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Abstract We describe the architecture and functionalities

of a C++ software framework, coined PARTONS, dedicated

to the phenomenology of Generalized Parton Distributions.

These distributions describe the three-dimensional structure

of hadrons in terms of quarks and gluons, and can be accessed

in deeply exclusive lepto- or photo-production of mesons or

photons. PARTONS provides a necessary bridge between

models of Generalized Parton Distributions and experimen-

tal data collected in various exclusive production channels.

We outline the specification of the PARTONS framework

in terms of practical needs, physical content and numerical

capacity. This framework will be useful for physicists – the-

orists or experimentalists – not only to develop new models,

but also to interpret existing measurements and even design

new experiments.

1 Introduction

Generalized Parton Distributions (GPDs) were indepen-

dently discovered in 1994 by Müller et al. [1] and in 1997 by

Radyushkin [2] and Ji [3]. This subfield of Quantum Chromo-

dynamics (QCD) grew rapidly because of the unique theoret-

ical, phenomenological and experimental properties of these

objects. GPDs are related to other non-perturbative QCD

quantities that were studied previously without any connec-

tion: Parton Distribution Functions (PDFs) and Form Factors

(FFs). In an infinite-momentum frame, where a hadron is fly-

a e-mail: herve.moutarde@cea.fr

ing at near the speed of light, PDFs describe the longitudinal

momentum distributions of partons inside the hadron and FFs

are the Fourier transforms of the hadron charge distributions

in the transverse plane. PDFs and FFs appear as limiting cases

of GPDs, which, among many other important properties on

the hadron structure, encode the correlation between longitu-

dinal momentum of partons and their transverse plane posi-

tion. In the pion case GPDs also extend the notion of Distri-

bution Amplitudes (DA), which probe the two-quark compo-

nent of the light cone wave function. This generality is com-

plemented by one remarkable feature: the GPDs of a given

hadron are directly connected to the matrix elements of the

QCD energy-momentum tensor evaluated between adequate

momentum states of the corresponding hadron. More pre-

cisely, those matrix elements can be paramaterized in terms

of Mellin moments of GPDs. This is both welcome and unex-

pected because the energy-momentum tensor is canonically

probed through gravity. GPDs bring the energy-momentum

matrix elements within the experimental reach through elec-

tromagnetic scattering. Indeed GPDs themselves – hence

their Mellin moments – are accessible in facilities running

experiments with lepton beams.

It was realized from the early days that the leptoproduction

of a real photon off a nucleon target, referred to as Deeply Vir-

tual Compton Scattering (DVCS), is the theoretically clean-

est way to access GPDs. At the beginning of the twenty first

century, first measurements of DVCS were reported by the

HERMES [4] and CLAS [5] collaborations, establishing the

immediate experimental relevance of the concept and mark-

ing the beginning of the experimental era of this field. Several
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dedicated experiments and sophisticated theoretical devel-

opments followed, putting the field in a good shape as many

reviews testify [6–14].

GPDs are natural extensions of PDFs and yet their phe-

nomenology is much harder. The lack of a general first prin-

ciples parameterization justifies the need for several models,

while a large number of possibly involved GPDs requires a

multichannel analysis to constrain them from various experi-

mental filters. GPDs belong to an active research field where

deep theoretical questions are to be solved, in conjunction

with existing experimental programmes, technological chal-

lenges, computational issues, as well as well-defined entities

and measurements. The foreseen accuracy of experimental

data to be measured at Jefferson Lab [15] and at COM-

PASS [16] requires the careful design of tools to meet the

challenge of the high-precision era, and to be able to make

the best from experimental data. The same tools should also

be used to design future experiments or to contribute to the

physics case of the foreseen Electron Ion Collider (EIC) [17]

and Large Hadron Electron Collider (LHeC) [18]. Integrat-

ing those tools in one single framework is the aim of the

PARTONS project.

The paper is organized as follows. The second section

is a reminder of the phenomenological framework: how

GPDs are defined, and how they can be accessed experimen-

tally. We will illustrate the discussion with the example of

DVCS. Then, we discuss the need assessments for high pre-

cision GPD phenomenology in the third section. The fourth

section describes the code architecture, while the fifth one

lists existing modules. The sixth section provides several

examples.

2 Phenomenological framework

We will now shortly review the main building blocks of the

description of exclusive processes, starting from the defini-

tion of GPDs, through the cross section calculations with

the use of coefficient functions and Compton Form Factors

(CFFs), up to the definition of various observables. The struc-

ture of such a calculation, described on the example of DVCS,

determines the structure of the PARTONS framework.

2.1 Definition of Generalized Parton Distributions

Unpolarized quark (superscript q) or gluon (superscript g)

GPDs of a spin-1/2 massive hadron (of mass M) are defined

in the light cone gauge by the following matrix elements:

Fq(x, ξ, t) =
1

2

∫
dz−

2π
ei x P+z−

×

〈
P +

Δ

2
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z

2
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( z

2
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, (1)

Fg(x, ξ, t) =
1

P+

∫
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ei x P+z−

×

〈
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(
−
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)
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) ∣∣∣∣P −
Δ

2

〉 ∣∣∣
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. (2)

We note ξ = −Δ+/(2P+) the skewness variable and t =

Δ2 the square of the four-momentum transfer on the hadron

target. We adopt conventions of Ref. [8], and the superscript

“+” refers to the projection of a four-vector on a light-like

vector n+. The average momentum P obeys P2 = M2 −

t/4. Analogous definitions for the polarized quark and gluon

GPDs F̃q,g can be found in Ref. [8].

Both Fa and F̃a (a = q, g) can be decomposed as:

Fa(x, ξ, t) = 1

2P+

(
h+Ha(x, ξ, t) + e+Ea(x, ξ, t)

)
, (3)

F̃a(x, ξ, t) = 1

2P+

(
h̃+ H̃a(x, ξ, t) + ẽ+ Ẽa(x, ξ, t)

)
, (4)

where the Dirac spinor bilinears are:
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(
P +

Δ

2

)
γ μγ5u
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γ5u
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Δ

2

)
, (8)

allowing for the identification of four GPDs: H , E , H̃ and

Ẽ . The spinors are normalized so that ū(p)γ μu(p) = 2pμ.

In principle, GPDs depend on a renormalization scale μR

and a factorization scale μF , which are usually set equal

to each other. From the point of view of code writing, we

however keep two different variables representing the scales,

even though we have taken them equal in all applications so

far.

2.2 Experimental access to Generalized Parton

Distributions

GPDs are accessible in hard exclusive processes, where prop-

erties of all final state particles are reconstructed, and exis-

tence of hard scale allows for the factorization of ampli-

tudes into GPDs and perturbatively calculable coefficient

functions. Three exclusive channels attract most of the cur-

rent experimental interest: Deeply Virtual Compton Scatter-

ing (DVCS), Timelike Compton Scattering (TCS) [19] and

Deeply Virtual Meson Production (DVMP) [20]. However,

also other ones, like Double Deeply Virtual Compton Scat-

tering (DDVCS) [21,22], Heavy Vector Meson Production

(HVMP) [23], two particle production [24,25] and neutrino-

induced exclusive reactions [26–28], may be necessary to

provide the full picture of hadron structure.
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The pioneering DVCS measurements at the beginning

of the twenty first century had been followed by numer-

ous dedicated experimental campaigns [29–49]. During the

same period, an intense theoretical activity put DVCS under

solid control. In particular we mention the full description

of DVCS up to twist-3 [50–53], the computation of higher

orders in the perturbative QCD expansion [54–63], the soft-

collinear resummation of DVCS [64,65], the discussion of

QED gauge invariance [66–70] and the elucidation of finite-t

and target mass corrections [71,72]. Variety of those exist-

ing theoretical improvements, usually developed within the

model/framework preferred by the corresponding authors,

also justify the need for a common framework enabling sys-

tematic comparisons.

