i n  the region x < 0.5 and this 

is reflected in the deviation of the a-t with data as x decreases. 

In fact the "switching on" of the resonance mntamination pronounces the 

divergence even further at  these -1 x values. 

In Fig. 4 we conpare with the ISR data (I2) , taking the s- anti- 

quark paramtrisatian as above but with B renormalised down by 20% to 

give the best overall f i t .  It is noticeable that, apart f m  the x > 0.85 
+ 

region for a , +he a-t for the pion distributions is very good - 
much better than with the Fennilab-Illinois data (11) i n  Fig. 3. 

As we see, the effect of including vectormeson decays does not . 

iead to any dramatic change in the r e d i n a t i o n  mdel. It was hoped (3) 

that  such inclusion muld allw the strange and non-strange sea dist- 

ributions to b e m ~  m r e  alike. we find that production ratios are only 

slicjhtly affected by resonance amtamination - the a+/Ki rat io changes' 

by only 6% a t  x = 0.2 and the a-/K^ rat io changes by about 15%. In 

order to get a reasonable ;it we still need t o  take so/u0 2. 0.1 and 

nu - ns = 2.5, as i n  previous f i t s  without resonance contributions; The 

magnitude of the non-strange sea is effectively determined by the K+D- 

ratio. For example, Duke ad .  Taylor foun2 t4at to f i t  the K'fi- ra t io  the 

non-strange sea had to be so enhanced that it acmunted for rrore than 

half the proton's total nmm~tum. In our f i t  we have not paid particular 

gnphasis to the region x < 0.4 and the result is that  we can allow a 

sml l e r  non-stran- sea - the p a r a t e r s  of Eq. (13) correspond to 27% 

of the protan's m t u m  be'ing carried by the non-strange sea. But. this 

is not significant; it has very little to do with resonance contributions, 

rrore with the fact that  we do not seriously attempt to f i t  the K+/K- 

rat io in a region where .the rodel my  not apply. It also mans that  the 

reambination nodel w i t h  Fi as given in Fq. (2) m y  not be reliable 

for the production of K- since two sea quarks axe involved and the 

factorizability of their distributions is questionable. 



quantities for the vector-msons, whose spin f a m r  is included in the 

*£initions of the a's. 

First,  we fiX up tie value of a /a by l c c ihg  a t  the data on' 
P a 

inclusive p0 production. a s m  that p0 w i l l  z produced coi~y by 

3irect m i n a t i o n ,  not as decay products of hi* mass resonances. 

-& hat= fu s t  the f i r s t  term of 4. (9) with replaced by up. 

There exists n w  a great deal (14) of data on p0 and K* inclusive 

production. In Fig. 2, wr, take the data in  the poton  fragmntation 

region and show the situation for the ;atio of ths processes ap + <X 
+ - '. 

and ap -+ pox for a = a , a , K-, p. There is a dear tendency for the 

r ~ t i o  td fall with increasing x, as expected f m  the different c ! s  

of the a and p ,  but tke precise magnitude of the ra t io  is  not w e l l  

determined. As fa r  as the n ~ & l  is amemed, th i s  rat io is not 

sensitive tp the details of the sea-quark d i s t r i h t i ons  etc. but d y  to 

the rat io a /u Also it is sensitive to the ef£ect of including the 
P a' 

vectomnesans i n  the production of pions. The lxst f i t  is obtained 

by taking ap/ua = 0.45 which means, d l y  speaking, that a given @- 

.antiquad: pair is twice as likely td directly recombine into a a as 
, 

into a p. m e  ra t io  of inclusive production of i0 to K*+ is essentially 

Iletennined by the product of the ratios up/%* arid d P o .  This l a t t e r  

rat io is usually taken to be around 10 and i f  w e  look a t  the exg~rimmtdl 

p3,&*' ra t io  given by E~&EIWI (14) we find that this is consistent with 

takiry cy = apr which is in l ine w i t h  our assumption a,, = %. Likewise 

.w shall assum aw = a 
P' 

N e x t  we turn to the inclusive a*, I? distributions ~ v e ~ ,  

and as pointed out in the previous section we separate camparisons . 

wi%h the F'ennilab-Illinois data (11) and the CHLEB data (I2) f m  the ISR 

In Fig. 3, ve shew a aanparison with the £om when? we toak the anti- 

quark di*ibutions corresponding to the p a r a t e r s  

u =0.45, n u =  7; d = 0.60, nd = 7; so = 0.057, ns = 4.5. 
0 

(13) 
O 

As we have stated before the valence quark distributions were taken f m  

an3 Feynman (I3). There is, of course, the iree parmter B which 

decicks the overall n o d i s a t i o n  for a l l  detected =sons. This has been 

adjusted so as to give the best f i t  for the curves corresponding to the 

- inc lmim of resonance "mntamination"; We also show the curves 

7 .  

wrresponding fo direct production of B, K only. We see that  the q% 
rat io debermined above implies that a t  x = 0.5, for, example, about 26% 

of all 8- are the result of vector-meson decays (97% of the decay n- 
o 

ccane f m  p-1. As e x p c b d ,  when x b e m s  smaller the proprt ian of 

resonance cmtaminatian increases significantly. The reambination 

mdel howver is expcted to be less  valid i n  the region x < 0.5 and this 

is reflected in the deviation of the a-t with data as x decreases. 

