

DEPARTMENT OF PHYSICS University of Southern California Los Angeles, California 90007

DER ABUTHEN OF THIS DECUMENT IS UNLANITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

1Mast6R

USC-136-150

----- DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily states or reflect these of the United States Government or any agency thereof.

PASSAGE OF CHARGED PARTICLES THROUGH MATTER

by

Hans Bichsel[†] Department of Physics University of California Berkeley, California

July 1969

136

* This work was supported by Public Health Service Grant No. CA-08150 from the National Cancer Institute and in part by the U. S. Atomic Energy Commission Contract No. AT(04-3)-136, both with the University of Southern California.

+ On leave of absence from the University of Southern California, Los Angeles, California.

Table of Contents

<u>Cha</u>	<u>P</u>	age
1.	INTRODUCTORY NOTE	1
2.	ATOMIC COLLISION CROSS SECTIONS	2
3.	STOPPING POWER FOR HEAVY CHARGED PARTICLES	6
4.	RANGE-ENERGY RELATIONS	11
5.	SHELL CORRECTIONS AND I-VALUES	14
6.	MISCELLANEOUS EFFECTS	16
•	A. Charge State Correction	18
	B. Very Low Velocity Particles	19
	C. Small Volumes	22
	D. Channeling	23
7.	STRAGGLING OF HEAVY PARTICLES	24
	A. Thin Absorbers	24
	B. Thick Absorbers	26
8.	COULOMB AND MULTIPLE SCATTERING, AND NUCLEAR INTERACTIONS	29
	A. Coulomb Scattering	29
	B. Multiple Scattering in Thin Absorbers	30
	C. Multiple Scattering in Thick Absorbers	33
	D. Nuclear Interactions	33

<u>Chapter</u>

2

9.	ELECT	RONS	5	• •	•	•	• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	34
	Α.	Res	tri	cte	ed	Sto	opp	ing	g I	Pow	er	· (L	ΕT).	•	•	•	•	•	•	36
	Β.	Pra Pow	icti ver.	.cal	. 0	on	sid	era •	iti	ion	s :	for	s	top	pi •	ng	•	•	•	•	36
	С.	Ele in	cti Thi	ron Ick	Ra Ab	ing so	es rbe	and rs	1 · I •	Ene	rgy •	7 D	ep	osi	ti	on •	•	•	•	•	37
10.	MEAN	ENER	GY	FOF	t	ΉE	FO	RM/	\T I	[ON	01	FΑ	N	ION	P	AI	R	•	•	•	39
	Α.	Gas	es.	•	•	• .	• •	•	•	•	•	•••	•	•	•	•	•	•	•	. •	39
•	Β.	So1	ids	5.	•	• .	••	•	•	•	•	•••	•	•	•	•	• .	•	•	•	39
ACKN	OWLEDG	MENT	•	•	•	•	• •	•	•	•.	•	• •	•	•	•	•	•	•	•	•	42
REFE	RENCES	• •	•••	• •	•	•	•••	•	•	•	•	•••	•	•	• .	•	•	•	• ·	•	43
TABL	ES	• •	• •	•	•	•	•••	•	•	•	•	• •	•	•	•	•	•	•	•	•	54
FIGU	RES .	••	• •	•	•	• .	••	•	•	•	•	••		•	•	•	•	•	•	•	74
		•				•															
						·															
				-				•											•		
·	÷																				
				•																	
				-								•									
	•									•											

1. INTRODUCTORY NOTE

This article presents some of the commonly used formulas and principal data on the passage of fast charged particles through matter. Because of space limitations, much useful material has been omitted. The bibliography includes mainly the newest available references. Most of the technical reports cited are available from the Clearing House for Federal Scientific and Technical Information, Springfield, Va. 22151. An extensive review of the field is found in Publication 1133 of the National Academy of Sciences - National Research Council (NA67). The "Bibliography of Atomic and Molecular Processes" (ORNL-AMPIC 11, UC-34-Physics for January-June 1968), is published semiannually by the Atomic and Molecular Processes Information Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. It contains sections concerned with energy losses, ionization, particle range, etc.

A number of papers concerned with particles at the lowest energies considered in this article have appeared in the "Proceedings of an International Conference on Atomic Collisions and Penetration Studies with Energetic Ion Beams", Chalk River, Ontario, September 18-21, 1967 (DA68), and in the abstracts of the "V International Conference of the Physics of Electronic and Atomic Collisions", (FL67).

2. ATOMIC COLLISION CROSS SECTIONS

The following notation will be used:

The kinetic energy of particles will be denoted by T, the energy of a secondary electron (δ -ray) by E or by W if expressed in atomic units [Eq. (2-3)]. Thicknesses s are usually measured in g cm⁻². The stopping power (usually called dE/dx) will then be denoted as S = -dT/ds.

Except for particles with very small or extremely large velocities v, the interaction between energetic charged particles (of charge ze) and matter leads mainly to the excitation and ionization of atoms or molecules (FA63). The probability for a collision leading to an atomic state of energy E_n is described by the collision cross section σ_n . Relatively little information is available about the details of σ_n (e.g., FC68, RU68, OL67, ES69). In energy loss experiments, the quantities observed are usually averages over E_n and σ_n (e.g., the stopping power dT/ds is $\sum_{n=1}^{\infty} E_n \sigma_n$), and even a coarse approximation of σ_n will give satisfactory answers.

Frequently, the free electron approximation is used for a description of σ_n . The energies E_n then are continuously distributed and are equal to the electron energy E. The collision cross section is differential with respect to

E and is given, nonrelativistically, by (see, e.g., BI68).

$$d\sigma' = (PZ/\beta^2)E^{-2} dE$$
 (2-1)

where
$$P = 2\pi z^2 mc^2 r_0^2 N_0/A = 0.15354 \times z^2/A$$
 MeV/cm²
 $z = charge number of incident particle
 $\beta = v/c$, velocity of incident particle relative
to velocity of light [see Eq. (8-3)]
 $r_0^2 = e^4/m^2c^4 = 7.9408 \times 10^{-26} cm^2$ (square of
"classical electron radius")
 $m = rest mass of electron, mc^2 = 0.511004$ MeV
 $N_0 = Avogadro's number = 6.02217 \times 10^{23}$
 $e = electron charge$
 $E = energy of electron after collision$
 $A = atomic weight of stopping material, in grams$
 $Z = atomic number of stopping material.$$

Using the Born approximation, Bethe (BE30) has given the non-relativistic quantum mechanical derivation of $d\sigma$ for bound electrons:

$$d\sigma = 2(P/\beta^2) \sum_{i} J_i(n_i, W) dW \qquad (2-2)$$

where J_i is called the excitation function (WA56).

3:

Electron energies W and equivalent particle energies η_i are measured in atomic units

$$W = E/[(Z - d_{i})^{2}R_{y}]$$
(2-3)

$$n_{i} = mc^{2}\beta^{2}/[2R_{y}(Z - d_{i})^{2}] = 18,800 \beta^{2}/(Z - d_{i})^{2}$$
(2-4)

$$R_{y} = Rydberg = 13.60 eV$$

$$d_{i} = electron defect, depending on the atomic shell i$$

$$(i = K, L, M, . . . shell)$$

$$d_{K} = 0.3$$

$$d_{L} = 4.15$$

The excitation functions J_i have been evaluated, using hydrogenic wavefunctions, for the K, L and M-shells (WA51, WA52, WA56, BI67, KM66, KH68). While J_K probably is reasonably correct for all Z, it appears that J_L is acceptable without modifications for Z > 30 only, and J_M will have to be recalculated with more realistic wavefunctions.

An appreciation of the difference between the two approximations, do' and do, can be obtained from a study of a plot of $J_i W^2$ versus W (Fig. 1). Further comments will be made later at appropriate places (see also BI69).

Generally, the Born approximation is valid for $\beta >> z/137$ (protons with $\beta = 1/137$ have a kinetic energy of 25 keV). Some tests have been made for small particle

velocities: for protons incident on helium, the Bethe-Born approximation is valid for energies above 450 keV (TH67), while for the vacuum ultraviolet emission of hydrogen gas, produced by fast protons, it appears to be valid above

150 keV (DD68).

Almost 100 papers concerning atomic and molecular excitation by electron impact alone are listed in the "Bibliography of Atomic and Molecular Processes" for January to June of 1968. In particular, the following may be of interest: ES69, KY68, OL67, VS68.

Measurements of the excitation of the inner shells with protons have been made: KP67, DK68; see KJ68 and ML58 for further references. At low energies it is necessary to take into account the Coulomb deflection of the incident particle to get reasonable agreements with the Born approximation (BL69). Similar corrections are necessary for incident electrons.

3. STOPPING POWER FOR HEAVY CHARGED PARTICLES

Since the stopping power of heavy charged particles depends largely on the velocity and the charge of the particle, but not its mass (IS67), the discussion of this section applies to all heavy charged particles, with the exceptions specified in Sec. 6. The tables and data presented apply to protons and can be converted for other particles with the procedures described in Sec. 6.

The mean energy loss per unit path length is called the stopping power S. It is defined by

$$S = -dT/ds = \int W d\sigma = (2P/\beta^2) \sum_{i} B_{i} \qquad (3-1)$$

where the stopping number B; is defined by

$$B_{i} = \int_{I_{i}}^{\infty} J_{i} W dW \qquad (3-2)$$

 $I_i = W_{min}$ is the energy to lift an electron from the i-th shell to the lowest unoccupied atomic level, and the integral includes a sum over the discrete atomic energy levels. For large velocitics, Bethe (LB37) has derived the asymptotic expression

$$B' = \Sigma B'_{i} = Z \ln(2mv^{2}/I_{ave})$$
 (3-2a)

I ave is defined in Eq. (5-1). B_L and B'_L are shown in Fig. 2. The "shell corrections" are defined by

$$\Sigma C_{i} (\eta_{i}, Z) = B' - \Sigma B_{i}$$
(3-3)

and are thus an integral part of the quantum mechanical theory. For higher order Born approximations they will presumably depend on the particle charge z. If S is calculated using the free electron cross sections do', an unphysical minimum energy $E_{min} = I_e^2/2 \text{ mv}^2$ has to be used as the lower limit of the integral to get approximately the correct stopping power: $S' = (P/\beta^2) \int_{\substack{2mv^2 \ (Z E/E^2) \ dE}}^{2mv^2} dE = (2PZ/\beta^2) \ln(2mv^2/I_E)$ (3-4) E_{min}

This choice of E_{min} is necessary to take into account the increase of J over J' at small energies W (see Fig. 1)

but it will not give exact agreement with the quantum mechanical theory. To achieve this, it is necessary to choose

$$I_{e} = I_{ave} \exp \left(\Sigma C_{j}/Z\right)$$
(3-5)

where I_e now of course is energy dependent.

For the practical calculation of stopping power, the following, relativistically correct, formula is used:

S =
$$-dT/\rho ds = (0.30708/\beta^2) z^2 (Z/A) [f(\beta) - ln I_{ave} - \Sigma C_i/Z - \delta/2] (3-6)$$

Stopping power in units MeV $cm^2/g = keV cm^2/mg$, and z, β , Z and A are defined with Eq. (2-1).

 ρ = density of stopping material

C; = shell correction of the i-th shell

 δ = density correction at high energies

I ave = average excitation potential per electron of stopping atom (including low-velocity density effect), a constant by definition.

$$f(\beta) = \ln \left[2 \ mc^2 \beta^2 / (1 - \beta^2) \right] - \beta^2$$
 (3-7)

 β^2 and $f(\beta)$ are listed in Table I as functions of the kinetic energy T of several particles. $f(\beta)$ is applicable for any charged particle of velocity $v = \beta$ c and mass M >> m. If an ion of mass M_i and kinetic energy T_i is under consideration, its velocity can be found by looking up in Table I the value of β corresponding to a proton energy

$$\Gamma = T_{i}/m_{r} \tag{3-8}$$

where $m_r = M_i c^2/938.259$ MeV. The shell corrections can be obtained from Fig. 4, and I-values from Fig. 5.

For most metals the density effect δ is negligible for proton energies below 1000 MeV. For details see ST67, FA56 and p. 69 of BK58. Experimental confirmation is found, e.g., in NM67.

At low energies (proton energies of less than 0.5 MeV, alpha particle energies below 2 MeV), the charged particle will not have its full charge (see Sec. 6).

A list of values for S computed (ref. BJ67) from Eq. (3-6) is given in Table II. For emulsion, see BD63 and BA63. For the other materials, the I-values given in Fig. 5 were used. The shell corrections are discussed in Sec. 5. The density effect is not used.

For proton energies of 0.05 to 12 MeV, the experimental stopping powers for many substances are given in Table III. Most of these numbers are read from the graphs of refs. WH58, and the tables of AH67 and AS68. This seems the best way to average the experimental results, but see also MA68, OR68, WM67, JK68. The stopping cross section in $eVcm^2$ per atom can be obtained by multiplying S with the factor $(A/N_0) \times 10^6$ (Avogadro's number N₀, atomic weight A).

For protons in other elements, interpolation for Z by the method of Lindhard and Scharff (LS53) can be used but direct computation from Eq. (3-6) is recommended. (A discussion of experimental results is found in BK67).

The stopping power of compounds is within a few per cent an additive function of the stopping power of the elements which make up the compound (Bragg rule, see, e.g., BI68 or BT68). Precise measurements at 300 MeV (TH52) have shown deviations of about 1 per cent from additivity. At energies between 4 and 30 MeV energy dependent deviations of up to 3% have been observed for Al_2O_3 , SiO_2 and Lucite (TS67 and BT68). At small energies, energy loss measurements (SZ65) have also shown deviations from the Bragg rulc.

For the approximation with an analytic function, the expression

 $S = C T^{\alpha}$

may be used over limited energy ranges; e.g. for protons

with 5 < T < 20 MeV in Ge, C = 136.7 and α = -0.7313 will be accurate to better than 0.4% (see BI68 for other values). If particles of initial energy T are absorbed in a material of thickness s, the mean residual energy \overline{T}_1 of the particles can be calculated directly:

$$\overline{T}_{1} = (C_{R} T^{\gamma} - s)^{1/\gamma}$$

where $C_R = (C \gamma)^{-1}$ and $\gamma = 1 - \alpha$.

If the stopping power is used, successive approximations have to be calculated. The computer program of BJ67 produces the coefficients C, $C_{\rm R}$ and α .

4. RANGE-ENERGY RELATIONS

As long as fewer than about 40% of the particles are removed from the incident beam by nuclear reactions, the <u>median</u> projected range $R_m(T)$ is defined as the thickness of material through which one-half of the incident monoenergetic charged particles of energy T are transmitted (see p. 203 of ref. BI68).

The <u>mean</u> range of monoenergetic particles of kinetic energy T is defined by

$$R(T) = \int f(R) R dR \qquad (4-1)$$

where f(R) is the experimentally measured distribution function (the "probability density" of the mathematicians) and can be determined quite readily in cloud or bubble chambers and in photographic emulsions (except for problems connected with the last bubble or grain). It is not a practical quantity for experiments in which the tracks of the particles cannot be followed. In particular, the <u>mean</u> <u>projected</u> range is difficult to determine experimentally because of the removal of particles from the beam due to nuclear reactions and multiple scattering.

At energies higher than a few MeV, the number of particles is sensibly reduced owing to nuclear reactions (ref. KO64, BI60 and BA61), and appropriate corrections have to be applied (see Sec. 8D).

The quantity related to R(T) which can be calculated from stopping power theory is the theoretical mean

range $R_t(T)$ in the continuous slowing down approximation (csda):

$$R_{t}(T) = \int_{T_{1}}^{T} S^{-1} dT \qquad (4-2)$$

In principle, T_1 is the thermal energy of the particle. For small velocities the description of the stopping power given in Sec. 6B can be used. If S is not known accurately at these energies, a more accurate result for $R_t(T)$ may be obtained if T_1 is chosen to be a higher energy (e.g., 1 MeV for protons) and an experimental value of

 $R(T_1)$ is added to the integral to take care of the low energy contribution to the range. For experimental measurements it will be necessary to consider the detector threshold energy as the energy T_1 (BM57 and HP60).

A small difference between R(T) and $R_t(T)$ is caused by the use of the csda approximation (LE52 and TT68). A simple relation exists between the ranges for different particles. It is discussed in Sec. 6.

Mean csda ranges for protons in several elements have been computed (ref. BJ67) by numerical integration of the values of Tables II and III. They are listed in Table IV. Values for R(1 MeV) are obtained from refs. BF60, MR67 and RY55. For other elements, the method of ref. SU60 can be used to obtain range-energy relations. For other particles (mesons or heavier ions) see Sec. 6. Extensive tabulations can be found in refs. JA66, BJ69, BB67 and NO67.

For high energies ($\epsilon > 1,000$ MeV for protons) nuclear interactions absorb most of the particles and range becomes a rather meaningless term.

While the straggling in pathlength can be represented approximately by a gaussian (see Sec. 7), the asymmetry of multiple scattering (the zig-zag path taken by a particle can only be longer than the foil thickness, see Sec. 8), and the residual skewness of the electron-loss straggling cause an asymmetry in the range straggling. The median range therefore, is different from the mean range.

The total median range $R_m(T)$ (equal to the foil thickness), neglecting the straggling asymmetries, can be obtained from the computed mean pathlength $R_t(T)$ by the application of the multiple-scattering correction ΔR :

 $R_{m}(T) = R_{t}(T) - \Delta R$

The relative correction of $\Delta R/R$ for several elements is plotted in Fig. 3. Further discussion is given in refs. BU60, BF61, BZ67 and TB68. No discussion of the relation of mean and median range seems to be available (see Sec. 7).

5. SHELL CORRECTIONS AND I-VALUES

In principle, the stopping power S can be calculated theoretically using atomic collision cross sections [Eq. (3-1)]. At present, no complete sets of cross sections for all shells are available, and the expression Eq. (3-6) is used for the calculation of S. The unknown functions B_K , B_L ,... are then replaced by one unknown constant, $I=I_{ave}$, and the unknown functions C_i , which are important only at small energies. If extensive experimental data are available, the shell corrections $C/Z = \Sigma C_i/Z$ can be determined experimentally (AN69), together with the Usually, experimental uncertainties and limited I-value. coverage in energy do not permit this approach. In a modification of an earlier approach (BI61), it is suggested now, that, for $8 \le 7 \le 25$, Walske's shell corrections (WA52, WA56, BI67, KH68) be used in modified form:

$$C/Z = [C_{K} + V C_{L}(H \beta^{2})]/Z$$
 (5-1)

with parameters H, V and I determined in a least squares fit to experimental data. Similarly, for $Z \le 8$, $C/Z = V C_K (H\beta^2)$. For $Z \ge 25$, Bonderup's shell corrections C_B (B067) are used, also in a modified form:

$$C/Z = V C_{B} (H v^{2}/v_{o}^{2}Z)/Z$$
 (5-2)

Good fits to experimental data for protons and deuterons are obtained as long as $C_B \ge 0$. Values for H, V and I may be found in BJ67. Typically, for $Z \ge 47$, H = 0.755, V = 0.68 and $I_{Ag} = 476$ eV, $I_{Au} = 780$ eV. For Z = 29, H = 0.55, V = 0.61 and $I_{Cu} = 319.5$ eV. These fits include effects due to the higher Born approximations and are therefore only valid for particles of charge +e.

It was found that the least squares fits do not show singular and distinct minima. For experimental data covering a limited energy range, different local minima will give almost the same χ^2 . This is fairly obvious from [Eq. (3-6)]: for a limited velocity range, an increase in I can be almost entirely compensated by a decrease in the shell corrections.

Values of C/Z for protons and deuterons adopted in this paper are given in Fig. 4.

While I-values are properly defined by:

$$\ln I_{\text{ave}} \equiv \sum_{n} f_{n} \ln I_{n}$$
 (5-3)

(DT68), only a few values for light elements have been calculated with this expression (BE66, WH33). They are not as accurate as the experimental values. The quotient k = I/Zis expected to be a constant if I is evaluated using the Thomas-Fermi model (BL33). Fig. 5 shows a plot of the best available values of k. Both the rise of k for $20 \le Z \le 30$ and the oscillation for even and odd values are unexpected. The interpolation schemes suggested in the past (DT68) cannot be considered reliable, and further measurements appear to be very desirable.

6. MISCELLANEOUS EFFECTS

A difference in the ranges of positive and negative mesons has been observed (BD63, HL69). Similarly, Andersen, Simonsen and Sørensen (AS69) found a difference between the stopping power of particles of charge one (p,d) and of charge two (He³, He⁴). This difference presumably is caused by effects due to higher Born approximations. In the further discussions of this section, these effects are implicitly included in the definition of z^* .

The first Born approximation used in the derivation of the collision cross sections, Eq. (2-2), is valid for $\beta >> \beta_1 = z/137$. For particles with $\beta < \beta_1$, atom-atom collisions will contribute increasingly to the stopping process, and an approach based on the use of the Thomas-Fermi model of both the incident ions (with an effective charge z*e<ze) and the absorber atoms has been fruitful (see Sec. 6B).