2.2.1 Theory of Deeply Virtual Compton Scattering

A typical evaluation of cross sections involving GPDs is illus-

trated here on the most prominent example of exclusive pro-

cess, i.e. the lepto-production of a real photon on a nucleon

target N :

l(k, hl)+ N (p, h) → l(k′, h′
l)+ N (p′, h′)+γ (q ′, λ′) , (9)

where the first letters in parentheses are the four-momenta,

while the second ones are the helicities of the particles. The

amplitude T for this process is the coherent superposition of

the DVCS and Bethe-Heitler (BH) amplitudes:

|T |2 = |TBH + TDVCS|2 = |TBH|2 + |TDVCS|2 + I, (10)

with I standing for the interference between BH and

DVCS processes. In terms of Feynman diagrams one has:

σ(ep → epγ) ∼

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣︸ ︷︷ ︸
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+ +

︸ ︷︷ ︸
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

.

The BH amplitude is under very good control since it

can be computed in perturbative Quantum Electrodynamics,

and because it depends on the experimentally well-known

nucleon FFs. We note q = k − k′ the four-momentum of the

virtual photon in DVCS, and:

Q2 = −q2 , (11)

xB =
Q2

2 p · q
, (12)

t = (p − p′)2 . (13)

The corresponding cross-section is five-fold differential in

xB , Q2, t and two azimuthal angles. These are the angle φ

Fig. 1 Kinematics of DVCS in the target rest frame. φ is the angle

between the leptonic plane (spanned by the incoming and outgoing lep-

ton momenta), and the production plane (spanned by the outgoing pho-

ton and nucleon momenta). φS denotes the angle between the nucleon

polarization vector and the leptonic plane

Fig. 2 Partonic interpretation of the DVCS process

between the lepton scattering plane and the production plane

(spanned by the produced photon and nucleon momenta),

and the angle φS between the lepton scattering plane and the

target spin component perpendicular to the direction of the

virtual photon, see Fig. 1.

2.2.2 Factorization of DVCS and coefficient functions

The Bjorken limit, defined by:

Q2 → ∞ at fixed xB and t , (14)

ensures the factorization for the DVCS amplitude [2,57,73,

74], which provides a partonic interpretation of the hadronic

process: it is possible to reduce the reaction mechanism to the

scattering of a virtual photon on one active parton. Such an

interpretation at Leading Order (LO) is presented in Fig. 2.

The DVCS amplitude TDVCS can be decomposed either in

twelve helicity amplitudes or, equivalently, in twelve Comp-

ton Form Factors (CFFs), which are usually denoted as H,
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E , H̃, Ẽ , H3, E3, H̃3, H̃3, HT, ET, H̃T, ẼT, with symbols

reflecting their relation to GPDs. The last eight CFFs are

related to the twist-three (F3) and transversity (FT) GPDs,

and usually disregarded in present analyses of DVCS data as

subdominant contributions.

To keep the discussion simple, we will now focus on the

GPD H and the associated CFF H. After a proper renormal-

ization, the CFF H reads in its factorized form (at factoriza-

tion scale μF ):

H =

∫ 1

−1

dx

⎡
⎣

N f∑

q

T q(x)Hq(x) + T g(x)H g(x)

⎤
⎦ , (15)

where the explicit ξ and t dependencies are omitted, and

N f is the number of active quark flavors. The renormalized

coefficient functions are given by:

T q(x) =

[
C

q
0 (x) + C

q
1 (x) + ln

(
Q2

μ2
F

)
C

q
coll(x)

]

−(x → −x) , (16)

T g(x) =

[
C

g
1 (x) + ln

(
Q2

μ2
F

)
C

g
coll(x)

]

+(x → −x) . (17)

We only show the coefficient function being the result of

LO calculation:

C
q
0 (x, ξ) = −e2

q

1

x + ξ − iǫ
, (18)

where eq is the quark electric charge in units of the positron

charge. We refer to the literature for the Next-to-Leading

Order (NLO) coefficient functions C
q,g
1 and C

q,g
coll [54,56–

62].

2.2.3 Observables of the DVCS channel

The cross section of electroproduction of a real photon off

an unpolarized target can be written as:

dσ hl ,el (φ) = dσUU(φ)
[
1 + hl ALU, DVCS(φ)

+ el hl ALU, I(φ) + el AC(φ)
]

, (19)

where el is the beam charge (in units of the positron charge)

and hl/2 the beam helicity. If longitudinally polarized, posi-

tively and negatively charged beams are available, the asym-

metries in Eq. (19) can be isolated. This is the case for a

large part of the data collected by HERMES. For example,

the beam charge asymmetry is obtained from the combina-

tion:

AC(φ) =
1

4dσUU(φ)

[
(dσ

+
→(φ) + dσ

+
←(φ)) − (dσ

−
→(φ) + dσ

−
←(φ))

]
, (20)

where we denote by “±” the sign of the beam charge el , and

by the arrow → (←) the helicity plus (minus). From simi-

lar combinations, we obtain the two beam spin asymmetries

ALU, I and ALU, DVCS:

ALU, I(φ) =
1

4dσUU(φ)[
(dσ

+
→(φ) − dσ

+
←(φ)) − (dσ

−
→(φ) − dσ

−
←(φ))

]
, (21)

ALU, DVCS(φ) =
1

4dσUU(φ)[
(dσ

+
→(φ) − dσ

+
←(φ)) + (dσ

−
→(φ) − dσ

−
←(φ))

]
. (22)

If an experiment cannot change the value of the electric

charge of the beam (such as in Jefferson Lab), the asymme-

tries defined in Eq. (19) cannot be isolated anymore, and one

can only measure the following (total) beam spin asymmetry

A
el

LU:

A
el

LU(φ) =
dσ

el
→(φ) − dσ

el
←(φ)

dσ
el
→(φ) + dσ

el
←(φ)

. (23)

This definition of A
el

LU can be expressed as a function of the

spin and charge asymmetries defined in Eq. (19):

A
el

LU(φ) =
el ALU, I(φ) + ALU, DVCS(φ)

1 + el AC(φ)
. (24)

We refer to Ref. [75] for a systematic nomenclature of DVCS

observables and their relations to CFFs. Because different

observables are related to different combinations of CFFs

with different weighting factors, a flexible code for the phe-

nomenology of GPDs should not only be able to deal with

different exclusive channels, but also with cross sections and

various asymmetries. This is one of the main constraints on

the design of the PARTONS framework.

3 Needs assessment

3.1 From GPDs to observables: basic structure

The basic structure of the computation of an observable of

one channel related to GPDs is outlined in Fig. 3. We illustrate

the situation in the DVCS case, but the following consider-

ations should apply to any channel. The large distance level

contains GPDs as functions of x , ξ , t , μF and μR , which

in addition are dependent on unspecified (model-dependent)

parameters. The dependence on the factorization scale μF

123



Eur. Phys. J. C (2018) 78 :478 Page 5 of 19 478

Fig. 3 The computation of an observable in terms of GPDs is gener-

ically layered in three basic steps: description of the hadron structure

with nonperturbative quantities, computation of coefficient functions,

and evaluation of cross sections

is described by evolution equations. The kernels of the GPD

evolution equations at LO were derived in the seminal papers

introducing GPDs or soon after [1,3,73,76,77]. The kernels

at NLO were obtained in Refs. [78–82]. The corresponding

work for transversity GPDs was published in Refs. [83–85].

To stay as generic as possible, evolution equations should be

solved mostly in x-space, but with different numerical inte-

gration routines, if we require either speed and/or accuracy.

The small distance level convolutes GPDs with various coef-

ficient functions depending on the considered channel (see

Sect. 2.2.2). Again, at this point we should be free to select

the integration routine fulfilling our needs. Various theoreti-

cal frameworks exist that take into account e.g. the target mass

and finite-t corrections [71,72], the soft-collinear resumma-

tion of DVCS [64,65], higher order effects either in the coef-

ficient function [54–58] or in the evolution kernel [78–82].

All theoretical frameworks should work all the same with

a given GPD model. The full process level produces cross

sections or asymmetries (see Sect. 2.2.3) for various kine-

matics. For fitting purposes, all observables (whatever the

channel is) should be treated in the same manner in order

to simplify handling of experimental data. We may want to

check e.g. the impact of one specific data set on the general

knowledge of GPDs, or to apply some kinematic cuts in order

to guarantee that the analysis takes place in a range where

factorization theorems apply. Note, that if we want to fit data

(say, if we want to minimize a χ2 value), then we will have

to loop over such GPD-to-observables structure at each step

of the minimization.