In fact the "switching on" of the resonance mntamination pronounces the 

divergence even further at  these -1 x values. 

In Fig. 4 we conpare with the ISR data (I2) , taking the s- anti- 

quark paramtrisatian as above but with B renormalised down by 20% to 

give the best overall f i t .  It is noticeable that, apart f m  the x > 0.85 
+ 

region for a , +he a-t for the pion distributions is very good - 
much better than with the Fennilab-Illinois data (11) i n  Fig. 3. 

As we see, the effect of including vectormeson decays does not . 

iead to any dramatic change in the r e d i n a t i o n  mdel. It was hoped (3) 

that  such inclusion muld allw the strange and non-strange sea dist- 

ributions to b e m ~  m r e  alike. we find that production ratios are only 

slicjhtly affected by resonance amtamination - the a+/Ki rat io changes' 

by only 6% a t  x = 0.2 and the a-/K^ rat io changes by about 15%. In 

order to get a reasonable ;it we still need t o  take so/u0 2. 0.1 and 

nu - ns = 2.5, as i n  previous f i t s  without resonance contributions; The 

magnitude of the non-strange sea is effectively determined by the K+D- 

ratio. For example, Duke ad .  Taylor foun2 t4at to f i t  the K'fi- ra t io  the 

non-strange sea had to be so enhanced that it acmunted for rrore than 

half the proton's total nmm~tum. In our f i t  we have not paid particular 

gnphasis to the region x < 0.4 and the result is that  we can allow a 

sml l e r  non-stran- sea - the p a r a t e r s  of Eq. (13) correspond to 27% 

of the protan's m t u m  be'ing carried by the non-strange sea. But. this 

is not significant; it has very little to do with resonance contributions, 

rrore with the fact that  we do not seriously attempt to f i t  the K+/K- 

rat io in a region where .the rodel my  not apply. It also mans that  the 

reambination nodel w i t h  Fi as given in Fq. (2) m y  not be reliable 

for the production of K- since two sea quarks axe involved and the 

factorizability of their distributions is questionable. 



We point out that in the above f i t s  m tOak the ustrib~- 

tions of the vector resons, in their own rest-fr-, to je isotropic. 

This m did out of ,ignorance. As pointed out in section I1 there is 

virtually no detenninatim of the density matrices for wmr F ~ S  in 

the proton £ r a m t a t i o n  region. Nevertheless, it is Wrtant to h a w  

how sensitive are o m  .results to the assumption of isotropy. 

We carry out an exercise where we take three possibilitks for rhe 
2 2 

decay distribution; cos Oh, isotropic, and sin O ind capaxe  with an 
h .  

analysis of direct and .indirect pion production by Gr8ssler e t  a. (14) 

a t  16 W/c. They at* to estimte in their buble-d~anber ~xperhent 

what proportion of the r- produced in  dp interactj-uls axe the results of 

Po decay. In Fig. 5, we show their a- direct and indirect cross-sections 

in the proton fragmentation region together with tk results of the 

recabination rrcdel for the same quantities. One W q  is ,clear - the 

mat of resqance amtamhation is.very sensitive to the natune of the 

resonance (in the case Po) decay. A t  X = 0.5, the indirect r- pmdcc-tion 

from PO decay varies by a factor 4 de-g on w l - i A  ex?- &nice w 
2 

nake for the. angular distribution; ms O h  or sin20h- Thus it is important 

t o  m a s u e  the P density matrix elements in the ba&iard directim so that 

w have sane guide to the nature of the angular distribution. (Judging 

froan the canparisan in Fig. 5, there is perfiaps an indication favouring 

a -*Oh type decay for the P, although it may be dmgemus b draw any 

definite conclusion especially a t  tkis comparatively l o w  en-. 

