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Abstract
Concurrency bugs might be one of the most challenging soft-

ware defects to detect and debug due to their non-deterministic

triggers caused by task scheduling and interrupt handling.

While different tools have been proposed to address concur-

rency issues, protecting peripherals in embedded systems

from concurrent accesses impose unique challenges. A naïve

lock protection on a certain memory-mapped I/O (MMIO)

address still allows concurrent accesses to other MMIO ad-

dresses of a peripheral. Meanwhile, embedded peripherals

such as sensors often employ some internal state machines to

achieve certain functionalities. As a result, improper locking

can lead to the corruption of peripherals’ on-going jobs (we

call transaction corruption) thus corrupted sensor values or

failed jobs.

In this paper, we propose a static analysis tool namely

PASAN to detect peripheral access concurrency issues for

embedded systems. PASAN automatically finds the MMIO

address range of each peripheral device using the parser-ready

memory layout documents, extracts the peripheral’s internal

state machines using the corresponding device drivers, and

detects concurrency bugs of peripheral accesses automatically.

We evaluate PASAN on seven different embedded platforms,

including multiple real time operating systems (RTOSes) and

robotic aerial vehicles (RAVs). PASAN found 17 true positive

concurrency bugs in total from three different platforms with

the bug detection rates ranging from 40% to 100%. We have

reported all our findings to the corresponding parties. To

the best of our knowledge, PASAN is the first static analysis

tool detecting the intrinsic problems in concurrent peripheral

accesses for embedded systems.

1 Introduction

Concurrency bugs might be one of the most challenging soft-

ware defects to detect and debug due to their non-deterministic

triggers caused by task scheduling and interrupt handling.

They not only lead to intermittent unexpected system behav-

iors but also contribute to attack surfaces. For instance, the

Dirty Cow [1] vulnerability caused by a race condition in the

memory subsystem enables privilege escalations within the

Linux kernel. The race condition bug in VMware Tools on

Windows 10 [17] causes privilege escalations in the virtual

machines. The most recent privilege escalation vulnerabil-

ity [16] in Android was caused by a race condition in the

binder. Another race condition within BIND [9] allows a re-

mote attacker to carry out Denial-of-Service of DNS servers.

In fact, a simple keyword search for “race condition” in the

CVE database shows 862 entries [10].

Multiple approaches have been proposed to address concur-

rency issues including static analysis [33,40,50,79], dynamic

analysis [83,84], and hybrid analysis [54,55,62,73]. However,

protecting peripheral devices1 in embedded systems from

concurrent accesses imposes unique challenges. A naïve lock

protection on a certain memory-mapped I/O (MMIO) address

still allows concurrent accesses to other MMIO addresses of

a peripheral. In other words, unless there is a global lock for

this peripheral and every MMIO access to the peripheral is

protected by the same lock, race conditions still can exist on

the peripheral.

Meanwhile, embedded peripherals often employ some in-

ternal state machine transitions to achieve a functionality. For

instance, a sensor might need to go through different internal

states2 to accomplish one sensor read operation. We define

such a specific sequence of internal state machine transitions

as a transaction. Accordingly, the device driver often needs

to access different MMIO addresses of the peripheral and

even sleep in between to follow the peripheral’s internal state

machine transition. Note that unlike typical critical section

protection, where sleep is excluded or even forbidden (e.g.,

spinlocks), the sleep here gives the embedded peripheral time

to finish its job and corresponds to the part of the internal

state machines (e.g., wait).

As a result, an effective concurrent peripheral access pro-

tection means the protection (locking) of both the MMIO

1We will also use simply peripherals in this paper interchangeably.
2e.g., receive_cmd: receiving a command, wait: waiting for an ongoing

job completion, and return_res: returning the job result.
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address range and the internal state machine transition of the

peripheral for embedded systems. Unfortunately, none of the

existing tools mentioned above acknowledges this unique con-

current protection requirement of embedded peripherals, and

fails to detect potential concurrency bugs. Improper locking

finally leads to the corruption of peripheral’s on-going jobs,

thus corrupting sensor values or failing jobs. We call such

corruption of jobs as a transaction corruption.

In this paper, we propose PASAN (short for Peripheral

Access SANitizer), a static analysis tool to detect periph-

eral access concurrency bugs for embedded systems. PASAN

learns the MMIO address range of each peripheral device au-

tomatically using the memory layout documents. To gain the

knowledge of the internal state machines, PASAN analyzes

different device drivers to extract state machine models based

on the correlation between device drivers and target peripher-

als. Leveraging the MMIO address ranges and internal state

machines, PASAN finally detects the potential concurrent pe-

ripheral accesses and generate bug reports automatically.

We have evaluated PASAN on seven embedded platforms,

including multiple real time operating systems (RTOSes) and

robotic aerial vehicles (RAVs). PASAN has found 17 true pos-

itive concurrency bugs in total among three platforms with

the bug detection rates ranging from 40% to 100%. We have

reported all of our findings to the corresponding parties. To

the best of our knowledge, PASAN is the first static analysis

tool detecting the intrinsic problems in concurrent peripheral

accesses for embedded systems. We summarize our contribu-

tions as follows.

• We analyze the unique challenges in concurrent peripheral

access protection in embedded systems and define the cor-

rect protection to consider both of the MMIO address range

and the internal state machines of peripherals at the same

time.

• We design and implement PASAN, a static analysis tool to

detect potential concurrency bugs for peripheral accesses

in embedded systems. PASAN parses memory layout docu-

ments to extract MMIO address ranges automatically, learns

the internal state machines by analyzing device drivers, and

detects concurrency bugs by combining multiple underly-

ing techniques of the MMIO address range identification,

transaction abstraction, points-to analysis, and lockset anal-

ysis.

• We validate the capabilities of PASAN by evaluating its

effectiveness on real-world embedded platforms, and dis-

covering a total of 17 concurrency bugs in three different

platforms.

2 Background and Motivation

Concurrency protection for peripheral accesses is a general

practice for device driver writers on general-purpose operat-

ing systems such as Linux. For instance, in a Multi-Function

1 int retu_write(struct retu_dev *rdev , u8 reg, u16 data)

2 {

3 int ret;

4

5 mutex_lock(&rdev ->mutex);

6 ret = regmap_write(rdev ->regmap , reg, data);

7 mutex_unlock(&rdev ->mutex);

8

9 return ret;

10 }

Listing 1: A MFD device write function within the Linux

kernel 5.4 protected by a mutex.

Select
Slave Data RW

Select
CMD Data Wait

SPI

SD Card 
Controller Init

Send
CMD Wait Read

Status

LIS3DH
Sensor Init

Bus-
Level

Peripheral-
Level Read

Value

Peripheral Lock Peripheral Lock

Bus Lock

Figure 1: Simplified motivating example of state machines

with SPI and attached peripherals.

Device (MFD) driver, a write function is protected via a mutex

preventing concurrent accesses to the device as shown in List-

ing 1. Unfortunately, these simple concurrency protections

fail on embedded systems due to the intrinsic states of bus

types and embedded peripherals. Take Figure 1 as an exam-

ple, where an LIS3DH sensor and an SD card controller are

attached to an Serial Peripheral Interface (SPI) bus. A naïve

concurrency protection for any operations on these periph-

erals or the bus does not protect the internal state machines

of these devices, leading to a job failure, data loss, etc. We

note that these internal state machines exist on both embed-

ded buses and peripherals. We define a complete transition

of these bus- and peripheral-level internal state machines as

a transaction to reflect its atomic requirement. Once such

unprotected states and corresponding transactions are iden-

tified, attackers may exploit this attack surface and trigger

unexpected bus- or peripheral-level state machine transition

(e.g., via network interface) to cause security or safety critical

issues.

Bus-Level State Machines. The SPI bus in Figure 1 is an

I/O port controlling two attached peripheral devices. To com-

municate with any device, the bus needs to: (i) select the slave

device and (ii) read/write data from/to the device. These two

steps represent the internal state machines of this bus. Now

imagine step (i) is done by thread A, which is going to send

a command to the LIS3DH sensor. Simultaneously, thread B

makes the SPI bus choose another slave device, i.e., the SD

card controller. In this case, thread A’s command will then

be redirected to another slave device due to the transaction

corruption of SPI caused by concurrent bus accesses. As a re-

sult, thread A never gets the response from the sensor because

the transaction corruption leads to an erroneous redirection
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Table 1: Comparison of concurrency bug detection ap-

proaches. The “Hybrid” analysis approach is based on both

static and dynamic analysis; the “Algorithmic” indicates a

theoretical approach without actual implementation; and the

“Manual” approach requires manual efforts to detect (or pre-

vent) concurrency bugs.

Work
Analysis

Approach

Automatic

Detection

Memory

Objects

Address

Range

Aware

Transaction

Aware

Lamport

timestamps [60]
Algorithmic ✓

Vector clock [66] Algorithmic ✓

Esterel [36] Manual ✓

Rust [65] Manual ✓

VCC [42] Manual ✓

VeriFast [32] Manual ✓

RacerX [50] Static ✓ ✓

RELAY [79] Static ✓ ✓

Vojdani et al. [78] Static ✓ ✓

Chen et al. [40] Static ✓ ✓

DSAC [33] Static ✓ ✓

Polyspace [24] Static ✓ ✓

Separation

logic [69]
Static ✓ ✓

Mthread [20] Static ✓ ✓

Coverity [15] Static ✓ ✓

Infer [21] Static ✓ ✓

Flawfinder [19] Static ✓ ✓

CodeSonar [13] Static ✓ ✓

ProRace [84] Dynamic ✓ ✓

Cruizer [83] Dynamic ✓ ✓

Hellgrind [67] Dynamic ✓ ✓

ThreadSanitizer [73] Hybrid ✓ ✓

RaceMob [55] Hybrid ✓ ✓

LockDoc [62] Hybrid ✓ ✓

Razzer [54] Hybrid ✓ ✓

PASAN Static ✓ ✓ ✓ ✓

of the requested job. Note that putting a lock only on the

step (i) will not eliminate the concurrency bug. To guarantee

the exclusive access to the SPI bus, we need to protect the

bus-level state machines, as denoted as Bus Lock (i.e., a blue

box) in Figure 1.

