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Abstract

Regulatory network reconstruction is a fundamental problem in computational biology. There are significant limitations to
such reconstruction using individual datasets, and increasingly people attempt to construct networks using multiple,
independent datasets obtained from complementary sources, but methods for this integration are lacking. We developed
PANDA (Passing Attributes between Networks for Data Assimilation), a message-passing model using multiple sources of
information to predict regulatory relationships, and used it to integrate protein-protein interaction, gene expression, and
sequence motif data to reconstruct genome-wide, condition-specific regulatory networks in yeast as a model. The resulting
networks were not only more accurate than those produced using individual data sets and other existing methods, but they
also captured information regarding specific biological mechanisms and pathways that were missed using other
methodologies. PANDA is scalable to higher eukaryotes, applicable to specific tissue or cell type data and conceptually
generalizable to include a variety of regulatory, interaction, expression, and other genome-scale data. An implementation of
the PANDA algorithm is available at www.sourceforge.net/projects/panda-net.
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Introduction

Transcriptional regulation involves a number of distinct

mechanisms that must work together to respond to internal or

external stimuli [1]. Although the presence of transcription factor

binding sites (TFBS) in the promoter or enhancer regions of a gene

can suggest how that gene is controlled, not all TFBS are

functionally relevant or active. Likewise, the binding of a single

transcription factor (TF) alone may not be sufficient to recruit

RNA polymerase, and several TFs may interact to promote or

diminish regulatory potential. Epigenetic factors, post-translational

modifications, stable and transient protein-protein interactions,

and non-coding RNAs all likewise represent additional mecha-

nisms that impact cellular regulatory networks. Considering how

these various mechanisms might function together or indepen-

dently to promote cellular activity is important when building

comprehensive and interpretable network models.

The problem of gene network reconstruction has been well-

studied and many computational methods to predict regulatory

relationships and dynamics from a single data type exist (for

example [2–5] also see [6] for a review of many existing methods).

Reconstruction methods use various approaches including Bayes-

ian network inference [7,8] and ordinary differential equations [9].

Because of the large amount of gene expression data that is

available, many methods attempt to use transcript levels to reverse

engineer a regulatory network [10]. For example, one common

approach is to use the mutual information among transcripts [2,3].

Many methods examine the relationship between the expression

levels of TFs and their potential targets to infer regulatory

networks, either for individual targets or for larger regulatory

‘‘modules’’ [11–14]. It has become clear, however, that network

inference methods based on expression data alone are at best

incomplete and often have trouble distinguishing between direct

and indirect regulatory events [15–17]. Module-based network

reconstruction methods can partially ameliorate this problem, but

they tend to capture coarse-grained information corresponding to

a few key regulators, recapturing large known regulatory pathways

rather than new interactions [6,18] and it remains difficult to

obtain high-resolution regulatory information from gene expres-

sion data alone.

In contrast, integrative models incorporating multiple data types

have been highly successful in other areas of bioinformatics [19–

21] and they have begun to be applied to gene network

reconstruction [22–25]. Many of these integrative models can

incorporate data concerning promoter sequence information and

protein-protein interactions [26] as well as mRNA expression

levels [27] and ChIP-chip protein-DNA binding information (see,

for example [28]). Integrative methods have been shown to

perform better than those using any individual data type alone to

accurately predict regulatory mechanisms [29]. As a consequence,

a number of reconstruction algorithms include as inputs regulatory

edges predicted a priori from external data sources such as

sequence motifs [3,30,31]. Combining this sequence information

or protein-DNA binding information from ChIP-chip/ChIP-seq

experiments with epigenetic information regarding chromatin

structure has become increasingly popular [32,33], especially in
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predicting networks for higher organisms such as mouse and

human [34]. However, despite these significant advances in the

field, it remains a challenge to effectively extract information from

diverse data-types to recover genome-wide, condition-specific

networks capturing accurate transcriptional regulator/target

relationships [35], especially in higher eukaryotic organisms [36].

To overcome these limitations, we have developed a message-

passing approach to systematically integrate information from

different data-types. In the past, message-passing has been used to

investigate combinatorial control in small networks using expres-

sion data alone [37,38], to estimate signaling pathways by

combining multiple sources of ‘‘omic’’ data [39], and to estimate

the parameters in physical network models that incorporate

protein-protein interaction, gene-expression and TF-gene interac-

tion information [40]. In contrast to previous approaches, our

primary goal is to pass information between multiple data-types in a

meaningful and biologically informed way. To this end, we

developed an algorithm, PANDA (Passing Attributes between

Networks for Data Assimilation), that searches for agreement

between different data-types by using the information from each

to iteratively refine predictions in the others. This not only

provides a more accurate gene regulatory network model, it also

highlights the most informative aspects of the input biological data

relevant to the network structure. A schematic view of the PANDA

algorithm is shown in Figure 1 (see Methods for details).

We applied the PANDA algorithm to build condition-specific

regulatory networks in Saccharomyces cerevisiae, or Baker’s yeast. We

incorporated information regarding protein-protein interaction,

gene expression and TF binding motif data and show that the

resulting networks are not only more accurate, but also capture

information regarding specific biological mechanisms and path-

ways that are missed using existing network inference methods.

Methods

Modeling Network Communication using Message
Passing
The idea behind PANDA can be conceptualized by defining

networks consisting of two types of nodes and three types of edges

(Figure 1A). ‘‘Effector’’ nodes are agents that can in some way

control the subsequent behavior of their ‘‘affected’’ targets. Edges

can be drawn between either pairs of ‘‘effector’’ nodes, from an

‘‘effector’’ to an ‘‘affected’’ node, or between pairs of ‘‘affected’’

nodes. These three types of edges represent three sources of

information that we consider in the model: 1) cooperative effects,

or information about how the effectors may work together, 2)

routes of affection, or simply which targets are affected by which

effectors, and 3) co-affection, or information about how similarly

targets are affected. In the past, message passing has been used to

cluster data-points [41]. We instead use the message-passing

procedure to assimilate the various initial information into one

coherent model, passing attributes between the ‘‘effectors’’ and

their ‘‘affected’’ targets along the various ‘‘routes of affection’’ and

updating each until all three are in agreement with one another.

This leads to refined information about cooperative effects, routes

of affection, and how targets are co-affected.