The stopping power S_M for any particle of mass M, nuclear charge ze (values for different particles are given in Table V) and kinetic energy T can be calculated from the proton stopping power S_n with:

$$S_{M}(T) = z^{*2} S_{p}(\tau)$$
 (6-1)

where $\tau = T/m_r$ and z^* is discussed in Sec. 6A. Similarly, a simple relation exists between the range R_M of the particle and the range R_p of a proton:

$$R_{M}(T) = (m_{r}/z^{2}) R_{p}(\tau) + m_{r}z^{2/3} C_{z}(\beta/z)$$
 (6-2)

where $m_r = Mc^2/938.259$ MeV, and the second term is called the range extension caused by the reduced charge z^* . C_z is a universal function for any ion in a specific substance. For emulsion, C_z is found in Fig. 5 of ref. HP60 and it is defined for any substance in Eq. (7) of ref. HP60 (see BB67 for data). Another approach can be used: Use Eq. (6-2) to find the range difference $R_M(T) - R_M(T_1)$ and add $R_M(T_1)$ as defined in Sec. 6B to find R(T).

In general, a numerical calculation for a specific case, using Eq. (3-6) with appropriate effective charge z^* will be preferable to the use of Eq. (6-2).

Examples

1. The mean range of 20 MeV muons ($m_r = 0.1126$ from Table V) in Al is:

 $R_{\mu}(20 \text{ MeV}) = 0.1126 \times R_{p}(177.6 \text{ MeV}) = 0.1126 \times 27.15 = 3.057 \text{ gcm}^{-2}$

2. The mean range of 50 MeV alphas ($m_r = 3.9726$) in copper is:

 $R_{\alpha}(50 \text{ MeV}) = (3.9726/4) \times R_{p}(12.602 \text{ MeV}) = 0.3219 \text{ gcm}^{-2}$

where R_p is obtained from Table IV and C_z has been neglected. An extensive discussion for heavy ions is given in NO67, with many graphs for different incident particles.

6A. Charge State Correction

For velocities $\beta < \beta_2 = 0.04 \ z^{2/3}$ it is observed that the nuclear charge ze is not fully effective. A reduced effective charge z*e is used in Eq. (3-6) instead of the nuclear charge ze (RO60, NO67, HP60). If z* is defined to give the correct observed stopping power, it is not equal to the mean charge per particle of a beam leaving an absorber (PB68, BG65). With an accuracy of about 5%, z* can be obtained from

 $z^*/z = 1 - \exp(-1.316x + 0.1112x^2 - 0.0650x^3)$ (6-3) where $x = 100 \beta/z^{2/3}$. This expression is valid for x > 0.27. In gases, the values are several percent smaller (RS60). It should be noted that the approach described in the next section overlaps the range of validity of Eq. (6-3).

For ions with $21 \le z \le 39$, Hvelplund and Fastrup (HV68) have found a periodic dependence of the stopping cross section on z for a carbon absorber. Similar effects were found in WI68 and HA68. Fractional charges for carbon absorbers in CC67 agree with Eq. (6-3) to better than 5% for most ions. The fluctuations for different absorbers found in their Table III could be due to shell corrections.

When available, experimental data should be used. Recent papers include:

Br and I ions in Be, C, Al, Ag, Au	MB66
0 ¹⁶ ions in Ag, Au; S ³² ions in Au	AH68
S^{32} , Cl ³⁵ , Br ⁷⁹ , I ¹²⁷ ions in Mylar	PB68
O and Cl ions in C, Al, Ni, Ag, Au	BG65
I ¹²⁷ ions in C, Al, Ni, Ag, Au, UF ₄	BN67

C, N. O,	F, Ne	in Be, C	CB68
21 s z s	39 in	С	HV68

Interesting results for charge state populations $(I^{127}$ in gas and solid) have been found by Moak <u>et al</u>. (ML68). Many references to earlier work are included.

6B. Very Low Velocity Particles

At low velocities, $\beta \leq \beta_1 = z^{2/3}/137$, ions will carry a reduced charge, and for $\beta <<\beta_0 = 1/137 = 0.0073$, they will be neutral. The collisions then will be between neutral atoms, and are commonly called "nuclear collisions" (LS63, OH63). Even for this case, energy loss to atomic electrons is still possible (LS63). From a Thomas-Fermi description of the atoms, it is expected that the following dimensionless parameters should result in universal rangeenergy curves:

Energy $\varepsilon = 32.53 \times T(\text{keV}) M_2 / [zZ(M_1 + M_2)\sqrt{\zeta}]$ (6-4) Range $\rho = 1.660 \times 10^5 \times R(\text{mgcm}^{-2}) M_1 / [(M_1 + M_2)^2 \zeta]$ (6-5) where

- M_1 = Atomic mass of incident particle
- M_2 = Atomic mass of absorber material
- z = Atomic number of incident particle (usually called Z₁)
- Z = Atomic number of absorber material (usually called Z₂)
- $\zeta = z^{2/3} + z^{2/3}$

It is found that the stopping power consists of contributions by electronic and nuclear stopping:

$$S = S_e + S_n.$$
 (6-6)

From (LS63):

$$S_{\rho} = k \sqrt{\epsilon}$$
 (6-7)

where

$$k = 0.0793 \times \xi_{e} \sqrt{zZ} (M_{1} + M_{2})^{3/2} / [(z^{2/3} + Z^{2/3})^{3/4} M_{1}^{3/2} M_{2}^{1/2}]$$
(6-8)

and ξ_e is approximately given by $z^{1/6}$. This formula is valid for $\varepsilon < 1000$.

The nuclear collision stopping power depends on the ion-atom potential (discussed e.g., in NV66, KE68, LS63, LN68). From Table I of SC66, the following analytic form has been derived (similar to an expression given in BS68)

$$\left(\frac{d\varepsilon}{d\rho}\right)_{n} = 0.5455 \ln(\varepsilon) / [\varepsilon(1-0.9988 \times \varepsilon^{-1.5391})]$$
(6-9)

and

$$S_{n} = 1.96 \times 10^{-4} \frac{d\varepsilon}{d\rho} M_{2}(M_{1} + M_{2})\sqrt{\zeta}/(zZM_{1})$$
(6-10)
$$S_{n} \text{ in keV/mg cm}^{-2}.$$

It is seen that $(d\varepsilon/d\rho)_n$ is a universal function of ε , while S_e , through k, depends on zZ. It is therefore only possible to produce a universal range curve $\rho(\varepsilon) = \int_0^{\varepsilon} d\varepsilon'/(d\varepsilon'/d\rho)_n$ for the nuclear collisions, and if the electronic collisions are of importance, different range curves will be obtained for different values of k. Different quantities have been defined to describe the path taken by the particle: Linear Range (total pathlength), Vector Range (vector distance from point of incidence to stopping point), and Projected Range (projection of vector range onto direction of incidence). A particle will experience only few collisions, e.g., for T = 12 keV argon atoms in a germanium absorber, the mean collision number is ~ 6 (KE68). Both statistical and continuous methods have been used to calculate mean ranges.

For $M_1 \ge M_2$, the ratio of mean projected range $\overline{R_p}$ and linear range R is approximately $R/\overline{R_p} \sim 1 + M_2/3M_1$ (LS63, MS65). A modification of this procedure is suggested in MS65, giving a better agreement with experiment for $\varepsilon < 1$.

Using Eqs. (4-2) and (6-10), range-energy curves have been calculated (SC66) for different values of k, and are plotted in Fig. 6. In general, the agreement between theory and experiment is satisfactory, with accuracies of about 20%: AG68, BL68, BS68, CA68, JD67, LS67. The use of logarithmic scales in the plots of experimental data tends to hide the differences. Usually, the value of k in Eq. (6-7) is considered an adjustable parameter, and better agreement with the theory can then be achieved (e.g., CS68, CB68).

Moak and Brown (MB66) and Kahn and Forgue (KF67) have found deviations from the $\sqrt{\epsilon}$ behavior predicted by Eq. (6-7) for $\varepsilon \sim 200$. The deviations in k for light elements are not unexpected: the Thomas-Fermi model may not give a good approximation for Z < 20.

At higher values of ε (say $\varepsilon > 300$), the approach presented here overlaps with the Bethe theory using effective charges (Sec. 6A) and experimental data have to be consulted to find the more reliable approach.

6C. Small Volumes

The energy losses discussed in Sec. 3 are as experienced by the charged particles and are not directly related to the energy gained by the absorber material (see the discussion of LET in Sec. 9).

Examples

- a) In a thin silicon detector of the transmission type, in a vacuum, some δ -rays will leave the back surface of the detector, reducing the observed energy loss slightly (for 40 MeV protons in a 200 μ m detector, the reduction amounts to no more than 0.5%).
 - b) In very small volumes (diameter of 1 μ m or less of a material of density $\rho = 1 \text{ g/cm}^2$, corresponding to the size of living cells), the energy lost by a particle of moderate or large energy is quite uncorrelated to the energy

absorbed in the volume. Since the behavior of low energy electrons is not well known (energies of less than 1 keV), and since the collision cross sections are not known for low Z materials, calculations are extremely unreliable at present.

6D. Channeling

In single crystals it is observed that energy loss depends on the direction of the particle path with respect to the crystal axes. A detailed discussion of various aspects of the problem is given by Lindhard (LI65). Other calculations are available in several of the experimental papers mentioned below and in BR68.

If particles travel parallel to a major axis of the lattice, some can move "in between" the atoms, reducing the number of collisions with small impact parameters (energy loss and straggling would then both be reduced, see AE67, DM69) while others would move close to nuclear positions, increasing the effects. For a well collimated beam with small multiple scattering, a fraction of the beam may keep away from atoms for long distances.

A number of experiments have recently been published: an especially instructive diagram is given in RS67, a study of 3-11 MeV protons in Si and Ge is of interest for the use of solid state detectors: AE67. Other studies are described in DW68, DM69, ER67, RO69, SV68.

7. STRAGGLING OF HEAVY PARTICLES

Particles, in passing through an absorber of thickness s, experience a random number of collisions with a wide range of possible energy transfers. The energy losses Δ of a monoenergetic beam of particles thus will fluctuate ("Straggling") about the mean energy loss $\overline{\Delta} = s$ S. The straggling distribution function $f(\Delta)$ depends on the velocity $v = \beta$ c of the incident particle, on S and Z/A of the material. For large thicknesses, $f(\Delta)$ approaches a gaussian shape.

7A. Thin Absorbers

Landau (LA44), Symon (SY48), Vavilov (VA57), Shulek, <u>et. al</u>. (SG67) and many others have discussed straggling in thin absorbers. Extensive tabulations are available for the Vavilov distribution (SB67), based on calculations using the free electron collision spectrum [Eq. (2-1)].

A comparison of experimental data (e.g., KO68, MR68, AL69) with the theory can be based on the use of the <u>moments</u> of the distribution function. The central moments C_n are defined by:

 $C_{n} = \int f(\Delta) (\Delta - \overline{\Delta})^{n} d\Delta = \langle (\Delta - \overline{\Delta})^{n} \rangle \qquad n = 0, 1, 2, 3, \dots$ (7-1) and $f(\Delta)$ must be normalized, i.e. $C_{0} = \int f(\Delta) d\Delta = 1. \qquad \text{Obviously } C_{1} = 0.$ The theoretical quantities κ_n (the "cumulants" of statistical theory, FA53) related to these moments, calculated with the Vavilov approach, are given by (s in gr cm⁻²)

$$\kappa_{n}^{\prime} = \frac{0.1535 \ Zz^{2}}{\beta^{2} \ A} \qquad \frac{s \ E_{max}^{n-1}}{n-1} \ [1-\beta^{2}(n-1)/n] \ (MeV)^{n} \qquad (7-2)$$

where $E_{max} \simeq 2 \text{ mc}^2 \beta^2 / (1 - \beta^2) = 1.022 \beta^2 / (1 - \beta^2)$ (7-3) In particular (e.g., BO48):

$$\kappa_{2}^{\bullet} = \frac{0.1569 \ Zz^{2}}{A} \ s \ (1 - \beta^{2}/2) / (1 - \beta^{2}) \ MeV^{2}$$
(744)

For n = 2, 3 $C_n = \kappa_n$ n = 4 $C_4 = \kappa_4 + 3 C_2^2$ etc.

The standard deviation $\sigma = \sqrt{\kappa_2}$ of a straggling distribution thus is quite insensitive to the incident particle energy. Except for a gaussian, there is no simple relation between the "width at half maximum" and σ . For practical applications, it will be best to calculate moments by numerical integration from experimental data, and compare them with κ_n . For the actual functions, ref. SB67 should be consulted. For applications in thin silicon detectors, see Fig. 7.

The Vavilov function will be an approximation due to the use of the free electron collision cross section. No complete quantum mechanical calculations are available. An estimate of the deviations to be expected can be obtained from a comparison of moments $M_n = \int W^n J dW$ using J_K and J_L . Some of these ratios are given for J_L in Figs. 8 and 9 (BI69). For example, for protons in silicon, the maximum deviation in M_2 is expected to occur at $n_L = 1.6$, corresponding to a kinetic energy $T \sim 3.5$ MeV. The correction by Shulek <u>et al</u>. (SG67) takes into account only M_2 and therefore cannot be expected to be reliable. It is also much too large for small velocities. Experiments by Nielsen for several elements (NI61, Fig. 7) indicate deviations of the second moment amounting to no more than 20% from $\kappa_2 = s M_2$ while Shulek <u>et al</u>. indicate deviations of up to 100%.

7B. Thick Absorbers

An extensive discussion for large energy losses is given by Symon (SY48) and by Tschalär (TS67, TS68, TT68). For moderate energy losses, Tschalär's results for heavy particles of initial kinetic energy T and residual mean energy T_1 can be approximated by the following expression for the second moment (accurate to about 2%).

$$C_2 = \kappa_2 Q$$

where $Q = (T/T_1)^{1/3}$ for $B/Z \sim 2.3$ and $T_1/T > 0.4$ = 0.99 $(T/T_1)^{1/2}$ $B/Z \sim 3.5$ $T_1/T > 0.4$ = 0.985 $(T/T_1)^{2/3}$ $B/Z \sim 6.9$ $T_1/T > 0.6$

where B is the stopping number, Eq. (3-3), and

$$B/Z = f(\beta) - ln I - \Sigma C_{i}/Z$$

For larger energy losses, TS68 should be consulted. For the asymmetry of the curves, the third moment should be studied. Tschalär uses the skewness parameter $\gamma_3^{\bullet} = C_3/C_2^{-3/2}$ for this purpose. From his results it is found, that the expression for thin absorbers:

 $\gamma_3 = \kappa_3 / (\kappa_2')^{3/2}$ is accurate to a few percent for B/Zv2.3 and T₁/T>0.5 and for B/Zv6 and T₁/T>0.7. It may be noted that the distribution functions for the cases discussed above are approximately given by the Vavilov functions for the value $\kappa_v = 0.25 \gamma_3^{-2}$ of the Vavilov parameter $\kappa_v = \xi/E_{max}$ (SB67).

For the ranges R of particles with a mean value \overline{R} the second central moment, also called the "mean square fluctuation" σ^2 is defined by

$$\sigma^2 = \langle R^2 \rangle - \overline{R}^2 \tag{7-5}$$

The distribution f(R) is usually approximated by a gaussian:

$$f(R) \approx \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-(R-\overline{R})^2/2\sigma^2\right]$$
 (7-6)

and the probability p of finding a particle with range between R and R + dR is pdR = f(R)dR. The deviations from a gaussian are small, but not negligible. They are discussed in LE52 and TT68. Their influence on the Bragg curve has not been studied yet.

The ratio of σ to the total mean range R is given in Fig. 10 for protons in several elements. For

other particles of mass M, the value can be calculated from:

$$\left(\frac{\sigma}{R}\right)_{M} = \sqrt{1/m_{r}} \left[\frac{\sigma}{R} (T/m_{r})\right] \text{ proton}$$
 (7-7)

Estimates for the quantum mechanical corrections have been incorporated in the calculations for Fig. 10. The values of $\frac{\sigma}{R}$ are considerably smaller than the values calculated by Sternheimer (ST60), but they are still slightly larger than experimental values (BU60), which were evaluated neglecting the skewness of the range straggling curves. The observed straggling in range-energy measurements is composed of the energy loss straggling, and an additional asymmetric contribution caused by the multiple scattering process (BU60, BI60).

8. COULOMB AND MULTIPLE SCATTERING, AND NUCLEAR INTERACTIONS

8A. Coulomb Scattering

The differential cross section for Coulomb scattering of a charged particle of kinetic energy T (in MeV), momentum p, velocity v and charge ze by a nucleus of charge Ze and mass number A into the solid angle $2\pi \sin \theta \ d\theta$ is given by the Rutherford formula:

$$d\Phi(\theta) = \frac{2\pi e^4 z^2 Z(Z+1)}{4p^2 v^2 \sin^4(\theta/2)} \sin \theta \ d\theta$$
$$\approx \frac{0.814 z^2 Z(Z+1)}{T^2} \frac{\sin \theta \ d\theta}{\sin^4(\theta/2)} \times 10^{-26} \ \text{cm}^2 \tag{8-1}$$

where θ is the angle of scattering from the incident direction. The above formula assumes that the mass of the incident particle is negligible compared with the mass of the nucleus.

Deviations from the Rutherford formula will occur at large angles as the particles begin to feel the influence of nuclear forces. An estimate of the minimum energy T_m for which a deviation can be expected at $\theta = 180^\circ$ can be obtained from

$$T = z Z / (\sqrt[3]{A + 3}) MeV$$

A detailed discussion is found in EP61 and JA68. At small angles, the cross section will be smaller than given by Eq. (8-1) because the atomic electrons will shield the nuclear charge. The Rutherford cross section is reduced by 10% at an angle θ_q given by (from MO47):

$$\theta_q = \theta_0 \sqrt{61.7 + 421 \alpha^2}$$
 and by 50% at

$$\theta_{\rm r} = \theta_0 \sqrt{2.75 + 10.85 \alpha^2}$$

where
$$\theta_0 = \frac{0.244}{\text{pc}(\text{MeV})} \sim \frac{0.244}{\sqrt{2}} \sqrt{\frac{3}{2}}$$

and $\alpha = \frac{Z z}{137\beta}$. For large kinetic energies,

pc =
$$\sqrt{T^2 + 2TM_oc^2}$$
, and with $\zeta = T/M_oc^2$,
 $\beta^2 = \zeta (\zeta + 2) / (\zeta + 1)^2$ (8-3)

<u>Example</u>: 10 MeV alpha particles in Au: from Table I, $\beta = 0.073$, $\alpha = 15.8$. $\theta_0 = 1.05/\sqrt{74,600} = 3.84 \times 10^{-3}$ degrees. Finally, $\theta_q = 3.84 \times 10^{-3} \sqrt{61.7 + 105,000} = 1.25^{\circ}$. This reduction is of great importance in the derivation of the multiple scattering formulas.

8B. Multiple Scattering in Thin Absorbers

Multiple Coulomb scattering in thin foils will cause a parallel beam of particles to spread out into a cone. Recent discussions are found in HF68, SC63 and GD68.
Moliere's theory (MO48, BE53 and MO55) is a small-angle approximation to the general problem (BR59, NS61 and TM59) which is in agreement with experimental results, with the possible exception of electrons in heavy elements and also possibly at small energies ($\beta^2 < 2 \times 10^{-3}$).

The characteristic quantity occurring in the theory is the angle θ_0 , defined by $\theta_0 = \theta_1 \sqrt{B}$ where

$$\theta_1^2 = 0.157 \frac{Z(Z+1)z^2}{A} \frac{s}{(pv)^2}$$
 (8-4)

 θ_1 is in radians; s is the foil thickness in g cm⁻², p the momentum, and v the velocity of the particle (pv in MeV); z, Z and A have the same meaning as in Sec. 2. B is defined in ref. MO48; for practical purposes it can be obtained from ref. MZ67 or from Table VI for particles with charge 1 with an accuracy of better than 5 per cent. A few values are listed for z > 1. It is not obvious whether z^* or z should be used for a computation of the multiple scattering of heavy ions. The use of z^* is suggested. For $z \ge 6$ and $Z \ge 50$, all values $B(\beta,z)$ are larger than $0.98 \times B(\beta=0, z=1)$, and for $z \ge 6$ and $Z \ge 20$, all values $B(\beta,z) \ge 0.95 \times B(\beta=0, z=1)$.

Moliere's theory modified by Nigam <u>et al</u>. (NS61) gives the distribution function F(x)dx for the relative number of particles entering a cone of angle x and width dx. The reduced angle x is defined by

 $\mathbf{x} = \theta / \theta_0$

An extensive discussion of the problem is given in (MZ67). Table VII giving F(x) is obtained from (MZ67).

Also of interest is the relative number N/N_0 of particles entering a cone of half angle α :

$$\frac{N}{N_0} = \int_0^{\alpha/\theta} f(x) x dx \qquad (8-5)$$

Values are given in Table VIII. For experimental tests of the theory, see BI58, MO58, LO67, BN66.