Peripheral-Level State Machines. Embedded peripherals

are often memory mapped within an embedded system and

have their own internal state machines. As shown in Figure 1,

the LIS3DH sensor (accelerometer) contains four states be-

sides the init state. To read a value from the sensor, a thread A

starts with a read command via writing into a memory mapped

I/O (MMIO) address, which puts the sensor into the read cmd

state. The sensor’s internal state machine then transits to the

wait state since the command processing takes some time

depending on the sensor’s working frequency (e.g., 50Hz).

Now imagine another thread B sends a command to the sensor

during the wait state. Due to such a transaction corruption,

the sensor might produce an unexpected result, e.g., corrupted

three-axis acceleration values, leading to an accident if it is

used by a robotic vehicle. Similarly, putting a lock only on

the state sending a command to the sensor cannot eliminate

this concurrency bug. To achieve an exclusive access to a

peripheral, we need to protect the peripheral-level state ma-

chines, e.g., all the four states of the sensor and all the three

states of the SD card controller, as denoted as Peripheral Lock

in Figure 1.

There have been a large body of the prior approaches for

detecting concurrency bugs [13, 15, 19–21, 24, 32, 33, 36, 40,

42,50,54,55,60,62,65–67,69,73,79,83,84]. As summarized

in Table 1, most of them (classified as “Static”, “Dynamic”

and “Hybrid” in the analysis approach column) have not con-

sidered the concurrency issues caused by the race conditions

in the internal state machines within bus and peripheral lev-

els [13,15,19–21,24,33,40,50,54,55,62,67,69,73,79,83,84].

Furthermore, other works (classified as “Manual” in Table 1)

require to manually modify source code [36, 65] or insert an-

notations for analysis [32, 42] while relying on users to fully

understand peripheral device operations. The other works

(classified as “Algorithmic”) even require the redesigning

of the entire code base [60, 66]. This paper aims to detect

a new class of concurrency bugs caused by the transaction

corruption that has never been considered before PASAN –

an address-range-aware and transaction-aware concurrency

detection tool for embedded systems. In PASAN, we solve

three main challenges:

• C1: How to find a peripheral’s MMIO address range

automatically? We note that a naïve protection on a single

MMIO address operation is not enough due to the intrinsic

behavior of the internal state machines. We need to know

the whole MMIO address range given a peripheral, and lock

the whole range to protect a transaction of the peripheral.

• C2: How to find a peripheral’s transaction scope auto-

matically? Recall that a transaction is essentially a com-

plete transition of the internal states. To protect a transac-

tion, we need to know where the transaction starts and ends

within the code, and lock the whole transaction to protect

the internal state machines.

• C3: How to use MMIO addresses and transaction

scopes to find bugs automatically? With the above knowl-

edge, we have an opportunity to detect concurrency issues

of peripherals. We need a way to explore as many concur-

rency sources as possible while reducing false positives.

Usage Scenarios and Required Expertise. PASAN is an

automatic tool that detects not just typical concurrency bugs,

but specific concurrency bugs with transaction corruptions.

Therefore, it does not assume users to have certain expertise.

However, we expect the developers who respond to PASAN’s

bug report to have knowledge about in (1) embedded sys-

tem device driver programming, (2) multi-threading, (3) race

condition (e.g., lock/unlock usage), and (4) peripheral device

data sheets. The aforementioned background is essential to

understand the bugs and fix the race conditions.

We believe PASAN is particularly useful when appropri-

ate dynamic device driver concurrency analysis tools are not

available. This is quite common in the domain of embed-

ded systems because of either the inability to instrument the

related hardware devices (e.g., the peripheral device or the tar-

get board) for analysis or the unavailability of corresponding

dynamic analysis frameworks. For instance, Hellgrind (part
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Source Code

Concurrency Bug
Detection (§3.5)

Concurrency
Analysis (§3.3)

MMIO Address
Ranges Identification (§3.1) 

Transaction Span
Extraction (§3.4)

%2 = 
load i32, 
i32* %3

Memory Layout

Library Function List

Memory
Peripheral

Concurrency
Bug Report

PASAN Framework

fork   0x4000
lock   0x6884
sleep 0x9102

----

----

Target Function 
Identification (§3.2)

Figure 2: The architecture of PASAN.

of Valgrind [67]) cannot run on an RTOS, and QEMU [35]

supports only a few boards and peripherals. Moreover, even

state-of-the-art dynamic analysis tools have limited analysis

coverage; it is hard for them to uncover concurrency bugs

due to their intrinsic triggering conditions [55]. More impor-

tantly, they cannot find concurrency bugs with transaction

corruptions.

3 Design

Concurrent memory accesses which do not consider the

internal processing states of peripherals can lead to con-

currency bugs. These bugs result in undefined behavior

due to the generation of incorrect results or operation fail-

ures. We propose PASAN which provides a device-agnostic

framework to detect such concurrency bugs. Different from

the detection techniques in the prior art (that focuses on

preventing concurrent accesses to certain program vari-

ables [33, 40, 50, 54, 55, 62, 73, 79, 83, 84]), PASAN takes

a transaction-aware and address-range-aware concurrency

bug detection approach which has resulted in the discovery

of novel concurrency bugs in peripheral device transactions.

Figure 2 presents the overall architecture of PASAN frame-

work. PASAN takes three inputs: (1) the source code of the

host firmware which will compile into the LLVM bitcode [61],

(2) the host firmware’s memory layout including MMIO ad-

dress ranges, and (3) the list of the library functions utilized

by the host firmware. Then PASAN proceeds through the fol-

lowing steps to generate the concurrency bug report as the

output automatically without requiring any user intervention

and expertise. This report contains: (i) MMIO access instruc-

tions causing concurrency bugs, (ii) inferred transaction spans,

and (iii) lock objects and their spans if they are enforced. For

developing the rectified device driver, PASAN requires an

expert to deal with false positives and fix bugs as discussed in

Section 2.

1. MMIO Address Range Identification (Section 3.1):

First, PASAN parses the memory layout documents to

identify the address ranges of MMIOs through which

peripheral devices are attached to the host. By enabling

the automated mapping of the accessed addresses to the

corresponding MMIOs, this step plays an important role

(in Step 4) in identifying the instructions belonging to

the same transaction. As such, this step addresses the

first aforementioned challenge (C1 in Section 2).

2. Target Function Identification (Section 3.2): Then, by

analyzing the target LLVM bitcode, PASAN identifies

the functions (e.g., multi-process, multi-thread, lock, and

interrupt management functions) which are relevant for

analyzing concurrently executable functions.

3. Concurrency Analysis (Section 3.3): In this step,

PASAN first identifies the instructions which can be ex-

ecuted concurrently. Out of those instructions, PASAN

identifies the existing locked instructions (which are exe-

cuted exclusively) via the context-sensitive lockset anal-

ysis [79]. Unlike the prior art, PASAN also considers the

operations of interrupt handlers.

4. Transaction Span Extraction (Section 3.4): Next,

PASAN identifies all of the transaction spans, i.e., start

and end pair of instructions belonging to one complete

transaction of a peripheral device, by developing a set

of span extraction heuristics. This novel technique to ex-

tract the proper lock spans enables PASAN to determine

transaction-aware access patterns of peripheral devices,

and addresses the second aforementioned challenge (C2

in Section 2). We note that the complete transaction

should ideally be locked (i.e., executed exclusively) to

avoid concurrency bugs.

5. Concurrency Bug Detection (Section 3.5): Finally,

PASAN verifies whether the determined transaction span

(obtained in Step 4) is correctly covered by the existing

lock objects (obtained in Step 3). This addresses the

last aforementioned challenge (C3 in Section 2) and en-

ables the detection of concurrency bugs by automatically

checking whether an MMIO address can be concurrently

accessed in the absence of a proper lock span.

We describe the details of each step of PASAN in the fol-

lowing sections.

3.1 MMIO Address Range Identification

MMIO enables the interaction between a host and periph-

eral devices by assigning a unique and fixed range of mem-

ory addresses for each peripheral. For example, a Universal

252    30th USENIX Security Symposium USENIX Association



Firmware

Base (Start) Address End Address
0x40004400 0x400047FF

USART’s MMIO boundary addresses

0x00

0x04

0x08 

0x0c

0x10

0x14

0x18

AC
C

ES
S

USART_SR

USART_DR

USART_BRR

USART_CR1

USART_CR2

USART_CR3

USART_GTRP

Offset Register

Figure 3: An MMIO address range corresponding to a Uni-

versal Synchronous/Asynchronous Receiver/Transmitter (US-

ART).

Synchronous/Asynchronous Receiver/Transmitter (USART) is

mapped to an address range used to control, receive and trans-

fer data as illustrated in Figure 3. Therefore, in this step, to

detect potential concurrent accesses to the same peripheral,

PASAN identifies the MMIO address range allocated to each

peripheral.

To identify these address ranges, PASAN utilizes the mem-

ory layout documents for the host including either the system

view description (SVD) file [8] or the host-specific develop-

ment tool libraries. We note that SVD is preferred because

of the following reasons: (1) SVD contains the formally de-

fined and accurate description of the memory layout of all

MMIO address ranges; (2) SVD can be easily parsed thanks

to its well-defined structure based on the Extensible Markup

Language (XML) format; and (3) SVDs are available for

a majority of hosts equipped with ARM architecture-based

processors (e.g., Cortex-A and Cortex-M).

If an SVD file is not available, PASAN identifies the MMIO

address ranges using the hard-coded base addresses in host-

specific development tool libraries (e.g., header files). In this

case, PASAN utilizes two common observations in embedded

domains: (1) each peripheral is mapped to a unique address

range, and (2) each peripheral is accessed by loading a hard-

coded base address. Exploiting these observations, PASAN

determines the MMIO address range for a peripheral starting

with the base address for the peripheral and ending with the

address right before the base address of the closest next periph-

eral. For example, as shown in Figure 3, the MMIO address

range of USART spans from 0x40004400 to 0x400047FF.