3.2 Needs and constraints

The basic structure of the computations, the type of studies to

be done, or simply the profile of the users, already put strong

constraints on the software architecture design.

First of all, maintaining the software framework, or

adding new theoretical developments (e.g. the aforemen-

tioned recent computation of target mass and finite-t cor-

rections) should be as easy as possible. The structure of the

framework should be flexible enough to allow the manip-

ulation of an important number of physical concepts of a

different nature. For instance, we may want to use the same

tools to test new theoretical ideas and to design new exper-

iments. Implicitly, the user of the code will probably know

only remotely the detailed description of the physical mod-

ule he is using – we cannot expect any user to be an expert

in any physical model involved in the framework. However,

a careful user should always get a correct result, even with-

out knowing all details of the implementation. This means

that all that can be automated has to be automated, and that

physical modules should be designed in such a way that an

inadequate use is forbidden, or indicated to the user with an

explicit warning.

Second, with respect to maintenance, we want to be sure

that adding new functionalities or new modules will not do

any harm to the existing pieces of code. This requires some

non-regression tools to guarantee that the version n + 1 has

(at least) all the functionalities of the version n. To trace

back the results of the code (e.g. to be able to reproduce the

results of a fit), it should be possible to save some comput-

ing scenarios for a later reference. The maintenance of the

PARTONS code on a long-term perspective is one of the key

element of its design, aimed at both the robustness and the

flexibility. It was developed following agile development pro-

cedures structured in cycles, with intermediate deliverables

and a functioning architecture all way long.

Third, the code should ideally be used by a heterogeneous

population of users, ranging from theoretical physicists used

to symbolic computation softwares, to experimentalists using

the CERN libraryROOT [86,87] and Monte Carlo techniques

to design new experiments.

Fourth, the code should produce outputs of various kinds.

As mentioned above, it should be able to deal with any kind of

conceivable observables related to exclusive processes. From

the software design point of view, all types of observables

should be described in a generic way to simplify the selection

and manipulation of data. This in particular would greatly

simplify future global fits of experimental data. However,

cross sections and asymmetries are very complicated outputs,

which integrate a lot of physical hypothesis and mathematical

techniques. To properly estimate the importance of a given

physical assumption or a numerical routine accuracy, it is

necessary to handle intermediate outputs, like GPDs them-
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selves and CFFs. The modular structure of the PARTONS

framework makes it possible. The output of each module

is a well-defined object that can be stored in a database,

if requested by the user running the code. Requests to the

database allow post-processing of the data, either through

plots or data tables.

Ideally, it should have been possible to run the code

through a web interface, in the spirit of Durham service

for PDFs [88,89]. However, such a solution requires dedi-

cated work to synchronize a database to the web page, to

prevent it of any attack, to create a queue system if several

users want to perform their computations at the same time

and to handle large volumes of data, which can always hap-

pen with functions depending on (at least) three double

variables x , ξ and t . In particular, this means that a dedi-

cated engineer has to take part of his time to tackle these

problems and maintain all basic features. For now we let

users download a client application to run the code on their

own machines. We offer two possibilities – one can either

download the source code of PARTONS and compile it by

oneself, or download a preconfigured appliance of a virtual

machine. The first way requires the availability of additional

libraries, see Sect. 4, but in particular it allows to have PAR-

TONS at computing farms. The second way only requires

VirtualBox [90], which is one of the most popular virtu-

alization suites. Our provided virtual machine allows to run

PARTONS as it was out-of-the-box, independently of the

user’s operating system.

Finally, let us mention that the field of 3D hadron structure

has been witnessing in parallel a similar collaborative effort

for the phenomenology of Tranverse Momentum Dependent

parton distribution functions (TMDs): the tmdlib [91,92]

library offers an interface to various TMD models. In our

view, the complexity of each of these fields, and their respec-

tive needs and timescales, has fully justified the development

of two independent GPD and TMD projects. However, since

both projects have become mature enough, the natural dis-

cussions between the two communities will provide a very

valuable feedback.

4 Code architecture

The PARTONS framework is written in C++. This choice

has been made for performances and to have a homogeneous

product in terms of coding and programming languages. In

particular, there is no wrapping of other third-party softwares

written in a different programming language. The project

considers two different communities: the developers, who

have to understand the software architecture to use low-level

functions, and the users, who can just use high-level functions

ignoring the details of implementations. With the progress of

automation, the users may run the code without writing a line

of C++ code. In the community of developers, a crucial role

is played by the software architect, who is responsible for

the integration of new modules in the framework. He guar-

antees the robustness and homogeneity of the code being

developed. We have decided to depend as little as possible

on third-party libraries to help its dissemination. Presently,

the PARTONS code contains only one residual dependency

on theCLN library [93], that is needed for one particular GPD

module and can be easily suppressed later. Only the depen-

dence on the cross-platform application framework Qt [94]

is essential, because it manages the connections to different

types of databases in a generic way (see Sect. 4.5). TheSFML

library [95] is also needed to handle threads (see Sect. 4.6).

Information about the licenses is given in Sect. 7.

From the software engineering point of view, the PAR-

TONS project benefits from a layered and service-oriented

architecture, which provides both the flexibility and the stan-

dardization. To the best of our knowledge, this architecture

is original in the world of scientific computing, at least in

nuclear and particle physics. It is derived from web-oriented

technologies, such as the Java EE specification [96]. We

describe below the whys and hows of these choices.

4.1 Layers

Ideally, the code should not have to go through a major rewrit-

ing during the years dedicated to the analysis of Jefferson Lab

and COMPASS exclusive data. One way to ensure this is to

isolate potential modifications as well as possible. This is the

reason for the layered architecture: every part of the archi-

tecture belongs to a layer, and a modification in one layer

does not hinder other layers.

The layered structure of the PARTONS software is shown

in Fig. 4 and is made of seven parts. The Module layer is

a collection of single encapsulated developments of various

types. This layer contains the physics engine, like GPD mod-

els, but also computations of coefficient functions and cross

sections with various physics assumptions. A module is fed

by data and it produces results, which corresponds to the

Data and Result layers, respectively. In these two layers no

treatment is made on data. These are just collections of con-

tainers (high-level objects) that make sure, for example, that

each module receives an object that has been well-formed

thanks to its constructor. For instance, instead of feeding a

GPD module with 5 double variables (x , ξ , t , μ2
F and μ2

R),

which can be sent in an incorrect order after some minor edit-

ing of the code, we isolate all places where such kind of errors

may happen. We trust the fact that the high-level object (here

GPDKinematic) has been correctly constructed from those

five double variables. The risk of an accidental manipula-

tion (e.g. an exchange of μ2
F and t) becomes much more

limited. To illustrate this, we provide the code defining the

GPDKinematic class:
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Fig. 4 The layered structure of the PARTONS framework. The Visual-

ization layer, allowing users to launch computations from a visualizing

interface, is not available in the first release of PARTONS

1 class GPDKinematic: public Kinematic {

2

3 public:

4

5 // Default constructor

6 GPDKinematic();

7

8 // Assignment constructor

9 GPDKinematic(double x, double xi, double t, double MuF2, double MuR2);

10

11 // Constructor for automation

12 GPDKinematic(ParameterList &parameterList);

13

14 // Return pre−formatted characters string containing private

15 // member values

16 virtual std::string toString() const;

17

18 // Getters and setters of private members values

19 ...

20

21 private:

22

23 // Longitudinal momentum fraction of the active parton

24 double m_x;

25

26 // Skewness

27 double m_xi;

28

29 // Squared four−momentum transfer between initial and final

30 // hadron (in GeV^2)

31 double m_t;

32

33 // Squared factorization scale (in GeV^2)

34 double m_MuF2;

35

36 // Squared renormalization scale (in GeV^2)

37 double m_MuR2;

38 };

The class contains double variables used to store the

value of x , ξ , t , μ2
F and μ2

R , and three methods to:

– create a new GPDKinematic object from a set of five

double variables,

– create it from a generic list of parameters encoded in the

ParameterList container (used by the automation),

– return a std::string variable containing an alphanu-

meric representation of the object to be used e.g. to print

its content on a screen or in a file.

