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It all started . . .

. . . back in the Greece
• c. 600 BC - A basic form of the railway, the rutway,

- existed in ancient Greek and Roman times, the

most important being the ship trackway Diolkos

across the Isthmus of Corinth. Measuring between 6

and 8.5 km, remaining in regular and frequent

service for at least 650 years, and being open to all

on payment, it constituted even a public railway, a

concept which according to Lewis did not recur until

around 1800. The Diolkos was reportedly used until

at least the middle of the 1st century AD, after

which no more written references appear.

• Timeline of railway history; From Wikipedia, the free
encyclopedia
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Figure : Source – Google Maps
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Day 0

Figure : Canadian Soldiers Building a Light Railway, [ca.1918]1

5 / 211 – source: Archives of Ontario, Canadian Expeditionary Force Albums
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Line Planning Problem (LPP)
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LPP Model I

G = (V , E ) – undirected graph G representing the railway network
v ∈ V – set of stations
e ∈ E – set of edges representing the tracks between stations
p ∈ P – set of unordered pairs of stations (p = (p1, p2)) with positive demand
dp – number of passengers, that want to travel between stations p1 and p2

Ep – set of edges on the shortest path between stations p1 and p2

de =
∑

p:e∈Ep
dp – the total number of passengers, that want to travel along edge e

l ∈ L – set of potential lines (assumed to be known a priori)
El – set of edges of the line l

f ∈ F – set of potential frequencies
c ∈ C – set of available capacities
i ∈ I – set of indices representing combination of assigned capacity c

and frequency f to a line l

ki – operational cost for a combination i (e.g. train driver, conductor(s),
carriage kilometers

xi =

{

1 if and only if line li is to be operated with a frequency fi and capacity ci ,
0 otherwise.

dlp – number of direct passengers traveling on line l between the pair of stations p
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LPP Model II

max w1 ·
∑

l∈L

∑

p∈P

dlp − w2 ·
∑

i∈I

ki · xi (1)

s.t.
∑

i∈I:li=l

xi ≤ 1, ∀l ∈ L,

(2)
∑

i∈I:e∈Eli

fi · ci · xi ≥ de , ∀e ∈ E ,

(3)
∑

p∈P:e∈Ep

dlp ≤ fi · ci · xi , ∀l ∈ L, ∀e ∈ E ,

(4)
∑

l∈L:Ep⊂El

dlp ≤ dp, ∀p ∈ P,

(5)

xi ∈ {0, 1}, ∀i ∈ I,

(6)

dlp ≥ 0, ∀l ∈ L, ∀p ∈ P.

(7)
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Train Timetabling Problem (TTP)

Non-Cyclic

• departs differently over the
time horizon

• prior knowledge of the
timetable needed

• lower cost

Cyclic

• departs at every cycle

• good for "unplanned" user

• higher cost
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Non-Cyclic TTP
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Non-Cyclic TTP Model I

G = (V , A) – directed acyclic multigraph G

v ∈ V – set of nodes
a ∈ A – set of arcs
t ∈ T – set of trains
a ∈ At – subset of arcs used by train t

σ – source node
τ – sink node
pa – profit of arc a

δ+t (v) – set of arcs in At leaving the node v

δ−

t (v) – set of arcs in At entering the node v

C – family of maximal subsets C of pairwise incompatible arcs

xa =

{

1 if and only if the path in the solution associated with train t contains arc a,
0 otherwise.
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Non-Cyclic TPP Model II

max
∑

t∈T

∑

a∈At

pa · xa (8)

s.t.
∑

a∈δ
+
t (σ)

xa ≤ 1, ∀t ∈ T ,

(9)
∑

a∈δ
−

t (v)

xa =
∑

a∈δ
+
t (v)

xa, ∀t ∈ T , ∀v ∈ V \ {σ, τ}

(10)
∑

a∈C

xa ≤ 1, ∀C ∈ C,

(11)

xa ∈ {0, 1}, ∀a ∈ A.

(12)
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Cyclic TTP
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Cyclic TTP Model I

G = (N, A ∪ As) – graph G representing the railway network
n, m ∈ N – set of nodes
a ∈ A – set of regular tracks a = (n, m)
a ∈ As – set of single tracks a = (n, m) = (m, n)
t ∈ T – set of trains
n ∈ Nt ⊆ N – set of nodes visited by train t

a ∈ At ⊆ A ∪ As – set of tracks used by train t

(t, t ′) ∈ Ta – set of all pairs of trains (t, t ′), that travel along the track a in the same
direction, where t ′ is the faster train

(t, t ′) ∈ T s
a – set of all pairs of trains (t, t ′), that travel along the single

track a in the opposite direction, where t departs from n

and t ′ departs from m

t ∈ F d
n , F a

n – set of all trains t, that have a fixed departure (arrival) at node n

(t, t ′) ∈ Sn – set of all train pairs (t, t ′), t < t ′, for which the departure
times are to be synchronized at node n

(t, t ′) ∈ Cn – set of all train pairs (t, t ′), t < t ′, for which turn-around or
connection constraint is required from train t to train t ′ at node n

b – cycle of the timetable
h – general headway upon departure and arrival at every node
r t
a – time it takes to the train t to traverse the arc a

[

d t
n, d t

n

]

– dwell time window of the train t at the node n
[

f t
n , f t

n

]

– fixed arrival/departure window of the train t at the node n,

in the case of completely fixed arrival/departure f t
n = f t

n
[

stt′

n , stt′

n

]

– time window for the synchronization of trains t and t] at node n
[

ctt′

n , ctt′

n

]

– time window for the connection or turn around constraint

between trains t and t ′ at node n

at
n – arrival time of train t at node n

d t
n – departure time of train t from node n
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Cyclic TPP Model II

max F (a, d) (13)

s.t. at
m − d t

n = r t
a mod b, ∀t ∈ T , a ∈ At

(14)

d t
n − at

n ∈
[

d t
n, d t

n

]

mod b, ∀t ∈ T , ∀n ∈ Nt ,

(15)

d t′

n − d t
n ∈

[

stt′

n , stt′

n

]

mod b, ∀n ∈ N, ∀(t, t ′) ∈ Sn,

(16)

d t′

n − at
n ∈

[

ctt′

n , ctt′

n

]

mod b, ∀n ∈ N, ∀(t, t ′) ∈ Cn,

(17)

d t′

n − d t
n ∈

[

r t
a − r t′

a + h, b − h
]

mod b, ∀a ∈ A, ∀(t, t ′) ∈ Ta,

(18)

at′

n − d t
n ∈

[

r t
a + r t′

a + h, b − h
]

mod b, ∀a ∈ As , ∀(t, t ′) ∈ Ta,

(19)

d t
n ∈

[

f t
n , f t

n

]

, ∀n ∈ N, ∀t ∈ F d
n ,

(20)

at
n ∈

[

f t
n , f t

n

]

, ∀n ∈ N, ∀t ∈ F a
n ,

(21)

at
n, d t

n ∈ {0, b − 1} , ∀t ∈ T , ∀n ∈ Nt .

(22)
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Thank you for your attention.
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