3.2 Target Function Identification

In this step, PASAN identifies the functions related to poten-

tial concurrent MMIO accesses and lockings that are essential

to identify concurrently executable code. Specifically, PASAN

handles four types of functions: (1) thread or process manage-

ment functions (e.g., pthread_create and pthread_join)

which are used to analyze the control flow of execution, (2) in-

terrupt handler functions (e.g., I2C_IRQHandler) represent-

ing the starts of interrupt processes, (3) interrupt disable/en-

able functions (e.g., enable_irq) utilized to check whether

interrupt handlers can execute concurrently, and (4) the func-

tions related to locks and unlocks (e.g., mutex_lock) identi-

fying the locked instructions and objects. It is important to

consider interrupts because they can start a new transaction

with a peripheral, thus corrupting the ongoing transaction of

the peripheral. If none of relevant functions is found from the

source file, PASAN looks for architecture-specific assembly

instructions related to interrupts. For example, Cortex-M se-

ries architecture employs cpsid and cpsie instructions for

disabling and enabling interrupts, respectively.

3.3 Concurrency Analysis

In this step, PASAN identifies which code can potentially be

executed concurrently by tracking the code’s starting/stopping

threads and checking the enabling/disabling code of interrupt

handlers. Next, by leveraging lockset analysis, PASAN iden-

tifies which code are not properly locked allowing concurrent

execution of unlocked code by leveraging lockset analysis.

Specifically, by analyzing the LLVM bitcodes and the list

of the relevant library and interrupt handler functions (iden-

tified in Section 3.2), PASAN first identifies the executable

processes, threads and interrupt handlers. Next, PASAN an-

alyzes them to identify the concurrently executable instruc-

tions. Finally, PASAN performs lockset analysis to identify

the instructions that are “locked” to prevent concurrent ac-

cess. We provide the technical details of this analysis below,

and describe them through an example shown in Figure 4

and Figure 5.

Executable Processes, Threads, and Interrupt Han-

dlers. To infer this information, PASAN generates the call

graph via points-to analysis [76], which is an established static

analysis technique for identifying which memory locations

the pointer variables can reference. Then, PASAN gathers

the list of entry functions of processes, threads, and interrupt

handlers. Starting from the entry function of the main pro-

cess, PASAN finds instructions which call process and thread

creation functions. Next, PASAN finds newly created func-

tions from the arguments of these function call instructions.

If such arguments are variables, PASAN finds the possible

functions pointed by those variables via points-to analysis.

One example is main function calling pthread_create with

IOThreadEntry (the entry function) as the argument.

Concurrently Executable Code. PASAN identifies the

concurrently executable code by analyzing the instructions

corresponding to different processes and threads [47]. In this

analysis, PASAN first discovers the life span of each pro-

cess/thread by tracking its identifier via points-to analysis. A

life span usually starts with the identifier initialized by the

process/thread creation function, and ends when the identifier

is passed back to the function after the process/thread ter-

mination function. For instance, the functions waitpid and
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void @spi_cmd() {
…

call @mutex_lock(%lock1);
store i32 0x10,  i32* 0x40007400

mutex_unlock(%lock1);

….
call @mutex_lock(%lock2);

%10 = load i32, i32* 0x40007404
call @mutex_unlock(%lock2);

….

}

Figure 4: Code snippets for locked MMIO access instructions.

MMIO Access
Instructions

store i32 0x10,
i32* 0x40007400

%10 = load i32,
i32* 0x40007404

Thread
Call

Stack
List

Thread1
Call 

Stack

spi_cmd, csId: 1233
sd_write, csId: 798

log_z, csId: 622
update_z, csId: 210

main, csId: -

spi_cmd, csId: 1233
sd_write, csId: 798

log_z, csId: 622
update_z, csId: 210

main, csId: -

Thread2
Call 

Stack

spi_cmd, csId: 1233
sd_write, csId: 999

log_cmd, csId: 633
exe_cmd, csId: 30

IOThreadEntry, csId: -

spi_cmd, csId: 1233
sd_write, csId: 999

log_cmd, csId: 633
exe_cmd, csId: 30

IOThreadEntry, csId: -

…

Call Stack

Figure 5: Locked MMIO access instructions in different

thread call stacks.

pthread_join may denote the end of a process and thread re-

spectively. We obtain the concurrently executable code by de-

tecting the overlap of the life spans of different processes and

threads. For instance, in Figure 4, we observe that the store

and load instructions are executed whenever the spi_cmd

function is executed. In Figure 5, we consider that the two

overlapping threads (i.e., Thread 1 corresponding to the main

function, and Thread 2 corresponding to the IOThreadEntry

function) call the spi_cmd function. Then, PASAN reports

both load and store instructions (that are parts of a single

transaction that must be atomically executed) as concurrently

executable when those threads run simultaneously.

Lockset Analysis. After analyzing the lock/unlock and in-

terrupt enable/disable functions (identified in Section 3.2),

and the list of concurrently executable instructions (obtained

above), PASAN identifies the lock objects used to lock in-

structions, and the lock span of each lock object, i.e., the start

(using a lock function) and the end (using an unlock func-

tion) of the lock object.

For example, in Figure 4, the store instruction is placed

between the mutex_lock and mutex_unlock functions with

a lock object lock1. Similarly, a lock object called lock2 is

used for the load instruction. However, in spite of these locks,

different threads (i.e., Threads 1 and 2 in Figure 5) can con-

currently execute these locked instructions because different

locks are used for the two instructions. To detect such cases,

PASAN performs context-sensitive analysis of the complete

call stack. Such call stack shows (1) the called functions on

the stack and (2) the call instruction’s unique identifier (csId)

of its callee in a bottom-up fashion. As shown in Figure 5,

these different call stacks help identify the potential threads

which can execute concurrently.

In addition to detecting typical lock objects, PASAN also

takes enabling and disabling of interrupts into account by

considering them as lock and unlock functions respectively.

In fact, the interrupt control flag can be considered as a virtual

global lock object preventing interrupts from concurrent exe-

cutions. PASAN also identifies recursive function calls, and

avoids the analysis of duplicate functions in a loop. To identify

such recursive function calls, we use the strongly connected

component algorithm [68] employed in other static analysis

systems as well, such as the points-to analysis framework

employed by us [76].

3.4 Transaction Span Extraction

To find concurrency bugs for peripheral devices, PASAN

must consider whether the concurrency can occur for trans-

actions rather than for individual MMIO accesses (discussed

in Section 2). As such, before the concurrency bug detection,

PASAN must identify transaction spans that are the ranges

of instructions representing transactions.

Specifically, as shown in Figure 5, the usage of different

locks leads to peripheral access concurrency bugs. More im-

portantly, even if the same lock was used, we still could not

guarantee that both the store and the load come from the

same thread. It might be Thread 1 store + Thread 2 load

or Thread 2 store + Thread 1 load. In either case, neither

Thread 1 nor Thread 2 would have the correct response from

the peripheral due to the corruption of each thread’s transac-

tion with the peripheral.

Consequently, we need to detect each transaction initiated

by different threads that can potentially interleave with each

other and cause a transaction corruption. As the first step,

we extract all of the transaction spans in advance. We argue

that although drivers might lack proper locking, their imple-

mentations have to follow the operation instruction of the

peripherals (aka, transaction) to make them work. Otherwise,

these drivers simply would not work, which would be caught

during the development or testing. More importantly, the ex-

tracted transaction spans need to be context-sensitive and

MMIO-address-range-aware. The former provides call stacks

with lock information (if exists); the later tells potential con-

current peripheral accesses from different MMIO addresses

but within the same MMIO address range.

Finding the Peripheral-Access Instructions. PASAN

identifies the peripheral-access instructions by following

the occurrences of the store and load instructions, whose

pointer argument might represent an MMIO access. We take

the following approach to resolve possible address values of

a given pointer variable: PASAN first performs points-to anal-

ysis to find the list of alias variables of the pointer variable. It

then strives to find the constant MMIO address values propa-

gated to such alias variables. This can be done by checking the
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SEQ.1 SEQ.2 SEQ.3 SEQ.4 SEQ.5 SEQ.6

Access Operation Write at 0x0 offset Wait Read at 0x4 offset Write at 0x8 offset Write at 0x8 offset Write at 0x8 offset

Purpose Send a Command Wait for a Command 
Ready Response

Device
Ready Check Data Transfer Data Transfer Data Transfer Done

MMIO Access 
Instructions

store i32 0x10, 
i32* 0x40007400

call void 
@usleep(2000)

%10 = load i32, 
i32* 0x40007404

store i32 %9, 
i32* 0x40007408

store i32 %9, 
i32* 0x40007408

store i32 0xFFFFFFFF, 
i32* 0x40007408

Thread
Call 

Stack
List

Thread 1
Call 

Stack

spi_cmd, csId: 1233
sd_write, csId: 798
log_z, csId: 622
update_z, csId: 210
main, csId: -

spi_wait, csId: 811
sd_write, csId: 798
log_z, csId: 622
update_z, csId: 210
main, csId: -

spi_wait, csId: 811
sd_write, csId: 798
log_z, csId: 622
update_z, csId: 210
main, csId: -

spi_write, csId: 937
sd_write, csId: 798
log_z, csId: 622
update_z, csId: 210
main, csId: -

spi_write, csId: 937
sd_write, csId: 798
log_z, csId: 622
update_z, csId: 210
main, csId: -

spi_done, csId: 997
sd_write, csId: 798
log_z, csId: 622
update_z, csId: 210
main, csId: -

Thread 2
Call 

Stack

spi_cmd, csId: 1233
sd_write, csId: 999
log_cmd, csId: 633
exe_cmd, csId: 30
IOThreadEntry, csId: -

spi_wait, csId: 811
sd_write, csId: 999
log_cmd, csId: 633
exe_cmd, csId: 30
IOThreadEntry, csId: -

spi_wait, csId: 811
sd_write, csId: 999
log_cmd, csId: 633
exe_cmd, csId: 30
IOThreadEntry, csId: -

spi_write, csId: 937
sd_write, csId: 999
log_cmd, csId: 633
exe_cmd, csId: 30
IOThreadEntry, csId: -

spi_write, csId: 937
sd_write, csId: 999
log_cmd, csId: 633
exe_cmd, csId: 30
IOThreadEntry, csId: -

spi_done, csId: 997
sd_write, csId: 999
log_cmd, csId: 633
exe_cmd, csId: 30
IOThreadEntry csId: -

...