The main objective of PANDA is to find agreement between the

data represented by multiple networks. We will quantify this

agreement with a heuristically defined similarity score based on

the Tanimoto similarity [42] but with several minor modifications

to better incorporate continuous z-score values as an input:

TZ(~xx,~yy)~
~xx:~yy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~xxk k2z ~yyk k2{D~xx:~yyD

q ~

P

i

xiyi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i

x2i z
P

i

y2i {D
P

i

xiyi D
r ,

where ~xx and ~yy represent vectors of values normalized to z-score

units. Given that ~xx and ~yy represent, as in our case, two sets of

network edge weights, this will allow us to determine high

similarity not only when we are confident that edges exist in both

networks (two highly positive scores) but also when we are

confident that edges do not exist in either network (two highly

negative scores), allowing us to potentially fill in parts of the

networks with sparse information. For more information regarding

TZ as well as a discussion on a potential alternate form for this

equation see the Methods S1 (also Figure S2D).

PANDA: Passing Attributes between Networks for Data
Assimilation
We apply the framework described above to estimate biological

networks, where ‘‘effector’’ TFs can, through interactions with

promoter regions, influence the behavior of ‘‘affected’’ genes. A

schematic view of our approach is shown in Figure 1B. Rather

than viewing information as flowing unidirectionally from TFs to

their targets, we also imagine that additional elements associated

with each target contribute to its ability to respond to the TFs that

target it. Motivated by the concepts laid out by Frey and Dueck

[41], we adopt the terminology of their method and for each edge

define two quantities, the responsibility (Rij) which represents the

information flowing from TF i to gene j and captures the

accumulated evidence for how strongly the gene j is influenced by

the activity of TF i, taking into account other potential regulators

of gene j. Similarly, we define the availability (Aij) which represents

information flowing from a gene j to a TF i and represents the

accumulated evidence for how strongly the TF influences the

expression level of that gene, taking into account the behavior of

other genes potentially targeted by that TF. We note that the

mathematical meaning of these terms presented here is different

from the original Frey and Dueck paper.

We begin by creating a ‘‘seed’’ regulatory network (W(0)) to

represent an initial estimate of the total availability and responsi-

bility of the edges between TFs and their targets. This prior can be

constructed using any source of regulatory information, including

TF-gene regulatory interactions predicted by ChIP-chip or ChIP-

seq experiments; however, due to the sparsity of such data, in the

following analysis we choose to construct the network using motif

information, creating an ‘‘edge’’ between TF i and gene j if the
motif of TF i exists in the promoter region of gene j.

We also construct two other ‘‘seed’’ networks representing initial

estimates of the probability that two genes are co-regulated by the

same TFs and the probability that two TFs cooperate to regulate

common genes. Specifically, we create a co-regulatory network

(C(0)) defined by Pearson correlation coefficients between the

expression profiles of gene pairs. Further, we recognize that the

transcriptional regulatory mechanism involves multiple interacting

factors that cooperate together to initiate the transcription of a

gene. Although there are multiple ways proteins can cooperate to

activate a gene, one primary mechanism is by the formation of a

physical protein complex. Thus, we use physical protein-protein

interaction data to define pairs of TFs that cooperatively regulate

genes in P(0). The three initial ‘‘seed’’ networks are normalized

such that their edge weights are represented by Z-scores (see

Methods S1). The following message-passing approach maintains

this interpretation of edge weights.

Passing Messages between Data
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We combine the regulatory network with the protein-coopera-

tivity network to predict the responsibility (Rij
(t)) of an edge from TF i

to gene j in the regulatory network. Namely, since TFs that

cooperate together share responsibility for regulating the same set

of genes, at each iteration, t, we determine the level of agreement

between the TFs that target gene j, (W.j
(t)), and those that

cooperate with TF i, (Pi.
(t)):

R
(t)
ij ~TZ(P

(t)
i: ,W

(t)
:j )~

P

m

P
(t)
imW

(t)
mj
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In the same manner we combine information in the regulatory

network with the co-regulatory network to predict the availability

(Aij) of an edge between TF i and gene j in the regulatory network.

Namely, since genes that are targeted by the same TF are co-

regulated, to calculate Aij
(t) we determine the level of agreement

between the regulatory targets of TF i (Wj.
(t)) and the set of genes

with which gene j is co-regulated (C.j
(t)):

A
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Since regulation requires both that a TF is responsible for the

regulatory status of its target gene and that the target gene is

available to be regulated by that TF, we use the average of these

two values ( ~WW
(t)
ij ~0:5A

(t)
ij z0:5R

(t)
ij ) and update the regulatory

network by a small amount (a; 0,a,1):

W
(tz1)
ij ~(1{a)W

(t)
ij za

~WW
(t)
ij

We pass messages not only between TFs and their targets but

also among different data-types. Namely, since TFs that target the

same sets of genes are likely to cooperate together when regulating

those genes, we can estimate the weight of an edge between two

TFs, i and m, in the protein-cooperativity network (Pim) by

Figure 1. Outline of the PANDA approach for regulatory network inference integrating three data types. (A) A conceptual illustration
showing the generalized framework for the message-passing procedure. (B) An illustration of how the message-passing procedure is applied in
assimilating data that represents several various components of biological regulation. The networks are initialized from sequence motif data, physical
protein interactions, and co-expression, respectively. The method iteratively passes messages within and among networks to emphasize agreement
regarding the TF-gene regulatory relationships occurring within a system. At each time step regulatory (W), co-regulatory (C), and protein-
cooperativity (P) networks are updated by passing information between the regulatory network, that reflects potential paths for regulation in the
biological system, and the data-specific networks, that reflect ‘‘static’’ pair-wise information shared between gene products and TFs. At convergence,
the method provides harmonized expression and interaction modules specific to a biological condition of interest, as well as the output regulatory
network controlling those modules in each condition.
doi:10.1371/journal.pone.0064832.g001
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comparing the set of genes regulated by TF i to those regulated by

TF m:

~PP
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Similarly, since co-regulated genes are, by definition, targeted

by the same TFs, we estimate the weight of an edge between two

genes, j and k, in the co-regulatory network (Ckj) by comparing the

set of TFs targeting gene k (W.k) with the set of TFs targeting gene j

(W.j):
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This process gives estimates for the protein-cooperativity and

co-regulatory networks that are in agreement with what is known

about the regulatory interactions (W.) that we use to update P. and

C.:

P
(tz1)
im ~(1{a)P

(t)
imza

~PP
(t)
im

C
(tz1)
jk ~(1{a)C

(t)
kj za

~CC
(t)
kj

In the following analysis we set the update parameter, a, equal

to 0.05. We note here that results of PANDA are consistent across

a wide range of values for a (see Figure S1A). These updates (of the

regulatory then cooperativity and co-regulatory network edge

weights) are iteratively repeated. Over time self-co-regulation (Cjj)

and self-cooperativity (Pii) increase relative to other co-regulatory

or cooperative events, guaranteeing convergence. For additional

details regarding the PANDA algorithm and the motivation

behind it see the Methods S1.