Example

2-MeV protons penetrating 3 mg cm⁻² of Ni foil. The average energy in the foil is 1.87 MeV. $\beta^2 \sim 3.96 \times 10^{-3}$ from Table I, $B \sim 7.7$ from Table VI. $\theta_1^2 = 4.72 \times 10^{-4}$, $\theta_0 = 6.03 \times 10^{-2}$ rad = 3.46 deg. Thus, inside a cone of half angle 7 deg, all but about 6.3% of the protons will be found (see Table VIII).

Caution has to be used for the case of the incident particle of mass approximately equal to or larger than the mass of the scattering nucleus. In this case a considerable fraction of the energy can be lost to the recoil nucleus. This effect is, of course, not included in the fundamental energy-loss formula, Eq. (3-6).

8C. Multiple Scattering in Thick Absorbers

For thick absorbers, the mean energy correction due to multiple scattering has been calculated in TB68 for energy losses between 0.5 T and 0.1 T, for 10 < T < 140 MeV, for detector angles between 0.005 rad and 0.5 rad for protons in A1, Ag, and Au.

The multiple scattering correction for median ranges has been discussed in Section 3.

8D. Nuclear Interactions

Heavy charged particles will be removed from beams by nuclear interactions: the beam intensity will be attenuated exponentially

$$I = I_{o} e^{-S\Sigma}$$
(8-6)

where I is the flux density, and Σ is the macroscopic cross section $\Sigma = \sigma_t n$ (σ_t total microscopic cross section, n = number of nuclei per cm³). For estimates, $\Sigma = 0.32/A^{1/3}$ cm²/gm may be used (A = atomic number of absorber).

9. ELECTRONS

While electrons in passing through matter will experience interactions similar to heavy-particle interactions, two basic differences are manifest:

- a) In the collisions with atomic electrons, large energy losses can occur; and
- Electrons with energies of only a few hundred kiloelectron volts will show relativistic effects.

An extensive review of the theory is found in (BI58), and extensive tabulations are contained in (BS67). The derivation of the stopping power formula is similar to the heavy particle case. It will be assumed that after a collision by a negative electron, the electron with the higher velocity will be considered the primary. The mean collision loss in MeV cm²/g is given by (BS67):

$$-\left(\frac{dT}{\rho ds}\right)_{col}^{\pm} = \left(\frac{0.1535}{\beta^2}\right) \left(\frac{Z}{A}\right) \left[\ln\left\{\frac{2(\tau + 2)}{(I/mc^2)^2}\right\} + F^{\pm}(\tau, \Delta) - \delta\right]$$
(9-1)

where for electrons $\Delta = 1/2 \tau$ and

F

$$= -1 - \beta^{2} + \ln[(\tau - \Delta)\Delta] + [\tau/(\tau - \Delta)]$$

$$+ \frac{1}{2}\Delta^{2} + (2\tau + 1)\ln[1 - (\Delta/\tau)]}{(\tau + 1)^{2}}$$

$$(9-2)$$

and for positrons $\Delta = \tau$ and $F^{+} = \ln(\tau\Delta) - \frac{\beta}{\tau}[\tau + \Delta - \frac{(5/4)\Delta^{2}}{(\tau + 2)} + \frac{(\tau + 1)(\tau + 3)\Delta - (1/3)\Delta^{3}}{(\tau + 2)^{2}} - \frac{(\tau + 1)(\tau + 3)(1/4)\Delta^{4} - (\tau/3)\Delta^{3} + (1/4)\Delta^{4}}{(\tau + 2)^{3}}] \qquad (9-3)$ Here $\tau = (T/mc^2)$, δ is the density correction, and $mc^2 = 511004 \text{ eV}$, Δ is the maximum energy given to δ rays, divided by mc^2 . The other symbols here have the same meaning as in Eq. (3-6). In particular, the same I-values are used as for the heavier particles.

The shell corrections are not included, because their contribution above 0.1 MeV amounts to less than 1 per cent. If desired, the shell corrections discussed above (Fig. 4) can be used to correct stopping power values obtained from Eq. (9-1). The differences between electrons and positrons have been studied by Rohrlich and Carlson (RC54).

The energy loss due to <u>bremsstrahlung</u> is important for electrons at relatively small energies. An estimate of the ratio r of the bremsstrahlung energy loss to $(dT/ds)_{coll}$ is given by

 $r \sim T(Z + 1.2)/700$ (T in MeV) (9-4)

at $T_c \sim 700/(Z + 1.2)$ MeV the two energy losses are equal. An important quantity is associated with the traversal of matter by electrons of energies above T_c ; this is the distance X_o in which an electron's energy is reduced to 1/e = 0.3679 of its original value. X_o is called the "radiation length" and is given in Table IX together with more accurate values of T_c . Recent experimental results are found in DR68.

9A. Restricted Stopping Power (LET)

Secondary radiation (δ -rays or bremsstrahlung photons) may travel quite far from the track of a particle. An estimate of the energy deposited inside of a small cylinder around a track can be obtained by setting the quantity Δ in Eq. (9-1) equal to the energy of δ -rays capable of escaping from the volume of interest. Heavy particles produce relatively few δ -rays of high energy (see Eq. 2-1) and the difference between LET and dT/ds is relatively small for energies below Mc² (see Sec. 6C, though).

9B. Practical Considerations for Stopping Power

Computed values of the electron stopping power are given for some elements in Fig. 11. Extensive tables are found in (BS67). For T < 5 MeV, $(dT/\rho \ ds)_{coll} \sim 2^{-1/4}$. This factor should be used for interpolation in Fig. 11.

Straggling (discussed in detail in KM61) is much larger for electrons than for heavier particles (see, e.g., Fig. 12 in BI68 or Fig. 2 in BR64). The width at half maximum of a straggling distribution may amount to more than 50% of the mean energy loss. Multiple (VV68) and back scattering contribute to the problem. Comparison of mean

energy losses calculated from Eq. (9-1) with experimental data (e.g., HU57, HA59, HR68) can be expected to be accurate to better than 10% only if a detailed study of straggling etc., has been made. A comparison of experiment and theory for 1 and 2 MeV electrons in silicon is found in SI67.

9C. Electron Ranges and Energy Deposition in Thick Absorbers

For electrons traversing thick absorbers, lateral and backscattering will be very important and electron distribution functions will extend over wide ranges in space, angle and energy. A general treatment is found in BE63, KK68, RO68, SP55 and SP54. Practical results for many substances are given in SP59, KE66, BS67, LP57 and PE62 and KK68. Detailed investigations have been performed for 5 to 30 keV electrons (CT65), and for 40 to 160 keV electrons (GF59). For higher energies, see, e.g., BH58. Electron ranges calculated by the use of Eq. (4-2) do not have a simple relation to any observed quantity: see Table X.

The practical range-energy relation for electrons is not strongly dependent on the atomic number of the stopping material. Only that for aluminum is given. Monoenergetic electrons are absorbed as indicated in Fig. 12 which serves to define the "practical range" R_p and the "maximum range" R_o . The practical range, in aluminum is given by

 $R_p = 0.537 T [1 - 0.9815/(1 + 0.003123 T)]$ (9-5)

 R_p in mg cm⁻², T in keV, for the energy range 0.3 keV \leq T \leq 20 MeV, with an accuracy of about ± 6% (KK68). A graph of this relation is given in Fig. 13.

The formulas given above for monoenergetic electrons can be used for continuous beta-ray spectra where R_p and T_o refer to the maximum beta-ray range and energy, respect ively. For a discussion of the methods of determining the range from an absorption curve, see KP52.

For practical applications in which information on electron range and energy deposition is required, it appears best to use Spencer's calculations (SP59, see also BI68), but some information is found also in KK68.

Unlike the case for heavy charged particles, determination of electron energies from transmission measurements is not accurate enough for most applications. Energies can be determined much more accurately by measurements with calibrated scintillation or solid state detectors.

10. MEAN ENERGY FOR THE FORMATION OF AN ION PAIR

10A. Gases

The energy loss w of a charged particle per ion pair formed in the material traversed is nearly independent of the energy and type of particle for velocities $\beta^2 > 10^{-4}$ z as can be seen in Table XI. For further values see MY68.

From the measurements of Phipps, Boring and Lowry (PB64), the following approximate velocity dependence of w has been derived for ions with A < 40

 $w = 0.119/\beta$ (eV) for $\beta \le 0.0043$

For more accurate values, PB64, BS65 and LH65 should be consulted. For 206 Pb ions with T = 103 keV, measurements have been made by Cano (CA68).

Mixtures of gases do not follow a simple additivity rule for the value of w (MY68, BH54). A large drop in w of argon for small concentrations of C_2H_4 has been observed. For further details, see MY68. Ionization fluctuations and the resolution of ionization chambers is discussed extensively in AK67.

10B. Solids

A recent discussion of the response of NaI(T1) to heavy ions is found in KA68, with references to earlier work. The ionization in silicon and germanium has been studied extensively (see almost any issue of "IEEE Transactions on Nuclear Science"). The average energy ε for the generation of an electron-hole pair is much smaller than for gases. For Si, $\varepsilon \sim 3.6$ eV, for Ge, $\varepsilon \sim 2.96$ eV. For silicon, the following effects have been observed:

- a) For low energy electrons (produced with γ-rays), pulseheights, after correction for charge collection efficiency, are proportional to energy within 0.2% (ZM69).
- b) For a change in temperature from 300 K to
 90 K, an increase of 4% in ε has been
 observed (PG68).
- c) ε is about one percent smaller for alpha particles than for electrons (PG68).
- d) For heavy ions, ε is energy dependent at small energies (BB63, FK67, FS69, KA67, RB69, SA65). For $T_m >> 6$ M (keV) (M = atomic mass of ion), the energy T_m calculated from a measured ionization pulse should be increased by an amount Δ T \sim 4 M (keV), the "ionization defect".

The ionization defect (FS69) is for:

protons 1-2 keV alpha particles 8-12 keV

Somewhat different results have been given in RB69. Similar results have been obtained for germanium detectors (DB67, PR69). Several factors determine the resolution of solid state detectors (BL67, AN67, TS67); some of the more important:

- a) Electronic noise and drift of amplifier system
- b) Ballistic deficit
- c) Pulse pile up
 - d) Recombination and trapping
 - e) Channeling (see Sec. 7).
 - f) Absorption in surface layers
- g) Statistics of the number N of electron-hole pairs produced.

Fano (FA47) has shown that the standard deviation of the mean number \overline{N} is: $\Delta N^2 = \langle (N-\overline{N})^2 \rangle = F \overline{N}$ where $F \leq 1$. Bilger (BL67) found F = 0.13 for germanium. Alkazov <u>et al.</u> (AK67) obtained $F \sim 0.1$ for silicon. The problem is also discussed in DF67.

Energy loss tables for p,d, t, He³, He⁴ and Li⁶ with data useful for particle identifier systems are given in BT67 and SK67. Information about the straggling in thin silicon detectors is given in Fig. 7.

Acknowledgment

I am grateful for the hospitality of the Lawrence Radiation Laboratory in Berkeley, where most of the calculations of this paper were performed on the CDC-6600.

References

NOTE:	The syml in whic	ool in the second column indicates the section h the reference appears.
AE67	6D	B. R. Appleton, C. Erginsoy and W. M. Gibson, Phys. Rev. <u>161</u> , 330 (1967).
AG68	6B	M. Ait-Salem, H. Gerhardt, F. Gönnenwein, H. Hipp, and H. Paap, Nucl. Inst. Meth. <u>60</u> , 45 (1968).
AH6 7	3	H. H. Andersen, C. C. Hanke, H. Sørensen and P. Vajda, Phys. Rev. <u>153</u> , 338 (1967).
AH68	6A	B. H. Armitage and B. W. Hooton, Nucl. Inst. Meth. <u>58</u> , 29 (1968).
AK67	10	G. D. Alkhazov, A. P. Komar and A. A. Vorob'ev, Nucl. Inst. Meth. <u>48</u> , 1 (1967).
AL69	7	D. W. Aitken, W. L. Lakin, and H. R. Zulliger, Phys. Rev. <u>179</u> , 393 (1969).
AN6 7	10	G. Andersson-Lindstroem, Nucl. Inst. Meth. <u>56</u> , 309 (1967).
AN69	5	H. H. Andersen, H. Sørensen, and P. Vajda, Phys. Rev. <u>180</u> , 373 (1969).
AS68	3	H. H. Andersen, C. C. Hanke, H. Simonsen, H. Sørensen, and P. Vajda, Phys. Rev. <u>175</u> , 389 (1968).
AS69	6	H. H. Andersen, H. Simonsen and H. Sørensen, Nucl. Phys. <u>A125</u> , 171 (1969). *****
BA61	4	W. H. Barkas, Phys. Rev. <u>124</u> , 897 (1961).
BA63	3	W. H. Barkas, "Nuclear Research Emulsions", Academic Press (1963).
BB63	10	H. Bilger, E. Baldinger and W. Czaja, Helv. Phys. Acta <u>36</u> , 405 (1963).
BB67	4,6	W. H. Barkas and M. J. Berger, Paper 7 of NA67.
BB69	6	N. Barash-Schmidt, A. Barbaro-Galtieri, L. R. Price, A. H. Rosenfeld, P. Söding, C. G. Wohl, M. Roos and G. Conforto, Rev. Mod. Phys. <u>41</u> , 109 (1969).
BD63	3,6	W. H. Barkas, J. N. Dyer and H. H. Heckman, Phys. Rev. Lett. <u>11</u> , 26 (1963).
BE30	2	H. Bethe, Ann. Phys. 5, 325 (1930).

BE53	8	H. Bethe, Phys. Rev. <u>89</u> , 1256 (1953).
BE63	9	M. J. Berger in "Methods in Computational Physics," ed. Alder, Fernbach and Rotenberg (Academic Press Inc., New York, 1963), Vol. 1, p. 135.
BE66	5	R. J. Bell and A. Dalgarno, Proc. Phys. Soc. <u>89</u> , 55 (1966) and <u>86</u> , 375 (1965).
BF60.	4	H. Bichsel and B. J. Farmer, Bull. Am. Phys. Soc. 5, 263 (1960).
BF61	4	W. H. Barkas and S. von Friesen, Nuovo Cim (10) <u>19</u> , Suppl. 1, p. 41 (1961).
BG65	6,6A ·	W. Booth and I. S. Grant, Nucl. Phys. <u>63</u> , 481 (1965).
BH54	10	T. E. Bortner and G. S. Hurst, Phys. Rev. <u>93</u> , 1236 (1954).
BH58	9	H. Breuer, D. Harder and W. Pohlit, Z. Naturforsch. <u>13a</u> , 567 (1958).
BH69	5	H. Bichsel, C. C. Hanke and J. Buechner, USC-136- 148 (March, 1969).
BI58	8	H. Bichsel, Phys. Rev. <u>112</u> , 182 (1958).
BI60	4,7	H. Bichsel, Phys. Rev. <u>120</u> , 1012 (1960).
BI61	5	H. Bichsel, Technical Report, No. 3, University of Southern Californía.
BI67	2,5	H. Bichsel, USC-136-120 (April, 1967).
BI68	2,3,4,9	H. Bichsel, "Radiation Dosimetry", Ch. 4, Vol. 1, F. H. Attix and Wm. R. Roesch, eds. Academic Press, New York, January 1968.
BI69	2,7	H. Bichsel, USC-136-147 (January, 1969).
BJ67	3,4,5	H. Bichsel, Univ. of California, L.R.L. Technical Report UCRL-17538.
BJ69	4	H. Bichsel, Range Energy Tables (to be published).
BK58	3,9	R. D. Birkhoff, Encyclopedia of Physics, Vol. <u>34</u> , 34 (Springer, Berlin, 1958).
BK67	3	H. Bichsel, Paper 2 in NA67.
BL33	5	F. Bloch, Z. Phys. <u>81</u> , 363 (1933).
BL67	10	H. R. Bilger, Phys. Rev. <u>163</u> , 238 (1967).

.

44.

BL68	6B	W. W. Bowman, F. M. Lanzafame, C. K. Kline, Yu-Wen Yu and M. Blann, Phys. Rev. <u>165</u> , 485 (1968).
BL69	2	W. Brandt and R. Laubert, Phys. Rev. <u>178</u> , 225 (1969).
BM57	4	H. Bichsel, R. F. Mozley and W. Aron, Phys. Rev. <u>105</u> , 1788 (1957).
BN66	8	A. A. Bednyakov, V. S. Nikolaev, A. V. Rudchenko and A. F. Tulinov, Soviet Physics JETP <u>23</u> , 391 (1966).
BN67	6A	L. B. Bridwell, L. C. Northcliffe, S. Datz, C. D. Moak and H. O. Lutz, Phys. Rev. <u>159</u> , 276 (1967).
BO48	7	N. Bohr, Dan. Mat. Fys. Medd. <u>18</u> , No. 8 (1948) (ed. 2, 1953).
BO67	5	E. Bonderup, Dan. Mat. Fys. Medd. <u>35</u> , No. 17 (1967).
BR 5 9	8	E. Breitenberger, Proc. Roy. Soc. (London) A250, 514 (1959).
BR64	9	H. Breuer, Z. Phys. <u>180</u> , 209 (1964).
BR68	6D	D. K. Brice, Phys. Rev. <u>165</u> , 475 (1968).
BS65	10	J. W. Boring, G. E. Strohl and F. R. Woods, Phys. Rev. <u>140</u> , A1065 (1965).
BS67	9	M. J. Berger and S. M. Seltzer, Paper 10 in NA67.
BS68	6B	J. F. Biersack, Z. Phys. <u>211</u> , 495 (1968).
BT67	10	H. Bichsel and C. Tschalär, Nuclear Data <u>A3</u> , 343 (1967) and UCRL-17663.
BT68	3	H. Bichsel and C. Tschalär, Phys. Rev. <u>175</u> , 476 (1968).
BU60	4,7	H. Bichsel and E. A. Uehling, Phys. Rev. <u>119</u> , 1670 (1960).
BZ67	4	M. J. Berger and S. M. Seltzer, Paper 5 in NA67.
	· .	* * * * * * * * * * * * * * * * * * * *
CA68	6B,10	G. L. Cano, Phys. Rev. <u>169</u> , 277 (1968).
CB68	6A,B	W. K. Chu, P. D. Bourland, K. H. Wang, and D. Powers, Phys. Rev. 175, 342 (1968).

CC67	6A	J. B. Cumming and V. P. Crespo, Phys. Rev. <u>161</u> , 287 (1967).
CS68	6B	P. D. Croft and K. Street, Jr., Phys. Rev. <u>165</u> , 1375 (1968).
CT65	9	V. E. Coslett and R. N. Thomas, Brit. J. Appl. Phys., <u>16</u> , 779 (1965), <u>15</u> , 1283 (1964), <u>15</u> , 883 (1964).
		* * * * * * * * * * * * * * * * * * * *
DA68	1	J. A. Davies, Conference Secretary, Can. J. Phys. <u>46</u> , (March 15, 1968).
DB67	10	D. P. Donnelly, H. W. Baer, J. J. Reidy and M. L. Wiedenbeck, Nucl. Inst. Meth. <u>57</u> , 219 (1967).
DD6 8	- 2	D. A. Dahlberg, D. K. Anderson, and I. E. Dayton, Phys. Rev. <u>170</u> , 127 (1968).
DF67	10	G. Di Cola and L. Farese, Phys. Rev. <u>162</u> , 690 (1967).
DK68	2	R. C. Der, T. M. Kavanagh, J. M. Khan, B. P. Curry and R. J. Fortner, Phys. Rev. Lett. <u>21</u> , 1731 (1968).
DM69	6D	S. Datz, C. D. Moak, T. S. Noggle, B. R. Appleton and H. O. Lutz, Phys. Rev. <u>179</u> , 315 (1969).
DR68	9	W. E. Dance, D. H. Rester, B. J. Farmer, J. H. Johnson and L. L. Baggerly, J. Appl. Phys. <u>39</u> , 2881 (1968).
DT68	5	P. Dalton and J. E. Turner, Health Physics <u>15</u> , 257 (1968).
DW68	6D	J. A. Davies, J. Denhartog and J. L. Whitton, Phys. Rev. <u>165</u> , 345 (1968).

EP61	8	R. M. Eisberg and C. E. Porter, Rev. Mod. Phys. 33, 190 (1961).
ER67	6D	L. Eriksson, Phys. Rev. <u>161</u> , 235 (1967).
ES69	2	H. Ehrhardt, M. Schulz, T. Tekaat, and K. Willmann, Phys. Rev. Lett. <u>22</u> , 89 (1969).
		* * * * * * * * * * * * * * * * * * * *
FA47	10	U, Fano, Phys. Rev. <u>72</u> , 26 (1947).