Same lock
on different
call stacks?

: MMIO Access
Function

: Thread Entry
Function

Figure 6: An example of a simple transaction for a peripheral device. The high-level operations are described in the four top

columns. Then, we show transaction spans which should be covered by a respective ideal lock span identified by PASAN at

the bottom with threads’ call stacks. Here, Thread 1 is executed with main as an entry function, and Thread 2 is executed with

IOThreadEntry as an entry. Both can be executable concurrently.

Algorithm 1 [T4] Transaction Span Extraction Per MMIO Address Range.

Input: Intermediate representation codes (IR), Target MMIO access instruction set

(MI), Entry and interrupt handler bottom functions (E), Threshold values between

device access instructions (T hr)

Output: Extracted transaction spans (L)

1: function TRANSACTIONSPANEXTRACTION(IR,T hr,MI,E) ⊲ Main Function

2: Initialize L;

3: for e ∈ E do ⊲ Iterate all entry functions

4: Initialize cs;

5: cs.PUSH({e,NULL}) ⊲ Initialize call stack (cs)

6: L′← RECURSIVEEXTRACTION(cs,T hr,L, IR,MI,e)
7: L← L∪DISCONNSPAN(cs,L′)

8: return L

9: function RECURSIVEEXTRACTION(cs,T hr,L, IR,MI,F)

10: C← GETINSTRUCTIONS(IR,F) ⊲ F is target analysis function

11: for c ∈C do ⊲ Analyze each instruction in F

12: if ISINSTBELONGSTOTRANSACTIONSPAN(cs,c,MI) then

13: L← EXTENDSPAN(cs,T hr,MI,c,L)
14: else if ISTOOLARGEDISTANCE(L, Thr) then

15: L← DISCONNSPAN(cs,L) ⊲ Disconnect a too long transaction span

16: else if ISCALLINST(cs,c, IR) then

17: callees← GETNONREPEATEDRECURSIVECALLEES(cs,c, IR)
18: L′← L

19: for ce ∈ callees do ⊲ Iterate non-repeated recursive callees

20: Lin← L′ ⊲ To keep the currently analyzed a transaction span

21: cs.PUSH({ce,c}) ⊲ Update cs with a callee (ce) and call instruction (c)

22: Lin← RECURSIVEEXTRACTION(cs,T hr,Lin, IR,MI,F)
23: cs.POP() ⊲ Restore cs

24: L← UPDATELOCKSPAN(Lin,L)

25: return L

sequence of updates in each alias variable and backtracking

relevant instructions, i.e., store and load instructions and

value-updating instructions on the constant MMIO address

values (e.g., add and or operations). During the backtracking,

when PASAN finds a constant value for an alias variable, it

maps an MMIO address range covering this constant value

into that alias variable. Finally, the set of (potentially accessi-

ble) MMIO address ranges are mapped to each of the store

and load instructions.

Determining Boundaries of a Transaction. Utilizing the

list of instructions and their accessed MMIO address ranges,

PASAN pursues the intuitive algorithm shown in Algorithm 1

to detect the boundaries (start and end) of a transaction. For

each target instruction, PASAN computes a metric called “ac-

cess distance” which is defined as the number of instructions

between the target instruction and the next related instruction

which access the same MMIO address range. We note that

a large access distance indicates that the peripheral device’s

driver code are not executed for a large number of instructions,

which may indicate the end of a transaction between the host

and the peripheral (Line 14-15). As such, PASAN considers

the target instruction and the next related instruction to belong

to the same transaction if the access distance between them

is smaller than a threshold denoted by T hr (Line 12-13). For

example, in Figure 6, the instructions SEQ.1,3-6 (as shown

in the “MMIO Access Instructions” row) are determined to

be part of the same transaction. We note that PASAN also

collects thread call stacks as shown in the “Thread Call Stack

List” in Figure 6 to check whether each transaction can be

executed concurrently by different threads. We will explain

how to use call stack information in Section 3.5.

Specifically, PASAN determines whether an MMIO access

instruction belongs to a transaction span (Line 12) if the

following three cases are satisfied.

• Case-1: Peripheral MMIO Wait Pattern: The host employs

a wait instruction (e.g., the sleep function call) when it

needs to wait for the completion of a job requested to the

peripheral. In other words, a wait instruction is a part of

the state machine of an ongoing transaction. Hence, in Fig-

ure 6, PASAN considers the instructions SEQ.1 and SEQ.2

to belong to the same transaction (part of Line 12-13).

• Case-2: Different Access Distance Thresholds: PASAN can

encounter a mix of instructions accessing different periph-

erals with different drivers. In such cases, PASAN utilizes

different threshold values for different peripherals. For ex-

ample, to transfer a large amount of data to an Ethernet

card, a device driver may delegate the data copy job to a

direct memory access (DMA) unit. In this case, since it is

usually a temporary, small job, PASAN selects a smaller

threshold value (T hrd) for the access distance instead of the

default longer threshold value (T hri) (part of Line 12-13).

We will further demonstrate the impact of this threshold in

Section 4 and their effectiveness in Section 5.2.
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SEQ.1 SEQ.2 SEQ.3 SEQ.4 SEQ.5 SEQ.6

Access Detail Write at 0x0 offset Wait Read at 0x4 offset Write at 0x8 offset Write at 0x8 offset Write at 0x8 offset

Purpose Send a Command 
Wait for a Command 

Ready Response

Device Ready 

Check
Data Transfer Data Transfer

Data Transfer

Done

(a) In-order 
Transaction 

(c) PASAN’s
Complete

Lock Span

Lock 1

(b) Buggy
Lock Span

Lock 1 Lock 2Lock 2Lock 2

Figure 7: An example of a simple transaction for a peripheral device. The high-level operations are described in (a). Then, we

show the example buggy lock enforcement in (b). Finally, we present the transaction span which should be covered by the proper

lock span in (c).

• Case-3: Write Access Inclusion: PASAN considers an ex-

tracted transaction to be a potential target for a concurrency

bug only if the transaction contains at least one write in-

struction. We note that the host can perform a read instruc-

tion (on a register that an MMIO address is mapped into)

without interacting with any peripheral. In most cases, it

usually does not affect the state machine transition of a

peripheral. However, if we include read-only transactions,

it would cause a large number of false positives because the

status of some peripherals (e.g., timer and USART) are not

volatile, and hence not vulnerable to unprotected concurrent

reads as they maintain their own internal states. Therefore,

we chose to use “write-access-inclusion” heuristic to reduce

the false positive rate of concurrency bug detection in the

next step (Section 3.5).

Handling Call Instruction. Once PASAN starts to analyze

a call instruction, it recursively handles that call instruction

first. During this step, PASAN keeps tracking the call stack

to abide by context-sensitivity (Line 4-5, 21, 23). Other than

that, PASAN needs to handle two challenges: recursive calls

and indirect calls. To prevent repeated recursive function call

analysis, PASAN generates a non-repeated callee list (Line

17) [68]. To handle the case of indirect calls, PASAN first

retrieves the list of callees. If that is a direct call instruction,

there is only one callee in the list. Otherwise, there can be

multiple callees with different call stacks. For that, PASAN

makes copies (corresponding to the number of such callees)

of the transaction under analysis (Line 17-24). Note that these

copied transactions are processed independently to determine

their boundaries.

3.5 Concurrency Bug Detection

Now we describe how PASAN detects concurrency bugs

caused by concurrent transactions of a peripheral. PASAN

takes the following inputs from the previous steps: (1) con-

currently executable instructions, (2) ranges of instructions

locked by certain lock objects, and (3) transaction spans. Then,

PASAN detects which parts of transactions can be concur-

rently executed even with the enforced locks.

We notice that these transaction concurrency bugs prevail

in embedded systems because it is challenging for developers

to correctly enforce every lock span to cover the complete

transaction (we demonstrate two real-world examples in Sec-

tions 5.5 and 5.6). As such, we observe three common charac-

teristics of a buggy lock span as demonstrated in Figure 7: (1)

instructions (e.g., SEQ.1 and SEQ.4) which access different

MMIO addresses are locked separately; (2) an instruction

(e.g., SEQ.2) accessing no MMIO address is not considered

for locking; and (3) a load instruction (e.g., SEQ.3) perform-

ing a read-only access is not locked. In contrast, PASAN takes

a novel approach combining the following two strategies: the

address-range-aware strategy and transaction-aware strat-

egy guided by the extracted complete transaction spans. We

note that these transaction spans are obtained using Algo-

rithm 1 in Section 3.4, e.g., the transaction span shown in

Figure 7(c). Without the guidance of the extracted transaction

spans, traditional concurrency bug detectors would either con-

sider it unnecessary to protect some instructions or protect

them with different locks and separate lock spans as shown

in Figure 7(b). Next, we elaborate on how and why the trans-

action spans are related to the concurrency bug detection.

• Address-range-aware strategy: PASAN must check

whether two accessed MMIO addresses are accessed by

the same peripheral. For example, in Figure 7(a), SEQ.1

accesses the memory at an offset of 0x0 from the base ad-

dress, SEQ.3 accesses the memory at offset of 0x4, and

SEQ.4-SEQ.6 access the memory at an offset of 0x8. With

a naïve strategy, only SEQ.4-6 will be considered as ac-

cesses by the same peripheral, and the resulting discon-

nected locks may cause concurrency issues. Hence, by em-

ploying an address-range aware strategy, PASAN detects

SEQ.1, SEQ.3 and SEQ.4-6 can be accessed by the same

peripheral.

• Transaction-aware strategy: PASAN must also check

whether a sequence of instructions belonging to the same

transaction is protected by a single lock span. For example,

in Figure 7, PASAN detects that SEQ.1 and SEQ.4-SEQ.6

belong to the same transaction. Note that this strategy also

helps to cover sequences SEQ.2 (i.e., the wait pattern that

was not considered as a part of a transaction) and SEQ.3

(detected by the address-range-aware strategy), which are

not normally considered as protection targets in spite of

them being parts of the same transaction spanning from

SEQ.1 to SEQ.6.
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Algorithm 2 Concurrency Bug Detection Per MMIO Address Range.