In conclusion, m would claim that any realistic &el for des- 

cribing inclusive particle production, such as the maxbinatim -1, 

has to inwrporate the effects of particles prod& f m  resorace 

decays. Sac doubts have been expressed about the success of t h  

reaxbination mdel in the past because this contriixtkm had hem 

neglected. We have found that this  cc~ltribution ca? k e  incorpmated and 

does not spoil the ~ l o q i c d l  success of the xdel in the region 

x > 0.5. For srmller x, when resonance effects mre sigif icant ,  

the a w t  w i t h  data worsens but it can be w- tl-at the n d e l  is un- 

reliable there anyway. In any case, the e l  can be used as a framnrk 

for analys+g what proportion of msons  do arise f m  the decq-s of 

h i g h  states. The conclusions we reached wre  that, in the frqntmtation 

region of the pmton, the proportion i s  less than or equal to Cbut one- 

9 

tho@ the precis2 amnm: w i l l  depend on the angular distribution 

. ~ f  *5e relevant decay. P-e n o d i s a &  of the "effective" sea quarks 

is &;ill hi*r than -he zn-"k dis-ibution of the quiescent p r o m  

probed i? dsep inelas-ic scattering. This is reasmiable in view of the 

glum ca?~erjbI in hdmrLic collisians. But our effective sea is not as 

enhanced as --hat found in Wf. 3. The rrodel m a i n s  to be inp?roved 

regaxding t k s  productim 3f K a-d 5. 
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First, l e t  us consider the decay of p meson to t m  pions, one of 

which is the detected msm. It is easy to shaw that 
m 

a s e h  = $! (2 - 3) ; i = x/y (A. 1) . 

&re q is the "q-value. of l5e decay - i.e. the pion mxmtm in the 

p rest-fraxw, and Oh, the helicity angle, is the direction of the pion 

r d a t i ~  to the proton maswed in the p rest-frame. Since ws have 

virtuaUy no infoxnqtion on the density-matrix elements for the p meson 

in the proton fragmntation m i o n ,  we shall choose three possibilities 
2 2 ~rrespnw. to an isotropic, cos oh, sin oh angular distribution i.e. 

I 2 m p  r (isotropic:l I for 

Xext, l e t  us wnsidsr khe decay of K" to K and n, where the pion 

is the fletected particle. We then have 

(A. 3) 

and th= wrresponding expressions in (A.2) are --ally M f i e d  to  

incl* A. When we aansider K* decay but the kacn is the detected particle, 

the s iy l  of A is reversed and the mmsponding expressions to (A.2) 

follow trivially. 

-sidering w decaying to 3 pions, one of which is the ilet- 

mson, we f i r s t  look a t  the situation as i f  the t m  pion system, 

"p", hzd a fixed m. We t k n  get an expression for coseh as in Eq. (8.3) 

We then integrate over three-body *-space and obtain 

- "T1 f i - " .  

where 

illustrate the functions D(z) for the case of isotropic decay 

and for the case of the detected mson being a pion in fig. 6. .Note 

that, as expcted the region of smaller z = x/y bean~s the'mre daminant 

region as the ,partner of pion i n  the decay beccms heavies. 

. but witt7 
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1. Variation of the data of references (11) and (12) a t  pT = 0.75 

GeV/c. In case the relative difference of the data £ram 

an 'arbitrary h c t i o n  f (x). = 3.4(1 - x) 3.34 mb. C k f 2  is plotted. 

2.  The ratio of the invariant cross-sections for the inclusive 

processes ap -+ ~->:/ap -+ for varbus choices of the beam 

particle and! energies, plotted versus x in the pmtm fraqen- 

tation regicn. The two curves corre;pand to a /a ' = '0.45 in 
P 71 

the reccanbimtion .model, with and without the vectomson 

contril?utim to the 71 distribution. 

+ + 
3. x distributiws for pp -+ a-X, I<-X. I'he shaded areas are 

, in terpla t ims of the data of reference (11). The solid lines 

are f i t s  f m  the reaxbination m,. with paramters given 

in the text, including the effects of vector-meson resonances * 
p, w, K . The dashed lines correspcnd to dropping the resonance 

terms. 

4. x distributbns for pp -+ a '~ ,  K*X. The shaded areas are inter- 

plat ions of the data of reference (12). The solid lines are 

f i t s  from tk r e d i n a t i o n  Illodel, t;ith par&ters given in the 
* 

text, i n c l m g  the effects of.vectnrneson resonances p, w, K . 
The dashed lines correspond to dropFLng the resonance tents. 

5. Comparison aE the a- x-distribution, in the fraqmntation region 

of the p r o d ,  for the full inclusive process and for the pions 

which result from decays of p0 msors. The data are froan 

eass le r  e t  61. (14). The solid line is the b i n a t i o n  &el 

estimate, including vector-rreson am-kibutions (as-g 

isotrapic d m y )  . The dashed lines show the indirect inclusive 

distribution for T- f m  decay assum+~g three possibilities 
2 2 

for the angular distribution; cos I+,, isotropic, and sin %. 

6 .  The function D(z) which describes the vecto- decay 

distributims for the case of the detected meson being a pion. 

The distributions correspond to an isotropic qngular distribution 

for p, K* and w decay. 
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