Passenger Railway Optimization

Tomáš Robenek

Transport and Mobility Laboratory EPFL

May 27, 2014

It all started

```
c. 600 BC - A basic form of the railway, the rutway,
existed in ancient Greek and Roman times, the
most important being the ship trackway Diolkos
across the Isthmus of Corinth. Measuring between }
and }8.5\textrm{km}\mathrm{ . remaining in regular and frequent
service for at least }650\mathrm{ years, and being open to all
on payment, it constituted even a public railway, a
concept which according to Lewis did not recur until
around 1800. The Diolkos was reportedly used until
at least the middle of the 1st century AD, after
which no more written references appear
Timeline of railway history; From Wikipedia, the free
encyclopedia
```

FEDIRALI DE LAUSANNE

back in the Greece

c. 600 BC - A basic form of the railway, the rutway, - existed in ancient Greek and Roman times, the most important being the ship trackway Diolkos across the Isthmus of Corinth. Measuring between 6 and 8.5 km , remaining in regular and frequent service for at least 650 years, and being open to all on payment, it constituted even a public railway, a concept which according to Lewis did not recur until around 1800. The Diolkos was reportedly used until at least the middle of the 1st century AD, after which no more written references appear.

- Timeline of railway history; From Wikipedia, the free encyclopedia

Figure: Source - Google Maps

Railway Planning Horizon

Figure: Canadian Soldiers Building a Light Railway, [ca.1918] ${ }^{1}$

References

目 A. Caprara, L. G. Kroon, M. Monaci, M. Peeters, and P. Toth, Passenger railway optimization, Handbooks in Operations Research and Management Science (C. Barnhart and G. Laporte, eds.), vol. 14, Elsevier, 2007, pp. 129-187 (English).

2 Line Planning Problem

3 Train Timetabling Problem

Line Planning Problem (LPP)


```
G=(V,E) - undirected graph G representing the railway network
v\inV - set of stations
e\inE - set of edges representing the tracks between stations
p\inP - set of unordered pairs of stations ( }p=(\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}))\mathrm{ with positive demand
d
E
d
I\inL - set of potential lines (assumed to be known a priori)
E
f\inF - set of potential frequencies
c\inC - set of available capacities
i\inI - set of indices representing combination of assigned capacity c
        and frequency }f\mathrm{ to a line l
ki - operational cost for a combination i (e.g. train driver, conductor(s),
    carriage kilometers
\(x_{i}= \begin{cases}1 & \text { if and only if line } l_{i} \text { is to be operated with a frequency } f_{i} \text { and capacity } c_{i}, \\ 0 & \text { otherwise. }\end{cases}\)
\(d_{l p}-\quad\) number of direct passengers traveling on line / between the pair of stations \(p\)
```


LPP Model II

$\max \quad w_{1} \cdot \sum_{l \in L} \sum_{p \in P} d_{l p}-w_{2} \cdot \sum_{i \in I} k_{i} \cdot x_{i}$
s.t.

$$
\begin{array}{cc}
\sum_{i \in: l: l_{i}=1} x_{i} \leq 1, & \forall I \in L, \\
\sum_{i \in l:: \in E_{l_{i}}} f_{i} \cdot c_{i} \cdot x_{i} \geq d_{e}, & \forall e \in E,
\end{array}
$$

(3)

$$
\begin{array}{cr}
\sum_{p \in P: e \in E_{p}} d_{l p} \leq f_{i} \cdot c_{i} \cdot x_{i}, & \forall I \in L, \forall e \in E, \\
\sum_{l \in L: E_{p} \subset E_{l}} d_{l p} \leq d_{p}, & (4) \\
x_{i} \in\{0,1\}, & (5) \\
& \forall i \in P, \\
d_{l p} \geq 0, & (6) \\
& \forall I \in L, \forall p \in P .
\end{array}
$$

- Non-Cyclic
- Cyclic

Train Timetabling Problem (TTP)

Non-Cyclic

- departs differently over the time horizon
- prior knowledge of the timetable needed
- lower cost

Cyclic

- departs at every cycle
" good for "unplanned" user
- higher cost

3 Train Timetabling Problem

- Non-Cyclic
- Cyclic

Non-Cyclic TTP

Non-Cyclic TTP Model I

```
G =(V,A) - directed acyclic multigraph G
v\inV - set of nodes
a\inA - set of arcs
t\inT - set of trains
a\inA A - subset of arcs used by train t
\sigma - source node
\tau - sink node
pa - profit of arc a
\delta
\delta
C}\quad-\quad\mathrm{ family of maximal subsets }C\mathrm{ of pairwise incompatible arcs
```

$x_{a}= \begin{cases}1 & \text { if and only if the path in the solution associated with train } t \text { contains arc } a, \\ 0 & \text { otherwise. }\end{cases}$

Non-Cyclic TPP Model II

$$
\begin{equation*}
\max \sum_{t \in T} \sum_{a \in A^{t}} p_{a} \cdot x_{a} \tag{8}
\end{equation*}
$$

s.t. $\quad \sum_{a \in \delta_{t}^{+}(\sigma)} x_{a} \leq 1$,
$\forall t \in T$,
(9)

$$
\begin{array}{rr}
\sum_{a \in \delta_{t}^{-}(v)} x_{a}=\sum_{a \in \delta_{t}^{+}(v)} x_{a}, \quad \forall t \in T, \forall v \in V \backslash\{\sigma, \tau\} \\
\sum_{a \in C} x_{a} \leq 1, & \forall C \in \mathbb{C}, \tag{11}
\end{array}
$$

$$
\begin{equation*}
x_{a} \in\{0,1\}, \tag{12}
\end{equation*}
$$

$\forall a \in A$.