Input: Mapping an instruction into a set of the possible contexts (Minst ), Mapping

a MMIO into a set of transaction spans (Mt ), Mapping an instruction into alias lock

objects (Mlock)

Output: Concurrency Bug Report (CR)

1: function CONCURRENCYBUGDETECTION(Minst ,Mt ,Mlock) ⊲ Main Function

2: Initialize CR;

3: for Ti ∈Mt do ⊲ Get one transaction set

4: for Tj ∈Mt do ⊲ Get another transaction to make a comparison pair

5: CR←CR∪CONCURRENCYBUGANALYSIS(Ti,Tj ,Minst ,Mlock)

6: return CR ⊲ Get one lock span

7: function CONCURRENCYBUGANALYSIS(Ti,Tj ,Minst ,Mlock)

8: Initialize cr;

9: for tcsi
∈ Ti do ⊲ Get one transaction with a call stack. cs is a call stack

10: for tcs j
∈ Tj do ⊲ Get another transaction with a call stack

11: if ISCONCURRENTLYEXECUTABLE(tcxti
, tcxt j

,Minst ) then

12: si← GETLOCKSPAN(tcsi
,Mlock) ⊲ Get locks and their spans in tcsi

13: s j ← GETLOCKSPAN(tcs j
,Mlock) ⊲ Get locks and their spans in tcs j

14: if CHECKLOCKSPANANDOBJ(si,s j , tcsi
, tcs j

) == False then

⊲ Check whether a lock protects both transactions

15: cr← cr∪{tcsi
, tcs j
}

16: return cr ⊲ Return the concurrency bug result for this pair

Algorithm. To detect concurrency bugs, PASAN first identi-

fies the transactions by combining both address-range-aware

and transaction-aware strategies. Then PASAN analyzes con-

currently executable instructions (obtained in Section 3.3) to

check whether the proper lock objects have been employed to

cover the transactions (extracted in Section 3.4).

Algorithm 2 shows the pseudo code of the concurrency

detection mechanism. PASAN first takes two transactions (de-

noted as Ti and Tj) accessing the same MMIO address range

from the transaction list (Line 3-4). Then, PASAN checks

whether Ti and Tj can be executable concurrently (Line 7-16).

We note that both transactions can be “identical” (i.e., Ti = Tj)

when they are concurrently executed in two different threads.

For example, two transactions shown in Figure 6 execute the

same MMIO access functions (i.e., sd_write and its callee

functions, such as spi_cmd, as indicated by the same call site

identifier csId). However, those transactions can be executed

concurrently because Thread 1 and Thread 2 (whose entry

functions are main and IOThreadEntry) concurrently exe-

cute the same transaction in different call stacks and call sites

as described in the “Thread Call Stack List” row. As such,

PASAN must consider them for concurrency bugs if the locks

are not identical between different call stacks or they do not

cover SEQ.1-6.

As such, PASAN obtains the call stacks from the transac-

tion (denoted as Tcsi
and Tcs j

in Line 9-11). If the call stacks

are different, PASAN needs to check if their threads and their

locksets are different. To determine if their threads are differ-

ent, PASAN first checks the entry functions of Tcsi
and Tcs j

(Line 11). If that is true, PASAN obtains (i) lock spans and

(ii) lock objects for MMIO access instructions of Tcsi
and Tcs j

(Line 12-13). Then, PASAN checks whether there is a concur-

rency issue between Tcsi
and Tcs j

(Line 14). Essentially, if the

existing locks do not cover either Tcsi
or Tcs j

, each of them has

a concurrency bug. Next, if the lock spans cover each of Tcsi

and Tcs j
, PASAN checks whether both of them are locked by

Table 2: Target embedded platforms. NT: the number of

threads; NI: the number of interrupt handlers; and ND: the

number of compiled device drivers.

Platform OS Version

Lines of

Compiled

Code

Lines of

All Codes
NT NI ND

ArduPilot [11] ChibiOS 3.6.10 116,815 2,220,042 11 54 42

RaceFlight [26] Bare-metal 06ef4c2∗ 46,683 206,888 1 36 17

RIOT [28] RIOT 201907 17,378 1,542,403 3 17 33

Contiki [14] Contiki 4.4 12,762 553,596 6 15 5

TS100 [31] FreeRTOS 2.05 20,291 185,126 5 19 8

grbl [2] Baremetal 0.8 5,857 52,777 1 11 5

rusEFI [29] ChibiOS e33798c∗ 89,405 2,302,209 14 54 4

Total - - 309,191 7,063,041 41 208 114

∗When there is no proper version (e.g., when the developers have updated the codes, but

have not tagged its version), we provide the commit number from the github repository.

Table 3: The number of peripheral devices attached to respec-

tive MMIOs in each target firmware.
Platform SPI I2C UART USB GPIO IRQ Flash ADC DMA

ArduPilot 11 10 13 1 2 1 2 1 2

RaceFlight 2 5 2 1 2 1 2 1 2

RIOT 5 19 1 0 4 1 2 1 1

Contiki 0 0 1 0 2 1 1 0 0

TS100 0 1 1 0 1 2 1 1 1

grbl 0 0 1 0 1 2 1 0 0

rusEFI 0 0 0 1 1 1 1 0 0

Total 18 35 19 3 13 9 10 4 6

the identical lock objects. If this is not true, PASAN considers

this transaction pair can be executable concurrently, which

means they have concurrency bugs. Once Tcsi
and Tcs j

are

determined to have a concurrency bug, the result is updated

in the generated concurrency bug report (Line 5 and 15).

4 Implementation

PASAN mainly targets embedded systems and is designed

to use only static analysis. We use LLVM 7.0 [61] and

SVF 1.6 [76] as the base for our analysis. Peripheral device

address memory layout is extracted from the SVD [8] or

development tool libraries. Overall, our implementation is

composed of over 7K lines of C++ code and various miscella-

neous Python scripts for automation. After the evaluation of

seven target embedded platforms (introduced in Section 5),

we selected the parameters to extract lock spans for transac-

tions (Section 3.4) with the empirical values, T hri as 5,000

and T hrd as 2,000, yielding the highest lock span accuracy

on average as discussed in Section 5.2.

5 Evaluation

We first introduce the target testing platforms (Section 5.1),

and focus our evaluation on answering the questions below:

• Q1: How accurate is the transaction span inference?

• Q2: How effective is PASAN’s concurrency bug detection?

• Q3: How effective is PASAN compared to the existing

approaches?

• Q4: What real-world concurrency bugs are detected?
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Table 4: Summarized results of transaction span extraction.

Platform

# of Transaction

Spans Accuracy (%)

# of Incorrectly Inferred

Transaction Spans

Extracted Correct Subset Superset Mixed

ArduPilot 60 41 68.33 5 6 8

RaceFlight 30 26 86.67 2 2 0

RIOT 41 34 82.93 2 5 0

Contiki 9 8 88.89 0 1 0

TS100 12 11 91.67 0 1 0

grbl 13 8 61.54 4 0 1

rusEFI 18 13 72.22 0 5 0

Total 183 141 77.05 13 20 9

5.1 Evaluation Targets

Table 2 summarizes the information about our evaluation

targets of 7 open-source embedded platforms. We selected

this set of platforms with the following criteria: (i) different

running environments (e.g., different RTOSes), and (ii) dif-

ferent peripheral devices (e.g., different sensors). The first

two platforms (i.e., ArduPilot and RaceFlight) are for robotic

aerial vehicles (RAVs), and RIOT and Contiki are RTOSes.

We evaluated RIOT by putting all testing device drivers to-

gether to generate one bitcode file. We evaluated Contiki

with the blink-hello application running multiple threads with

MMIO accesses. TS100 is a soldering iron platform; grbl is

for computer numerical control (CNC) milling controllers;

and rusEFI is used for internal combustion engine control

units. Each platform has lines of compiled code ranging from

5,857 to 116,815, with total lines ranging from 52,777 to

2,302,209, the number of threads ranging from 1 to 11, the

number of interrupt handlers ranging from 11 to 54, and mul-

tiple peripherals ranging from 4 to 42. We note that most of

interrupt handlers execute the simple tasks such as infinite

loop execution (without doing anything), immediate acknowl-

edgement of the interrupt, or a common interrupt handler call

(e.g., a kernel panic handler).

Table 3 shows the types of device drivers used in our evalu-

ation. We note that some device drivers can support different

buses (e.g., SPI and I2C). Furthermore, GPIO can sometimes

act as SPI or I2C according to the configuration. In either

case, we count the number of device drivers individually.

5.2 Transaction Span Extraction Accuracy

As one of the critical steps in the concurrency bug detec-

tion, PASAN identifies the possible transaction spans based

on the extraction approach (Section 3.4) focusing on the in-

structions of transactions which can be executed concurrently

(Section 3.3). The details of extraction accuracy are presented

in Table 4 showing the following information for each target

platform: (1) the number of the extracted transaction spans,

(2) the number of the correctly extracted transaction spans,

(3) the accuracy of the extracted transaction spans, and (4)

incorrectly inferred transactions (e.g., subset, superset and

mixed transaction spans).

To identify the ground truth, we manually inspected

source code for every transaction span. For example, we

look into the function(s) accessing a target device with

a sequence of instructions for a specific purpose (e.g.,

sdcard_spi_read_blocks to read data from an SD card).

Such functions can be called by the external non-driver func-

tions rather than device drivers. Overall the accuracy of

PASAN’s lock span extraction is 77.05% on average ranging

from 61.54% to 91.67%. Several target platforms, RaceFlight,

RIOT, Contiki, and TS100, achieve high accuracy, i.e., over

80%. Other platforms such as ArduPilot, grbl, and rusEFI

show a reasonable accuracy ranging from 60% to 80%.

In terms of incorrectly inferred transaction spans, there are

three categories of partial inferences, which might still be

useful for concurrency bug analysis.

1. Subset transaction span: A subset transaction span

may contain a subset of the complete device access in-

structions, which can cause false negatives and/or addi-

tional inaccurate transaction span generation. The num-

ber of this type of incorrectly inferred spans range from

0 to 5 in Table 4. However, PASAN can still utilize it

to detect concurrency bugs because MMIO access in-

structions in each subset transaction span should also be

executed atomically.