Results

PANDA Recovers Edges in Simulated Networks
We initially tested the PANDA algorithm on simulated data. To

that end, we simulated 100 random networks to represent ‘‘true’’

routes-of-affection by generating 500 random connections be-

tween 25 ‘‘effector’’ nodes and 100 ‘‘affected’’ targets. For each of

these randomly generated routes-of-affection networks, we deter-

mined the ‘‘true’’ accompanying cooperative-effects and co-

affection networks by connecting effectors if they both targeted

more than two of the same targets and ‘‘affected’’ targets if they

share any of the same ‘‘effectors’’, respectively. We then added

noise to each set of these networks (cooperative effects, routes of

affection and co-affection) by performing an edge randomization.

For the routes of affection network we performed 125 ‘‘edge

swaps’’ and for the cooperative effects and co-affection networks

we performed a number of swaps equal to 50% of the number of

edges in the networks. As a result, we obtained 100 sets of noisy

initial networks to submit to PANDA, and 100 sets of the original

‘‘true’’ networks with which to evaluate PANDA’s performance.

We evaluated the performance of PANDA on our simulated

data by determining the area under the receiver operating

characteristic curve (AUC-ROC, hereafter shortened to AUC).

We calculated the AUC values for the initial ‘‘noisy’’ networks

submitted to PANDA as well as the AUC values for each of

PANDA’s final predicted networks, using our original ‘‘true’’

networks as a gold standard. The median and standard deviation

of these values across our 100 randomizations are reported in

Table 1. We observe a clear increase in the AUC in all three

networks. In order to evaluate the significance of this increase in

AUC, for each network, we took the difference between the final

and original AUC values across all the randomizations, fit the

results to a normal distribution, calculated the standard-score, and

report the associated p-value (see Methods S1 for more details). All

three networks significantly improve. The most significant

improvement was found in the co-affected network and the least

significant improvement was found in the cooperative-effects

network. We believe this may be partially attributable to the

differences in network size as the cooperative-effects network only

contains 25 nodes and 300 possible connections, whereas the

cooperative-effects network contains 100 nodes and 4950 possible

connections.

PANDA Improves upon Initial Estimates for Regulatory,
Co-regulatory and Protein-cooperativity Networks in
Yeast (Saccharomyces cerevisiae)
As an initial evaluation of our algorithm on biological data we

collected expression data for TF knock-out or over-expression

conditions in Saccharomyces cerevisiae [43,44]. These data were

combined with the known locations of TF motifs in sequence data

[45,46] as well as with a comprehensive set of Affinity Capture-MS

protein-protein interactions from BioGRID [47,48]. These data

defined our initial co-regulatory, regulatory and cooperativity

networks, respectively. The following analysis was run using

information for 53 TFs and 2555 genes for which we had

information across the different data-sets used (for more informa-

tion, see Table 2 and Methods S1).

We ran PANDA using these three initial networks and observed

convergence after approximately 120 iterations of message passing

(see Figure S1B). Before examining the properties of the predicted

protein-cooperativy or co-regulation networks, we first focused on

the quality of the predicted regulatory network. We determined

the AUC value using experimentally-defined TF binding sites

identified using ChIP-chip [45,49] (p,1023) as a ‘‘gold standard.’’

Since the motif and ChIP data were published by the same lab, we

attempted to ensure independence between the prior and

validation set by using motif data that had not been filtered either

by sequence conservation or from the results of the ChIP

experiments [46]. In all subsequent evaluations the AUC is

calculated using only the subset of edges between genes and/or

TFs for which we had information in our ‘‘gold standard.’’

We note that motif data alone is already moderately predictive

of the regulatory network as determined by our ChIP-chip edges

(AUC=0.687). However, at each step PANDA is able to improve

upon this initial estimate (Figure 2A), increasing the quality of our

predicted regulatory network and resulting in a final predicted

regulatory network of higher quality (AUC=0.725) than motif

data alone. To better understand whether a removal of false

positives from edges that were in the prior motif network or the

removal of false negatives from edges that were not in the prior

motif network most strongly contributed to this increase in quality,

we also separately tracked the AUC for the subset of edges

Passing Messages between Data
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belonging to the motif data and the remainder that does not.

Figure 2A demonstrates that although both subsets of edges

improve in quality after iteration, the majority of the overall AUC

improvement is a result of the removal of false positives from the

motif prior. This is heartening as a common practice in

interrogating networks is to focus on a certain number of ‘‘top’’

edges – in which case removal of false positives from these edges

can play a significant role in improving the network.

We also wished to test the sensitivity of PANDA’s performance

to the quality of the various input data- types. First, we

randomized the gene labels in the input expression data matrix.

We calculated the mean and standard deviation of the final AUC

over 100 such randomizations and found that even in the absence

of informative expression data we are able to improve the quality

of the network relative to the motif prior (final

AUC=0.71260.001 compared to 0.687), indicating that the

prediction of individual regulatory edges can be improved upon by

considering only protein interactions and the local network

structure. Since the motif data alone has a significant effect on

the quality of the final network, we also tested how PANDA would

perform with the addition of noise in this prior data. To add noise,

we randomly ‘‘swapped’’ network edges a certain number of times,

while keeping the degree of the genes and TFs fixed. We varied the

number of ‘‘swaps’’ and report the mean and standard deviation of

ten randomizations for each probability that an individual edge is

‘‘swapped’’ in the randomization (Figure 2B). As the prior is

randomized, the AUC of the final predicted network, as expected,

decreases. Upon ‘‘full’’ randomization of the motif prior, the AUC

of the final network is approximately 0.55, illustrating that

PANDA is able to predict informative networks even in the

absence of accurate initial regulatory information.