We emphasize that this structure is not specific to GPD mod-

ules. Every family of modules has its own input and output

types, which are generically referred to as the beans. Storing

all input variables in simple high-level objects also makes

sure that, for example, a GPD model will not accidentally be

evaluated at something completely different, such as an angu-

lar variable (still a double variable), which also appears in

a DVCS kinematic configuration.

Another critical element of the architecture is the Service

layer being a collection of services. The services link related

modules to offer high-level functions to the users, and help

hide the complexity of low-level functions. The whole code

can be used without the services, however it is less conve-

nient.

At last, three extra layers provide useful functionalities to

the users. The Database layer contains tools to store results

in local or remote databases. It is designed to optimize later

requests and post-processing treatments, and to limit data

redundancies in the used databases. The Automation layer is

a collection of tools designed for the purpose of automation.

A scenario, i.e. XML file containing all physical and mathe-

matical assumptions on the computation to be performed,

is parsed. With the XML file parsed, all relevant objects

are created and evaluations are processed. The results are

shown at the standard output and/or they can be stored in a

database, including the associated scenario, either to trace

back all hypothesis underlying the results, or to be able to

evaluate them again later, e.g. for non-regression purposes.

Finally, the Visualization layer, which is not available in the

first release of PARTONS, integrates all visualizing tools.

With this layer, users will be able to make requests to the

used databases containing the output data through an inter-

face, and draw curves on a screen and/or produce grids of

points in files.

4.2 Modules

The flexibility of the architecture is achieved through the

class inheritance. The logical sequence of the code as a whole

is centralized in classes that receive standardized inputs and

return standardized outputs. All details of model descrip-

tions, numerical precisions, etc., are exclusively left to the

child classes.

An example is provided in Fig. 5, which describes the

actual implementation of GPD modules. The input is a

GPDKinematic object described above. The output is an

object called GPDResult, which contains GPDs provided
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Fig. 5 Modularity through

class inheritance and

standardized inputs and outputs

by the considered model, with separate values for gluons and

all available quark flavors, including singlet and non-singlet

combinations. It also contains GPD kinematics and an iden-

tifier of the used GPD model, to trace back all conditions of

the evaluation. Finally, GPDResult also contains functions

to filter the data (e.g. depending on the parton type) or to print

the results.

GPDModule is a collection of methods to compute vari-

ous GPDs (e.g. H or E). There is no upper or lower limits on

the number of GPD types that GPDModule should contain.

A crucial part of the implementation of GPDModule class

is shown here:

1 // Computes GPDs with input parameters

2 virtual PartonDistribution compute(double x, double xi, double t,

3 double MuF2, double MuR2, GPDType::Type gpdType,

4 bool evolution = true);

5

6 // This method can be implemented in the child class to make the GPD H available

for computations

7 virtual PartonDistribution computeH();

Here, the variable gpdType selects the type of GPD to

be computed, i.e. H , E , …, or all GPDs available in the con-

sidered model. The addition of a new GPD is fairly simple.

It suffices to inherit from a class (GPDModule or even its

children), and to implement only the appropriate “compute”

functions, e.g. computeHt for the GPD H̃ . Such a new

child class contains all specific implementation correspond-

ing to e.g. the GK [97–99] or VGG [7,66,100,101] models.

Any model obeying this general structure can enter the PAR-

TONS framework and benefit from all the other features.

The example discussed above for GPD models can be

extended to any other types of modules, such as QCD evo-

lution modules, DVCS observable modules, etc.

4.2.1 Registry

Adding a new child class does not require any modification

of the existing code as long as this class inherits from an

existing module. In particular, we can freely add as many

GPD models as we want. On the contrary, if we wish to

extend the functionalities of the PARTONS framework to the

computation of e.g. TMDs, similarly to the tmdlib project

[91], we will have to create all parent classes to define what

TMDs are. Adding a new module simply consists in adding

a new file to the whole project. The interoperability of the

PARTONS structure is thus maintained all way long. This

essential feature is provided by the Registry.

The Registry is the analog of a phone book, which lists

all available modules. From the software engineering point

of view, the Registry corresponds to the singleton design

pattern, which ensures that it may exist in the memory only

as a unique object. The modules are created and registered

in the Registry at the beginning of the code execution, when

const static variables are initialized in all classes, prior

to the execution of themain code. Here is an example of such

initialization:

1 #include "../../../../include/partons/BaseObjectRegistry.h"
2

3 // Initialize static const class_id member with a number

4 // returned by BaseObjectRegistry after a successful

5 // registration with a unique name

6 const unsigned int GPDGK11::classId = BaseObjectRegistry::getInstance()−>

registerBaseObject(new GPDGK11("GPDGK11"));

During the execution of this code, the first thing to do is to

call the unique instance of the Registry and to register the new

module with the class name provided by the developer of the

module. The underlying mechanism in illustrated by Fig. 6.

If the new module is successfully registered, the Registry

returns a unique identifier encoded in anint variable for per-

formance purposes. This identifier is the same throughout the

whole platform and for all instances of the module. The iden-

tifier being unique and registered prevents from an undesir-

able code operation. For example, if a user accidentally asks

for a non-existent GK12 model (GPDGK12::classId)

instead of GK11 (GPDGK11::classId), the code will

simply not compile. This would not have been achievable, if

modules were identified by a simple type such as string.

At this stage, it is important to mention that the Reg-

istry stores pointers to all modules in a generic way,

i.e. whatever their nature is: pointers to GPDModule, to

RunningAlphaStrongModule, etc. This is achieved by

requiring all modules to derive from a single parent class

named BaseObject. BaseObject is the “zeroth-level-

object” of the architecture. Any C++ object in PARTONS
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Fig. 6 Sequence diagram presenting the different steps, arranged in

time, allowing the self-registration of all modules at the start of the exe-

cution of the PARTONS code. Parallel vertical lines (lifelines) represent

the different processes or objects simultaneously living. Vertical black

boxes indicate the duration of the process between the function call

and return. Solid lines with open arrows indicate operations during the

process, while those with filled arrows indicate function calls. Dotted

lines with arrows indicate function returns

can and should inherit from it. It also carries information on

the identity of a specific object, which can be transmitted

as an explicit message to the Logger (see Sect. 4.6.2). This

information is understandable to a human being, in contrary

to an address in memory.

4.2.2 Factory

The Registry lists everything that is available in the plat-

form, but only one species of each. If one wants to use a

module, one cannot take it from the Registry, otherwise it

would not be available anymore. The solution consists in

using the Factory design pattern, which gives to the user a

pre-configured copy of an object stored in the Registry. The

user can then manage the configuration of the module and its

life cycle.

The principle of the Factory is the following. We con-

sider once again the example of GPDGK11. By construc-

tion, GPDGK11 is derived from GPDModule, which itself

is derived from BaseObject to be stored generically in

the Registry. As shown in Fig. 7, when a user wants to

use the GPD model identified by GPDGK11::classId,

he asks ModuleObjectFactory to return him a pointer

of GPDModule type. ModuleObjectFactory asks

BaseObjectFactory to provide a new instance of

GPDModule identified by GPDGK11::classId. To this

aim, BaseObjectFactory requests that the Registry

gives back the reference to GPDGK11 already stored in

the memory. The Registry goes through its internal list to

find BaseObject with identifier GPDGK11::classId.

Using the found reference,BaseObjectFactory clones1

1 It is not a copy of a pointer, which would still points to the same

object. It is a duplication of the object, referred to by a new pointer.

the GPDGK11 object and provides Module Object

Factory with a reference to the duplicated object. Finally,

ModuleObjectFactory casts the pointer to this new

object to the appropriate type GPDModule. What is needed

to fit to the structure of the code isGPDModule (GPD models

are all objects of the same type when seen from the exterior

of a black box). The specific implementation i.e. what defines

a single model from the physics point of view (and what is in

the black box from the software point of view) is in a child

class, like GPDGK11. Through pointers and inheritance, the

polymorphism feature of C++ allows the selection of a given

module at the runtime.

This is the basic sequence underlying the automation of

the PARTONS code, discussed below in Sect. 4.4. This works

mutatis mutandis for all modules.