	-	
FA53	7	U. Fano, Phys. Rev. <u>92</u> , 328 (1953).
FA56	3	U. Fano, Phys. Rev. <u>103</u> , 1202 (1956).
FA63	2	U. Fano, Ann. Rev. Nucl. Sci. <u>13</u> , 1 (1963). Reprinted in NA67.
FB68	6A	B. Fastrup, A. Borup and P. Hvelplund, Canad. J. Phys. <u>48</u> , 489 (1968).
FC68	2	U. Fano and J. W. Cooper, Rev. Mod. Phys. <u>40</u> , 441 (1968).
FK67	10	V. Forgue and S. Kahn, Nucl. Inst. Meth. 48 , 93 (1967).
FL67	1	I. P. Flaks, V International Conference of the Physics of Electronic and Atomic Collisions, Leningrad, 17-23 July, 1967. Publishing House, "Nauk" Leningrad.
FS69	10	G. Forcinal, P. Siffert and A. Coche, IEEE Trans. Nucl. Science <u>NS15</u> , No. 1, 475 (1968). *******
GD68	8	Yu. N. Gnedin, A. Z. Dolginov, and A. I. Tsygan, Soviet Physics JETP <u>27</u> , 267 (1968).
GF59	9	K. Gubernator, and A. Flammersfeld, Z. Phys. <u>156</u> , 179 (1959).
	· .	* * * * * * * * * * * * * * * * * * * *
HA 5 9	9	H. E. Hall, A. O. Hanson and D. Jamnik, Phys. Rev. <u>115</u> , 633 (1959).
HA68	6	D. E. Harrison, Jr., Appl. Phys. Lett. <u>13</u> , 277 (1968).
HF68	8	P. C. Hemmer and I. E. Farquhar, Phys. Rev. <u>168</u> , 294 (1968).
HL69	6	H. H. Heckman and P. J. Lindstroem, Phys. Rev. Lett. <u>22</u> , 871 (1969).
HP60	4,6	H. H. Heckman, B. L. Perkins, W. G. Simon, F. M. Smith and W. H. Barkas, Phys. Rev. <u>117</u> , 544 (1960).
HR68	9	E. Hara, Nucl. Inst. Meth. <u>65</u> , 85 (1968).
HU 5 7	9	A. M. Hudson, Phys. Rev. <u>105</u> , 1 (1957).
HV 6 8	6	P. Hvelplund and B. Fastrup, Phys. Rev. <u>165</u> , 408 (1968).

IS67 _,	3	R. Ishiwari, N. Shiomi, Y. Mori, T. Onata, and Y. Uemura, Bull. Inst. Chem. Res. Kyoto Univ. <u>45</u> , 379 (1967).
JA66	4	J. F. Janni, AFWL - TR - 65 - 150.
JA68	8	D. F. Jackson and C. G. Morgan, Phys. Rev. <u>175</u> , 1402 (1968).
JD67	6,6B	P. Jespersgard and J. A. Davies, Can. J. Phys. <u>45</u> , 2983 (1967).
JK68	3	C. H. Johnson and R. L. Kernell, Phys. Rev. <u>169</u> , 974 (1968). *******
KA67	10	A. H. Krulisch and R. C. Axtmann, Nucl. Inst. Meth. <u>55</u> , 238 (1967).
KA68	10	R. Katz and E. J. Kobetich, Phys. Rev. <u>170</u> , 397 (1968).
KE66	9	N. D. Kessaris, Phys. Rev. <u>145</u> , 164 (1966).
KE68	6B	V. S. Kessel'man, Soviet Phys. Semicond. <u>2</u> , 76, (1968).
KF67	6B	S. Kahn and V. Forgue, Phys. Rev. <u>163</u> , 290 (1967).
KH68	2,5	G. S. Khandelwal, Nucl. Phys. <u>A116</u> , 97 (1968).
KJ68	2	G, S. Khandelwal, Phys. Rev. <u>167</u> , 136 (1968).
KK68	9	E. J. Kobetich and R. Katz, Phys. Rev. <u>170</u> , 391 (1968).
KM61	9	G. Knop, A. Minten and B. Nellen, Z. Phys. <u>165</u> , 533 (1961).
KM66	2	G. S. Khandelwal and E. Merzbacher, Phys. Rev. <u>144</u> , 349 (1966).
K064	4	L. Koschmieder, Z. Naturforsch. <u>19a</u> , 1414 (1964).
K068	7	J. J. Kolata, T. M. Amos and H. Bichsel, Phys. Rev. <u>176</u> , 484 (1968).
KP52	9	L. Katz and A. S. Penfold, Rev. Mod. Phys. <u>24</u> , 28 (1952).
KP67	2	J. M. Khan, D. L. Potter, R. D. Worley and H. P. Smith, Phys. Rev. <u>163</u> , 81 (1967).
KY68	2	H. L. Kyle and K. Omidvar, Phys. Rev. <u>176</u> , 164 (1968).

LA44	7	L. Landau, USSR Jour. Phys. <u>8</u> , 201 (1944).
LB37	3	M. S. Livingston and H. Bethe, Rev. Mod. Phys. 9, 263 (1937).
LE52	4,7.	H. W. Lewis, Phys. Rev. <u>85</u> , 20 (1952).
LH65	10	R. Leimgruber, P. Huber, and E. Baumgartner, Helv. Phys. Acta <u>38</u> , 499 (1965).
L165	6 D	Jens Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk. 34, No. 14 (1965).
LN68	6B	J. Lindhard, V. Nielsen and M. Scharff, Mat. Fys. Medd. Dan. Vid. Selsk. <u>36</u> , 10 (1968).
L067	8	N. O. Lassen and A. Ohrt, Mat. Fys. Medd. Dan. Vid. Selsk <u>36</u> , 9 (1967).
LP57	.9	J. E. Leiss, S. Penner and C. S. Robinson, Phys. Rev. <u>107</u> , 1544 (1957).
LS53	3	J. Lindhard and M. Scharff, Mat. Fys. Medd. Dan. Vid. Selsk. <u>27</u> 15 (1953).
LS63	6B	J. Lindhard, M. Scharff and H. E. Schiøtt, Mat. Fys. Medd. Dan. Vid. Selsk, <u>33</u> 14 (1963).
LS67	6B	L. Lehmann, H. Spehl and N. Wertz, Nucl. Inst. Meth. <u>55</u> , 201 (1967).
		* * * * * * * * * * * * * * * * * * * *
MA 6 8	3	A. H. Morton, D. A. Aldcroft and M. F. Payne, Phys. Rev. <u>165</u> , 415 (1968).
MB66	6A,B	C. D. Moak and M. D. Brown, Phys. Rev. <u>149</u> , 244 (1966).
ML 5 8	2	E. Merzbacher and H. W. Lewis, Encyclopedia of Physics <u>34</u> , (Springer, Berlin, 1958), p. 166.
ML68	6	C. D. Moak, H. O. Lutz, L. B. Bridwell, L. C. Northcliffe and S. Datz, Phys. Rev. <u>176</u> , 427 (1968).
MO4 7	8	G. Moliere, Z. Naturforsch, <u>2A</u> , 133 (1947).
MO 4 8	8	G. Moliere, Z. Naturforsch <u>3A</u> , 78 (1947).
MO 5 5	8	G. Moliere, Z. Naturforsch <u>10A</u> , 177 (1955).
MO 5 8	8	R. F. Mozley, R. C. Smith and R. E. Taylor, Phys. Rev. <u>111</u> , 647 (1958).

MR67	4	A. Marcinkowski, H. Rzewuski, and Z. Werner, Nucl. Inst. and Meth. <u>57</u> , 338 (1967).
MR68	7	H. D. Maccabee, M. R. Raju and C. A. Tobias, Phys. Rev. <u>165</u> , 469 (1968).
MS65	6B	L. Morbitzer and A. Scharmann, Z. Phys. <u>185</u> , 488 (1965).
MT 6 5	6	J. H. E. Mattauch, W. Thiele and A. H. Wapstra, Nuclear Physics <u>67</u> , 1 (1965).
MY68	10	I. T. Myers, Ch. 7 "Ionization", Radiation Dosimetry, 2nd edition (Academic Press, January 1968).
MZ 6 7	8	J. B. Marion and B. A. Zimmerman, Nucl. Inst. Meth. <u>51</u> , 93 (1967).
		* * * * * * * * * * * * * * * * * * * *
NA67	1	Publication 1133, Nat. Academy Sciences - Nat. Res. Council. U. Fano, ed. 2nd printing (1967).
NI61	7	L. P. Nielsen, Mat. Fys. Medd. Dan. Vid. Selsk. 33 , No. 6 (1961).
NM6 7	3	C. A. Nicoletta, P. J. McNulty and P. L. Jain, Phys. Rev. <u>164</u> , 1693 (1967).
NO63	6A	L. C. Northcliffe, Ann. Rev. Nucl. Sci. <u>13</u> , 67 (1963) Reprinted in NA67.
NO67	6	L. C. Northcliffe, Paper 8, NA67.
NS61	8	B. P. Nigam, M. K. Sundares ^a n and Ta-You Wu, Phys. Rev. <u>115</u> , 491 (1959).
NV66	6B	D. K. Nichols and V. A. J. Van Lint, Solid State Physics <u>18</u> , 1 (1966) (Advances in Research Applications, Academic Press).
		* * * * * * * * * * * * * * * * * * * *
OH63	6 B	O. S. Oen, D. K. Holmes, and M. T. Robinson, J. Appl. Phys. <u>34</u> , 302 (1963).
OL67	2	W. J. B. Oldham, Phys. Rev. <u>161</u> , 1 (1967).
OR68	3	J. H. Ormrod, Can. J. Phys. <u>46</u> , 497 (1968).

PB64	10	J. A. Phipps, J. W. Boring and R. A. Lowry, Phys. Rev. <u>135</u> , A36 (1964).
PB68	6	T. E. Pierce, W. W. Bowman and M. Blann, Phys. Rev. <u>172</u> , 287 (1968).
PE62	9 .	J. F. Perkins, Phys. Rev. <u>126</u> , 1781 (1962).
PG68	10	R. H. Pehl, F. S. Goulding, D. A. Landis, and M. Lenzlinger, Nucl. Inst. and Meth. <u>59</u> , 45 (1968).
PR69	10	J. M. Palms, P. V. Rao, R. E. Wood, IEEE Trans. Nucl. Science <u>NS 16</u> , No. 1, 36 (1969).
		* * * * * * * * * * * * * * * * * * *
RB69	10	J. A. Ray and C. F. Barnett, IEEE Trans. Nucl. Science NS-16, No. 1, 82 (1969).
RC 5 4	9	F. Rohrlich and B. C. Carlson, Phys. Rev. <u>93</u> , 38 (1954).
R060	6	R. G. Roll and F. E. Steiger, Nucl. Phys. <u>17</u> , 54 (1960).
R068	9	Wm. C. Roesch, "Radiation Dosimetry" Ch. 5, Vol. 1, F. H. Attix and Wm. C. Roesch, eds. (Academic Press, New York, January, 1968).
R069	6 D	M. T. Robinson, Phys. Rev. <u>179</u> , 327 (1969).
RS60	6	L. C. Northcliffe, Phys. Rev. <u>120</u> , 1744 (1960).
RS67	6 D	J. Remillieux, J. J. Samueli, and A. Sarazin, Jour. de Phys. <u>28</u> , 832 (1967).
RU68	2	M. R. H. Rudge, Rev. Mod. Phys. <u>40</u> , 564 (1968).
RY 5 5	4	B. V. Rybakov, Soviet Phys. JETP 1 , 435 (1955).
		* * * * * * * * * * * * * * * * * * * *
SA65	10	A. R. Sattler, Phys. Rev. <u>138</u> , A1815 (1965).
SB67	7	S. M. Seltzer and M. J. Berger, Section 9 in NA67.
SC63	8	W. T. Scott, Rev. Mod. Phys. <u>35</u> , 231 (1963).
SC66	6B	H. Schiøtt, Mat. Fys. Medd. Dan. Vid. Selsk. 35, 9 (1966).

SG67	7	P. Shulek, B. M. Golovin, L.A. Kulyukina, S. V. Medved, and P. Pavlovich, Soviet J. Nucl. Phys. <u>4</u> , 400 (1967).
SI67	9	J. J. Singh, NASA TN D-3927 (May 1967).
SK67	10	D. J. Skyrme, Nucl. Inst. Meth. <u>57</u> , 61 (1967).
SP54	9	L. V. Spencer and U. Fano, Phys. Rev. <u>93</u> , 1172 (1954).
SP55	9	L. V. Spencer, Phys. Rev. <u>98</u> , 1597 (1955).
SP59	9	L. V. Spencer, Nat. Bur. Std. (U.S.) Monograph $\underline{1}$.
ST60	4	R. M. Sternheimer, Phys. Rev. <u>117</u> , 485 (1960).
ST67	3	R. M. Sternheimer, Phys. Rev. <u>164</u> , 349 (1967).
SU60	4,7	R. M. Sternheimer, Phys. Rev. <u>118</u> , 1045 (1960).
SV68	6D	A. R. Sattler and F. L. Vook, Phys. Rev. <u>175</u> , 526 (1968).
SY48	7	K. R. Symon, Thesis, Harvard Univ. (Cambridge, Mass. 1948).
SZ65	3	C. A. Sautter and E. J. Zimmerman, Phys. Rev. <u>140</u> , A490 (1965).
		* * * * * * * * * * * * * * * * * * * *
TB68	4,8	C. Tschalär and H. Bichsel, Nucl. Inst. Meth. <u>62</u> , 208 (1968).
TH52	3	T. J. Thompson, UCRL-1910.
TH6 7	2	E. W. Thomas, Phys. Rev. <u>164</u> , 151 (1967).
TM59	8	M. L. Ter-Mikayelian, Nucl. Phys. <u>9</u> , 679 (1958-1959).
TP69	6	B. N. Taylor, W. H. Parker, and D. N. Langenberg Rev. Mod. Phys. (to be published).
TS67	3,7,10	C. Tschalär, Thesis, University of Southern California (Los Angeles, January 1967).
TS68	7	C. Tschalär, Nucl. Inst. Meth. <u>61</u> , 141 (1968).
TT68	4,7	C. Tschalär, Nucl. Inst. Meth. <u>64</u> , 237 (1968).

VA 5 7	7	P. V. Vavilov, Sov. Phys. JETP <u>5</u> , 749 (1957).
VS68	2	L. Vriens, J. A. Simpson and S. R. Mielczarek, Phys. Rev. <u>165</u> , 7 (1968), <u>170</u> , 163 (1968).
VV68	9	K. J. VanCamp and V. J. Vanhuyse, Z. Phys. <u>211</u> , 152 (1968).
·		* * * * * * * * * * * * * * * * * * * *
WA51	2	M. C. Walske, Thesis, Cornell Univ. (1951).
WA52	2,5	M. C. Walske, Phys. Rev. <u>88</u> , 1283 (1952).
WA 56	2,5	M. C. Walske, Phys. Rev. <u>101</u> , 940 (1950).
WH58	3	Ward Whaling, Encyclopedia of Physics, <u>34</u> , 202 (1958), Springer, Berlin.
WH33	5	J. A. Wheeler, Phys. Rev. <u>43</u> , 258 (1933).
W168	6A	K. B. Winterbo Can. J. Phys. <u>46</u> , 2429 (1968).
WM67	3	W. White and R. M. Mueller, J. Appl. Phys. <u>38</u> , 3660 (1967).
ZM69	10	H. R. Zulliger, L. M. Middleman and D. W. Aitken IEEE Trans. Nucl. Science, NS16, 1, 47 (1969)

•

.

ą.

. .

۰.

53.

I

Кi	netic E:	nergy	T for				
Proton	s Alphas	Pions	Muons	Electrons	8	6 ²	f(e)
(MeV)	(MeV)	(MeV)	(MeV)	(keV)			
εń	1.0063	0744	.0563	. 7723	. 022624	.001065	6.9975
450	2.1849	40744	.0619	42725	A034225	•001171	7.0877
460	2.3836	10893	.0676	.3268	.035745	•001278	7.1746
• 65	2.5822	.0967	.0732	.3540	037204	•001384	7.2546
470	2.7808	1041	0788	.3812	038606	.001490	7.3286
.75	2.9795	.1116	.0845	4085	.039960	.001597	7.3975
480	3,1781	.1190	.0901	4357	.041269	.001703	7.4620
.85	3.3767	1265	.0957	4629	.042537	1001809	7.5225
.00	3,5753	.1.330	1014	4902	.043769	•001916	7.5796
. 95	3,7740	.1413	1070	45174	.044966	•002022	7.6336
• • • •		••••	••••	• • • • •	••••••		
1.00	3.9726	.1488	.1126	.5446	•046132	.002128	7.6848
1.10	4.3699	A1636	1239	•5991	048380	002341	7.7800
1.20	4.7671	1785	.1351	+6536	050528	002553	7.8668
1.30	5.1644	. 1934	.1464	.7080	052587	002765	7.9467
1.40	5.5616	2083	1577	.7625	.054567	.002978	8.0206
1.50	5,9589	.2231	1689	.8169	.056478	•003190	8.0895
1.60	6.3562	2380	1802	.8714	058326	003402	8.1539
1.70	6.7534	.2529	.1914	.9259	•060116	003614	8.2143
1.80	7.1507	2678	2027	9803	061854	003826	8.2713
1.90	7.5479	.2827	.2140	1.0348	063544	004038	8.3252
1.,,,			••••		•••••	•••	
2.00	7.9452	.2975	.2252	1.0893	▲065189	.004250	8.3764
2.10	8.3425	.3124	2365	1.1437	.066794	.004461	8.4250
2.20	8.7397	3273	.2477	1.1982	.068360	.004673	8.4714
2.30	9,1370	.3422	2590	1.2526	069891	004885	8.5157
2.40	9.5342	3570	2703	1.3071	A071388	•005096	8.5581
2.50	9,9315	3719	2815	1.3616	072855	005308	8.5987
2.60	10.3288	43868	2928	1.4160	074292	005519	8.6378
2.70	10.7260	4017	. 3041	1.4705	•075701	005731	8.6754
2.80	11.1233	4165	3153	1.5250	.077084	005942	8.7116
2.90	11.5205	4314	.3266	1.5794	078442	006153	8.7465
20/0		••••••	• - • • •			•••••	
3.00	11.9178	.4463	.3378	. 1.6339	.079776	.006364	8.7803
3.10	12.3151	4672	.3491	1.6884	.081089	006575	8.8129
3,20	12.7123	.4760	.3604	1.7428	082380	.006786	8 8445
3, 10	13.1096	4909	.3716	1.7973	.083650	.006997	8.8751
3.40	13.5068	▲505A	.3829	1.8517	084901	007208	8.9048
3450	13.9041	\$5207	. 3941	1.9062	.086134	•007419	8.9336
3.60	14.3014	.5356	4054	1.9607	087349	•007630	8.9616
3.70	14.6986	•5504	4167	2.0151	088547	.007841	8.9889
3.80	15,0959	•5653	4279	2+0696	.089728	008051	9.0154
3,00	15.4931	\$5802	4392	2,1241	.090894	008262	9.0412
5.70					• • • • • • • •	•••••••	
4.00	15.8904	•5951	. 4505	2.1785	•092045	₀ 008472	.9.0664
4.10	16.2877	.6099	.4617	2.2330	•093181	008683	9.0909
4.20	16.6869	A6748	4730	2.2874	.094303	+008893	9.1148
4.30	17.0822	.6397	4842	2.3419		009103	9.1382
4.40	17.4794	46546	4955	2.3964	.096507	009314	9.1610
4.50	17.8767	-6694	5068	2.4508	097589	009524	9.1834
4.60	18.2740	•6843	-5180	2.5053	098660	009734	9.2052
4.70	18.6712	6992	.5293	2,5598	•099718	.009944	9.2265
4.8()	19.0685	.7141	5405	2.6142	100766	.010154	9.2474
4.90	19.4657	7289	5518	2.6687	101802	010364	9.2679
4030	1704051				••••	•••••	
5400	19-8630	•743R	.5631	2.7232	.102827	•010573	9.2879
5.50	21.8493	8182	.6194	2.9955	.107803	.011622	9.3825
6.00	23.8356	.8926	.6757	3.2678	112552	•012668	9.4687
6450	25.8719	.9670	.7320	3.5401	.117102	•013713	9.5480
7.00	27.8082	1.0414	.7883	3.8124	121474	.014756	9.6213
7.50	29.7945	1.1157	.8446	4.0847	125688	.015797	9.6895
8.00	31.7808	1,1901	9009	4.3570	129758	016837	9.7533
8.60	33.7671	1.2645	9572	4.6794	133699	017875	9.8131
a, nn	36.7624	1,1280	1.0125	4.0017	137521	118912	9.8695
9.00 9.80	27.7207	1,4132	1.0698	5,1740	.141233	.019947	9.9228
2020		*****				••	

Table I ineti (continued)