Finally, to determine the significance level of the improvement

in AUC, we used a jackknife procedure in which we removed

motif, interaction and expression data regarding a random 10% of

TFs and genes and ran PANDA on the remaining data. We

repeated this 100 times, fit the results to a normal distribution

(median and standard deviation of the AUC values across these

jackknifed networks are reported in Figure 2C), calculated the

standard-score, and reported the associated p-value for improve-

ment (see Methods S1 for more details). For the regulatory

network the improvement in AUC is very statistically significant

(p = 2.8610231).

In addition to a regulatory network (Wij), PANDA also refines

two other networks representing TF-cooperativity (Pij) and gene

co-regulation (Cij). We hypothesized that PANDA could help

identify the functionally important interactions in these co-

regulatory and protein-cooperativity networks. With this in mind

we selected a ‘‘standard’’ by which to evaluate the networks

Table 1. PANDA is able to recover information lost via adding noise to simulated networks.

Network Initial AUC (med.6s) Final AUC (med. 6s) Significance

Cooperative Effects 0.58760.028 0.66260.036 0.024

Routes of Affection 0.75660.009 0.78960.010 1.67e-4

Co-affected Targets 0.56660.008 0.64360.011 2.49e-11

Values represent the median and standard deviation across 100 randomizations in which an ‘‘effector’’ to ‘‘affected’’ target network was generated, and the ‘‘true’’
network representing cooperative effects and co-affected targets based on this network was calculated. Noise was added to each network and the noisy networks were
submitted to PANDA. The AUC was calculated by comparing the final networks predicted by PANDA to the original ‘‘true’’ networks. Significance was determined by
fitting the difference between the original and final AUC to a normal distribution.
doi:10.1371/journal.pone.0064832.t001

Table 2. Data used to construct both the initial and gold-standard networks used in the evaluation of PANDA and the other
network reconstruction algorithms.

Network Name

Data used to construct network

[reference] Number of TFs/Genes/Conditions

Initial Cooperativity Network (P(0)) Affinity Capture-MS [47,48] TFs: 53 (43 with evidence)

Gold Standard Cooperativity Network (P(G)) Low-throughput evidence [47,48] TFs: 33

Initial Regulatory Network (W (0)) Motif [45,46] TFs: 53 Genes: 2555

Gold Standard Regulatory Network (W (G)) ChIP-chip [45,49] TFs: 52 Genes: 1073

Initial Co-regulatory Network – Knock-Out Data (C(0)
KO)

Gene Expression [43,44] Genes: 2555 Conditions: 106

Gold Standard Co-regulatory Network (C(G)) ChIP-chip [45,49] Genes:1073 (1072 co-targeted)

Initial Co-regulatory Network – Cell Cycle Data (C(0)
CC )

Gene Expression [51–54] Genes: 2555 Conditions: 56

Initial Co-regulatory Network – Stress Response Data (C(0)
SR)

Gene Expression [55,56] Genes: 2555 Conditions:173

References include both the publication and the website from which the normalized data was downloaded. The number of transcription factors and genes reported are
those used to construct each network. The 53 transcription factors and 2555 genes mentioned in the initial protein-cooperativity network, initial regulatory network and
initial co-regulatory networks are the same set of TFs and genes for all networks, and represent those for which we had both motif and expression data. For the initial
cooperativity network, we allowed TFs for which we had no Affinity Capture-MS data to be initialized as self-cooperating (Pii= 1). The transcription factors and genes
used to construct the three gold-standard networks are the subset of the aforementioned 53 TFs and 2555 genes for which we had ChIP information (52 TFs and 1073
genes), or ‘‘low-throughput’’ interaction information (33 TFs). We used this subset of TFs and genes when evaluating the quality of each network. ‘‘Low-throughput
evidence’’ data represents interactions with evidence from ‘‘co-fractionation’’, ‘‘co-localization’’, ‘‘FRET’’ or ‘‘reconstituted complex.’’
doi:10.1371/journal.pone.0064832.t002
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predicted by PANDA representing these two other data types. For

the co-regulatory network we constructed a standard using the

identified ChIP-chip interactions, assigning each gene-pair a value

of 1 if both members of the pair have a binding site associated with

a particular TF, and 0 otherwise. To create a ‘‘high-confidence’’

evaluation set for the protein-cooperativity network, we selected

interactions within the BioGRID database [47,48] that have been

validated via stringent criteria, including ‘‘co-fractionation,’’ ‘‘co-

localization,’’ ‘‘FRET,’’ or ‘‘reconstituted complex.’’ The AUC of

the initial networks we submitted to our message-passing

algorithm as well as the AUC of the final networks predicted by

the message-passing algorithm, based on these standards, is shown

in Figure 2C. Both the co-regulatory and protein-cooperativity

networks grow closer to the chosen standards as the message-

passing occurs. The protein-cooperativity network sees a signifi-

cant increase in AUC, from 0.611 to 0.692 (p = 0.035). The co-

regulatory network does not see much of an increase in AUC value

(0.548 to 0.590); however, this improvement is still highly

significant (3.7610214) given the size of the network that we are

evaluating and the standard we are using.

PANDA Learns more Accurate Regulatory Networks for
Yeast than Existing Reconstruction Approaches
Next we compared the quality of the network predicted using

PANDA with networks predicted using the same input data by

four commonly used network reconstruction algorithms: SER-

END [50], which employs a semi-supervised learning method,

ReMoDiscovery [11], which uses a module reconstruction

method, and CLR [2] and C3Net [4], both of which use mutual

information in gene expression to predict a regulatory network.

For a broader understanding of the types of biological networks

each algorithm may be tuned to predict, we downloaded two

additional expression datasets: a time-course experiment in which

the expression levels of synchronized cells were measured through

several cell cycles[51–54], and a collection of experiments in which

gene expression levels were measured after exposing yeast to stress-

inducing conditions including heat shock and starvation

[55,56](for more information, see Table 2 and Methods S1).