4.3 Services

The Services hide the complexity of low-level functions to

provide high-level features to the users. A single service is

basically a toolbox for the user: the user is given tools to

use the software without knowing details of its operating.2

The Services demonstrate their relevance in computations

that combine several different objects. Before the inclusion

of our GPD codes in the PARTONS framework, we had to

take the outputs from various objects, like e.g. some GPD

values, to manually run an evolution code and then feed the

code computing CFFs. These operations were hand-made,

with all the risks this implies. In the PARTONS structure, the

Services combine different modules and data sets to produce

results in a transparent way. Among others, GPDService

2 As an image, we can say that we can start a car by turning a key,

and not knowing the detailed description of the motor and of electric

circuits between the motor and the key.
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Fig. 7 Sequence diagram presenting the different processes, arranged in time, relating the different objects allowing the instantiation of a new

module from the sole information of its identifier or name. See Fig. 6 for the description of diagram elements

provides several functions that hide the complexity related

to repetitive tasks, like the evaluation of GPDs for a list of

kinematic configurations. The following excerpt shows what

are the presently offered operations:

1 class GPDService: public ServiceObject {

2

3 public:

4

5 // Method used in automation to compute given tasks

6 virtual void computeTask(Task &task);

7

8 // Computes GPD model at specific kinematics

9 // and for a provided list of GPD types

10 GPDResult computeGPDModel(const GPDKinematic &gpdKinematic,

GPDModule∗ pGPDModule, const List<GPDType> & gpdType = List<GPDType

>()) const;

11

12 // Computes GPD model for a list of kinematics

13 // and for a provided list of GPD types

14 // If needed, it can store the obtained results in a database

15 List<GPDResult> computeManyKinematicOneModel(const List<

GPDKinematic> &gpdKinematicList, GPDModule∗ pGPDModule, const List<

GPDType> &gpdTypeList = List<GPDType>(), const bool storeInDB = 0);

16 };

Here, three different types of operations are available:

– The function computeTask is generic and is one of the

building blocks of the automation in PARTONS.

– computeGPDModel evaluates all or only restricted

types of GPDs for a single model and for a single kine-

matic configuration.

– computeManyKinematicOneModel evaluates all

or only restricted types of GPDs for a single model and for

a list of kinematic configurations. If needed, the obtained

results can be stored in a database. The insertion is iden-

tified by a unique computation id returned to the standard

output. The kinematic configurations can be bunched into

a set of packets, with the size of each packet defined via

the configuration file of PARTONS. In such a case, each

packet can be evaluated in a separate thread, see Sect.

4.6.

Thanks to the services, repetitive tasks are coded and vali-

dated only once, which saves many possible implementation

errors.

4.4 Automation and scenario manager

What the end-user really wants is just selecting the various

models, kinematic configurations and observables to com-

pute by specifying the necessary physical hypothesis. At the

end of the day, this should be accomplished with a simple

file, or through a web page. This would allow the PARTONS

software to be used by physicists unfamiliar to C++, which

represents a significant part of the theoretical physics com-

munity. We designed a functionality to run the code by send-

ing the appropriate information, referred to as the scenario,

through an XML file. This offers several advantages. First,

the file can be read or manually written by a simple adapta-

tion. Second, it can be easily generated by a web or graphical

interface (such as the planned visualization tool). Third, the

freedom in defining markups allows a structure very similar

to that of the underlying C++ objects. For example, the com-

putation of beam-spin asymmetry A−
LU defined in Sect. 2.2.3

reads:

1 <?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

2

3 <!−− Scenario starts here −−>

4 <!−− For your convenience and for the bookkeeping you can provide creation date

and a unique description −−>

5 <scenario date="2017-07-18" description="DVCS observable 
evaluation for single kinematics example">

6

7 <!−− First task: evaluate DVCS observable for a single kinematics −−>

8 <!−− Indicate service and its methods to be used and indicate if the result should be

stored in the database −−>

9 <task service="ObservableService" method="computeObservable"
storeInDB="0">

10

11 <!−− Define DVCS observable kinematics −−>

12 <kinematics type="ObservableKinematic">

13 <param name="xB" value="0.2" />

14 <param name="t" value="-0.1" />

15 <param name="Q2" value="2." />

16 <param name="E" value="6." />

17 </kinematics>

18

19 <!−− Define all physics assumptions −−>

20 <computation_configuration>

21

22 <!−− Select DVCS observable −−>

23 <module type="Observable" name="DVCSAluMinus">

24

25 <!−− Select DVCS process model −−>

26 <module type="ProcessModule" name="DVCSProcessGV08">

27

28 <!−− Select xi−converter module −−>
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29 <!−− (it is used to evaluate GPD variable xi out of kinematics) −−>

30 <module type="XiConverterModule" name="XiConverterXBToXi">

31 </module>

32

33 <!−− Select scales module −−>

34 <!−− (it is used to evaluate factorization and renormalization scales out of

kinematics) −−>

35 <module type="ScalesModule" name="ScalesQ2Multiplier">

36

37 <!−− Configure this module −−>

38 <param name="lambda" value="1." />

39 </module>

40

41 <!−− Select DVCS CFF model −−>

42 <module type="ConvolCoeffFunctionModule" name="
DVCSCFFStandard">

43

44 <!−− Indicate pQCD order of calculation −−>

45 <param name="qcd_order_type" value="LO" />

46

47 <!−− Select GPD model −−>

48 <module type="GPDModule" name="GPDGK11">

49 </module>

50

51 </module>

52 </module>

53 </module>

54 </computation_configuration>

55 </task>

56

57 <!−− Second task: print results of the last computation into standard output −−>

58 <task service="ObservableService" method="printResults">

59 </task>

60

61 </scenario>

This XML file is parsed by an object named Scenario

Manager, which now possesses a collection of string
objects. The real difficulty is the creation of C++ objects

from this collection of string objects. All scenarios start

with the specification of target service and method inside

that service, which processes all string objects enclosed

between the two markups <task> and </task>. The

involved service “knows” what the method being selected

really needs to perform the computation, and looks through

the lists of objects and parameters, if all the relevant infor-

mation is provided. Each service possesses a compute

Task method, and only services do have such methods.

The role of the computeTask functions is the distribution

of the ParameterList objects to the different construc-

tors of the various objects required to perform the consid-

ered task. Centralizing the creation of all the objects in the

computeTask function of a service gives robustness to the

generic use of an XML scenario. Then, for the beans (inputs

and outputs), everything is taken care of by the constructors.

For modules, the code calls the Factory to get the required

objects by their names. Namely, the Factory gets the name,

checks in the Registry3 if there exists a pointer corresponding

to that name, and either gives a copy of the object, or sends

an error message. Each module is then configured from the

list of parameters associated to the module name. At last, the

service gives all objects that have just been constructed as

3 The Registry contains a dictionary that associates a classId to a

name given as a string variable.

parameters of the target function (computeObservable

here).

The whole sequence is recapitulated in Fig. 8. The XML

file dictates the evaluation of the selected DVCS observ-

able at a kinematic configuration (xB, t, Q2, E, φ), where

E is the beam energy in the LAB system. In our exam-

ple, the observable is A−
LU(φ), which is the ratio of com-

binations of DVCS cross sections. The kinematic configura-

tion (xB, t, Q2, E, φ) is then transferred to the chosen class

inherited from DVCSModule, say DVCSProcessGV08.

To evaluate cross sections, the parent class requires some val-

ues of CFFs, so it turns to DVCSConvolCoeffFunction

Modulewith the kinematics (ξ, t, Q2, μ2
F , μ2

R). The values

of ξ and (μ2
F , μ2

R) are evaluated from the input kinematic

configuration by XiConverterModule and Scales

Module modules, respectively. In our example we have

ξ = xB/(2 − xB) and μ2
R = μ2

F = λQ2 with λ = 1, but

other possibilities exist. The evaluation of CFFs means com-

puting integrals and hence probing GPDs (here GPDGK11)

over x at (x, ξ, t, μ2
F , μ2

R) with x a priori selected by the inte-

gration routine, and renormalization and factorization scales

chosen by the user as part of his modeling assumptions. The

kinematic configuration at which the observable is evaluated

has been converted and transmitted from top to bottom. The

other way around returns sequentially the evaluation of the

GPDs, of the CFFs, of the cross section and of the consid-

ered asymmetry. The final result can be stored in the used

database (storeInDB switch).

