

Passive Acoustic Monitoring of Cetaceans

Passive acoustic monitoring (PAM) is used increasingly by the scientific community to study, survey and census marine mammals, especially cetaceans, many of which are easier to hear than to see. PAM is also used to support efforts to mitigate potential negative effects of human activities such as ship traffic, military and civilian sonar and offshore exploration.

Walter Zimmer provides an integrated approach to PAM, combining physical principles, discussion of technical tools and application-oriented concepts of operations. In addition, relevant information and tools necessary to assess existing and future PAM systems are presented, with MATLAB® code used to generate figures and results so that readers can reproduce data and modify code to analyse the impact of changes. This allows the principles to be studied while discovering potential difficulties and side effects. Aimed at graduate students and researchers, the book provides all information and tools necessary to gain a comprehensive understanding of this interdisciplinary subject.

Walter M. X. Zimmer holds a Ph.D. in theoretical physics from the University of Regensburg, Germany. He is currently a Scientist in the Applied Research Department of the NATO Undersea Research Centre (NURC) in La Spezia, Italy, and a Guest Investigator at the Biology Department of the Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA, USA.

Passive Acoustic Monitoring of Cetaceans

WALTER M. X. ZIMMER

NATO Undersea Research Centre

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521193429

© Walter M. X. Zimmer 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Zimmer, Walter M. X., 1949-

Passive Acoustic Monitoring of Cetaceans / Walter MX Zimmer.

p. cm

Includes bibliographical references and index.

ISBN 978-0-521-19342-9

- 1. Cetacea Monitoring. 2. Cetacea Effect of noise on. 3. Dolphin sounds.
- 4. Whale sounds. I. Title.

QL737.C4Z53 2011

599.5072'3-dc22

2010052636

ISBN 978-0-521-19342-9 Hardback

Additional resources for this publication at www.cambridge.org/9780521193429

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Für Giannina

Contents

	Ack	nowledgements	page x
	Intro	oduction	1
Part I	Underv	vater acoustics (the basics)	5
1	Principles of underwater sound		7
	1.1	Sound as a pressure wave	7
	1.2	Measuring underwater sound (the decibel scale)	21
	1.3	Sound velocity	23
	1.4	Sound propagation	29
	1.5	Signals, noise and interference	36
2	Ceta	acean sounds	39
	2.1	Classification of cetaceans	39
	2.2	Classification of cetacean sounds	40
	2.3	Cetacean sound presentation in the time domain	42
	2.4	Cetacean sounds in the frequency domain	53
	2.5	Cetacean sounds in the time-frequency domain	61
	2.6	Sound source directionality	86
	2.7	Cetacean source levels	88
	2.8	Order Cetacea	89
3	Sonar equations		96
	3.1	Passive sonar equations	96
	3.2	Apparent source level	97
	3.3	Sound propagation	100
	3.4	Noise level	108
	3.5	Array gain	113
		Processing gain	115
	3.7	Detection threshold	115

Vİİ

viii **Contents**

Part II	Signal processing (designing the tools)	117
4	Detection methods	119
	4.1 Detection of echolocation clicks	119
	4.2 Data filter	138
	4.3 Detection of FM signals with pulse compression (matched filter)	144
	4.4 Detection of dolphin whistles	150
5	Classification methods	164
	5.1 Classification basics	164
	5.2 Optimal classification	165
	5.3 Cetacean classification	180
6	Localization and tracking	198
	6.1 Multi-hydrophone ranging	198
	6.2 Triangulation	203
	6.3 Multi-path ranging	205
	6.4 Ranging by acoustic modelling	210
	6.5 Measurement of arrival time difference	211
	6.6 Direction finding	212
	6.7 Three-dimensional direction finding6.8 Two-dimensional constrained direction finding	213 216
	6.8 Two-dimensional constrained direction finding6.9 Beam-forming	218
	6.10 Beam patterns	219
	6.11 Tracking	226
Part III	Passive acoustic monitoring (putting it all together)	237
7	Applications of passive acoustic monitoring	239
	7.1 Abundance estimation	239
	7.2 Mitigation: absence estimation	250
	7.3 Habitat and behaviour analysis	253
	7.4 Monitoring rare and elusive species	256
	7.5 Logging acoustic information	257
8	Detection functions	259
	8.1 Empirical detection function	259
	8.2 LMS parameter estimation	260
	8.3 Sonar equation-based modelling of the detection function	260
	8.4 Modelling animal behaviour	269
	8.5 Modelling the influence of animal motion	272

	Contents	ix
9	Simulating sampling strategies	274
	9.1 Modelling a point survey detection probability	275
	9.2 Simulating a point survey	278
	9.3 Point survey abundance estimation	280
	9.4 Distance distribution of echolocation clicks of randomly moving animals	284
	9.5 Stochastic simulation of detection function	289
10	PAM systems	299
	10.1 Hardware	299
	10.2 Software	315
	10.3 PAM implementations	321
	10.4 The future of PAM	325
	References and further reading	326
	Index	354

Acknowledgements

The data used within this book were in part made available by Gianni Pavan (CIBRA, Università degli Studi di Pavia, Italy, http://www.unipv.it/cibra), Carmen Bazua-Duran (Universidad Nacional Autonoma de Mexico, Mexico), Denise Risch (Northeast Fisheries Science Center, NOAA, USA), Robert Dziak, Sharon Nieukirk and Dave Mellinger (Oregon State University and NOAA, USA), Douglas Gillespie (University of St Andrews, UK), Chris Clark (Cornell University, USA), Anna Moscop (International Fund for Animal Welfare, www.ifaw.org/sotw) and Peter L. Tyack (Woods Hole Oceanographic Institution, WHOI, USA).

In 1998, when I became interested in cetacean research, I had worked for some time in underwater research, but knew little about whales and dolphins. Without Gianni Pavan (CIBRA, Università degli Studi di Pavia, IT) and the whole CIBRA team, Peter L. Tyack and Mark Johnson, both of Woods Hole Oceanographic Institution (WHOI, USA), and Peter T. Madsen (University of Aarhus, DK) who shared with me their knowledge about whales and dolphins and who engaged in a continuing and extremely fruitful collaboration, I would have never learned so much about these fantastic and extraordinary creatures

I would also like to thank Arnold B-Nagy (NURC), John Harwood, Len Tomas and Tiago Marques (CREEM, UK) for discussions on population estimation, general ecological modelling and distance sampling. Piero Guerrini, Vittorio Grandi and Luigi Troiano (NURC) were always available for discussions about hydrophones, electronics and system implementation.

Special thanks to David Hughes (NURC) and Peter Tyack who undertook the huge task of reading and commenting on the whole manuscript. Tiago Marques and Gianni Pavan provided useful input on parts of the manuscript.

Finally, I would like to express my gratitude to copy-editor Lynn Davy and to Martin Griffiths, Lynette Talbot and Abigail Jones from the Cambridge University Press editorial and production team for helping me to implement an idea that was simmering for quite some time.