We ran SEREND, ReMoDicovery, CLR, and C3Net on these

three expression data-sets (regulator knock-out, cell-cycle and

stress-response) using their default parameters and compared with

PANDA. The AUC for the networks produced by each algorithm

is shown in Figure 3A. As before, AUC was calculated using only

the subset of edges between TFs and genes for which we had

information in the ChIP-chip ‘‘gold-standard.’’ Overall, PANDA

Figure 2. An evaluation of PANDA’s performance. (A) The significance of the area under the ROC curve (AUC) for the regulatory network
predicted by PANDA at each step during convergence using all experimental data types. Red dotted and dashed lines indicate the AUC values for
either random (0.5) or the motif prior (0.687), respectively. Edges included in the motif prior as well as those that are not included in the motif prior
are evaluated separately. As messages are passed, the quality of the regulatory network increases. A large portion of this improvement is attributable
to a removal of false positives from motif-edges. (B) PANDA’s performance as noise is added to the motif prior. Even upon ‘‘full’’ randomization of the
initial motif network, PANDA is able to improve the network prediction, indicating that it can still find biological signal in the absence of an accurate
prior. (C) Evaluation of the accuracy of transformation for each data type specific network by PANDA. The initial AUC of each input network is shown
as well as the AUC of the edges predicted by PANDA. The significance was determined by jackknifing the input data.
doi:10.1371/journal.pone.0064832.g002
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performed well with a final overall AUC of approximately 0.72 in

all three datasets. Both SEREND and ReMoDiscovery integrate

both motif and expression data, so, not surprisingly, their overall

performance is more similar to PANDA compared to CLR and

C3Net. SEREND does slightly worse than PANDA with a final

overall AUC of just over 0.70 in the knock-out and cell-cycle

datasets, but performs similarly to PANDA in the stress-response

data set (AUC of 0.718). ReMoDiscovery predicts networks with a

fairly high overall AUC of about 0.68 using both the knock-out

and stress-response sets of conditions; however, the algorithm

begins with a motif prior that alone already has an AUC of about

0.69, so actually the addition of the expression data hurts the

predictive power of the final network relative to the initial network.

CLR and C3Net performed relatively poorer, due largely to the

fact that these two approaches only consider gene expression data.

Despite this limitation, CLR is able to predict ChIP-chip edges

with an AUC of about 0.55 (similar to PANDA’s performance

using randomized motif data) in the cell-cycle and stress-response

datasets, but it performed poorly using the set of knock-out

expression conditions. C3Net is unable to estimate a predictive

regulatory network using these three sets of expression conditions.

Since the inclusion of motif data has such a strong influence on

the final AUC values, we de-coupled this information from the

Figure 3. A quantitative and qualitative comparison of the networks predicted by PANDA to those predicted by other network
reconstruction algorithms. (A) The AUC of the networks predicted by PANDA, SEREND [50], ReMoDiscovery [11], CLR [2] and C3Net [4] using three
distinct sets of expression conditions as an input: regulator knock-out (cyan), cell-cycle (magenta) and stress-response (yellow). PANDA, SEREND and
ReMoDiscovery all take prior regulatory information from motif data as an input (indicated with an asterisk) whereas CLR and C3Net derive networks
using only expression data. Red dotted and dashed lines indicate the AUC values for either random (0.5) or the motif prior (0.687), respectively. (B)
The sensitivity and precision at 90% specificity reported for the condition-specific networks predicted by PANDA, SEREND and CLR. By this measure,
PANDA outperforms both SEREND and CLR. (C–E) The overlap of the top 1000 edges by weight from the networks predicted by (C) PANDA, (D)
SEREND, or (E) CLR using three distinct sources of gene expression. Many edges are common between the networks predicted by PANDA, but there
are also subnetworks of edges unique to each data type that may highlight distinct regulatory programs. In contrast to PANDA, fewer edges are
common between the networks predicted by SEREND and almost none are in common between the networks predicted by CLR. (F–G) Functional
analysis of genes belonging to each of the condition-specific subnetworks identified with (F) PANDA or (G) CLR. GO categories enriched at Benjamini-
Hochberg FDR less than 1025 and which contain at least 10% of the members in one of the condition-specific gene sets are shown. No categories
were enriched at this level for genes belong to the condition-specific subnetworks identified by SEREND.
doi:10.1371/journal.pone.0064832.g003
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networks predicted by each, performing the AUC analysis twice

more, evaluating the edges that exist in the initial motif network

(edges for which Wij
(0)=1) and those that don’t (edges for which

Wij
(0)=0) separately (Figure S2A–B). Within the edges for which

there is motif information PANDA vastly outperforms the other

algorithms, with an AUC of about 0.63–0.65 compared to 0.48–

0.55 for SEREND, 0.48–0.5 for ReMoDiscovery, 0.53–0.55 for

CLR and 0.5 for C3Net. Within the edges that are not supported

by motif data PANDA performs slightly better than ReMoDis-

covery, CLR and C3Net, with an AUC of around 0.53–0.55

compared to 0.5 for ReMoDiscovery, 0.46–0.53 for CLR and 0.5

for C3Net. Interestingly, SEREND does fairly well on non-motif

edges, with an AUC of around 0.58–0.59. We note that we

surprisingly find some AUC values below 0.5, representing an

edge weight estimation which is worse than random. In these

instances ordering the edges by their predicted weights does not

create a random ordering, but one which is in the opposite

direction as the gold-standard. Since this ‘‘reverse’’ ordering is

generally found either for edges in the motif prior or for edges not

in the motif prior, we hypothesize that sometimes an algorithm

might be very effectively improving the classification of one type of

edge, but does so at the expense of reversely classifying the

opposite type.

These above results indicate that the overall superior perfor-

mance of PANDA relative to the other reconstruction algorithms

is not attributable to integration of motif data alone but that how

PANDA integrates this data is also critical to the model’s

performance. Namely, by considering the neighborhoods sur-

rounding both ‘‘ends’’ of a regulatory event, i.e. both the

cooperating partners of a TF and co-regulatory partners of a

gene, PANDA is able to better estimate the potential for that

regulatory event to occur.