Kin	etic	Energy	T for				
Protons	Alphas	Pions	Muons	Electrons	в	β ²	f(B)
(MeV)	(MeV)	(MeV)	(MeV)	(keV)		F	- (-)
			_				
10.00	39.7260	1.4876	1.1261	5.4463	•144845	•020980	9.9733
10.50	41.7123	1.5620	1.1824	5.7186	.148363	•022012	10.0213
11.00	43.6986	1.6364	1.2387	5.9909	•151795	•023042	10.0671
11.50	45.6849	1.7108	1.2950	6.2632	•155145	•024070	10.1108
12.00	47.6712	1.7852	1.3514	6.5356	•158420	•025097.	10.1526
12.50	49.6575	1.8596	1.4077	6.8079	•161623	•026122	10.1927
13.00	51.6438	1.9339	1.4640	7.0802	•164759	•027145	10.2311
13.50	53.6301	2.0083	1.5203	7.3525	•167831	•028167	10.2681
14.00	55.6164	2.0827	1.5766	7.6248	•170844	•029188	10.3037
14.50	5/.602/	2015/1	1.6329	7.8971	•1/3800	•030205	10.3380
15 00	50 6000	2 2215	1 6000	0 1405	176701	A21222	10 2712
15.60	5765070	2 2050	1.7455	0 10 20	170552	022220	10.0022
15.00	62.5616	2 3802	1.8018	0.4410	192252	022237	10 4940 52
16 60	68.5470	2 4 5 6 6 2	1,9591	0.0864	195109	024265	10.4643
17.00	67.5242	2 6 7 9 7 0	1 0764	0 2597	107010	035376	10 4049
1.7 50	60.5305	2 6 7 2 7 0	107144	902301	100/010	032270	10 4934
10 00	71 6040	2 60034	1.7707	945510	102112	020205	10 52.0
18.00	71+5000	2.01/8	2.0270	9.8033	•193112	037292	10+5400
10.00	7304931	201322	2.0833	10.0757	•195700	•038298	10.5/5/
19.00	73+4794	2.0205	201390	10.3480	•198249	•039303	10.6016
19.50	11+4651	2.9009	2.1960	10.6203	.200762	•040306	10.6269
20.00	70 4520	2 0753	2.25.23	10.0026	202261	041207	10 6514
20.00	99.4966	2 1 7 4 1	202725	1000920	20201	041307	10 40 90
22.00	87.2072	2 2720	203049	11 0910	+200097 212920	045505	10 0900
22.00	0103912	2 + 2140	2 6 4 7 7 3	1109017	• 212029	045290	10 79/9
23.00	71+2070	2.5704	2.3901	12.5205	0217443	•047281	100/000
24+00	77+2424	3.7104	201021	12 (159	8221791	049201	10.0279
29.00	99.3150	3.7191	2.0175	1300120	•220340	•051234	10.8673
26.00	103+2876	3.8679	2.9279	14.1604	+230052 ·	•053200	10.9051
27.00	107.2602	4.0107	3.0405	14.7050	€Z34004	•025161	10.9414
28.00	111.2328	4.1674	3,1932	15.2490	•238989	•057116	10.9763
29.00	115+2054	4.3142	3.2658	15.7943	•243032	•059064	11.0100
30.00	110.1780	A 4420	2.2794	14.2280	266006	.061007	11.0425
30400	11901/00	4047	3.5104	1065507	0440770 360005 °	•001007	1100425
37.00	123413.00	40111	364710	17 4303	•290009 264704	6002743	11 1063
32.00	121 0059	4 0007	2 7162	17 0729	250454		11 1225
35.00		4.5072	201102	1769720	260404	000/99	11 1/20
54+00	133.0004	5 2040	3.0436	10+01/4	.202140	•000/1/	1141020
35.00	15960410	D€2000 5 2555	287414 4 0E41	190021	0202102	070030	11 2366
30.00	143.0130	2,5327	400041	19.000/	•209321	012031	1102104
37.00	140 • 7802	2.5043	. 4.100/	2001515	• 212033	+() /4438	1102424
38,00	120+9288	2¢0221 5 0010	4 2793	20+0959	+210204	+070333	11 2022
39.00	124.9314	242019	48.2919	2102400	4219055	0/8222	11.2923
40.00	160 0040	5.0504	6 506B	21.7952	- 282020	.000106	11 2162
40.00	160.0740	6.0004	407047	21076	.284230	.00100A	11,2204
41.00	166.9407	6 2691	400171	2203270	\$200320 280570	001704	11.2626
42.00	170 0010	6 2060	401271	2200140	0209219	A05700	11 20/6
45.00	17000210	0 + 5707	400424	2304191	4292184	007502	11.0043
44.00	170 7670	6 6064	467550 5 0474	2369031	200062	000/202	11 4002
45.00	1/0+/0/0	6 0422	5 1000	2445004	203139	007430	11 44273
40.00	102+1370	6 0010	5 2020	2500550	+ 302130	091207	11.4400
47.00	100+1122	7 1407	J#2720 8 4054	2203710	. 309170	004060	11.4970
40.00	190.0040	7 2005	544054	2001422	111120	+074707	11.4077
49400	12490214	142075	202100	2080007	• 511129	098801	110012
50,00	198.4200	7.4282	5.6206	27, 2215	.314051	.098678	11.5261
52.50	17040500	7,9102	5,0100	28.6021	.3232021	.102171	11,6714
55,00	20082012	R 1921	6,1027	20.0647	.3221203	.107490	11.41.60
57.60	21047730	0 EEYV 001041	061721 6-4783	21.2127	. 22%804	1171EE	11.4563
60 00	22044243	00774V 0.0760	6.7640	32.4772	• 341642	+112177 112507	11-4054
60 - 00	22003200	0 2070	7 1200	34. 4204	+J7190J	1314VE	11 7323
45 40	240+2012	702710	7 2100	3480374	#377030 .356001	0121002 .17530A	11.7405
	22042190	7007/	7 2 5 7 5	32 723E	4554071 260170	120722	11 00/7
70 00	208 1905	10.4135	7 8830	20 1 24 1	+ JOUL /U	0129123	11.0275
70.00	210.0020	10 7055	10027	2001241 201057	00100	124023	11 0/0/
12030	200+0135	10 • 1822	0.1044	2704021	*217AD3	•13031Z	TT#202.0

Table I (continued)

Кi	netic	Energy	T for			2	
Protons	s Alphas	Pions	Muons	Electrons	ß	β ^c	f(β)
(MeV)	(MeV)	(MeV)	(MeV)	(keV)			
· · ·	· · ·	· · ·		· · /			
75.00	297:9450	11.1574	8.4460	40.8473	.377569	.142558	11.9005
77 50	207.0745	11 6202	0 7375	40.0475	202111	146774	11,0204
11.50	30740703	11.0070	0 0 0 0 0 0	4202000	+ 20 31 1 1 20 0 5 3 4	+140//4 150050	110500
80.00	317.8080	11.9012	9.0090	43.5704	• 2587 24	•100908	11.9772
82.50	327 • 7395	12.2731	9.2906	44.9320	•393843	•155112	11.98/1
85.00	337.6710	12.6450	9 . 5721	46.2936	•399043	159236	12.0141
87.50	347.6025	13.0169	9.8536	47.6551	•404140	163329	12.0403
90.00	357.5340	13.3888	10.1352	49.0167	•409136	167392	12.0657
92.50	367+4655	13.7608	10.4167	50.3783	•414036	171426	12.0903
95.00	377.3970	14.1327	10.6982	51.7399	418845	175431	12.1142
97.50	387.3285	14.5046	10.9798	53.1014	.423564	179407	12.1375
	50105205	1489040	10.7770		• + 2 3 3 0 4	•1//+0/	1001979
100.00	207.2400	14 9745	11 2612	54.4630	429108	192254	17.1601
100.00	437 3000	140100	11 0262	57 1062	4420170	0103334	12 2026
105.00	41/01250	15.0203	1100245	5701882	•451222	•191105	1202030
110.00	436.9860	10.3041	12.3874	59.9093	•445938	•198860	12.2450
115.00	456.8490	17,1080	12,9505	62.6325	•454366	•206448	12.284.4
120.00	476.7120	178518 .	13,5135	65•3556	●462525	•213929	12.3220
125.00	496.5750	18,5956	14.0766	68.0788	•470431	•221305	12,3579
130.00	516.4380	19.3394	14.6397	70.8019	•478098	228577	12,3923
135.00	536.3010	20.0833	15.2027	73.5251	485539	235748	12.4254
140.00	556,1640	20-8271	15,7658	76.2482	492767	.242820	12.4572
145.00	576.0270	21.5709	16.3289	78.0714	.490703	. 240703	12.4878
145.00	21000210	21.07	10.5203	1087114	• • • > > • > >	• 2 • 7 1 7 5	1204010
350 00	505 0000		14 0010	01 /0/F	50// 27	254471	10 5170
150.00	595.8900	22+3147	10.8919	01.0947	• 20002 /	•2500/1	1207173
155.00	615.7530	23.0586	17.4550	84.4177	•513279	•263455	12.5457
160.00	635.6161	23.8024	18.0181	87•1408	•51 975 6	•270146	12.5733
165.00	655.4791	24.5462	18,5811	89.86 40	•526067	•276747	12.5999
170.00	675.3421	25.2900	19.1442	92.5871	•532220	₀283258	12.6257
175+00	695.2051	26.0339	19.7072	95.3103	•538221	.289682	12.6507
180.00	715.0681	26.7777	20.2703	98.0334	•544077	•296019	12.5749
185.00	734.9311	27.5215	20.8334	100.7566	.549793	.302273	12.6985
190.00	754.7941	28,2653	21.3964	103.4797	.555377	.308443	12.7214
195.00	774.6571	29,0092	21,9595	106.2029	560832	.214532	12.7427
193000	11440311	27.0072	210/000	10002027	• 7000 52	• 51 + 552	1681401
200 00	704 6201	20 7520	22 5226	100 0260	566162	220547	12 7455
200+00	016 20201	2701000	2207220	111 (402	6200103	020241	1201000
205.00	01400001	50.4908	23.0000	11100492	• 271277	• 5204/1	124/000
210.00	834+2401	31.2406	23.6487	114.3723	• 5 / 64 / 6	• 3 3 2 3 2 4	12.8073
215.00	854.1091	31.9845	24.2118	117.0955	•581464	•338101	12.8274
220.00	873.9721	32•7283	24.7748	119.8186	∮586347	•343803	12+8471
225.00	893.8351	33.4721	25.3379	122.5418	•591128	•349432	12.8663
230.00	913.6981	34.2159	25,9010	125.2649	.595809	354989	12.8851
235.00	933.5611	34.9597	26.4640	127.9881	.600396	•360475	12.9035
240.00	953.4741	35.7036	27.0271	130.7112	.604889	.365891	12.9215
245.00	973.2871	36.4474	27,5901	133.4344	+609294	.371239	12,9391
242000);)•2071	2004414	2102701	10004044	•00/2/4	•) • • 2) /	120/0/1
250.00	002 1601	27.1012	79 1623	136.1676	612611	274610	12.0544
250.00	37301301	27 0254	20017162	120 12/2	617945	201722	12 0724
277400	101500131	51.9370	20./103	1000001	.01/040	.501/53	1207134
260.00	1032.8761	38 6 789	29.2793	141.6038	.621998	•386882	12.9900
265.00	1052.7391	39.4227	29.8424	144.3270	•626073	•391967	13.0063
270.00	1072.6021	40.1665	30.4055	147.0501	•630070	396989	13.0223
275.00	1092.4651	40.9103	30,9685	149.7733	•633994	•401949	13.0380
280.00	1112.3281	41.6542	31.5316	152.4964	.637846	•406848	13.0534
285+00	1132,1911	42.3980	32.0947	155.2196	A641628	411687	13.0686
220+00	1152.0541	43.1418	32.6577	157.9427	.645342	416467	13.0835
295.00	1171.0171	42.9954	33,2208	160-6659	649001	421180	13.0053
277000	********	470000	JJ#2200	*********	-0- <u>10</u> /71		100702
200 00	1101 7001	66 630F	22 7020	169.2000	. 45 36 76		12.1174
	112101001	44.0275	5501050 24 0100	10303030	+072777 (50550	0429894 195014	1201120
510.00	1231+3061	40.11/1	54,9100	10000300	•077778	•455016	1301409
320.00	12/1.2321	47.6048	36.0361	1/4.2816	• • • • • • • • • • • • • • • • • • • •	•443961	13.1682
330.00	1310.9581	49.0924	37.1622	179.7279	•672826	• 452695	13,1948
340.00	1350.6841	50.5801	38.2884	185.1742	•679135	•461225	13.2206
350+00	1390.4101	52.0677	39.4145	190+6205	.685242	•469557	13.2458
360.00	1430.1361	53+5554	40.5406	196.0668	•691156	•477697	13.2703
370-00	1469-8621	55.0430	41.6667	201.5131	696887	485651	13.2942
380.00	1509.5881	56.5307	42.7929	206.9594	702442	493425	13.3176
390-00	1649.2141	58-0182	43,0100	212.4057	.707830	501024	13.3404
220800	ニュマ アクタスエマネ	こうきんすんち	~				

Table I (continued)

Ki	netic	Energy	<u>T</u> for			2	
Protons	Alphas	Pions	Muons	Electrons	ß	ß	f(ß)
(MeV)	(MeV)	(MeV)	(MeV)	(keV)			
400.00	1690 0401	50 5060	AE 0451	217 0520	712050	. 509453	12.3676
400.00	150700401	5765000 60 0036	4280421	21780320	.710125	-515717	13,39/5
420.00	1669.4001	62.4813	40.1113	22362703	• 7 2 3 0 6 4	•522822	13.4058
420.00	1709.2191	62.0690	4186714	22081440	.727854	.520772	13.4267
450400	1747.9441	0349009 65-4566	4004200	23441907	.722510	-536570	13.4473
450.00	1787.6701	66.9442	50.6758	245.0835	.737036	-543223	13.4674
460.00	1827.3961	68.4319	51,8019	250.5298	.741440	•549733	13.4871
470.00	1967.1021	69.0106	52.0280	255.0761	.745724	-556105	13.5065
480.00	1906.8482	71.4071	54.0542	261.4224	.749895	•562342	13.5256
490.00	1946.5742	72.8948	55,1803	266.8687	.753956	•568450	13.5444
470.00	174005142	12.00740	JJ • 100 J	20000000	•••••••••••••••••••••••••••••••••••••••	•) 00 +) 0	1343411
500.00	1986.3002	74.3824	56.3064	272.3150	.757911	.574430	13.5628
510.00	2026.0262	75.8701	57.4325	277.7613	761765	.580286	13.5809
520.00	2065.7522	77.3577	58.5587	283.2076	765521	.586023	13.5988
530.00	2105.4782	78.8454	59.6848	288.6539	.769183	\$91643	13.6164
540.00	2145.2042	80.3330	60.8109	294.1002	772754	.597149	13.6337
550.00	2184.9302	81.8207	61.9371	299.5465	.776237	602545	13.6508
560.00	2224+6562	83,3083	63.0632	304.9928	.779636	•607832	13.6677
570.00	2264 3822	84.7960	64.1893	310.4391	.782953	613015	13.6843
580.00	2304-1082	86.2836	65.3154	315.8854	•786191	A618096	13.7007
590.00	2343.8342	87.7713	66.4416	321.3317	•789353	•623078	13.7168
600.00	2383.5602	89.2589	67.5677	326.7780	•792441	•627963	13.7328
610.00	2423.2862	90.7466	68.6938	332.2243	.795458	632753	13,7486
620.00	2463.0122	92.2342	69.8200	337.6706	.798406	•637451	13.7642
630.00	2502.7382	93.7219	70,9461	343.1169	801287	•642060	13.7795
640.00	2542.4642	95.2095	72.0722	348.5632	.804103	•646582	13.7947
650.00	2582.1902	96.6972	73.1983	354.0095	806857	•651018	13.8098
660.00	2621.9162	98.1848	74.3245	359•4558	809550	•655372	13.8246
670.00	2661.6422	99.6725	75.4506	364.9021	·812185	•659644	13.8393
680.00	2701.3682	101.1601	76.5767	370.3484	.814762	•663837	13.8539
690.00	2741.0942	102.6478	77.7029	375.7947	•817284	•667954	13.8683
700.00	2780.8202	104.1354	78.8290	381.2410	•819753	•671995	13.8825
710 •00	2820.5462	105.6231	79.9551	386.6873	822170	•675963	13.8966
720.00	2860 . 2722	107.1107	81.0812	·392•1336	.824536	•679859	13,9106
730.00	2899.9982	108.5984	82.2074	397.5799	826853	•683686	13.9244
740.00	2939.7242	110.0860	83.3335	403.0262	•8 2912 3	•687444	13,9380
750.00	2979.4502	111.5737	84,4596	408+4725	831346	•691136	13,9516
760.00	3019.1762	113.0613	85,5857	413.9188	•833524	•694763	13.9650
770.00	3058.9022	114.5490	86.7119	419.3651	•835659	•698326	13,9783
780.00	3098.6282	116.0366	87.8380	424.8114	•837/51	•701827	13.9915
790 <u></u> ,00	3138.3542	117.5243	88,9641	430.2577	•839502	•705268	1400045
800.00	3178.0003	110.0110	90.0903	435.7040	.841813	. 708649	14.0175
810-00	3217-9042	120.4004	91:2164	441.1503	_843785	.711072	14.0303
820.00	3257.5222	121.0872	92,3425	446.5966	.845718	.715239	14.0430
820.00	2207.2582	12147072	9203425	4400 3 900	.847615	.718451	14.0556
840.00	3236.0043	124.9625	94.5948	457.4892	- R49476	.721609	14.0681
850.00	2276.7102	124.0000	05.7200	462.0355	.851301	.724714	14.0805
850.00	3416 4363	120 4 902	95 9470	462.3818	.852093	. 727767	14.0928
870.00	2454 1422	120 4256	07.0722	408 5010	854851	.730770	14.1050
880.00	343041023	12704200	00.0002	47380201 A70.3744	4854576	+733773	14.1172
890.00	3636.6163	122.4008	100.2254	47302744	.858270	.736628	14.1292
090.00	555560145	17504000	10002254	40407201			
900.00	3575.3403	133.8884	101.3515	490.1670	859933	•739485	14.1411
910-00	3615-0663	135.3761	102.4777	495.6133	861566	742297	14,1529
920-00	3654.7923	136-8637	103.6038	501.0596	.863170	•745063	14.1647
930-00	3694-5183	138.3514	104.7299	506.5059	.864745	.747785	14.1763
940.00	3734.2443	139.8390	105-8561	511.9522	.866293	•750463	14.1879
950.00	3773.9703	141.3266	106.9822	517.3985	.967813	•753099	14.1994
960-00	3813.6963	142 8143	108,1083	522.8448	869306	755694	14.2108
970-00	3853-4223	144.3019	109.2344	528,2911	.870774	•758248	14.2221
980_00	3893-1483	145.7896	110.3606	533.7374	.872216	.760762	14.2334
990-00	3932-8743	147.2772	111.4867	539 1837	.873634	.763237	14.2446
1000.00	3972 6003	148.7649	112.6128	544.6300	.875028	•765673	14.2556

Table II. Calculated mass stopping power S/ρ (MeV/g/cm²) for protons.