3 Train Timetabling Problem

- Non-Cyclic
- Cyclic

Cyclic TTP

 FEDIRALE DE LAUSANNE

Cyclic TTP Model I

$G=\left(N, A \cup A^{s}\right)$	- graph G representing the railway network
$n, m \in N$	- set of nodes
$a \in A$	- set of regular tracks $a=(n, m)$
$a \in A^{s}$	- set of single tracks $a=(n, m)=(m, n)$
$t \in T$	- set of trains
$n \in N^{t} \subseteq N$	- set of nodes visited by train t
$a \in A^{t} \subseteq A \cup A^{s}$	- set of tracks used by train t
$\left(t, t^{\prime}\right) \in T_{a}$	- set of all pairs of trains $\left(t, t^{\prime}\right)$, that travel along the track a in the same direction, where t^{\prime} is the faster train
$\left(t, t^{\prime}\right) \in T_{a}^{s}$	- set of all pairs of trains $\left(t, t^{\prime}\right)$, that travel along the single track a in the opposite direction, where t departs from n and t^{\prime} departs from m
$t \in F_{n}^{d}, F_{n}^{a}$	- set of all trains t, that have a fixed departure (arrival) at node n
$\left(t, t^{\prime}\right) \in S_{n}$	- set of all train pairs $\left(t, t^{\prime}\right), t<t^{\prime}$, for which the departure times are to be synchronized at node n
$\left(t, t^{\prime}\right) \in C_{n}$	- set of all train pairs $\left(t, t^{\prime}\right), t<t^{\prime}$, for which turn-around or connection constraint is required from train t to train t^{\prime} at node n
b	- cycle of the timetable
h	general headway upon departure and arrival at every node
r_{a}^{t}	- time it takes to the train t to traverse the arc a
$\left[d_{n}^{t}, \overline{d_{n}^{t}}\right]$	- dwell time window of the train t at the node n
$\left[\underline{f_{n}^{t}}, \overline{f_{n}^{t}}\right]$	- fixed arrival/departure window of the train t at the node n, in the case of completely fixed arrival/departure $f_{n}^{t}=\overline{f_{n}^{t}}$
$\left[\underline{s_{n}^{t t^{\prime}}}, \overline{s_{n}^{t t^{\prime}}}\right]$	- time window for the synchronization of trains t and t] at node n
$\left.\underline{c_{n}^{t t^{\prime}}}, \overline{c_{n}^{t t^{\prime}}}\right]$	- time window for the connection or turn around constraint between trains t and t^{\prime} at node n

$a_{n}^{t} \quad-\quad$ arrival time of train t at node n
d_{n}^{t} - departure time of train t from node n

Cyclic TPP Model II

$$
\begin{align*}
& \max \quad F(a, d) \\
& \text { (13) } \\
& \text { s.t. } \quad a_{m}^{t}-d_{n}^{t}=r_{a}^{t} \\
& d_{n}^{t}-a_{n}^{t} \in\left[\underline{d_{n}^{t}}, \overline{d_{n}^{t}}\right] \\
& \bmod b, \quad \forall t \in T, \forall n \in N^{t}, \\
& \text { (15) } \\
& d_{n}^{t^{\prime}}-d_{n}^{t} \in\left[\underline{s_{n}^{t t^{\prime}}}, \overline{s_{n}^{t t^{\prime}}}\right] \\
& d_{n}^{t^{\prime}}-a_{n}^{t} \in\left[\underline{c_{n}^{t t^{\prime}}}, \overline{c_{n}^{t t^{\prime}}}\right] \tag{17}\\
& \bmod b, \quad \forall n \in N, \forall\left(t, t^{\prime}\right) \in C_{n}, \\
& d_{n}^{t^{\prime}}-d_{n}^{t} \in\left[r_{a}^{t}-r_{a}^{t^{\prime}}+h, b-h\right] \bmod b, \quad \forall a \in A, \forall\left(t, t^{\prime}\right) \in T_{a}, \tag{18}\\
& a_{n}^{t^{\prime}}-d_{n}^{t} \in\left[r_{a}^{t}+r_{a}^{t^{\prime}}+h, b-h\right] \bmod b, \quad \forall a \in A^{s}, \forall\left(t, t^{\prime}\right) \in T_{a}, \tag{19}\\
& d_{n}^{t} \in\left[\underline{f_{n}^{t}}, \overline{f_{n}^{t}}\right], \tag{20}\\
& \forall n \in N, \forall t \in F_{n}^{d}, \\
& a_{n}^{t} \in\left[\underline{f_{n}^{t}}, \overline{f_{n}^{t}}\right], \tag{21}\\
& a_{n}^{t}, d_{n}^{t} \in\{0, b-1\}, \\
& \forall n \in N, \forall t \in F_{n}^{a}, \\
& \forall t \in T, \forall n \in N_{t} . \\
& \text { (22) }
\end{align*}
$$

Thank you for your attention.