PANDA, SEREND and CLR all showed improved perfor-

mance relative to their initial network configurations, so in the

following analysis we will investigate and compare the functional

properties of these networks. However, first, since the AUC is only

a coarse measure of performance, we calculated the sensitivity and

precision of the networks predicted by each algorithm at a 90%

specificity level (Figure 3B). By this measure, PANDA clearly

performs better than both SEREND and CLR, with a sensitivity

ranging from 36% to 39% and a precision of 13–14% compared

to 23–29% sensitivity and 8–11% precision for SEREND and only

13–16% sensitivity and 5–6% precision for CLR. We also

repeated this analysis on networks reconstructed using expression

and motif data. We did this by running PANDA without input

protein-protein interaction data ((Pij) is initialized to the identity

matrix), SEREND as before, and integrating motif information

with the final CLR predictions (see Methods S1). The results of the

analysis are shown in Figure S2C. When the exact same data is

used for all three reconstruction techniques, we still observe that

PANDA outperforms both SEREND and CLR. PANDA

performs at a level only slightly below the previous analysis

(sensitivity around 35–38%, precision 13–13.7%). The addition of

motif information enhances CLR’s performance to approximately

the same level as SEREND (sensitivity 26–27.5%, precision

around 10%), but both do not perform as well as PANDA, even in

this context.

PANDA Accurately Predicts Condition-specific Functional
Information for Yeast
Cellular networks are known to alter their topology in response

to external and internal conditions and stimuli. It is therefore vital

that the networks predicted for these diverse systems are not only

accurate, but also are representative of the specific biological

pathways of the system in question. With this in mind we

determined the functional properties associated with genes

targeted in the condition-specific networks predicted by PANDA,

SEREND and CLR (functional analysis using the CLR plus motif

integrated network varies little from the results discussed below

and is included in Figure S3).

Since none of the three conditions represented by our networks

are lethal, we expect that those networks will share common

pathways essential for cell viability. To test this hypothesis, we

selected the 1000 top edges (between TFs and genes) by weight in

each of the three condition-specific networks predicted by

PANDA, SEREND and CLR (Figure 3C–E, see also Figure

S2E). For the networks predicted by PANDA we find that many

edges are common, reflecting common regulatory mechanisms.

SEREND also has a considerable overlap in its top predicted

interactions, although only about half as many as PANDA. In

contrast, the top-weight edges predicted by CLR in each of the

three networks are very divergent. These results indicate that

PANDA may be identifying pathways essential to cell viability in

addition to the particular ones highlighted in each set of expression

conditions.

For the networks predicted by PANDA, SEREND and CLR,

we identified subsets of edges that are specific to each condition

and used them to define nine condition-specific subnetworks (three

each for PANDA, SEREND and CLR). We then determined the

set of genes represented in each of these nine subnetworks and

used DAVID [57] to evaluate which Biological Process GO

categories were enriched in these nine sets of genes. Figure 3F

includes all GO categories enriched in any of the gene-sets derived

from PANDA’s predicted networks, where enrichment is defined

as having at least a 10% overlap in genes and a Benjamini-

Hochberg false discovery rate (FDR) of less than 1025. The genes

contained in the subnetwork corresponding to the knock-out

expression conditions are enriched in processes such as ‘‘tran-

scription’’ and ‘‘positive regulation of gene expression,’’ consistent

with general dysregulation caused by perturbation of TF activities.

In contrast those genes selected based on their connectivity in the

network predicted using time-series data from synchronized cells

are associated with functions related to the cell cycle, and those

genes selected based on their connectivity in the subnetwork

specific to the stress-response dataset are associated with stress-

related functions such as ‘‘response to heat’’ and ‘‘response to

antibiotic stimulus.’’ ‘‘Cellular response to stress’’ is enriched both

in genes associated with the time-series and stress-response

datasets, which is not surprising since in both cases the cells are

undergoing stressful conditions, either through forced synchroni-

zation or by exposure to harsh conditions.

In contrast, it is harder to discern any functional role for the

genes in the condition-specific subnetworks predicted by SEREND

or CLR (Figure 3G). No GO categories were enriched in any of

the condition-specific gene sets derived from the SEREND

subnetworks or for the sets of genes identified in the regulator

knock-out and cell-cycle related networks predicted by CLR. The

genes belonging to the CLR subnetwork of edges corresponding to

the stress-response dataset are enriched in several GO categories,

but most of the identified categories are nonspecific such

‘‘ribosome biogenesis’’ and ‘‘RNA processing’’.

Since often a laboratory may not have the luxury of contrasting

networks built using such heterogeneous expression conditions, we

repeated the functional analysis using all top edges to construct our

genes sets (Figure S3B). In this case, the overall significance of the

identified categories decreased, but PANDAwas still able to identify

condition-specific pathways for both the cell cycle and stress response

networks,while the sameanalysis still yieldedno identified categories

Passing Messages between Data

PLOS ONE | www.plosone.org 8 May 2013 | Volume 8 | Issue 5 | e64832



for SEREND and approximately the same categories for CLR (not

surprising given the low edge overlap, see Figure 3E). This analysis

also shows that PANDA can still find highly condition-specific

information evenwhen just onedataset is available.Wealsonote that

the results of the functional analysis are quite robust and we recover

similar information even when using a lower threshold to select the

functional categories (Figure S3C).

PANDA Uncovers Condition-specific Regulatory Modules
for Yeast
To better capture gene-level regulatory information uncovered

by PANDA, we identified genes and transcription factors for

which a large proportion of their adjacent edges are uniquely

identified in either the cell-cycle or stress-response networks

predicted by PANDA. We also identified their associated

regulatory events, and used this information to construct

regulatory modules (see Methods S1). A sample function as well

as the expression levels of the identified genes across the cell cycle

time course and stress conditions is shown in Figure 4A

(transcription factors noted in bold).

The functional and co-regulatory behavior of the selected genes

demonstrate that using PANDA’s predicted networks can identify

highly-specific condition-driven cellular events. For example, the

genes associated with the cell cycle network, with the exception of

MBP1, are clearly synchronized across the time-course and the genes

highly targeted in the stress response network, with the exception of

SUT1, are visually correlated across the various stress conditions.

These stress-associated genes are highly expressed in the stationary

phase, when yeast has depleted all available nutrients and

consequently halts the cell cycle. The fact that the genes identified

based on PANDA’s cell cycle network have lower expression in these

conditions serves as an independent validation of their role in the cell

cycle. Interestingly, PCD1 is targeted exactly four times, twice by cell

cycle specific regulatory events, and twice by stress response

regulatory events. This is consistent with its functional role in the

cell as well as its expression levels – both synchronized with other

genes in the cell cycle expression set and correlated with other stress-

related genes in stress-inducing conditions.

While, as noted above, the expression levels of MBP1 and

SUT1 are uncorrelated with their target genes, each is well known

to play a role in its corresponding condition-specific context: the

G1/S phase transition of the cell cycle for MBP1 [58,59] and cell

growth under aerobic conditions for SUT1 [60], respectively.