	-			<u> </u>			
	Ве	Graphite	Water	Al	Cu	Ag	Pb
т(eV = 64	78	66.6	166	320	475	820
T(MeV)		10	00.0	100	520	.12	
I (Hev)							
10.0	37.720	40.875	46.641	33.776	27.169	23.213	17.620
10.5	36.252	39.303	44.840	32,531	26.218	22.435	17.068
11.0	34.904	37.858	43.185	31.385	25.341	21.714	16.556
11.5	33.667	26.525	41.666	30.325	24.528	21.045	16.079
12 0	32.512	25,292	40.254	29.343	23.773	20.422	15.633
12.00	21 669	3/ 1/7	38.044	29.429	23.069	10.940	15,216
12.0		240147	27 724	204427	23.400	178040	14 022
15.0	20.420	330002	310124	216911	220409	178274	14023
1305	29.731	32.087	200200	20.119	210790	104/01	14+494
14.0	28.666	31.156	35.521	26.032	21.209	18.299	14.105
14.5	27.855	30.283	34.522	25.330	20.663	17.844	13.775
15.0	27.094	29•463	33•583	24.669	20.148	17.415	13.463
15.5	26.376	28.690	32.700	24.045	19.662	17.009	13.167
16.0	25.700	27.960	31.865	23.456	19.202	16.625	12.885
16.5	25.061	27.271	31.077	22.898	18.764	16.259	12.618
17.0	24.456	26.618	30.331	22.369	18.348	15.910	12.363
17.5	23.882	25.999	29.623	21.866	17,953	15.579	12.120
18.0	23.337	25.411	28,951	21.389	17.577	15.263	11.888
18.5	22.820	24.852	28.312	20.934	17.218	14.961	11.666
10.0	22.020	24.072	27 702	20.500	14.876	14.673	11.654
17.0	224221	240 520	27 122	20.086	16 5/0	14.013	11.251
1900	210001	230012	210123	20.000	100047	148390	110271
20.0	22 600	~~ ~~ 7	36 660	10 600	14 227	14 194	11 054
20.0	21.409	230321	2007	19.040	10.207	140134	11.000
21.0	20.571	220421	22.34	10.949	15.051	13.039	10.600
22.0	19.802	Z1+590	24.584	18.268	15.110	13.181	10.348
23.0	19.095	20.824	23.710	17.640	14.609	12.756	10.032
24.0	18.442	20.117	22.9 02	17.059	14.145	12.362	9.738
25.0	17.837	19.462	22 • 153	16.519	13.714	11.995	9.464
26.0	17.275	18.852	21.457	16.017	13.312	11.653	9.207
27.0	16.750	18.284	20.808	15,548	12.936	11.333	8.965
28.0	16.261	17.753	20.202	15.109	12.585	11.033	8.738
29.0	15.802	17.256	19.634	14.697	12.254	10.750	8.524
30.0.	15.372	16.789	19+101	14.310	11.943	10.483	8.323
31.0	14.967	16.349	18.600	13.946	11.648	10.230	8.132
37.0	14.586	15,035	18.127	13.602	11.370	9,992	7.952
33 0	14.225	15.544	17.681	13.276	11,107	9.766	7,780
35.0	13 995	15.174	17.001	12.949	10.957	9.553	7.617
34.0	13.003	120174	16 050	12 6707	10 627	70,260	7 641
33.0	13.302	14025		12.0077	10 205	78247	7 9 9 1 2
36.0	13.250	14+491	16.479	12.399	10 101	90100	7 173
37.0	12.965	14.175	16.119	120135	10.181	8.972	7 • 172
38.0	12.689	13.874	15.775	11.584	9.977	8.191	1.031
39 •0	12+425	13.587	15.449	11.645	94782	8+629	6.908
40.0	12.174	13.314	15.137	11.416	9,596	8 469	6.785
41.0	11.934	13.053	14.839	11.198	9.418	8.315	6.667
42.0	11.704	12.804	14.555	10.989	9,248	8.167	6.554
43.0	11.485	12.565	14.282	10.788	9.085	8.025	6+445
44.0	11.275	12.336	14.022	10.597	8.928	7.889	6.340
45.0	11.073	12.117	13.771	10.413	8.777	7.759	6.239
46.0	10.880	11.906	13.531	10.236	8.632	7.633	6.142
40.0	10.404	11.704	19.901	10.066	0.403	7.513	6-049
47.0	10.674	11.509	12.079	9,903	8,358	7.396	5,958
40.0	10.343	11 222	12.944	9.745	9.220	7.294	5.972
49 0	104545	110522	12000	76745	0.227	10204	2.012
E0 0	10 170	11.143	12.440	0.504	8,104	7.174	5.700
	10.178	110142	12.000	78374	- 011 00104	10110	J 100 E EAA
52.5	9.790	10.719	120179	y 238	70811	00922	2.270
55.0	9+435	10.333	11.738	8.911	7.543	0.089	5.409
57.5	9.109	9.977	11.333	8.611	7.295	6.475	5.241
60 ,0	8.808	9.649	10.959	8.334	7.066	6.275	5.085
62.5	8.530	9.345	10.613	8.077	6.854	6.090	4 • 940
65.0	8.271	9.064	10.293	7.839	6.657	5.917	4•804
67.5	8.031	8.801	9•994	7.616	6.474	5.756	4.678
70.0	7.007	8:557	· 9 . 715	7.409	6.302	5.606	4.560
72.5	7.597	8.328	9 •4 54	7.214	6.140	5.465	4.449

Table II. Continued.

P,

		· · ·		S/ρ			
	Be	Graphite	Water	Al	Cu	Ag	Pb
I(eV)= 64	78	66.6	166	320	475	820
T(MeV)						·	
75.0	7:400	8.113	9.210	7.032	5:988	5,332	4.344
77.5	7.215	7.911	8.980	6.860	5.846	5.207	4.246
80.0	7.041	7.721	8.764	6.699	5.711	5.090	4.153
82.5	6.877	7.542	8.560	6.546	5.584	4.978	4.065
85.0	6.722	7.373	8,368	6.402	5.463	4.873	3.982
87.5	6.576	7.213	8.185	6.266	3.350	4.773	3.902
90.0	6.437	7.061	8.013	6.136	5.241	4.679	3.827
92.5	6.305	6.917	7.849	6.013	5.139	4.589	3.755
95.0	6.180	6.780	7.693	5.897	5.041	4.503	3.687
97.5	6.060	6.650	7.545	5.785	4.948	4.422	3.622
100.0	5.947	6.526	74403	5.679	4.859	4.343	3.559
105.0	5.735	6.294	7.140	5.481	4.693	4.197	3.443
110.0	5.541	6.083	6.899	5.300	4.542	4.063	3.337
115.0	5.364	5.888	6.678	5.134	4.402	3.940	3.238
120.0	5.200	5•70 9	6.475	4.980	4.274	3.826	3.148
125.0	5.049	5.544	6.287	4.839	4.155	3.721	3.064
130.0	4.909	5.391	6.113	4.707	4.044	3.623	2.986
135.0	4.779	5.248	5.951	4 • 585	3.942	3.532	2.912
140.0	4+657	5.116	5.800	4.471	3.845	3.447	2.844
145.0	4.544	4.992	5.659	4.364	3.755	3.368	2.780
150.0	4.438	4.876	5.527	4.264	3.671	3.293	2.720
155.0	4.338	4.767	5.403	4.171	3.592	3.224	2.664
160.0	4.245	4.664	5.287	4.083	3.517	3.158	2.611
165.0	4.157	4.568	5,177	4.000	3.447	3.096	2.560
170.0	4.073	4.477	5.074	3.921	3.381	3.037	2.513
175.0	3.995	4.391	4.976	3.847	3.318	2.982	2.468
180.0	3.921	4.309	4.883	3.777	3.259	2 •929	2.426
185.0	3.850	4.232	4.796	3.710	3.202	2.879	2.386
190.0	3.783	4.159	4.712	3.647	3.149	2.832	2.347
195.0	3.720	4.089	4.633	3,587	3.098	2.787	2.311
200.0	3.659	4.023	4.558	3.530	3.049	2.744	2.276
205.0	3.601	· 3•960	4•486	3.475	3.003	2.703	2.243
210.0	3+547	3.900	4.418	3.424	2.959	2•664	2.211
215.0	3+494	3.842	4.353	3.374	2.917	2.626	2.181
220.0	3 • 444	3.787	4.290	3.326	2+877	2.590	2.152
225.0	3.396	3.735	4.230	3.281	2.838	2+556	2.125
230.0	3.350	3.684	4.173	3.238	2.801	2.523	2.098
235.0	3.306	34636	4.118	3,190	2 100	26492	2.072
240.0	3.204	3.590	48000	2.117	2 6 7 9 2	24401	2 0 4 0
24580	30423	26240	40015	J • 1 1 /	20077	20472	20024
250.0	3.184	3.503	3.967	3.081	2.668	2.404	2.001
255.0	3.147	3:462	3.920	3.045	2.638	2.378	1.980
260.0	3.111	3•422	3.876	3.011	2.609	2.352	1.959
265.0	3.076	3.384	3.832	2.978	2.581	20327	1.938
270.0	3.043	3.348	30791	20740	2.0774	2.303	1.919
275.0	3.010	3.312	30/31	24910	2.520	24280	1.900
280.0	2.979	30278	30/12	2.050	20000	20270	1.002
285.0	2.949	20242	24012	2000	26417	20250	1 9/7
290.0	2.920	3.183	3.604	2.804	2.433	2.195	1.831
	20072						
300.0	2.865	3.153	3.570	2.778	2.411	2.176	1.815
310.0	2.814	3.097	3.506	20/29	20370	20139	10785
52U.U ·	2.160	5.044	5.440	2003 2 210	2004	20104	1 730
35UeU	20720	2047	20207 2.225	2.6040	20274	20071	1.705
24V+V	2070	20947	2.304	2.60UU 7.6≠9	20200	20041	1.401
360.0	2+031	20903	3,220	2.526	2.196	1.984	1_659
170.0	20277 9.866	2.002	2.104	2.407	2.168	1.958	1.638
380-0	28304	2.022	3,152	2.450	2,140	1.934	1_618
300-0	2.030	2.750	3.112	2.429	2.114	1.911	1_599
J7484	2 4 7 7 1	2.41.70	.7 = 1 1 4		C # 1 4 7	****	~ ~ / / /

Table II. Continued.

				s/p		· · · · ·	
	Be	Graphite	Water	· Al	Cu	Ag	Pb
· I(eV)= 64	78	66.6	166	320	475	820
T(MeV)							
600.0	2.447	2.717	3.074	2.400	2.089	1.990	1.581
410.0	2.438	20111	3.038	2.372	2.066	1.948	1.564
420.0	2.410	2.655	3.004	2.346	2.044	1.848	1.548
430.0	2.384	2.626	2,971	2 321	2.022	1.829	1,633
440.0	2.359	2.598	2.940	2.297	2.002	1.811	1.518
450.0	2.335	2,572	2.910	2.275	1.983	1.794	1.504
460.0	2.313	24547	24882	2.253	1.964	1.778	1.491
470.0	2.291	2.524	2.855	2.232	1.947	1.762	1.478
480.0	2.270	2.501	2.829	2.213	1.930	1.747	1.466
490.0	2.250	2.479	2.804	2.194	1.914	1.733	1.454
500.0	2.231	2.458	2.780	2.176	1.898	1.719	1.443
510.0	2.213	2.438	20150	20150	1.070	1.700	1.422
520.0	2.195	20419	20130	2:142	1.054	14093	1 412
530.0	2+179	2.400	20/15	20120	1 0670	1.681	1.412
540.0	2 1 6 7	2 8 3 0 3	28093	2011	1,045	1.670	1 204
550.0	2+14/	24 300	2.657	2 0 9 3	1 91.9	1.6077	1.395
570 0	20132	20349	2.6007	2.048	1.807	1.629	1.277
570.0	2 104	2.210	20007	2.055	1.796	1.628	1.369
590.0	2.091	2.304	2.6022	2.043	1.785	1.618	1.361
2.0000	20071		20000		10,05		10001
600.0	2.078	2.290	2.590	2.030	1.775	1.609	1.353
610.0	2.065	2.277	2.574	2.019	1.765	1.600	1.346
620.0	2.054	2.263	2.560	2.007	1.755	1.592	1.339
630.0	2.042	2+251	2.545	1.997	1.746	1.584	1.333
640.0	2.031	2.239	2.531	1,986	1.737	1.576	1.326
650.0	2.020	2.227	2.518	1.976	1.728	1.568	1.320
660.0	2.010	2.216	2.505	1.966	1.720	1.561	1.314
670.0	2.000	2.205	2:493	1.957	1.704	16774	1.308
680.0	1.990	20194	2.481	1.948	1+704	1.540	1 207
690.0	1.901	28104	2 6 4 0 7	10737	1.097	1.540	10271
7 00.0	1.972	2.174	2.458	1.930	1.690	1.534	1.292
710.0	1.963	2.165	2.447	1.922	1.683	1.528	1.287
720.0	1.955	2.155	2.437	1.914	1.676	1.522	1.282
730.0	1.947	2.146	2+426	1.906	1.669	1.516	1+277
740.0	1.939	2.138	2.417	1.899	1.663	1.510	1.273
750.0	1.931	2.129	2:407	1.892	1.657	1.505	1.268
760.0	1:924	2.121	2.398	1.885	1.651	1.500	1.264
770.0	1.916	2.113	2.389	1.878	1.645	1.495	1.260
780.0	1.909	2:106	2.380	1.871	1.540	1.490	1.256
79 0 . 0	1.903	2+098	2.372	1.865	1.634	1.485	1.252
800.0	1.896	2.091	2.363	1.859	1.629	1.480	1.248
810.0	1.890	2.084	2 355	1.853	1.624	1.476	1.245
820.0	1.883	2.077	2.348	1.847	1.619	1.471	1.241
830.0	1.877	2.071	2.340	1.841	1.614	1.467	1.238
840.0	1.871	2.064	2.333	1.836	1.610	1.463	1.235
850.0	1.866	2.058	2.326	1.830	1.605	1.459	1.231
860.0	1.860	2.052	2.319	1.825	1.601	1.455	1.228
870.0	1.855	2.046	2.312	1.820	1.596	1:+451	1.225
890.0	1.850	2.040	2.306	1.815	1.592	1.448	1.222
89 0 .0	1.845	2.035	2•299	1.811	1.588	1.444	1.220
900 0	1.040	2.020	7.703	1.804	1.424	1.661	1: . 217
910-0	1.926	20127	2027J	1.801	1,581	1.4477	1.21/4
92010	1_830	2.019	2.282	1.797	1.577	1.434	1.212
930.0	1.826	2 014	2.276	1.793	1.574	1.431	1.209
940.0	1.821	2.009	2.270	1.789	1.570	1.428	1.207
950.0	1.017	2.005	2.265	1.785	1.567	1.425	1.204
960 0	1.813	2.000	2.260	1.781	1.563	1.422	1.202
970.0	1.809	1,996	2 • 255	1.777	1.560	1.419	1.200
980.0	1.805	1.991	2.250	1.773	1.557	1.417	1.198
990.0	1.801	1.987	2.245	1.770	1,554	1•414	1.196
1000.0	1.797	1.983	2.240	1.766	1.551	1.412	1.193

T(MeV)	^н 2	Не	Li	Ве	C	N2	°2	Ne	Al	A .	Ni	Cu	Kr	Ag	Sn	Xe	Au	₽b	Air	^н го
.01					440				260		100	70					22 ·			
.02					560				360		145	160	•				`44			
.03					640				410		177	190		· ·			.60			
.04					700		•		440		200	200					75			
.05	3800	1050		690	720	750	600	350	460	480	220	210	270			240	85		730	890
.10	3500	1090	750	700	710	780	610	<u>и</u> но	440	480	260	220	290			230	105	122	730	910
.15	2800	960	680	640	650	690	600	440	390	430	270	220	250			210	112	127	650	830
.20	2300	830	610	570	580	610	540	420	340	380	260	220	220	۰.		192	119	127	580	740
.25	1990	740	550	510	540	530	500	. 390	320	330	250	210	198		,	176	116	120	520 ⁻	660
. 30	1740	660	500	460	. 490	480	450	360	310	300	230	200	182			163	110	113	480	600
• 35	1560	600	450	9430	460	440	410	340	29 0	270	220	192	. 169			152	104	106	430	540
.40	1410	550	420	390	430	400	380	320	280	250	210	183	159	15.1	142	143	98	100	410	500
.45	1280	510	390	370	390	370	360	300	270	230	193	175	150	142	134	134	93	· 95	380	460
.50	1180	480	-360	350	370	350	340	290	250	220	182	168	143	134	127	i 27	88	90	350	430
• 55	1090	450	340	330 [.]	350	320	320	270	240	210	173	161	137	128	121	121	84	86	330	400
.60	1020	420	320	310	330	310	300	260 .	230	200	165	155	132	122	115	115	81	83	. 310	380
.70	910	380	290	280	290	280	270	230	210	184	151	144	123	113	107	106	75	77	280	340
.80	810	340	260	260	270	250	250	210	197	171	141	135	116	105	100	. 98	70	71	260	· 310
· . 90	740	310	240	240	250	24-2	230	198	185	160	133	128	109	99	94	92	66	67	240	290
1.00	680	290	230	220	230	220	220	185	173	150	126	121	104	94	89	87	63	63	220	260
1.1	630	270	220	210	220	510	200	174	163	142	120	114	99	89	85	82	60	60	210	260
1.2	590	250	210	198	200	194	192	164	155	134	115	109	94	. 85	81	78	57	58	198	230
1.3	550	240	200	187	192	185	182	156	147	127	110	104	90	8ż	78	75	54	55	186	220
1.4	520	220	195	179	. 183	176	173	149 .	140	<u>121</u>	106	99	87	79	75	72	53	53	177	210
1.5	500	210	188	170	175	168	165	144	134	116	101	95	, 84	75	71	69	51	52	168	197
1.6	470	200	184	. 161	167	160	157	137	129	112	97	92	81	72	68	66	. 49	50	160	188
1.8	430	183	173	148	154	148	144	127	119	103	91	85	76	68	65	62	47	47	147	172
2.0	390	168	164	137	143	137	134	119	111	95	85	80	72	64	61	59	44	45	136	159

Table IIIA. Low energy proton stopping power S (MeV cm^2/g) for several substances. Accuracy: 2-20 % .

δ

							TABLE	IIIB		· · ·.			· ·····			•
			EXPERIM	ENTAL P	ROTÚN S	TOPPING	POWER	S (MEV/	GM/SQCM). FROM	AH67.	A\$68.		··	~ .	
T(MEV)	BE	AL	CA	SC	т1	v	CR	MN	FE	C0	NI	Cù	ZN	AG	PT	AU
2.00	<u>1</u> 34.25	110.67	107.21	96.58.	93+19	90.61	89.57	86,51	87.30	83.74	86.45	81.09	80,89	63.74	45.43	45.78
~2 .25	122.70	101.92	98.91	89.24	86+11	83.73	82.93	80.07	80.83	77,64	80.14	75.19	75.02	59.63	42.85	43.12
2.50	113.21	94.68	92.03	83.15	80+23	78.02	77.41	74.72	75.45	72.56	74.89	70.28	70.13	56.18	40.67	40.87
2.75	105.19	88,52	86+15	77.494	70+20	73.14	- 12+69	10.13	10.85	68.18	. 10.35	60.07	65.92	53.16	38.71	38,89
3.00	98.30	79 50	01+07 76 65	40,	67 11	65.71	00.0U	62 65	_ 00.84	61 04	60.41	60 35	50 14	20.40	30.71	36.63
3.50	72.42	74.51	72.76	65.97	63.78	61.93	61.82	59.59	60.21	58.09	59.97	56.43	56.36	45.94	33.96	34,09
3.75	82.65	70.94	69.30	62.87	60.81	59.04	58.98	56.86	57.45	55.46	57.28	53.91	53.85	44.02	32.66	32.79
4.00	78.57	67.76	66+18	60.08	58+15	56.44	56.42	54.40	55.00	53.10	54.88	51.65	51.60	42.28	31.47	31.62
4 25	74 90	64 95	85 5A	57 57	55.74	54 09	54.09	52.19.	52.70	50 97	52.69	49 60			. 30.39	30.55
4 50	71.60	62 21	60.83	55.29	53.54	51.95	51.07	50.16	54.78	49 03	50.70	47.72	47.69	39.26	29.40	29.56
4.75	- 68-58	59.80	58.51	53.21	51.53	50.00	50.04	48.31	48.94	47.26	48.86	45.99	45.99	37.93	28.49	28.65
5.00	65.87	57.59	56.37	51.30	49.68	48.21	48.25	46.62	47.24	45.62	47.17	44.42	44.42	36.71	27.65	27.79
5.25	63.36	55,56	54.41	49.53	47.98	46.56	46.61	45.05	45.67	44.11	45.61	42.95	42.97	35.58	26.85	27.00
5.50	61.06	53.68	52.59	47.90	46.40	45.03	45.09	43.60	44.22	42.72	44.16	41.59	41.61	34.53	26.12	26.25
5.75	58.93	51.93	50.91	46.38	44.93	43.61	43.68	42.25	42.87	41.41	42.82	40.33	40.36	33.55	25.43	25.56
6.00	56,96	50.31	49.35	44.97	43.56	42.29	42.37	40,99	41.60	40.20	41.57	39,15	39.19	32,63	24.79	24,91
ۥ50	53.42	47.30	40.03	42.41	41+10	37.80	37.98	30,12	39.31	38.00	39.30	37.01	3/00/	30.97	23.00	23.67
1.00	20.34	44.81	+++0+	40+17	30.72	37.00	3/+07	20.11	31.20	30,00	31027	22015	32014	27040	22034	22.00
7.50	47.62	42.52	41.83	38.17	36.99	35,93	36.02	34.92	35.47	34.33	35.51	33.44	33.52	28.14	21.58	21.73
3.00	45.21	40.47	39.85	36.38	35.27	34.26	34.35	33.32	33.85	32.78	33.90	31.93	32.01	26.94	20.72	20.85
8.50	43.05	38.64	38.08	34.77	33.71	32.75	32.85	31.8 6	32.39	31.37	32.45	30,57	30-65	25,85	19.94	20.06
9.00	41.10	36,97	36.47	33.31	32.30	31.39	31.49	30.57	31.06	30.09	31.14	29,33	29.41	24.86	19.22	19.34
9,50	39.34	35.40	35.00	31,98	31.02	30.15	30.25	29.38	29.85	28,92	29.95	28.21	28.29	23,95	18.56	18.67
10.00	37.74	34.08	.33,00	30.76	29.84	29.01	29+11	28,20	28.74	21,85	28.84	26 22	21.26	23.11	11.475	10.00
10.50	30.021	31 60	32.43	28.61	27.77	27.01	27.10	26.35	26.78	20.01	26.89	20.22	20+30	21.62	16.88	16.97
11.50	33.69	30.58	30.25	27.66	26.85	26.12	26.21	25,49	25.90	25.12	26.02	24.54	24.61	20.96	16.39	16.48
12.00	32.54	29.58	29.28	26.77	26.00	25.30	25.37	24.69	25.09	24.33	25.21	23,78	23.85	20.34	15.93	16.02
												· · ·		•		
				·												
																-

• •

• •

÷.