The automation file is totally generic: it is independent of

the different modules or services. We can use a generic parser

and a generic description of XML files. It is one more answer

to our need of flexibility. The architecture of PARTONS can

evolve without any modifications in the parser or in the XML

file description.

4.5 Database: storage and transactions

A database is needed for several reasons. We want to keep

track of the results of our computations, and once a result

is validated to keep it and not compute it again anymore.

With a related database entry containing the XML file pro-

ducing the result, it becomes easy to see how something was

computed, even if we ask ourselves a long time after. It may

also well be that the computational cost of some GPD model

is prohibitive, in which case the predictions of this model

can be computed separately on a dedicated cluster, stored in

the database and then used for the computation of an observ-

able. The structure of GPDModule is designed so as to make

transparent to the user the fact that the GPD values come

from a database instead of a direct numerical evaluation. At

last, we can also store experimental results in the database,

and make systematic comparisons of experimental results

and theoretical predictions. A database is optimized to make
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Fig. 8 Principle of automation: computation of a beam spin asymmetry

data selections, in which case kinematic cuts (for example

a cut on −t/Q2 to probe the Bjorken limit) are simple and

efficient.

In the PARTONS architecture, one layer is dedicated to the

transactions with databases, cf. Sect. 4.1 and Fig. 4. At this

level, we should ignore what is the explicit type of database

(e.g. a local database on a laptop, or a database on a distant

server).

The PARTONS code manages the transactions by using

Data Access Objects (DAOs) and the related services. For

the sake of simplicity, we discuss the case of a single com-

putation of GPD value. We store both the GPD value and

the associated kinematics. Thus, there are two DAO ser-

vices involved, GPDKinematicDaoService and GPD

ResultDaoService, which transform the corresponding

C++ objects into a collection of simple types (int,double,

string, etc.) - it is the serialization step. The DAO services

obey the same pattern as the other services in PARTONS:

they receive as inputs and return as results high-level objects

instead of simple types. The DAO services then call the nec-

essary DAO objects.

In our example, there are two of them: GPDKinematic

Dao andGPDResultDao. In a DAO object we can define as

many functions as there are requests to make to the database,

e.g. in the case of GPDKinematicDao: insert (to add

a kinematic configuration in the database), select (to read

a kinematic configuration in the database), delete (to sup-

press a kinematic configuration in the database), etc. Any

type of requests can be implemented that way. The follow-

ing excerpt shows the code underlying the insertion in the

database, by the GPDKinematicDao object, of a single

GPD kinematic configuration:

1 int GPDKinematicDao::insert(double x, double xi, double t, double MuF2, double

MuR2) const {

2

3 // Returned value (last inserted id if everything fine)

4 int result = −1;

5

6 // Initialize QSqlQuery object

7 QSqlQuery query(DatabaseManager::getInstance()−>getProductionDatabase());

8
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9 // Prepare the query

10 ElemUtils::Formatter formatter;

11 formatter << "INSERT INTO " << Database::

TABLE_NAME_GPD_KINEMATIC

12 << " (x, xi, t, MuF2, MuR2) VALUES (:x, :xi, :t, :
MuF2, :MuR2)";

13

14 query.prepare(QString(formatter.str().c_str()));

15

16 // Bind values

17 query.bindValue(":x", x);

18 query.bindValue(":xi", xi);

19 query.bindValue(":t", t);

20 query.bindValue(":MuF2", MuF2);

21 query.bindValue(":MuR2", MuR2);

22

23 // Execute query, look for errors

24 if (query.exec()) {

25 result = query.lastInsertId().toInt();

26 } else {

27 throw ElemUtils::CustomException(getClassName(), __func__,

28 ElemUtils::Formatter() << query.lastError().text().toStdString()

29 << " for sql query = "
30 << query.executedQuery().toStdString());

31 }

32

33 // Return

34 return result;

35 }

PARTONS generates a SQL-like request, which is a sim-

ple string. This text is interpreted by Qt to replace the

dynamical fields (here x , ξ , t , μ2
F and μ2

R) by their actual

values (here double variables). The Qt management of

connectors4 makes possible to send the same SQL request to

databases of different types, like MySQL [102] and SQLite

[103]. The connection of the PARTONS objects, specific to

our needs, to the simple types in the database, is done once,

and only once, whatever the type of the database is.

The GPDKinematicDaoService performs the same

tasks, but this time with a single or a list of GPDKinematic

objects. By default, PARTONS uses a transaction mecha-

nism, which allows to “rollback” all modifications done dur-

ing a single insertion session. This prevents in particular from

a disintegration of the database content in a case of failed

transaction. The way it is achieved is illustrated by the fol-

lowing code:

1 int GPDKinematicDaoService::insert(const List<GPDKinematic>&

gpdKinematicList) const {

2

3 // Returned value (last inserted id if everything fine)

4 int gpdKinematicId = −1;

5

6 // Indicate transaction mechanism

7 QSqlDatabase::database().transaction();

8

9 try {

10

11 //Add each kinematic object

12 for (unsigned int i = 0; i != gpdKinematicList.size(); i++) {

13 gpdKinematicId = insertWithoutTransaction(gpdKinematicList.get(i));

14 }

15

16 // If there is no exception we can commit all queries

17 QSqlDatabase::database().commit();

18

4 A connector is the library provided by the editors of the database

which permits transactions with a database. This library is written in

different languages, e.g. C++, Java, Python, …

19 } catch (const std::exception &e) {

20

21 // In a case of problems revert changes

22 // i .e. put database to the previous (stable) state

23 QSqlDatabase::database().rollback();

24

25 // Indicate error

26 throw ElemUtils::CustomException(getClassName(), __func__, e.what());

27 }

28

29 // Return

30 return gpdKinematicId;

31 }

where insertWithoutTransaction unfolds GPD

Kinematic into simple types and runs the insert func-

tion of GPDKinematicDao:

1 int GPDKinematicDaoService::insertWithoutTransaction(const GPDKinematic&

gpdKinematic) const {

2 return m_GPDKinematicDao.insert(gpdKinematic.getX(), gpdKinematic.getXi(),

3 gpdKinematic.getT(), gpdKinematic.getMuF2(), gpdKinematic.getMuR2());

4 }

Note, that there is as many DAO classes as there are tables

in the database. In that respect, the database structure reflects

the architecture of the C++ code.

4.6 Threads

Threads are sequences of instructions that can be indepen-

dently managed by the user’s operating system. On multipro-

cessor/multicore computers (basically all modern machines),

threads can be executed simultaneously, in contrary to an exe-

cution of only one process at a time. This allows to exploit the

full capacity of current computers (including those available

at computing farms), which allows a significant reduction of

the computation time. In PARTONS, threads are used exclu-

sively by Services, but one thread is also reserved for the

Logger, which processes human-understandable messages

streamed from the code during its execution. The threads are

managed by using the SFML library. In particular, this library

is used to protect sensitive areas of the allocated memory

from being modified by several threads at the same time.

4.6.1 Threads and services

The PARTONS framework offers a possibility to use threads

in Services, whenever one needs to make an evaluation

for a large set of kinematic configurations. The mecha-

nism is fully automated, so the use of threads is implicit

for the users. We will illustrate how threads are used

by the Services on an exemplary calculation of many

GPD kinematic configurations. From the user’s point of

view, whenever one wants to use threads, one needs only

to run the appropriate method of GPDService, that

is computeManyKinematicOneModel that has been

already described in Sect. 4.3:

1 List<GPDResult> computeManyKinematicOneModel(const

2 List<GPDKinematic> &gpdKinematicList, GPDModule∗ pGPDModule, const

3 List<GPDType> &gpdTypeList = List<GPDType>(), const bool storeInDB =

4 0);
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In our example, gpdKinematicList contains many

kinematic configurations to be evaluated by PARTONS.

Note, that computeManyKinematicOneModel can be

executed by the users explicitly if they code in C++, or implic-

itly in the automation if they process an input XML file. The

key of multithreading are two parameters set in the config-

uration file of PARTONS. The first of them is the number

of available processor cores, defining the number of threads

that can run in parallel. The second parameter defines how

many kinematic configurations should be evaluated in a sin-

gle thread. The involved Service supervises then the use of

threads automatically: it divides kinematic configurations

into separate packets, runs each of such packets in a sep-

arate thread, waits until all packets are evaluated, and finally

returns results as they were evaluated in a single process.