These factors highlight PANDA’s ability to uncover regulatory

events in the absence of regulator-target co-expression events.

Recall that the algorithm investigates the co-expression between

the targets of a transcription factor, rather than between the

transcription factor and an individual target gene. The reason that

PANDA was able to identify these factors is because their target

genes are coexpressed. Such relationships cannot be uncovered by

traditional regulator-target coexpression analysis.

Each run of PANDA predicts three networks: regulatory (Wij),

co-regulatory (Cij), and cooperativity (Pij), representing, in a

heuristic manner, the likelihood that two genes are co-regulated,

the likelihood that an individual TF regulates a particular gene,

and the likelihood that two TFs work together to cooperatively

regulate their targets, respectively. As a consequence, for each

expression dataset used, in addition to a regulatory network

discussed above, we also have condition-specific co-regulatory and

protein-cooperativity networks. We identified the top edges

predicted by PANDA for each of these networks using either the

cell cycle or stress response expression data, and visualized the

regulatory modules surrounding the condition-specific genes

identified above (Figure 4B–C). There is high connectivity within

these modules, reflective of the fact that we selected genes and

transcription factors based on their relatively high number of

regulatory interactions. Each module contains TFs that cooperate

together to regulate a common set of genes that belong to similar

biological pathways. For example, SWI6 is known to complex with

MBP1 [61,62]. Interestingly, although investigation of the

literature did not reveal any known direct physical interactions

between MSN4, SUT1 or ADR1, there is some evidence that they

might cooperate together under stress conditions. For example,

both MSN4 and SUT1 are known to interact with HEK2 [63],

which has been identified as a potential ‘‘bridge’’ protein between

unstressed and heat-shocked protein-interaction networks [64].

The genes targeted in the subnetworks are also consistent with

yeast biology. For example, MSH6 and UNG1 are both highly

targeted only in the cell-cycle specific subnetwork and are

important in mitosis and meiosis and cell cycle progression.

Similarly, IKS1 and MLF3, identified in the stress-response

subnetwork, are associated with functions related to heat stress and

drug-response, respectively. These regulatory modules highlight

PANDA’s strength in effectively integrating information from

distinct data types to infer condition-specific regulatory programs

and their underlying biological mechanisms.

An Integrated Genome-wide Regulatory Network for
Yeast
Finally, to gain a more complete picture of the yeast regulatory

network, we integrated information from the networks predicted

by PANDA in each of the three expression conditions and,

excluding predictions common to all three, present the results in a

single plot (Figure 5). This integrated network contains not only

the regulatory edges from the highly-connected subnetworks of

Figure 4B–C but also additional edges bridging these modules.

Several features for the integrated networks immediately stand out

in this visualization, including those already hinted at in the

condition-specific modules. For example, a cluster of edges unique

to the cell cycle (shown in magenta) surround MBP1, a TF that is

important for the transition from G1 to S phase [58,59]. This TF

shares many of its targets with SWI6, which, as mentioned

previously, is known to complex with MBP1 [61,62]. A group of

edges unique to the stress response network (shown in yellow)

surround MSN4, that together with MSN2 regulates the general

stress response in yeast [65]. In contrast to the stress-related and

cell cycle related edges, edges predicted uniquely by the regulator

knock-out dataset (shown in cyan) are spread throughout the

network and can be attributed to the perturbation of a large

number of functionally unrelated TFs. Interestingly, in an

analogous visualization of the networks predicted by CLR (Figure

S4), although the network overall is harder to discern because

there are many more edges (due to the low edge overlap, see

Figure 3E), it is obvious that various types of edges still tend to

cluster together. This is consistent with CLR’s ability, although

limited, to identify some condition-specific information (see

Figure 3G and Figure S3C).

Discussion

There has been much excitement about the potential of gene

regulatory network inference methods to identify fundamental

features of biological systems. An informative network model must

account for the complexities of emergent biological behavior while

still being simple enough to allow reasonable interpretation of the

results. Here we show that message-passing provides a framework

for effective integration of diverse data types. By using yeast data

as a proof-of-concept, we demonstrated that the networks
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predicted by PANDA are not only of higher quality than those

predicted by several other widely-used network reconstruction

approaches, but also accurately reflect biological responses specific

to each of the conditions the input expression data sets were

designed to measure.

We suggest that PANDA’s ability to uncover condition-specific

regulatory modules, which were not discernable using the other

reconstruction algorithms, may reflect the ‘‘soft coupling’’ between

interaction partners in the PANDA model. PANDA investigates

both upstream and downstream regulatory events through

simultaneous investigation of the protein cooperativity and co-

regulation networks. This allows for imperfect correlation by

assuming that each gene is potentially regulated by multiple TFs

and explicitly including that in the underlying model. In contrast,

Figure 4. Specific examples of condition-specific genes and edges highlighted by PANDA. (A) A table of genes (transcription factors
bolded) with an enrichment of edges in a particular condition-specific network compared the union of all the networks and an example of their
functional role in the cell. Also, the expression levels of these genes across the conditions in the cell-cycle and stress-response datasets. For
visualization purposes, each row in each dataset was normalized to a Z-score. The co-expression of the genes in these regulatory ‘‘modules’’ is easily
discernible. As co-expression between genes and transcription factors is not used by PANDA when building the networks it is not surprising that
some of the TFs are not as highly co-expressed with the other identified genes. (B–C) Visualization of the edges surrounding these enriched genes in
the (B) cell cycle and (C) stress response condition-specific networks. Co-regulatory (C) and protein-cooperativity (P) network edges are shown if they
are in the top 10% of edges identified by PANDA in the final condition-specific co-regulatory and protein-cooperativity networks (for more
information see Methods S1).
doi:10.1371/journal.pone.0064832.g004
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SEREND focuses on the targets of each TF separately, rather than

both the targets of a TF and the TFs targeting a gene, thus

potentially missing vital information regarding complex regulatory

events common in biological networks. Algorithms such as CLR

generally assume that TFs and their targets are co-expressed. In

contrast, PANDA instead investigates the consistency between the

expression profiles of a set of genes targeted by a particular TF.