Table IV. Calculated csda ranges R (g/cm^2) for protons of kinetic energy T.

	.			R			
	Ве	Graphite	Water	Al	Cu	Ag	Pb
T(MeV)	•	:		•			
1.0	•0029	•0039	•0039	•0042	.0061	.0080	•0116
1.1	.0034	.0043	.0043	.0048	.0070	+0091	.0133
1.2	.0039	.0048	40047	.0054	•0078	+0103	+0151
1.3	.0044	•0053	10051	+0061	.0088	.0115	.0169
1.4	-0050	10059	.0056	-0068	.0098	.0128	0188
1.5	0055	1006A	.0061	.0075	0108	-0141	40208
1.6	-0062	A0070	.0066	.0083	.0118	.0154	↓0228
1.7	-0068	+0076	.0071	.0091	.0129	.0168	.0248
1.8	.0075	10083	40077	.0099	.0141	.0183	
1.9	.0082	•0089	0083	•0108	.0153	.0198	0291
2.0	.0089	•0096	.0089	•0117	.0165	.0213	.0314
2.1	.0097	.0104	.0095	•0126	.0178	.0229	.0336
2.2	.0105	.0111	.0101	•0136	.0190	.0245	.0360
2.3	.0113	.0119	.0108	•0146	.0204	•0262	•0384
2.4	.0121	•0127	•0115	•0156	.0218	•0279	•0408
2.5	.0130	•0135	•0122	•0166	.0232	•0296	•0433
2.6	.0139	•0143	•0130	•0177	•0246	•0314	•0458
2.7	•0148	•0152	.0137	•0188	•0261	•0332	•0484
2.8	.0158	.0161	s0145	.0200	•0276	. 0351	0511
2.9	•0167	•0170	•0153	.0211	•0291	•0370	•0538
3.0	•0177	•0180	•0161	•0223	•0307	.0390	.0565
3.1	•0188	•0189	•0170	•0236	•0323	•0409	₀ 0593
3.2	•0198	.0199	•0178	•0248	♦ 0340	•0430	•0621
3.3 ·	•0209	•0209	•0187	•0261	. 0357	•0450	•0650
3.4	•0220	•0220	•0196	•0274	●0374	•0471	•0680
3.5	•0232	•0230	•0205	•0287	•0392	•0493	•0709
3.6	•0243	•0241	•0215	•0301	•0409	•0515	•0740
3.7	•0255	•0252	€0225	.0315	•0428	•0537	•0771
3.8	•0267	•0263	•0234	•0329.	•0446	0559	•0802
3.9	•0279	•0275	•0245	•0344	•0465	•0582	•0834
4.0	•0292	•0287	•0255	.0358	•0484	•0605	.0866
4.1	•0305	•0299	+0265 ·	•0373	•0504	•0629	•0899
4+Z	.0318	•0311	•0276	•0389	•0524	•0653	.0932
4.3	•0331	•0323	a0287	•0404	0544	.00//	a0965
4.4	•0345	.0330	€U290	a0420	8U204	•0702 •0707	+0999 1094
467	•0339	40 349	•0309	40430	0000	0762	1040
4.0	•0373	•0362	•0321	•0455	10000	0733	1104
4.7	•0357	•03/5	•0332 0266	+0489	0020	40778	1140
4.0 4.9	●0402 ●0416	•0359	a0356	•0503	•0672	•0831	.1176
	••••				-		
5.0	•0432	•0417	•0369	•05Z1	●U694.	0858	• 1213
2+2	•0510	•0490	•0433	0700	00010	0997	♦1403 1×00
0.0	●U595	+U569	♦U5UZ		0954 °	♦1147 1963	1014
5.5	.0656	.0653	aU5/5	+0012	1000	1302	+1814 2025
7.0	• U 78 Z	●U74Z	. +0653	•0922	1261	01400	+2U35 2347
140	.0884	10837	00130	01020	1221	1000	16201 2500
8.0	•099Z	.0937	+0824	•1160	1204	1020	+ 2 3 U 8
8.5	•1106	•104Z	•0915	01288	41004	• 2008	• 2 1 3 9
9.0	•1225	.1152	•1012	•1421	• 1831	• 2205	• 3019
9.5	. 1349	A1266	▲111Z	a1561	▲2005	AZ409	▲ 3289

Table IV. Continued.

	-	•		R			
T(MeV)	Ве	Graphite	Water	Al	Cu	Ag	Pb
10.0	16.79	1294	1217	1706	. 2186	- 7420	. 3568
10.5	. 1674	.1511	.1327	1867	.2373	- 2840	43856
11.0	. 1765	1.641	1440	.2013	.2567	- 3066	.4154
11.5	1901	▲1775	.1558	.2175	.2768	• 3300	4460
12.0	.2052	1915	1680	.2343	.2975	.3541	4776
12.5	▲220B	2059	1807	.2516	.3188	.3790	-5100
13.0	.2370	.2207	.1937	• 2695	3408	4045	.5433
13.5	.2536	.2361	2072	.2879	.3635	4308	\$775
14.0	A2708	42519	2211	3068	.3867	4578	•6125
14.5	.2885	•2682	•2353	• 3263	•4106	•4855	•6484
15.0	• 3067	•2849	.2500	• 3463	• 4351	•5138	.6851
15.5	• 3254	•3021	•2651	• 3668	•4602	•5429	•7226
16.0	• 3446	•3198	•2806	• 3879	♦4860	♦5726	•7610
16.5	• 3643	•3379	•2965	•4095	•5123	•6030	•8002
17.0	• 3845	•3564	•3128	•4316	• 5393	•6341	8403
17.5	•4052	•3755	•3295	• 4542	• 5668	•6659	.8811
18.0	. 4264	، 3949	•3465	•4773	•5950	•6983	•9228
18.5	•4481	•4148	•3640	• 5009	₀ 6237	•7314	♦ 9652
19 •0	•4702	•4351	•3819	•5251	.6530	•7651	1.0085
19.5	•4929	•4559	•4001	• 5497	•6830	•7995	1.0525
20.0	• 5160	•4771	•4187	• 5748	•7135	•8346	1.0974
21.0	.5637	.5209	4571	.6266	.7762	.9066	1.1894
22.0	.6132	•5663	.4970	.6804	.8412	.9812	1.2845
23.0	.6646	.6135	.5385	•7361	9086	1.0584	1.3826
24.0	•7179	•6624	•5814	•7937	₀9781	1.1380	1.4838
25.0	•7731	•7129	•6258	8533 ه	1.0499	1.2201	1.5880
26.0	.8301	.7651	•6717	•9148	1.1240	1.3047	1.6952
27.0	8889	•8190	•7190	•9782	1.2002	1.3918	1.8052
28.0	• 9495	.8745	•7678	1.0434	1.2786	1.4812	1.9182
29.0	1.0119	.9317	. 8180	1.1106	1,3591	1.5730	2.0341
30.0	1.0760	•9904	•8696 ·	1.1795	1.4418	1.6672	2.1529
31.0	1.1420	1.0508	•9227	1.2503	1,5266	1.7638	2.2744
32.0	1.2096	-1+1127	•9772	1.3229	1.6135	1.8627	2.3988
33.0	1.2791	1.1763	1.0330	1.3974	1.7025	1.9640	2,5259
34.0	1.3502	1.2414	1.0903	1+4/36	1. 7935	- 2.0675	2.6558
35.0	1.4231	1.3081	1.1489	1.5516	. 1.8867	201733	24/885
36.0	1.4977	1.3763	1.2089	146513	109818	202814	2.9239
37.0	1.5740	1.4461	1.2703	14/129	2.0791	203918	3.0020
38₊0 39₊0	1.6520	1+5174 1+5903	1.3330 1.3971	1.8811	2.1783	2.5093 2.6191	3+2027 3+3462
40.0	1 81-20	1.6646	1.4625	1.9679	2.2897	2.7361	3.4077
40.0	1 8050	1.7405	1.5202	2.0563	2.4879	2,9552	3.6409
41.0	1 0906	1.9179	1 6072	2.1445	2 5051	2.0766	3.7972
42.0	2 0669	1.9047	1.6666	2.2292	2.7042	3,1002	3.9461
43.0	2.1544	1.9770	1.7273	2.2310	2,8152	3,2258	4.1025
44.0	2 2641	2.0599	1,8002	2.4271	2.0282	3,3537	4.2615
45.0	2.3252	2.1421	1,8825	2.5239	3.0431	3.4836	4.4231
47.0	2.4280	2.2268	1,9570	2.6224	3,1599	3.6157	4.5871
48.0	2.6333	2.2120	2.0229	2.7226	3,2786	3.7498	4.7537
49.0	2.6182	2.4006	2.1099	2 • 8244	3.3992	3.8861	4.9228
50.0	2,7156	2.4896	2,1883	2.9278	3,5216	4.0244	5.0943
52.5	2,9661	2.7184	2.3897	3.1934	3.8359	4.3792	5.5339
55.0	3.2263	2.9560	2 5988	3.4690	4.1617	4.7466	5.9886
57.5	3.4960	3.2023	2.8156	3.7545	4.4988	5.1266	6.4583
60.0	3.7752	34571	3.0400	4.0496	4.8470	5.5188	6.9426
62.5	4.0637	3.7204	3.2718	4.3544	5.2063	5 9233	7.4415
65.0	4.3614	3.9921	3.5111	4.6686	5.5764	6.3398	7.9547
67.5	4.6681	4.2720	3.7576	4.9922	5,9573	6.7682	8.4821
70.0	4.9839	4.5602	4.0113	5.3251	6.3487	7.2083	9.0235
72.5	5.3086	4.8563	4.2722	5.6671	6.7507	7.6601	9.5786

١

				R			
П(Мо Х)	Ве	Graphite	Water	Al	Cu	Ag	Pb
I(Mev)							
75.0	5.642	5.161	4.540	6.018	7.163	8.123	10.147
77.5	5.984	5.473	4+815	6.378	7•586	8+598	10.729
80.0	6.335	5.792	5.097	6.747	9.018	9.083	11.325
82.5	6.694	6.120	5.386	7.124	8.461	9.580	11.933
85 ₀ 0	7.062	6.455	5.681	7.511	8.914	10.088	12.555
87.5	7+438	6.798	5.983	7.905	9.376	10.606	13.189
90.0	7.822	7.149	6.292	8.309	9.848	11.135	13.836
92.5	8 • 215	7.506	6.607	8.720	10.330	11.675	14.495
95.0	8.615	7.871	6.929	9.140	10.821	12.225	15.167
91.5	9.024	8.244	10271	98200	11.322	120182	12.825
100.0	9.440	8.623	7.592	10.004	11.892	13.355 (16.548
110.0	104277	10.223	8.007	11.928	12.067	15,729	19.452
110.0	11.104	100212	0.770	12.797	154702	16.088	20.073
120.0	12.048	11.010	10.489	13.776	16.233	18.276	22.539
125.0	14.024	12,790	11.273	14.795	17.420	19.601	24.150
130.0	15.029	12.713	12,080	15.843	18.640	20.963	25.803
135.0	16.061	14.654	12,909	16,919	19,893	22.361	27.499
140.0	17,121	15.619	13.760	18,024	21,177	23.794	29.236
145.0	18.208	16.608	14.633	19.156	22.493	25.262	31.015
150.0	19.322	17.622	15.527	20.315	23.840	26.763	32.833
155.0	20.462	18.659	16.442	21.500	25,217	28.298	34.691
160.0	21.627	19.720	17.378	22.712	26.623	29.865	36.587
165.0	22.817	20.803	18.334	23.950	28.059	31.464	38.521
170.0	24.032	21.909	19.309	25.212	29.524	33.095	40.492
175.0	25.272	23.037	20.304	26.500	31.017	34.757	42.500
180.0	26.536	24.186	21.319	27.812	32.538	36.449	44.544
185.0	27.823	25•357	22.352	29.147	34.086	38+171	46.622
190.0	29.133	26.549	23.404	30.507	35.661 -	39 •922	48.735
195.0	30.466	27.761	24.474	31.889	37,262	41.702	50.882
200.0	31.821	28.994	25.562	33.294	38.888	43.510	53.063
205.0	33.199	30.247	26.668	34.722	40.541	45.346	55.276
210.0	34.598	31.519	27.791	36.171	42.218	47.210	57.521
215.0	36.018	32.811	28.932	37.643	43.920	49.100	59.798
220.0	37.460	34.122	30.089	39.135	47.040	51.010	02+100
225.0	38.922	35+451	31.262	40.049	4/+390	526961	04 • 444 66 012
230.0	40.404	30 1 1 4 5	220422	420103	490107 50 065	54 950	60 • 01 9
2000	41.707	30.107	228027	420121	50.0705	58.0%2	71.428
240.0 245.0	43.429 44.971	37€347 40€951	36.118	46.906	54.625	60,987	74.094
250.0	46.821	42.270	37, 271	48-520	56.489	63-054	76-578
255.0	48,111	43,806	38.639	50.152	58.373	65.145	79.090
250.0	40.709	45.258	30.021	51.804	60.279	67.260	81.630
265.0	51,325	46.727	41.219	53.473	62.206	69.397	84.196
270.0	52.960	48.213	42.531	55,161	64.154	71.557	86.789
275.0	54.612	49.714	43.857	56.867	66,121	73.739	89.408
280+0	56.282	51.232	45.197	58.591	68.109	75.943	92.052
285.0	57.968	52.765	46.551	60.332	70.116	78+169	94.722
290.0	59.672	54.313	47.918	62.090	72,143	80.416	97.416
295.0	61.392	55.876	49.299	63.865	74.188	82+683	100.135
300.0	63.129	57.455	50.693	65.657	76,253	84•971	102.877
310.0	66.651	60.655	53.520	69.289	80.437	89.608	108.434
320.0	70.236	63.912	56.397	72,984	84.692	94.322	114.081
330.0	73.883	67•225	59+323	76.741	89.017	99+113	119.818
340.0	77.588	70.591	62.297	80.558	\$3 . 410	103.978	125.641
350.0	81+352	74.010	65.318	84•434	97.868	108,914	131.548
360.0	85.171	77.479	68.383	88.365	102.389	113.920	137.535
370.0	89.045	80 •998	71.492	92.352	106.973	118.993	143.601
380.0	92.972	84.565	74.644	96.392	111.616	124.131	149 • 744
390.0	96.951	88.178	77.836	100 484	116.317	129.333	155.960

Table IV. Continued.

ł

	.			R			
	Ве	Graphite	Water	Al	Cu	Ag	Pb
T(MeV)							
400.0	100.000	. 01.927	81.674	104-626	121 075	124.507	162.360
410.0	105+058	914057	84.342	108-818	125,889	139.921	168 607
420.0	109.183	99.286	874653	113.057	130.756	145.304	175.033
430.0	113.355	103.074	91.000	117.342	135.675	150.743	181.525
440.0	117.572	106.902	94.384	121.673	140.644	156.237	188.081
450.0	121.832	110.770	97.803	126.048	145.663	161.785	194.699
460.0	126.136	114.677	101.256	130.465	150.731	167.384	201.378
470.0	130.481	118.621	104.742	134.924	155.844	173.035	208.115
480.0	134.866	122.602	108.261	139.423	161.003	178.734	214,909
490.0	139.291	120.019	111.812	143.902	166.207	1840482	221.758
500.0	143.754	130.670	115.393	148.539	171.453	190.276	228.662
510.0	148.255	134.755	119.005	153.154	176.741	196.115	235.618
520 . 0	152.792	138.873	122.645	157.805	182.070	201.999	242.624
530.0	157.365	143.023	126.314	162.492	187.439	207.925	249.681
540.0	161.972	147.205	130.011	167.213	192.846	213.893	256.785
550.0	106+014	151.417	133.735	1/1.96/	198.291	219.902	263.93/
500.0	175.004	150.020	1270400	181.574	2030115	2220921	271 - 134
580.0	180.732	164.228	145.063	186+425	214.842	238+162	285.660
590.0	185.501	168.555	148.889	191.306	220.428	244.323	292.987
			×				
600.0	190.299	172.908	152.739	196.216	226.047	250.520	300.355
610.0	195.126	177.288	156.612	201.156	221.697	256.751	307.763
620.0	199.982	181.693	160.508	206.124	237.380	263.017	315.211
630.0	204+865	180.124	104+420	2110119	2430093	2090310	322.090
650.0	2090113	1904979	172.326	271,188	240.000	282.006	337.776
660.0	219.675	199.559	176.308	226+262	260.406	288.397	345.369
670.0	224.662	204.083	180.309	231.360	266.234	294.819	352.996
680.0	229.675	208.630	184.330	236.482	272.088	301.269	360.657
690.0	234•711	213.198	188.371	241.628	277.968	307•747	368•349
700 0	220 770	217 707	102 420	246 707	202 074	214 757	376 074
710.0	244.853	222.396	196.507	251,989	289.805	320.785	383.829
720.0	249.957	227.026	200.603	257.202	295.760	327.344	391.614
730.0	255.084	231.676	204.715	262.437	301.739	333.928	399.428
740.0	260.231	236.344	208.845	267.693	307.741	. 340.537	407.270
750.0	265.400	241.031	212,991	272.969	313.765	347.170	415.140
760.0	270.589	245.737	217.154	278.265	319.812	353.827	423.037
770.0	2/5+/9/	250+460	221+332	2830381	325.880	360+507	430 • 960
790.0	286,272	259.959	229,736	294 269	338.078	373.933	446.882
190.0	2000272	2370337	2270130		550.070	5,50,00	4400000
800.0	291.537	264•733	233.960	299.640	344.207	380.679	454.880
810.0	296.821	269+524	238.198	305.029	350.355	387.445	462.902
820.0	302.122	274.330	242.451	310.435	356.523	394.232	470.946
830e0	307.440	2790152	246 • 717	312,050	362 013	4010039	479.013
850.0	218,127	2024909	2504997	3210291	375,134	4074004	407.102
860.0	223.494	203.708	259.596	332.223	361.373	421.572	503.343
870.0	328 878	2984588	263.914	337.710	387.628	428.454	511.494
880.0	334.276	303.483	268.245	343.211	393.900	435.352	519.665
890.0	339.690	308.391	272.588	348.727	400.188	442.268	527.855
000 0	968 340	313 433	27/ 0/2	254 257	404 400	440 300	696 ACA
910-0	347+117 250-542	318,312	210+943	3340231 359,802	4000472 412,810	44762UU 456,140	770+U04 544-201
920-0	356-019	323,193	285.686	365.359	419.144	463.113	552.536
930.0	361.489	328.151	290.075	370.930	425.492	470.093	560.798
940.0	366.973	333.123	294.474	376.514	431.854	477.088	569.077
950 .0	372.470	338.105	298.883	382.111	438.230	484.098	577.373
960.0	377.981	343.100	303.303	387.720	444.619	491.122	585.684
970.0	383.503	348.105	307.733	393.341	451.022	498+160	594.012
AR0*0	389.038	353.122	312+173	378 974	4710431	5050211 512,274	602+354
770e0 1000-0	5790787 800.187	3700147 363,127	3100022 321,091	4044019	4030000	519,354	610-011
		しつうきょひて	JE 18001	マエマキビイン	~ + + + + + + + + + + + + + + + + + + +	ノニフォリンサ	
Table V. Properties of charged particles (BB69, TP69, MT65. Electron masses to be divided by 1000).