4.6.2 Logger

On top of the thread(s) dedicated to computations, PARTONS

uses an additional thread serving as the Logger. The code

sends information at four different levels: DEBUG, INFO,

WARNING and ERROR. With the first three levels the code

is always running, while the ERROR level forces the code to

stop. Sending the information to the Logger does not slow

down the computations by taking precious time to screen (or

file) printing. Warning messages signal to the user that there is

something to be checked carefully, e.g. slow convergence in

a numerical routine. The output of the Logger can be directed

either to the screen, or to a log file, or to both of them. It traces

back all details of the computation that have been considered

relevant by the developer.

5 Existing modules

So far, only the DVCS process is implemented in the frame-

work. However, PARTONS was designed with the idea of

an easy addition of other partonic processes, not necessary

limited to GPDs. Beyond DVCS, in the near future, TCS and

HEMP will be integrated into PARTONS, both important

from the point of view of existing and foreseen measure-

ments. The following modules are currently integrated in the

PARTONS framework:

GPD The GK model [97–99], the VGG model [7,

66,100,101], and the GPD models used in the

papers by Vinnikov [104], Moutarde et al. [63]

and Mezrag et al. [105].

Evolution The Vinnikov code [104].

CFF The LO and NLO evaluation used in Ref. [63]

together with its extension to the massive

quark case [106], and the LO evaluation used

in Refs. [7,66,100,101].

DVCS The set of unpublished analytic expressions of

Guichon and Vanderhaeghen used in Refs. [75,

107], and the latest set of expressions [53] by

Belitsky and Müller.

Alpha Four-loop perturbative running of the strong

coupling constant from PDG [108], and con-

stant value.

In a nutshell, the present version of PARTONS contains all

the necessary tools to perform DVCS studies at leading twist

and NLO. The presented set of modules is by no means lim-

iting. Other modules will be integrated in the framework

to allow systematic differential studies requiring the flexi-

ble design of PARTONS. All the previous categories should

be extended by new modules, either to recover the features

of existing codes, or to test brand new development in the

integrated chain between models and measurements. For

instance, subleading twist contributions or transversity GPDs

can be studied within the framework by adding or extending

the previous modules. In principle, these are already dealt

with at the level of the DVCS cross section but are consid-

ered vanishing given that the existing GPD models and CFF

modules disregard them.

6 Examples

The source code of PARTONS and the pre-configured appli-

ances of the provided virtual machines can be downloaded

for the project web page: http://partons.cea.fr.

Two kinds of virtual machines are available: the light ver-

sion with only the runtime environment aimed at the users,

and the developer version containing both the runtime and

development environments.

The web page serves also as a main source of the technical

information on PARTONS. On top of a detailed description

of the code elements, the users may also find there many use-

ful tutorials, such as a quick guide helping them to start their

experience with PARTONS, an additional help with installa-

tion technicalities, tips on using our virtual machines, tem-

plates for adding new modules and many more. Examples

on how to use specific elements of the PARTONS frame-

work are available online, but they are also provided as one

of the sub-projects called partons-example. Some of

those examples are shown here to demonstrate the proper

handling of PARTONS and its capabilities.

6.1 Structure of main function

PARTONS as a library can be used in any C++ code. How-

ever, one should always remember that PARTONS requires

a proper initialization and handling of the exceptions dur-

ing the execution. In general, this should be encoded in the
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main function of the executable. An example is provided

here, where we also show to correctly process input XML

files in the automation.

1 #include <ElementaryUtils/logger/CustomException.h>

2 #include <ElementaryUtils/logger/LoggerManager.h>

3 #include <partons/Partons.h>

4 #include <partons/services/automation/AutomationService.h>

5 #include <partons/ServiceObjectRegistry.h>

6 #include <QtCore/qcoreapplication.h>

7 #include <string>

8 #include <vector>

9

10 int main(int argc, char∗∗ argv) {

11

12 // Init Qt4

13 QCoreApplication a(argc, argv);

14 PARTONS::Partons∗ pPartons = 0;

15

16 try {

17

18 // Init PARTONS application

19 pPartons = PARTONS::Partons::getInstance();

20 pPartons−>init(argc, argv);

21

22 // RUN XML SCENARIO

23

24 // You need to provide at least one scenario

25 // via executable argument

26 if (argc <= 1) {

27

28 throw ElemUtils::CustomException("main", __func__,

29 "Missing argument, please provide one or more 
than one XML scenario file.");

30 }

31

32 // Get arguments to retrieve xml file path list.

33 std::vector<std::string> xmlScenarioFilePathList(argc − 1);

34

35 for (unsigned int i = 1; i < argc; i++) {

36 xmlScenarioFilePathList[i − 1] = argv[i];

37 }

38

39 // Retrieve automation service parse scenario xml file

40 // and play it.

41 PARTONS::AutomationService∗ pAutomationService =

42 pPartons−>getServiceObjectRegistry()−>getAutomationService();

43

44 for (unsigned int i = 0; i < xmlScenarioFilePathList.size(); i++) {

45 PARTONS::Scenario∗ pScenario = pAutomationService−>parseXMLFile(

46 xmlScenarioFilePathList[i]);

47 pAutomationService−>playScenario(pScenario);

48 }

49

50 // RUN CPP CODE

51

52 // You can put your own code here and build

53 // a stand−alone program based on PARTONS library.

54

55 // computeSingleKinematicsForGPD();

56 }

57 // Appropriate catching of exceptions is crucial

58 // for working of PARTONS. It defines its own type of

59 // exception, which allows to display class name and

60 // function name where the exception has occurred,

61 // but also a human readable explanation.

62 catch (const ElemUtils::CustomException &e) {

63

64 // Display what happened

65 pPartons−>getLoggerManager()−>error(e);

66

67 // Close PARTONS application properly

68 if (pPartons) {

69 pPartons−>close();

70 }

71 }

72 // In a case of standard exception.

73 catch (const std::exception &e) {

74

75 // Display what happened

76 pPartons−>getLoggerManager()−>error("main", __func__, e.what());

77

78 // Close PARTONS application properly

79 if (pPartons) {

80 pPartons−>close();

81 }

82 }

83

84 // Close PARTONS application properly

85 if (pPartons) {

86 pPartons−>close();

87 }

88

89 return 0;

90 }

6.2 Computation of GPD for a single kinematic

configuration without automation

The following example shows how to compute GPDs for

a single kinematic configuration without the automation.

Almost each line of the code corresponds to a physical

hypothesis, but the user still has to explicitly deal with the

pointers. The function can be executed in main in the spec-

ified place of the previous excerpt.

1 #include <ElementaryUtils/logger/LoggerManager.h>

2 #include <partons/beans/gpd/GPDKinematic.h>

3 #include <partons/modules/gpd/GPDMMS13.h>

4 #include <partons/ModuleObjectFactory.h>

5 #include <partons/Partons.h>

6 #include <partons/services/GPDService.h>

7 #include <partons/ServiceObjectRegistry.h>

8

9 void computeSingleKinematicsForGPD() {

10

11 // Retrieve GPD service

12 PARTONS::GPDService∗ pGPDService =

13 PARTONS::Partons::getInstance()−>getServiceObjectRegistry()−>

getGPDService();

14

15 // Create GPD module with the BaseModuleFactory

16 PARTONS::GPDModule∗ pGPDModel =

17 PARTONS::Partons::getInstance()−>getModuleObjectFactory()−>

newGPDModule(

18 PARTONS::GPDMMS13::classId);

19

20 // Create a GPDKinematic(x, xi, t, MuF2, MuR2) to compute

21 PARTONS::GPDKinematic gpdKinematic(0.1, 0.2, −0.1, 2., 2.);

22

23 // Run computation

24 PARTONS::GPDResult gpdResult = pGPDService−>computeGPDModel(

gpdKinematic,

25 pGPDModel);

26

27 // Print results

28 PARTONS::Partons::getInstance()−>getLoggerManager()−>info("main",

__func__,

29 gpdResult.toString());

30

31 // Remove pointer references

32 // Module pointers are managed by PARTONS

33 PARTONS::Partons::getInstance()−>getModuleObjectFactory()−>

updateModulePointerReference(

34 pGPDModel, 0);