2. Superset transaction span: A superset transaction span

includes potential bug cases along with other instructions.

As PASAN detects concurrency bugs in device access

instructions for any bug case within the span, some of

the superset transaction spans may lead to false positives.

The number of this type of incorrectly inferred spans

range from 0 to 6 in Table 4.

3. Mixed transaction span: This involves both subset

and superset transaction spans. Therefore, it may lead

PASAN to detect concurrency bugs with false positives

and negatives. The number of this type of incorrectly

inferred spans is from 0 to 8 in Table 4.

There are a couple of reasons why we could not achieve

higher extraction accuracy according to our ground truth study.

In the case with the lowest accuracy, execution of the ap-

plication code (e.g., controller computation or sensor value

conversion code in robotic vehicles) and the peripheral de-

vice management code frequently interleave. This causes our

heuristic distances (discussed in Section 3.4 and 4) to be sub-

optimal because the different level of mixture with application

code varies the optimal distance thresholds leading to incor-

rect transaction span extraction. Another main reason is that

some platforms continue the device initialization steps whose

access patterns are intensive and complex, even after threads

or child processes have started. The initialization steps config-

ure the device and its I/O setting, during which the platforms

interact with diverse peripheral devices and I/Os rather than

running application code. Consequently, our device access

distance threshold values (i.e., the values of T hri and T hrd

mentioned in Section 4) are not optimal in those steps. For

example, we found that ArduPilot hands over certain initial-
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Table 5: Summary of concurrency bugs.

Platform
# of

Bugs

# of False

Positive

Bugs

False

Positive

Rates

Bug Detection

Rates

# of Affected

Device

Drivers

ArduPilot 20 12 60.0% 40.0% 7

RaceFlight 0 0 - - 0

RIOT 9 1 11.11% 88.89% 8

Contiki 0 0 - 0

TS100 1 0 0.0% 100.0% 1

grbl 0 0 - 0

rusEFI 6 6 100.0% 0.0% 0

Total 36 19 - - 16

ization steps to threads and processes communicating with the

dedicated devices during the early execution stages. Finally,

indirect calls to support multiple different I/Os also lead to

low extraction accuracy. e.g., in ArduPilot.

5.3 Concurrency Bug Detection Effectiveness

Ground Truth Study Experiment. We find patches in

RIOT related to the bus-level concurrency bugs in I2C3 and

SPI4. Before those patches, there were no locks at all, and

hence any peripheral device attached to either I2C or SPI

bus had concurrency bugs in RIOT. We use those patches as

the ground truth by removing this patch in our RIOT testing.

PASAN found all the 28 concurrency bugs fixed by the patch

with 0% false positive rates. We apply the removed patch

again for the following RIOT testing.

Bug Detection. As shown in Table 5, we evaluate each target

platform on: (1) the number of concurrency bugs, (2) the num-

ber of false positives cases, (3) the bug detection rates, (4) the

false positive rates in the bug detection, and (5) the number of

potentially affected devices. In total, PASAN reported 36 bugs

from ArduPilot, RIOT, TS100, and rusEFI platforms. After

verification, we found that 17 out of 36 reported bugs are true

positives, and the rest 19 cases are false positives. Among the

17 true positive cases, 8 cases are from RIOT. While the patch

mentioned earlier fixed some bus-level concurrency bugs in

RIOT, these 8 are new peripheral-level concurrency bugs. Af-

ter we found aforementioned bugs in RIOT, we checked patch

histories and found that ten peripheral devices had concur-

rency bugs with transaction corruptions5. However, RIOT

developers did not consistently apply the similar patches to

the other peripheral device drivers containing concurrency

bugs. We reported our findings to RIOT developers, and they

acknowledged our findings as bugs6. All the bugs found in

ArduPilot are peripheral-level concurrency bugs. TS100’s

case is a generic concurrency bug on MMIO accesses caused

by interrupt handling. Overall, PASAN achieves bug detection

rates from 40.0% to 100.0%.

3 https://github.com/RIOT-OS/RIOT/pull/2323/commits for

three boards before the patch.
4https://github.com/RIOT-OS/RIOT/pull/2317/commits for nine

boards before the patch.
5https://github.com/RIOT-OS/RIOT/pull/2326/commits.
6https://github.com/RIOT-OS/RIOT/issues/13444

False Positives. Due to the limitations of static analysis,

PASAN reported 12, 1, and 6 false positive bugs in ArduPilot,

RIOT, and rusEFI, respectively. rusEFI has six transactions

reported as concurrently executable code because employed

points-to analysis [76] treats their locks to be different. In fact,

these locks are the alias of the same lock. For ArduPilot and

RIOT, PASAN reported two and one incorrect concurrency

bugs, respectively, due to inaccurate transaction span extrac-

tions. We also found that one false positive case was reported

because it did not require waiting for the job completion after

device initialization. Specifically, LSM9DS0, a magnetometer

of ArduPilot reads sensor values iteratively without requesting

a processing job in the device driver. LSM9DS0was mistakenly

reported due to I2C attached requiring writing accesses to con-

trol the I2C bus. In this case, the peripheral’s internal state

machine is tolerant to potentially buggy concurrent accesses,

although PASAN correctly reports this as potential concur-

rency bugs based on our detection algorithm. Our manual

verification did not reveal any more false alarms. We discuss

about factors causing false positives in Section 6.

5.4 Concurrency Bug Detection Capability

Comparison

We compare PASAN with the existing concurrency bug de-

tection tools to show its effectiveness as summarized in Ta-

ble 6. Our selection of the existing tools was guided by the

following criteria. First, we focus on the comparison with

static analysis tools. This is because dynamic analysis-based

approaches [54, 55, 62, 67, 73, 83, 84] require dynamic analy-

sis frameworks, which are not generically applicable to em-

bedded systems except for only a few boards [41, 51, 53].

Second, we do not consider the tools requiring non-trivial

manual efforts such as theoretical algorithms [60, 66] or man-

ual code instrumentation [36, 65]. Finally, we consider the

static analysis tools that are available to use for uncovering

concurrency bugs with transaction corruption7. As such, we

chose Flawfinder [20], Polyspace [24], and Coverity [15].

Flawfinder performs concurrency analysis for generic C/C++

code independent of compilers and target boards. Polyspace

claims that they cover various real embedded systems such as

Nissan car and aircraft autopilot [24,25]. Coverity also claims

to support automotive embedded systems while supporting

embedded system compilers [30].

Table 6 shows the number of true concurrency bugs only

with transaction corruption, and the number of any types

of concurrency bugs reported by each tool. We found that

Flawfinder, Polyspace, and Coverity cannot find any con-

currency bug with transaction corruption. More specifically,

Flawfinder found 265 conventional concurrency bugs (e.g.,

7 For example, a trial version of CodeSonar [13] does not support aca-

demic evaluation; Mthread add-on is working on porting to its recent main

framework [20]; Infer [21] does not support embedded system code since it

ignores compilation commands for embedded systems.
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Table 6: Summary of the concurrency bug detection perfor-

mance of PASAN in comparison with existing works. T: #

of true concurrency bugs only with transaction corruption,

A: # of all reported concurrency bugs of any types without

manually verifying their correctness.
Target PASAN Flawfinder [19] Polyspace [24] Coverity [15]

Firmware T A T A T A T A

ArduPilot 8 20 0 247 0 0 0 0

RaceFlight 0 0 0 0 0 0 0 0

RIOT 8 9 0 9 0 1 0 0

Contiki 0 0 0 3 0 0 0 0

TS100 1 1 0 0 0 0 0 0

grbl 0 0 0 0 0 0 0 0

rusEFI 0 6 0 6 0 0 0 0

concurrent file object accesses); Polyspace found one concur-

rency bug caused by a global variable in RIOT; Coverity found

zero concurrency bug although Coverity found the other types

of bugs (e.g., integer overflow). Overall, as shown in Table 6,

unlike PASAN, the existing tools cannot detect concurrency

bugs caused by peripheral access transactions.

5.5 Case Study I: SD Card Data Corruption

Select
Slave

Data
RW

Select
CMD

Packet
Write

Wait

SPI

SD Card 
Controller

Init

Bus-
Level

Peripheral-
Level

Bus Lock

Peripheral
Lock

Write
Start

Read
Start

Erase
Start

CMD
Done

Packet
Read

Figure 8: Simplified example of two-layered state machines

of SPI and SD card controller.

RIOT [28] supports a variety of peripherals on diverse em-

bedded systems. One of the supported peripherals is an SD

card controller. Due to the limited number of I/O ports in em-

bedded systems, an SD card controller is frequently attached

to an SPI bus which may already be connected with other

peripherals. We note that RIOT is designed to be a generic

RTOS with a variety of interface options. Unfortunately, be-

cause of design flaws in the exclusive access protection, it is

possible to exploit the control interface and access the con-

troller directly/indirectly. As a result, a concurrency bug could

potentially lead to data loss or corruption such as a missing

SD card access and undesired data transfer to the SD card.

PASAN’s analysis of the existing lock objects and lock

spans corresponding to the controller has revealed two issues:

there is no bus lock for protecting the state machine of SPI,

and there is no peripheral lock spanning the whole transaction

with the controller.

Missing Bus Lock on an SPI. As shown in the bus-level

box of Figure 8, the SPI takes two states for the data trans-

fer: (1) select a slave device among the attached peripherals,

and (2) perform data read/write operations with the periph-

eral. As such, a concurrency bug can be found by checking

whether there is a lock spanning from (1) to (2). Missing

locks can cause the transferred data to be corrupted or data

to be transferred to different devices unless both (1) and (2)

are performed atomically. In our analysis, PASAN did not

find a lock in either of the two states of the tested embedded

platform revealing its vulnerability to potential attacks.

Missing Peripheral Lock for an SD Card Controller.

The embedded system needs to perform a set of transactions

with the controller to operate correctly. Such transactions are

represented through a state machine shown in the peripheral-

level box of Figure 8. We note that each transaction starts

from Select CMD and ends at CMD Done. Hence, to guaran-

tee the correct operation of the controller, the state machine

transitions from Select CMD to CMD Done must be secured

atomically by a lock. However, we found no lock spanning

the state machine transitions. This means that concurrent

accesses to the SD card controller may cause unexpected

problems (e.g., data loss or corruption). Recently RIOT devel-

opers have applied a patch to enforce a Bus Lock as shown in

Figure 8. However, the concurrency bug cannot be eliminated

completely without enforcing the Peripheral Lock along with

the Bus Lock.