Ion	z	Lifetime	Charge		Mass		m _r
		nano sec	10 ⁻¹⁹ C	10 ⁻²⁴ g	amu	MeV I	1
ELECTRON	1	STABLE	±1.60219	0.910956	0.548593	511.004	0.544630
MUON	1	2198.3	±1.60219	0.188357	0.113432	105.6598	0.112613
PION	1	26.04	±1.60219	0.248823	0.149846	139.578	0.148763
KAON	1	12.35	+1+60219	0.880322	0.530147	493.82	0.526317
CIGMA+	ī	0.081	+1.60219	2,120318	1.276895	1189.40	1,267671
SIGMA-	· ī	0.164	_1.60219	2.134436	1,285398	1197.32	1.276112
STONA .	*	0.104	-1000217	20134430	1.203370		I CIUIIC
		Mass excess MeV	3				
1 N	0	8.0714	0.	1.674920	1.0086652	939.553	1.0013786
1H	1	7.2890	1.60219	1.672614	1.0072766	938.259	1.0000000
2H	ī	13.1359	1.60219	3.343569	2.0135536	1875.587	1.9990076
3H	1	14.9500	1.60219	5.007334	3-0155011	2808.883	2,9937170
345	2	14.9313	3.20438	5,006390	3.0149325	2808.353	2.9937526
244F	2	2.4748	3.20438	6.644626	4.0015059	3727.328	3.0725000
411	2	14.0994	4.90459	0.995570	4.0126790	5601.443	5.0700375
711	2	14.0072	4000000	11.667661	7.0163591	£522.742	5.9100315 4.0436843
705	2	1467073	4.00000	11.649196	7.0143331	6526.002	6.9030002
	7	11 2606	6 40077	14 040100	7 0 0 0 0 0 0 1 1	0303 (37	0 0440377
9BE	4	11.3505	8.40877	14.901372	9.0099911	0392.037	0.9449021
108	2	1200522	8.01096	10.022243	10.0101958	9524 509	94937882U
118	2	8.0011	8+01049	18.270741	11.0000023	102520406	10.9270507
120	6	0.	9.61315	19,920910	11.9967084	11174.708	11.9100440
130	6	3.1246	9.61315	21.587011	13.0000629	12109.314	12,9061502
14C	6	3.0198	9.61315	23.247356	13.9999504	13040.691	13.8988145
14N	7	2.8637	11.21534	23.246166	13.9992342	13040.024	13.8981035
15N	7	.1004	11.21534	24,901771	14.9962676	13968.741	14.8879343
160	8	-4.7365	12.81753	26.552769	15.9905263	14894 875	15.8750105
170	Ř	- 8077	12,81753	28.220304	16.9947441	15830 . 285	16.8719738
180	Ř	7824	12.81753	29,880881	17.0947713	16761.791	17.8647767
105	ŏ	-1.4860	14.41073	31,530247	18.0034674	17692.058	18-8562582
20115	1Ó	-7.0415	16.02192	32,188063	10.0869566	19617.472	10.8425485
2116	10	-5.7299	16.02192	36.851833	20.0883627	19550.245	20.8367624
22NF	10	-8-0249	16.02192	36.508273	21.9858989	20479.451	21.8270724
				30,000,000			
2'3NA	11	-9.5283	17.62411	38.165213	22.9837363	21408.918	22.8177014
24MG	12	-13.9333	19.22630	39.816981	23.9784587	22335+483	23.8052379
25MG	12	-13.1907	19.22630	41.478836	24.9792559	23267.707	24.7988053
26MG	12 [.]	-16.2142	19.22630	43.133977	25.9760100	24196.165	25.7883589
27AL	13	-17.1961	20.82849	44.791847	26.9744073	25126.153	26.7795437
2851	14	-21.4899	22.43068	46.443813	27.9692490	26052.830	27.7671987
2951	14	-21.8936	22.43068	48.103625	28.9688156	26983.907	28.7595444
3051	14	-24.4394	22.43068	49.759617	29.9660826	27912.843	29.7496071
31P	15	-24.4376	24.03288	51.419241	30.9655359	28843.815	30.7418404
325	16	-26.0127	25.63507	53.076053	31.9632963	29773.210	31.7323930
335	16	-26.5826	25.63507	54.735569	32.9626845	30704.121	32.7245615
345	16	-29.9335	25.63507	56.390126	33.9590871	31632.251	33.7137661
365	16	-30.6550	25.63507	59.709903	35.9583126	33494.492	35.6985491
35CL	17	-29,0145	27.23726	58.051385	34.9595251	32564.140	34.7069770
37CL	17	-31.7648	27.23726	61.367545	36.9565725	34424.353	36.6895976
36AR	18	-30.2316	28.83945	59.708836	35.9576699	33493 894	35.6979111
38AR	18	-34.7182	28.83945	63.021900	37.9528533	35352 369	37.6786813
40AR	18	-35.0383	28.83945	66.342392	39.9525096	37215.012	39.6638921
396	19	-33,8033	30.44164	64 683151	38.9532869	36284 294	38.6738877
404	19	-33,5333	30.44164	66.344164	30,0535769	37216-006	30.4440414
4004	20	-34,9676	32,04282	66.340010	30.0516172	37214.190	30.4630040

Table VI. B of Moliere's theory for z=1, 2 and 6, variable β and thickness s.

For any value of z at $\beta=0$, B is the same as for z=1. The theory is valid only for B 4.5. Linear interpolation for Z or β^2 will give sufficient accuracy. Logarithmic interpolation is required for s.

Z	S	-			z=1						z=2	2	z= 6	
	g/cm^2	β ² = 0	0.005	0.01	0.02	0.05	0.1	0.2	0.5	1.0	0.1	1.0	0.1	1.0
3	10-3 10-2 10-1 1	10.5 13.0 15.4 17.9	8.8 11.5 14.0 16.4	8.3 10.8 13.3 15.8	7.6 10.2 12.8 15.2	6.6 9.2 11.7 14.2	5.7 8.5 11.0 13.5	4.9 7.7 10.3 12.8	3.8 6.6 9.2 11.8	2.8 5.7 8.5 11.0	7.4 10.0 12.5 14.9	4.6 7.4 10.0 12.6	-	- - -
10	10 ⁻³ 10 ⁻² 10 ⁻¹ 1	8.2 10.7 13.3 15.7	8.0 10.5 13.0 15.4	7.7 10.3 12.8 15.2	7.4 9.9 12.4 14.8	6.7 9.25 11.8 14.3	6.0 8.7 11.2 13.7	5.2 8.0 10.5 13.1	4.2 7.0 9.6 12.1	3.2 6.2 8.8 11.4	7.2 9.8 12.3 14.8	4.9 7.7 10.3 12.8	8.1 10.6 1311 15.5	7.2 9.7 12.3 14.7
20	10 ⁻³ 10 ⁻² 10 ⁻¹	6.8 9.4 12.0 14.4	6.7 9.3 11.9 14.4	6.6 9.3 11.8 14.3	6.5 9.2 11.7 14.2	6.2 8.9 11.4 13.9	. 5.8 8.5 11.0 13.5	5.2 7.9 10.5 13.1	4.2 7.1 9.7 12.2	3.5 6.4 9.0 11.5	6.5 9.2 11.7 14.2	5.0 7.8 10.3 12.8	6.8 9.4 11.9 14.4	6.4 9.1 11.6 14.2
50	10 ⁻³ 10 ⁻² 10 ⁻³	4.7 7.5 10.0 12.5	4.7 7.5 10.0 12.5	4.7 7.5 10.0 12.5	4.6 7.4 10.0 12.5	4.6 7.4 10.0 12.5	4.5 7.3 9.9 12.4	4.3 7.2 9.7 12.2	3.7 6.6 9.2 11.8	3.2 6.0 8.8 11.3	4.6 7.5 10.0 12.6	4.1 7.0 9.6 12.1	4.7 7.5 10.1 12.5	4.6 7.4 10.0 12.5
100	10 ⁻³ 10 ⁻² 10 ⁻¹	3.1 6.0 8.7 11.2	3.1 6.0 8.7 11.2	3.1 -6.0 8.7 11.2	3.1 6.0 8.7 11.2	3.0 6.0 8.7 11.2	3.0 5.9 8.6 11.1	3.0 5.9 8.6 11.1	2.8 5.7 8.4 10.9	2.5 5.4 8.2 10.7	3.1 6.0 8.7 11.2	2.9 5.8 8.5 11.0	3.1 6.0 8.7 11.2	3.1 6.0 8.7 11.2

89

TABLE	VII.	MULTIPLE SCATTERING	DIFFERENTIAL	DISTRIBUTION	FUNCTION	F(X)
		(FROM MZ67)		•		

8=	4	5	6	7	8	9	10	12
X	·							
0	1.0	1.0	. 1.0	1.0	1.0	1.0	1.0	1.0
2	•94070	•94546	•94850	●95058	•95208	•95321	●95409	i 95537
•4	•78389	•79992	. 81017	•81721	•82232	• 82616	•82916	483351
•6	•58102	.60800	62535	•63731	•64601	•65259	•65772	↓66520
•8	.38726	.41889	4 3939	•45,363	#46402	₄ 47192	•47811	•48716
1.0	.23800	.26632	.28491	.29793	•30752	•31486	• 32063	: ;32913
1.2	.14139	.16116	.17437	18377	•19077	19616	•20045	€20681
1.4	₀08650	.09681	.10393	•10911	•11304	•11612	•11859	12231
1.6	.05666	.05986	•06226	•06410	•06556	.06673	.06769	•06918
1.8	.03899	.03840	03816	•03807	.03805	.03806	.03809	•03817
2.0	•02685	.02506	.02387	•02303	•02240	•02192	•02154	02097
2.2	•01793	.01628	.01507	•01416	•01345	•01288	.01241	:01170
2•4	.01164	.01048	.00956	•00883	•00824	.00775	•00735	- 100673
2.6	.00799	.00716	.00646	. 00589	•00543	●00504	•00471	i00419
2.8	•00549	.00489	.00438	•00396	•00361 ·	•00332	.00308	•00269
3.0	.00397	. 00349	.00310	•00277	•00251	•00229	•00211	.00182
3.2	.00300	.00259	.00227	•00202	•00181	600164	•00150	.00128
3.4	.00232	.00198	.00171	●00151	.00135	•00122	•00111	100094
3.6	.00182	.00154	.00132	•00116	.00103	•00093	.00084	.00071
3.8	•00145	.00121	.00103	•00090	+00080	.00072	.00065	
4.0	•00115	.00096	•00085	•00071	.00063	♦00056	•00051	·
4.2	00093	•00077	00065	•00057	00050	•00045	•00041	
4.4	♦00075	.00062	.00053	•00046	.00041	•00037	•00033	
4.6	•00062	.00051	.00043	•00038	•00033	•00030	•00027	
4.8	•00051	.00042	.00036	+00031	+00027	00025.	•00022	
5.0	.00043	00035	.00030	•00026	•00023	•00021	.00019	
5.2	.00036 -	00030	.00025	.00022	•00019	•00018	•00016	
5.4	00030	00025	00021	.00019	•00016	.00015	.00013	
5.6	.00026	.00021	.00018	.00016	•00014	•00013		
5.8	.00022	.00019	.00016	•00014	+00012	.00011		
6.0	.00019	.00016	•00014	♦00012	.00010	•00010		

TABLE VIII. MULTIPLE SCATTERING INTEGRAL DISTRIBUTION FUNCTION. GIVEN IS THE FRACTION OF INCIDENT PARTICLES FOUND INSIDE A CONE OF HALF ANGLE X.

.....

....

.....

	8≕ 4	5	6	7	8	9	10	12
X			-					
•2	•0461	•04431	•04320	04247	•04195	•04153	•04123	•04078
•4	•16893	•16330	•15993	•15773	•15616	•15485	•15393	•15253
•6	•33004	• 32259	.31815	•31523	•31316	•31132	•31008	•30814
• 8	• 4889(•48427	•48156	•47981	•47856	•47716	•47637	•47496
1.0	•61971	•62202	•62359	62473	● 62554	•62555	•62592	•62614
1.2	.71612	.72641	•73300	•73759	•74088	•74266	•74449	•74676
1.4	•78446	• 80062	.81102	•81829	82357	.82679	.82981	•83380
1.6	•83429	•85269	. 86473	•87324	.87948	.88340	• 887 04	•89194
1.8	•87231	88987	•90159	•90998	•91620	•92011	•92378	•92875
2•0	•90166	•91679	•9270 9	•93457	•94016	•94358	•94690	•95136
2.2	•92375	•93623	.94485	•95118	•95591	•95868	•96149	•96519
2.4	•93964	•94997	•95714	•96242	•96636	•96849	•97080	•97375
2.6	•95110	•95983	•96584	•97026	•97353	.97513	•97700	•97928
2•8	•95964	•96714	•97224	•97596	•97869	•97985	•98136	•98308
3.0	•96607	•97259	•976 97		•98244	•98325	•98447	•98575
3.2	.97115	.97684	•980 6 2	•98334	•98528	•98581	• 9868 0	.98772
3.4	•97529	•98024	•98351	•98584	•98750	.98779	•98860	•98924
3.6	•97872	•98302	•98584	•98786	•98927	•98938	•99002	•99043
3.8	•98158	•98531	•987 7 6	●989 50	•99071	•99066	•99117	•99140
4 •0	•983 9 8	•98722	•98934	•99086	•99189	•99172	•99212	•99224
4.2	.98600	.98882	•99067	•99199	•99288	.99260	•99291	•99296
4•4	•98771	•99018	•991 79	♦99295	•99372	•99334	•99357	•99359
4.6	•98917	•99134	•99275	● 99377	•99443	•99397	•99413	•99413
4•8	•99043	•99233	•99357	•99447	•99504	•99452	•99462	•99461
5.0	•99152	•99320	•99429	•99508	♦99557	•99500	•99504	•99503
5.2	•99247	•99395	•99491	.99561	•99603	•99541	•99541	•99541
5.4	•99331	•99461	•99545	•99607	•99644	•99578	•99573	•99574
5.6	•99405	•99519	•99594	• 99648	•99680	•99610	•99602	•99604
5.8	•99470	•99571	•99637	•99685	•99712	•99639	•99628	•99631
6.0	•99530	•99618	•99676	•99719	•99741	•99666	•99651	•99655
7.0	.99655	•99720	.99762	•99793	•9 [.] 9810	.99755	•99744	•99747
8.0	.99736	•99785	•99818	•99842	•99854	.99812	●99804	•99806
9.0	•99791	•99830	•99856	•9987 [,] 5	•99885	•99852	•99845	•99847
10.0	•99831	•99863	•99883	•99899	•9 9907	•99880	•99874	.99876

Table IX

Critical energy T_c and Radiation length X_o for various substances (H. A. Bethe and J. Ashkin, Experimental Nuclear Physics, Vol. I, p. 166; John Wiley and Sons, New York, 1952).

Substance	T _c (MeV)	$X_{o} (g/cm^2)$
Hydrogen	340	58
Helium	220	85
Carbon	103	42.5
Nitrogen	87	. 38
Oxygen	77	34.2
Aluminum	47	23.9
Argon	34.5	19.4
Iron	24.	13.8
Copper	21.5	. 12.8
Lead	6.9	5.8
Air	83	36.5
Water	93	35.9

Table X

The comparison of maximum electron ranges R_{max} with Spencer's X_{max} . Positrons of 0.1 MeV are indicated by 0.1 . Experimental ranges from GF59; csda ranges from BS67; X_{max} is the value at which J(X) reaches a value of 0.001 (SP59).

T (MeV)	R _{max} exp.	csda range	ratio	Spencer's X _{max}	R max exp.	c s da range	ratio	Spencer's X _{max}
		Aluminum				Coj	pper	
0.05	5.05	5.71	0.884	0.875	5.42	6.90	0.786	0.775
0.10	15.44	18.64	0.829	.0.875	17.1	22.1	0.772	0.775
0.10-	14.4	17.3	0.832	. –	16.1	20.7	0.778	· —
0.15	31.0	36.4	0.850	0.875	34.0	42.8	0.795	0.760
. ·	•	Silver				G	old ·	
0.05	5.04	7.99	0.63	·0.70	4.73	9.88	0.48	- .
0.10	15.6	25.2	0.62	0.67	14.3	30.3	0.47	0.57
0.10-	16.5	23.5	0.70	-	18.5	. 28.2	0.66	-
0.15	30.2	48.4	0.62	0.65	27.6	57.5	0.48	-

72

Table XI

Average energy w for the formation of an ion pair for various particles.

Partic	cle β	p,	·α	Fissi	on fragments
<u>T (Me</u>	V) ≅ 0.3	1	5	90	60
Gas ^H 2	36.6		36.2 .		
Не	41.5		46.0		, · · · ·
N ₂	34.6	36.6	36.39		
02	31.8	31.5	32.3		
Ne	36.2	28.6	35.7		
А	26.2	26.4	26.3	28.0	29.5
Kr	24.3		24.0		
Хе	21.9		22.8		
air	33.7	36.0	34.98		
co ₂	32.9	34.9	34.1		
CH4	27.3		29.1		
C ₂ H ₂	25.7		27.3		
C ₂ H ₄	26.3		28.03		
с ₂ н _б	24.6	ŕ	26.6		
с ₃ н8	27.8				
C ₄ H ₁₀	23.0		24.8		
C6 ^H 14	22.4				
BF3			35.6		
NH3	34.8		30,5		
С ₂ н ₅ ОН			32.6		
C Cl ₂ F ₂ .			29.5		
s o ₂			32.5		
н ₂ 0	30.1		37.6		

Fig. 1. First Born approximation of the excitation function J for L-shell electrons relative to free electron excitation function $J'=1/W^2$. Plotted is $J/J' = J W^2$ as a function of δ -ray energy $W = E/[13.6eV(Z - 4.15)^2]$. The "ionization" energy $W_{\min} \cong I_L$ is approximately 0.09 for Al, 0.17 for Pb. The matrix elements are calculated with hydrogenic wave functions. In Bohr's papers, the rise at small W is described as a resonance effect.

Fig. 2. The stopping number $B = \int W J dW$ for L-shell electrons in copper. Also given is the asymptotic expression $B' = S_L' \ln(2mv^2/I_L)$. The difference between the two functions is the shell correction C , Eq. (3-3); it is a basic part of the quantum mechanical theory.

Fig. 3. The fractional multiple-scattering correction for different elements as a function of proton energy T. The experimental median projected range R_m is related to the csda range R_o through $R_o = R_m + \Delta R$. Corrections due to nuclear diffraction scattering are neglected. Accuracy 10 to 20%.

XBL696-2957

Fig. 4. Practical shell corrections C/Z for particles of charge +1. The abscissa is $T/Z = T_1/(m_r Z)$, see Eq. (3-8). For $Z \le 25$, Walske's, and for Z > 25, Bonderup's shell corrections are modified to fit experimental data for protons and deuterons. In this procedure, deviations from the first Born approximation are included in C/Z, and the shell corrections depend on the incident particle charge z. For C/Z < -0.1, the Bonderup corrections do not fit the data well.

Fig. 6. Range-energy relation for low energy ions. The dimension less parameters $\boldsymbol{\epsilon}$ (for the kinetic energy) and $\boldsymbol{\rho}$ (for the range) are defined in Eqs. (6-4) and (6-5). The parameter k, Eq. (6-8), is related to the low energy electronic stopping power.

Fig. 7. Contour lines for the straggling distribution function

 $\Phi \left[\Phi(\Delta_{u}) = \int_{0}^{\Delta_{u}} f(\Delta) ds \text{ where } f(\Delta) \text{ is the Vavilov function} \right]$ in silicon for particles of velocity $\beta^{2} = 0.04$ (T ~ 20 MeV for protons). The curves are similar for other velocities. The Vavilov theory has been modified for the quantum mechanical corrections. The Vavilov parameter is

$$\varkappa_{\rm V} = 7.49 \cdot 10^{-2} {\rm sz}^2 (1-\beta^2) / \beta^4$$

(for silicon; s in g/cm^2). Plotted is the energy loss p (dimension less) which exceeds the energy loss of $\Phi\%$ of the incident particles. The actual energy loss is $\Delta = \overline{\Delta} + p \mathbf{6}$ where $\overline{\Delta}$ is the mean energy loss ($\overline{\Delta} = sS$), and $\mathbf{6}$ is the standard deviation

6² = 78,250 s $z^2 (1 - \beta^2/2)/(1 - \beta^2)$ keV² <u>Example</u>: 40 MeV protons, s = 0.02 g/cm², β^2 = 0.08, **2**_V = 0.22, $\overline{\Delta}$ = 0.02 · 11.72 = 0.234 MeV, **6** = 40 KeV. For $\Delta = \overline{\Delta}$, p = 0, and about 58% of all the protons lose less than 234 keV. The exact answer is 61.6%. On the other hand, for $\Phi = 96\%$, p ~ 2.0 and $\Delta = 234 + 80$ keV = 314 keV. Thus, 4% of the protons lose more than 314 keV (the exact answer is 315 keV).

Â,

XBL 696-755

Fig. 8. The ratio M_2/M_2^{\prime} of the second moments of the quantum mechanical, Eq. (2-2), and the free electron cross sections, Eq. (2-1), for the L-shell. The curves apply for silicon ($W_{\min} = 0.093$), copper (0.115) Silver (0.135) and lead (0.167).

1

82.

Fig. 9. The ratio M_3/M_3' of the third moments for the L-shell (see Fig. 8 for the elements). Notice that the asymmetry (skewness) is reduced at lower energies.

Fig. 10. The range straggling parameter $\mathbf{6}'/\mathbf{R}$ (%) for protons of kinetic energy T in different elements. $\mathbf{6}'/\mathbf{R}$ is corrected for the quantum mechanical effects (estimated from Fig. 8).

84.

XBL695-2764

Fig. 11. Calculated electron mass stopping power S, including collision and radiation loss for different materials (BS67). The stopping power for Na I is within 1% of S for Ag.

€Z₂

Fig. 12. Absorption curve of mono-energetic electrons. R is defined as the extrapolated range, R_o as the maximum range (BK58).

· 📢

XBL695-2765

Fig. 13. Practical range in aluminum versus electron energy (KK68). Coslett and Thomas (CT65); Kanter and Sternglass, Phys. Rev. <u>126</u>, 620 (1962); Katz and Penfold (KP52); Young, Phys. Rev. <u>103</u>, 292 (1956).