35 pGPDModel = 0;

36 }

6.3 Computation of GPD for single kinematic

configuration with automation

The following example shows how to compute GPDs for

a single kinematic configuration with the automation. Each

line of the XML file corresponds to a physical hypothesis,
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so the user does not have to explicitly deal with the pointers

anymore.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

2

3 <!−− Scenario starts here −−>

4 <!−− For your convenience and for bookkeeping provide creation date and unique

description −−>

5 <scenario date="2017-07-18" description="GPD evaluation for 
single kinematics example">

6

7 <!−− First task: evaluate GPD model for a single kinematics −−>

8 <!−− Indicate service and its methods to be used and indicate if the result should

be stored in the database −−>

9 <task service="GPDService" method="computeGPDModel" storeInDB="
0">

10

11 <!−− Define GPD kinematics −−>

12 <kinematics type="GPDKinematic">

13 <param name="x" value="0.1" />

14 <param name="xi" value="0.2" />

15 <param name="t" value="-0.1" />

16 <param name="MuF2" value="2." />

17 <param name="MuR2" value="2." />

18 </kinematics>

19

20 <!−− Define physics assumptions −−>

21 <computation_configuration>

22

23 <!−− Select GPD model −−>

24 <module type="GPDModule" name="GPDMMS13">

25 </module>

26

27 </computation_configuration>

28

29 </task>

30

31 <!−− Second task: print results of the last computation into standard output −−>

32 <task service="GPDService" method="printResults">

33 </task>

34

35 </scenario>

6.4 Computation of beam spin asymmetry for many

kinematic configurations with automation

The following example shows how to compute the beam

spin asymmetry A−
LU(φ) defined in Eq. (23) for a set of

kinematic configurations typical to Jefferson Lab upgraded

to 12 GeV: xB = 1/3 (ξ ≃ 0.2), t = − 0.2 GeV2,

Q2 = 4 GeV2 and beam energy ELab = 11 GeV. This

example is close to the one discussed in Sect. 4.4, but this

time the code is executed with a list of values of φ rang-

ing between 0 and 360 degrees. This is indicated by the

method computeManyKinematicOneModel. The list

of kinematic configurations is provided in a file as indicated

between the markups <ObservableKinematic> and

</ObservableKinematic>, and is described as simple

text:

0.333|-0.2|4.0|11.|0.0

0.333|-0.2|4.0|11.|-3.6

0.333|-0.2|4.0|11.|-7.2

0.333|-0.2|4.0|11.|-10.8

0.333|-0.2|4.0|11.|-14.4

...

where we can see, on each line, from left to right: xB , t (in

GeV2), Q2 (in GeV2), ELab (in GeV) and φ (in degrees).

1 <?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

2

3 <!−− Scenario starts here −−>

4 <!−− For your convenience and for the bookkeeping you can provide creation date

and a unique description −−>

5 <scenario date="2017-07-18" description="DVCS observable 
evaluation for many kinematics example">

6

7 <!−− First task: evaluate DVCS observable for a single kinematics −−>

8 <!−− Indicate service and its methods to be used and indicate if the result should be

stored in the database −−>

9 <task service="ObservableService" method="
computeManyKinematicOneModel" storeInDB="1">

10

11 <!−− Define DVCS observable kinematics −−>

12 <kinematics type="ObservableKinematic">

13

14 <!−− Path to file defining kinematics −−>

15 <param name="file" value="kinematics_dvcs_observable.csv" />

16 </kinematics>

17

18 <!−− Define all physics assumptions −−>

19 <computation_configuration>

20

21 <!−− Select DVCS observable −−>

22 <module type="Observable" name="DVCSAluMinus">

23

24 <!−− Select DVCS process model −−>

25 <module type="ProcessModule" name="DVCSProcessGV08">

26

27 <!−− Select xi−converter module −−>

28 <!−− (it is used to evaluate GPD variable xi out of kinematics) −−>

29 <module type="XiConverterModule" name="XiConverterXBToXi">

30 </module>

31

32 <!−− Select scales module −−>

33 <!−− (it is used to evaluate factorization and renormalization scales out of

kinematics) −−>

34 <module type="ScalesModule" name="ScalesQ2Multiplier">

35

36 <!−− Configure this module −−>

37 <param name="lambda" value="1." />

38 </module>

39

40 <!−− Select DVCS CFF model −−>

41 <module type="ConvolCoeffFunctionModule" name="
DVCSCFFStandard">

42

43 <!−− Indicate pQCD order of calculation −−>

44 <param name="qcd_order_type" value="LO" />

45

46 <!−− Select GPD model −−>

47 <module type="GPDModule" name="GPDGK11">

48 </module>

49

50 </module>

51 </module>

52 </module>

53 </computation_configuration>

54 </task>

55

56 </scenario>

In this example the obtained values are stored in the

database (storeInDB switch set to 1). After the successful

insertion the code returns such a line to the Logger (which

itself outputs to the standard output and/or a file):

[INFO] (ObservableService::computeTask)

ObservableResultList object

has been stored in database with
computation_id = 1

The inserted data can be then fetched from the database by

running such a scenario:
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Fig. 9 Beam spin asymmetry A−
LU(φ) for xB = 1/3, t = −0.2 GeV2,

Q2 = 4 GeV2, and ELab = 11 GeV. Compton Form Factors are eval-

uated at LO approximation with the GK GPD model [97–99]

1 <?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

2

3 <!−− Scenario starts here −−>

4 <!−− For your convenience and for bookkeeping provide creation date and unique

description −−>

5 <scenario date="2017-07-18" description="Get observable result 
from database">

6

7 <!−− Task: generate file with data matching indicated criteria −−>

8 <task service="ObservableService" method="generatePlotFile">

9

10 <!−− Variables selected to be stored in the output file −−>

11 <task_param type="select">

12 <param name="xPlot" value="phi" />

13 <param name="yPlot" value="observable_value" />

14 </task_param>

15

16 <!−− Applied requirements −−>

17 <task_param type="where">

18 <param name="computation_id" value="1" />

19 </task_param>

20

21 <!−− Path to the output file −−>

22 <task_param type="output">

23 <param name="filePath" value="output.dat" />

24 </task_param>

25 </task>

26 </scenario>

where the value specified in <param name="
computation_id"/> tag is specific to the initial compu-

tation. As a result, a text file is created (here: output.dat)

containing pre-formated values that one can use for instance

to make a plot, like the one shown in Fig. 9.

7 Licenses

One of the goals of the developers team is to allow PAR-

TONS to spread through the community and for that pur-

pose, we have adopted a license prescription in such a way

that users are free to use and modify the source code of PAR-

TONS and all its dependencies. More precisely, PARTONS

is distributed under the GPLv3 license, and so are the sub-

projects numa and partons-examples. The sub-project

elementary-utils is distributed under the Apache
license. Users are encouraged to contribute back their own

developments by joining our forge, a GitLab server with a

Git repository: https://drf-gitlab.cea.fr/partons/core

Concerning our external libraries, the SFML library is

available under the zlib/png license while CLN and Qt

are under GPLv3.

8 Conclusions

In the last twenty years we have witnessed an intense the-

oretical and experimental activity in the field of exclusive

processes described in terms of Generalized Parton Distri-

butions. It is also a crucial part of the forthcoming experi-

ments at Jefferson Lab, COMPASS and in the future at EIC or

LHeC. The amount and quality of the expected data, together

with the richness and versatility of theoretical approaches to

its description, calls for a flexible, stable and accurate soft-

ware framework that will allow for systematic phenomeno-

logical studies. In this paper we have described such a frame-

work, called PARTONS, and how it addresses the most

important tasks: automation, modularity, non-regression and

data storage. We have also provided examples of simple XML

scenario files illustrating automated calculations of physical

observables.

Since its inception the PARTONS framework has expanded

rapidly with the addition of new core developers. We intend,

in the mid- to long-term future, to complement PAR-

TONS with new theoretical developments, new computing

techniques and other exclusive processes. To achieve this,

we expect that more physicists will join the development

team to integrate new modules and benefit from our inte-

grated chain, relating theory to experimental observables.

PARTONS should become the de facto software frame-

work for the GPD analysis of the next-generation exclusive

data.
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