Real-World Attack Scenario. Embedded systems used in

IoT/CPS devices store various critical information including

secret keys (e.g., passwords) and data logs (e.g., object ap-

proaching detection and mission execution orders facilitating

movement between two waypoints). However, our experi-

ments show that the concurrency bugs at both bus and periph-

eral levels can result into corruption of such information. To

exploit these concurrency bugs, we configured our experimen-

tal embedded system on a BluePill [12] board with an SD

card adapter connected through an SPI interface [22] to run

four threads recording secret data (that is set as PASSWORD)

continuously. When a concurrency bug was triggered in the

middle of a data store operation by enabling concurrent ac-

cesses of multiple threads to the single SPI, we observed two

cases with exploitable patterns. In the first case, one or more

characters out of the eight characters of PASSWORD would be

missing resulting into words such as ASSWORD. In the second

case, the words from different threads would interleave with

each other resulting into words such as PAPASSWORDSSWORD.

We note that while the first case happens only when SPI bus-

level locks are missing, the second case happens when any

of the bus-level or peripheral-level locks are missing. Once

such data corruption or loss happens, legitimate users may be

prevented from accessing their embedded systems. In another

example, the corruption may damage or even lose evidence

for investigation if the entered data is log/forensic data.
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while (true) {
DeviceBus :: callback_info *cb;
...
for(cb = callbacks; cb; cb = cb ->next) {

binfo ->semaphore.take () {   // Lock
cb ->cb() ; // S1-2: To handle devices
binfo ->semaphore.give () ;   // Unlock

}
...
// Code snippet to determine the sleep time
delay(t); // S3: To wait for job completion

}

Inner Loop

Outer Loop

Figure 9: Simplified code with enforced and ideal lock spans

for multiple devices.

Iteration 

Number
MS5611 ICM20789

…

905

S1. Read T904

S2. Measure P905

S3. Wait                   

S1. Read T904& P904

S2. Measure T905& P905

S3. Wait

906

S1. Read P905

S2. Measure T906

S3. Wait                   

S1. Read T905& P905

S2. Measure T906& P906

S3. Wait   

T : Temperature                       P : Pressure

: Inner Loop                       : Outer Loop

Figure 10: Iterative state machine transitions and operations

for both sensors.

5.6 Case Study II: Sensor Value Corruption

An RAV is controlled by a remote control interface such as

MAVLink [5]. This interface is known to be insecure [59, 71]

because it does not employ fundamental network security fea-

tures of encryption and authentication due to its computational

constraints and limited hardware resources. Surprisingly, we

found that this remote interface also allows direct access to

I2C. As a result, anyone can potentially send instructions to

any peripheral attached to I2C via MAVLink [18]. In fact, an

RAV platform employs multiple sensors to accurately mea-

sure the physical state which is critical for its safe operation.

Specifically, for controlling movements along vertical axis,

an RAV employing ArduPilot [11] measures various physical

states including the altitude (measured by barometers such as

MS5611) and the three dimensional angles and accelerations

(measured by an inertia sensor such as MPU6000). Hence, the

corrupted altitude or angle values can cause sudden vertical

movements or loss of the angular control of the vehicle, which

may eventually lead to a crash. Here, we focus on the altitude

corruption case.

Figure 9 shows a pseudo code corresponding to the device

driver of a peripheral. This code has two-layered nested loops

denoted as inner and outer loops. Those loops (outer + inner)

are iteratively executed with the following three states as

described in Figure 10.

• S1 (read): In this state, read the sensor value whose mea-

surement was scheduled in the previous iteration (e.g., a

sensor value from MS5611 is read at Iteration 905. This

value was scheduled to be measured at Iteration 904).

• S2 (measure): In this state, schedule a command to measure

void MS5611::run() {
...

state++;
if(state % 2) { // for odd iteration number (e.g., 905, 907..)

temp = read_temp();    // S1

measure_press();        // S2
}

else {  // even iteration number (e.g., 906, 908..)
press = read_press();  // S1

measure_temp();         // S2

}
altitude = conversion(temp, press);

...
}

Inner Loop

Figure 11: Simplified MS5611 device handler.

Inner Loopvoid ICM20789::run() {
...

temp = read_temp();    // S1

press = read_press();   // S2

measure();

…
altitude = conversion(temp, press);

...
}

Figure 12: Simplified ICM20789 device handler.

sensor value(s) for the next iteration (e.g., a sensor value

from MS5611 scheduled to be measured at Iteration 905 will

be read at Iteration 906).

• S3 (wait): In this state, sleep to wait for job completion

before the next iteration.

While the operations corresponding to the read and

measure states are performed in the inner loop, those cor-

responding to the wait state are performed in the outer loop.

For example, in ArduPilot [11], we found two barometers,

MS5611 and ICM20789, attached to I2C. These barometers

are widely used to calculate the altitude using the pressure

and temperature measurements. The code for MS5611 and

ICM20789 are presented in Figure 11 and Figure 12 respec-

tively. Specifically and interestingly, ICM20789 reads both

pressure and temperature values at each iteration and sched-

ules their measurements for the next iteration. In contrast,

MS5611 reads one of the pressure and temperature measure-

ments in one iteration, and the other one in the next iteration.

In this case, PASAN found that while Bus Lock is enforced,

Peripheral Lock is only partially enforced. Specifically, as

shown in Figure 9, since the existing lock does not cover the

code corresponding to the wait state, a different transaction

can execute in a different thread during the wait state of the

ongoing transaction. As such, both barometers might map the

temperature measurement to the pressure variable and vice

versa, or have sensor values corrupted due to the concurrent

access to these sensors from the remote control interface, e.g.,

MAVLink. As a fix, each driver should employ its own lock to

protect the transaction with its sensor, and the remote control

interface needs to respect these peripheral locks too.

Real-world Attack Scenario. As we mentioned earlier, the

remote communication interface (i.e., MAVLink in this case)

is insecure, but allows interfaced users to directly access I2C

or SPI. As such, if an attacker abuses the insecure remote
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interface and exploits this concurrency bug, it can corrupt the

measured sensor values. We experimented with two differ-

ent sensors measuring different states and attached them to

I2C: MS5611 and MPU6000 attached to Pixhawk 1 [23] that

is part of the 3DR IRIS+ RAV [3]. In the case of MS5611 (a

barometer), we launched a denial-of-service-like attack via

MAVLink by alternately issuing temperature and pressure

reading commands while the device was in the middle of exe-

cuting one of measurement transactions. When a concurrency

bug is triggered, MS5611 fails to complete the ongoing mea-

suring transaction; consequently, MS5611 reports an abnormal

altitude value. For example, if the current altitude is five me-

ters, it generates a corrupted value (ranging from -3,200 to

3,200 meters) and records it in the flight log. In our exper-

iments, the absolute values of the corrupted measurements

were always larger than 200 meters. Hence, this attack led to

corrupted altitude measurements and caused mission failures

by triggering “safe landing” at an unexpected location.

We also carried out a similar attack targeting MPU6000

(which is used as an accelerometer and gyroscope). The

concurrency bug exploitation causes MPU6000 to generate

corrupted acceleration and gyro values. In our experiments,

MPU6000 produced the three-axe acceleration values in the

range between -120 and -160 m/s/s, where the normal values

should have been between -10.0 and 10.0 m/s/s. Due to ab-

normally large acceleration values, this exploitation caused

the RAV to trigger safe landing or even crash due to severe

control instability.

We believe that the demonstrated concurrency bug exploita-

tion is a meaningful attack vector because of its stealthiness

into ArduPilot (and other autonomous vehicle control soft-

ware) and RTOSes. ArduPilot is one of the most popular RAV

control programs [56, 57]. As such, its source code is widely

adopted by various RAV vendors, such as Intel Aero [4], Par-

rot [6] and 3DR [3]. To support debugging and crash investi-

gation, ArduPilot also provides plentiful logging information

including those corresponding to sensor and control states,

and mission tasks. However, ArduPilot does not provide any

meaningful network system logging that requires the sup-

port of full-fledged operating systems (e.g., Linux). Instead,

ArduPilot uses a lightweight RTOS (i.e., ChibiOS) without

such features. Furthermore, ArduPilot’s logging system does

not record any information on MMIO accesses including

I2C and SPI. Besides, due to their nondeterminism, concur-

rency bugs are tricky to debug even in the environments with

powerful debugging tools [55]. Overall, due to the absence

of MMIO access and network traces, and difficulty in con-

currency bug debugging, concurrency bug exploitation is a

meaningful attack vector. It will remain an attractive attack

vector (from attackers’ perspective) – even more so after the

improvement of the MAVLink protocol security in the (near)

future.

Why peripheral access concurrency bugs are complex?

While PASAN detects the missing Peripheral Lock, cautious

readers might have found out that while a peripheral lock

within ICM20789 driver protects its transaction to the sensor,

a similar peripheral lock within MS5611 driver still fails to

protect its transaction. Due to the unique code structure within

the MS5611 driver, its de facto transaction with its sensor spans

into two iterations within the outer loop, e.g., calling the driver

twice, which is the only way to get both temperature and

pressure measurements to fulfill the computation of altitude.

Currently, PASAN extracts transaction spans covered by a

single lock span. If one transaction involves two outer itera-

tions of the loop as in MS5611’s transaction (i.e., subset trans-

action span case introduced in Section 5.2), PASAN partially

covers one outer iteration and could not extend to multiple

iterations because the driver itself does not implement the

whole transaction but relies on callees to accomplish it.

6 Discussion

Limitations Inherited from Existing Static Analysis Em-

ployed. PASAN requires call graphs to generate possible

thread call stacks (e.g., “Thread 1 and 2 Call Stack” in Fig-

ure 6). It also needs to identify aliases of function pointers for

indirect calls, lock objects, and accessed MMIO addresses.