ReMoDiscovery similarly looks for co-expression modules, but

unlike PANDA, which updates co-expression events with co-

regulation information, it requires that all genes within a module

share a high similarity in their expression profiles. This can lead to

potentially misclassifying genes involved in multiple biological

pathways since the expression levels of these genes may not be

highly correlated with the genes in any individual module but only

loosely correlated with genes in several different modules.

Figure 5. The top edges predicted by PANDA, excluding those common among all three predicted networks. Several key TFs have
been identified and labeled, including the cell cycle regulator MBP1 and the stress response factor MSN4.
doi:10.1371/journal.pone.0064832.g005
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One key aspect of PANDA is its emphasis on agreement among

network neighborhoods rather than direct targeting information.

For example, the algorithm infers TF-target relationships primar-

ily from evidence that is not direct binding or co-expression of

regulators and targets. Instead, a gene product observed to share

similar interaction partners with a known target, or to be co-

expressed with a targeted module, is more likely to be chosen as a

new target. Not every member of a regulatory module must

interact directly with every member of a downstream target, but

their components can still be inferred to form a cohesive biological

circuit. As the network models representing each data-type are

updated, they slowly accumulate evidence from all other data

sources, moving to consensus networks that represent all of the

available evidence in order to explain the overall biological

response. The final result is a network model that ‘‘averages’’ over

different types of data to produce a meaningful model of the

interactions those data represent. This is best reflected in

PANDA’s ability to resolve networks for distinct subsets of input

expression conditions. This harmonization of multiple biological

data types with an underlying process occurs in tandem with the

recovery of regulatory relationships under specific conditions,

providing a more complete picture of biological pathway activity.

This method thus serves to infer comprehensive new biology that

would not be obvious based on any single data-type.

There are still a number of limitations of the PANDA method.

First, the convergence of the iteration procedure requires the

introduction of an ‘‘annealing’’ parameter a, whose value affects

the configuration of the final regulatory network. Second, unlike

the original message-passing paper [41], our PANDA algorithm is

only heuristic and does not have an exact probabilistic interpre-

tation. We plan to resolve these limitations in future work.

Although the analysis we present here is for yeast, the PANDA

method is generally applicable to other species. For example, in

preliminary studies using human data (unpublished), in a manner

similar to those presented here we have successfully identified

condition-specific regulatory information that accurately reflects

either the particular tissue and/or disease-type in question. More

importantly, the message passing algorithm at the heart of

PANDA is further generalizable to different or additional data

types. For example, one interesting perspective is to further

integrate epigenomic profiling data that provide important

enhancer activity information. In future work we will further

extend PANDA to incorporate additional data-types. The major

strength of PANDA is that it has provided a unified approach to

make such extensions possible. We believe this overall approach,

which captures the context-specific nature of communication in

cell signaling networks, has tremendous potential to model

biological systems and represents an important step forward in

the development of integrated systems biology approaches.

Supporting Information

Figure S1 (A) A plot of the AUC of the final regulatory network

predicted by PANDA using the same motif and PPI data but

different input sets of expression data, and across various values of

the tuning parameter a. The quality of the final predicted

networks is fairly similar for values of a less than approximately 0.2

but begins to rapidly decrease for the cell-cycle and stress-response

networks when a is much larger than about 0.3. (B) A plot of the

hamming distance between the network predicted at each iteration

( ~WW (t)) and the network at the previous iteration (W (t{1)), as a

function of the iteration step (t). There is a clear transition where

PANDA is ‘‘learning’’ a network (from approximately steps 1–40)

and then where the algorithm rapidly converges (step 50 onward).

This is consistent with the shapes of the learning curves shown in

Figure 2A. We terminated the message-passing process once the

hamming distance was less than 1025.

(TIF)

Figure S2 Various assessments of the performance of

PANDA compared to other reconstruction approaches.

(A–B) The AUC of the edge-weights predicted by PANDA,

SEREND, ReMoDiscovery, CLR and C3Net, evaluated sepa-

rately for edges that are (A) contained in the motif prior and (B)

not contained in the motif prior. This analysis should mask any

enhancement of AUC gained solely from the addition of motif

data with the expression data and highlight the predictive power

gained from the integrative message-passing approach employed

by PANDA. PANDA does demonstratively better than all the

other reconstruction approaches on edges that are contained in the

motif prior and does comparatively or better than ReMoDiscov-

ery, CLR and C3Net on edges that are not contained in the motif

prior. SEREND has the best overall performance on these non-

motif edges. (C) The AUC, sensitivity and precision (reported at a

90% specificity) for PANDA, SEREND and CLR when each

algorithm includes data from exactly expression and motif data,

excluding PPI information from PANDA and integrating motif

data into the CLR predictions. (D) The AUC, sensitivity and

precision (reported at a 90% specificity) for the networks predicted

by PANDA when using either the TZ (PANDA) or T2 (Modified)

similarity scores to determine the size of the messages being passed

(see Methods S1 for more description regarding these two scores).

The results are very similar illustrating that PANDA is insensitive

to small modifications in the similarity score used to calculate the

messages being passed. (E) The specificity, sensitivity and

precision for the top 1000 edges for the networks predicted by

PANDA, SEREND, CLR and CLR+motif.

(TIF)

Figure S3 (A) The top 1000 edges by weight in the CLR+motif

integrated network. (B) Functional analysis of genes belonging to

each of the networks defined by all top 1000 edges identified in

each of the conditional networks predicted by either PANDA,

SEREND, CLR or CLR+motif. GO categories enriched at

Benjamini-Hochberg FDR less than 1025 and which contain at

least 10% of the members in one of the condition-specific gene sets

are shown. No categories were enriched at this level for genes

belonging to the networks identified by SEREND. (C) Functional

analysis of genes belonging to each of the condition-specific

subnetworks identified with PANDA, SEREND, CLR or

CLR+motif. Compared to Figure 3F–G, GO categories in this

figure were selected if they were enriched at Benjamini-Hochberg

FDR less than 1023, with no percentage criteria. A few categories

can now be seen enriched in the SEREND subnetworks and more

categories are identified with the CLR stress subnetwork.

(TIF)

Figure S4 The top edges predicted by CLR, excluding

those common among all three predicted networks.

(TIF)

Methods S1 Document containing additional informa-

tion regarding the implementation and evaluation of the

PANDA message-passing approach.

(PDF)

Materials S1 Archive containing PANDA code, input

data and predicted networks.

(TGZ)
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