As such, PASAN utilizes points-to analysis [76] for identify-

ing call graphs (including indirect function calls) and alias

variables. The current tools that PASAN relies on have two

well-known limitations in tracking aliases, which can cause

inaccuracy in our concurrency bug detection.

One of the common limitations of points-to analysis is to

over-approximately resolve possible pointers [37] by encom-

passing infeasible function calls or aliases. This may result

in false positives in identifying aliases. Specifically, points-

to analysis may mistakenly identify different MMIO access

variables as identical aliases (causing false positives in con-

currency bug detection), different lock object variables as

identical aliases (causing false negatives), and infeasible indi-

rect call targets (causing false positives). We did not observe

such inaccurate results in our experiments.

The other common limitation of points-to analysis is fail-

ure in tracking aliases to mitigate state explosion of points-to

analysis [52, 64]. Specifically, points-to analysis can fail to

identify the aliases of MMIO access variables (causing false

negatives in concurrency bug detection) and aliases of lock ob-

ject variables (causing false positives). Furthermore, missing

indirect call targets (e.g., device drivers) can cause PASAN

to miss transaction spans (causing false negatives).

Moreover, lockset analysis cannot take into consideration

the timeout locks that are automatically unlocked after a given

time at run time to prevent deadlocks. However, it is challeng-

ing for static analyses to estimate the lock spans affected

by the timing behavior of the timeout locks. Hence, PASAN

conservatively considers the timeout locks as typical locks.

This might cause false negatives in concurrency bug detection
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although we did not observe any in our experiments.

To alleviate the above limitations, we could employ either

(1) more advanced static analysis works [63,86] that could re-

duce false positives in alias identification or improve points-to

analysis algorithm to reduce false negatives in alias identifi-

cation as DR. CHECKER [64] pointed out, or (2) dynamic

analysis with peripheral modeling as proposed in the prior

work [41, 51]. Especially, dynamic analysis can overcome

limitations in handling special lock operations (e.g., timeout

locking) with emulated boards [41,51]. However, dynamic ap-

proaches may not be directly applicable because they cannot

model various peripheral devices. Furthermore, they suffer

from a limited analysis coverage as they can only analyze

executed code. Further improvement in this direction will be

our future work.

Using Incorrectly Inferred Transaction Spans. Achiev-

ing perfect accuracy on the inference of transaction spans is

not the main goal for our project. However, we point out that

even the incorrectly inferred transaction spans can be useful.

There are three categories of such transaction spans: subset,

superset, and mixed, as explained in Section 5.2. Thanks to

these transaction spans, PASAN did not miss the concurrency

bugs in the MS5611 case (Section 5.6). On the flip side, we

did have several false positive cases caused by inaccurate

transaction extraction.

Validity of Protection for All Peripheral Devices. We

cannot ascertain whether a peripheral device is tolerant to

buggy concurrent accesses without manual verification due

to its black-box nature. However, we observe that device

drivers often perform read-only accesses to the concurrency-

tolerant peripherals. Based on this observation, we employ

“write-access-inclusion” heuristic in PASAN to exclude those

read-only accesses, which helps remove (false-positive) trans-

actions of those concurrency-tolerant peripherals. As a result,

we observed only one false-positive case with LSM9DS0 (de-

tailes in Section 5.3) due to the concurrency bug-tolerant

peripheral.

Validity of “Write-Access-Inclusion” Heuristic. PASAN

analyzes all transactions involving at least one write access

to an MMIO address, which is the most common case based

on our experience. We found that including read-only transac-

tions would cause many false positives because the status of

some peripherals (e.g., timer and USART) are concurrency-

tolerant and hence not vulnerable to unprotected concurrent

reads as they maintain their own internal states. Instead, this

heuristic can introduce false negatives by missing read-only

transactions that are not tolerant to concurrency bugs.

Limitation in Handling Individual Interrupts. PASAN

does not support individual interrupt requests (IRQ) as it

would require non-trivial manual efforts to map into IRQs

and their corresponding bit masks which enable/disable in-

dividual interrupts. Also, one mask can be related to multi-

ple IRQs [51]. Furthermore, some interrupts are enabled/dis-

abled dynamically. These challenges can only be addressed

through a dynamic analysis tool with access to the target

device. PASAN, as a static analysis tool, cannot support in-

dividual IRQs, and may lead to false-positives. Fortunately,

we have manually confirmed that, in our evaluation, no false

positive was caused by individual IRQs.

Binary Firmware Support. While we evaluate PASAN

on the source code of firmware in this paper, the fundamen-

tal mechanism may become applicable to binary firmware,

after addressing the following technical challenges. We iden-

tify two specific challenges in obtaining necessary inputs

from binary firmware: (1) A binary firmware needs to be

lifted into compatible LLVM bitcode. Although there are mul-

tiple approaches to doing this [27, 48, 80, 81], their lifting

results are either incompatible or immature for embedded

systems. For example, the results for ARM 32bit architecture

(which is dominant on embedded systems) are not mature

enough8. (2) PASAN must identify key functions, such as

locks, multi-threads and multi-process management functions.

If a firmware is stripped, this information needs to be supple-

mented by other sources such as pattern-based function iden-

tification [34], and binary-based code similarity search [49]

to identify these key functions.

Automatic Lock Enhancement. Since PASAN detects in-

valid concurrency lock behavior, it is a promising idea to use

this information to correct or enhance locks automatically.

Such an automated approach demands very high accuracy on

the extracted lock spans. Otherwise, it may introduce unstable

behavior. We reserve this direction as our future work after

we achieve higher accuracy in lock span extraction.

7 Related Work

Concurrency Bug Detection. The concurrency detection

techniques in the prior art can be broadly classified based on

their analysis methodologies which include static [13, 15, 19–

21, 24, 32, 33, 40, 50, 69, 79], dynamic [67, 83, 84], and hybrid

(static and dynamic) analysis [54, 55, 62, 67, 73]. There are

also some algorithmic [60, 66] and manual detection tech-

niques [32, 36, 42, 65].

Prior static analysis-based schemes are limited to analyzing

single memory objects without considering transactions for

MMIO accesses. Hence, unlike PASAN, they cannot discover

transaction- and address-range-aware concurrency bugs. The

dynamic analysis-based approaches are applicable to binary-

only programs, they require the aid of specialized hardware,

and they handle only limited types of concurrency bugs. Re-

searchers have also proposed hybrid analysis approaches to

perform dynamic analysis on top of the static analysis results.

8Out of the four cited tools, only RetDec [27] and mctoll [81] support

ARM 32bit architecture. In our experience, RetDec generates severely incor-

rect control flow results and mctoll generates empty bitcode.
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However, these hybrid analysis approaches require direct ac-

cess to the target peripheral devices. We note that it is not

practical to find concurrency bugs individually in each em-

bedded platform. Development of theoretical algorithms and

manual techniques require non-trivial efforts and instrumen-

tation in identifying transactions of peripherals. In summary,

unlike PASAN which discovers concurrency issues for periph-

erals, the scope of the approaches in the prior art is limited to

memory object-level concurrency bugs.

Device Driver Vulnerability Detection. Vulnerabilities

hidden in the device driver have been discovered statically [58,

64, 70] as well as dynamically [7, 44, 72, 75, 77, 85]. Tradi-

tionally, static analysis relied on symbolic execution [58, 70]

to find bugs and vulnerabilities. In a more recent work,

DR.CHECKER [64] leveraged compiler-level program analy-

sis (e.g., points-to analysis and data flow analysis) to find bugs.

Moreover, Charm [77] carried out dynamic analysis of de-

vice drivers in mobile systems. PeriScope [75] wisely hooked

into the page fault handler in the kernel to detect vulnera-

bilities while fuzzing the Wi-Fi drivers. While vUSBf [72]

fuzzed the USB device drivers, Syzkaller [7] integrated multi-

ple kernel fuzzing systems (such as DIFUZE [44]) to fuzz the

kernel functionality including kernel drivers. However, none

of these vulnerability detection approaches can discover bus-

and peripheral-level concurrency issues.

Embedded Firmware Analysis Framework. Both,

static [43,45,46,74] and dynamic [35,38,39,41,51,53,82,87],

approaches have been employed for analyzing embedded

platforms. Following the static analysis approach, Costin et

al. [45], Firmalice [74], and PIE [43] found several network

security vulnerabilities and imperfect API implementations.

FIE [46] was specifically designed to find memory corruption

bugs. To discover bugs such as memory corruption or program

crash, IOTFuzzer [39] was designed to fuzz the bare metal

Internet of Things (IoT) devices. To enable instrumentation

and monitoring, schemes in the existing literature rely on de-

vice emulators [35] or specific hardware interfaces. Moreover,

researchers have also analyzed a limited number of platforms

(e.g., Linux-based platforms) on the emulated environments

which are already well-developed in emulator development

communities [38, 87]. To overcome full emulation require-

ments, some recent works have been proposed [41, 51, 53].

While Pretender [53] still requires the original hardware to

record the MMIO’s activity, both P2IM [51] and Halucina-

tor [41] cannot correctly handle some hardware devices such

as DMA. Finally, none of these studies emulated any device

attached to the I/O which limits the coverage of the anal-

ysis results. Overall, unlike PASAN, the dynamic analysis

approaches in the prior art are limited by the requirement

of significant engineering efforts in generating analysis envi-

ronments with actual boards and specialized hardware (e.g.,

GDB, Bluetooth, or client devices). Furthermore, both static

and dynamic analysis approaches focus on program crash,

memory corruption and known security threats.

8 Conclusion

Concurrency bugs in embedded platforms (e.g., RAVs) may

cause a variety of safety and security issues (i.e., from physical

system failure to security critical data corruption). Unfortu-

nately, detection of concurrency bugs is especially challenging

in embedded platforms due to the intricate interplay of the

bus-level and peripheral-level state machines. In this paper,

we propose PASAN, a device-agnostic static analysis-based

approach which addresses this challenge. PASAN detects pe-

ripheral access concurrency bugs automatically by pursuing

a transaction-aware and address-range-aware strategy. We

validate the capabilities of PASAN by evaluating it on seven

real-world embedded platforms, and discover a total of 17 con-

currency bugs in three different platforms. We have reported

these findings to the corresponding parties.
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