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Passive Cascaded-Lattice Structures for 
Low-Sensitivity FIR Filter Design, 
with Applicati&s to Filter Banks t 

’ 
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Abstract -A class of nonrecursive cascaded-lattice structures is derived. 
for the implementation of finite-impulse response (FIR) digital filters. The 

building blocks are lossless and the transfer function can be implemented 
as a sequence of planar rotations. The structures can be used for the 

synthesis of any scalar FIR transfer function H(z) with no restriction on 
the location of zeros; at the same time, all the lattice coefficients have 

magnitude bounded above by unity. The structures have excellent passband 

sensitivity because of inherent passivity, and are automatically internally 

scaled, in an L, sense. 

The ideas are also extended for the realization of a bank of M FIR 

transfer functions as a cascaded lattice. Applications of these structures in 

subband coding and in multirate signal processing are outlined. Numerical 

design examples are included. 

I. INTRODDCTI~N 

T HERE EXIST A number of methods [l]-[8] for the 
design of low-sensitivity infinite impulse response 

(IIR) digital filters. Notable among these are the well- 
known wave-digital filters [l], [2], orthogonal digital filters 
141, and certain types of lattice filters [6], [7]. Some of these 
methods are based on the notion of pseudopassivity, while 
certain others are based on orthogonality of internal com- 
putations. The lattice digital filters reported thus far can 
also be related to autoregressive/moving average modeling 
techniques [9]-[ll]. The relation between these families of 
filters has also been known for some time [14], [24], [25], 

WI. 
In principle, any stable IIR digital filter transfer func- 

tion can be implemented as an orthogonal filter [4], [5], 
[14], with planar rotation building blocks. The purpose of 
this paper is to develop passive structures for arbitrary 
finite impulse response (FIR) transfer functions and FIR 
filter banks based on planar rotation building blocks. An 
important feature of many of the well-known IIR digital 
filter structures having favorable finite-wordlength proper- 
ties is that some or all of the internal building blocks are 
passive in a certain sense, and this has been favorably 
exploited [7], [12], [13] to obtain low-sensitivity designs 
free of limit cycles. A normalized version of the passivity- 
based structures results in orthogonal implementations [6], 
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[14] for IIR filters, which have the additional advantage 
that all internal signals are scaled in the 1, sense, thus 
rendering additional scaling effort unnecessary. 

When implementing FIR digital filters, there is clearly 
no possibility of limit cycles, as long as the structure is 
nonrecursive.’ However, it is still of interest to obtain 
structures that have low sensitivity. It is also desirable to 
have normalized structures, which in addition have low 
noise. 

Schuessler [15], [16] has studied quantization effects in 
FIR filters, and a variety of interesting structures based on 
polynomial-interpolation theory can be found in [16]. Chan 
and Rabiner [17], [lS] have done extensive research on 
cascade-form FIR filters, with particular emphasis on the 
ordering of the sections to attain optimal noise/dynamic 
range performance. The general conclusion seems to be 
that direct-form implementations of FIR filters have poor 
stopband sensitivity while cascade-form realizations have 
reasonably good stopband sensitivity, even though the 
passband behavior tends to deteriorate when the multiplier 
coefficients are quantized. Moreover, unless the cascading 
order is properly chosen, the roundoff noise gain can be 
excessively large. 

A class of FIR lattice digital filters has been studied by 
Makhoul and others [lo], [ll], [21] in the context *of 
linear-predictive coding of signals. A subset of these struc- 
tures naturally arises while solving the “normal equations” 
via Levinson’s recursion. A main feature of these struc- 
tures is that, as long as the multiplier coefficients k, 
(called the “reflection” coefficients) are bounded (in mag- 
nitude) by unity, a pair of FIR transfer functions G(z) 
and H(z) can be realized where G(z) has minimum phase 
and H(z) has maximum phase. However, with kf < 1, one 
cannot realize arbitrary transfer functions, for example, an 
equiripple FIR filter with some of its zeros on the unit 
circle of the z-plane. (It is, however, easy to force all zeros 
to be on the unit circle [22] simply by setting the “right- 
most k,” to *l.) 

The FIR lattice filters arising out of linear-predictive 
coding of signals have an IIR counterpart, typically called 
the “synthesis filters” [ll]. The IIR or recursive counter- 
part, also known as the Gray-and-Markel filter structure 

‘Recursive realizations of FIR filters, such as the frequency-sampling 
structures, can, theoretically support limit cycles. 
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[6], [7], has several equivalent forms, one of them being the 
“normalized” lattice form [6]. These IIR structures are 
known to have passivity properties [7], and in addition, the 
normalized lattice is based on a cascade of orthogonal 
(planar rotation) building blocks. The IIR structures have 
excellent “robustness” properties under quantized condi- 
tions. Even though this IIR version has passivity proper- 
ties, the FIR counterpart does not (this will be elaborated 
on in Section V). 

The FIR lattice structures we introduce in this paper are 
not related to linear-predictive coding in the sense that the 
“corresponding” IIR versions do not necessarily represent 
a maximum-entropy spectral model [ll] of any appropriate 
time series. The new FIR structures are characterized by a 
set of coefficients k, such that k,? < 1, yet any arbitrary 
FIR transfer function H(z) with no restriction on the zero 
locations can be realized. (Accordingly, the “correspond- 
ing” IIR version does not necessarily represent a stable 
filter.) These FIR structures are based on simple intercon- 
nections of orthogonal (planar rotation) building blocks, 
and are “passive” in the same sense (to be elaborated on) 
as the well-known orthogonal and wave-digital IIR filters. 
They are automatically internally scaled and have low 
passband sensitivity. In spite of the fact that they are in 
the form of a nonrecursive cascade, we do not encounter 
serious roundoff noise problems. Indeed, the noise-vari- 
ance gain is bounded above by the filter order, exactly as 
in the direct-form structure [19], [20]. Finally, these struc- 
tures seem to be a natural choice for certain types of filter 
banks and multirate subband coding applications involv- 
ing”quadrature mirror filters” [23]. 

In Section II, we briefly review the structural-passivity 
concept and its relation to low sensitivity. Section III 
introduces the new FIR lossless lattice structures. A 
synthesis procedure is presented in this section so that an 
arbitrary FIR transfer function (not necessarily linear 
phase) can be implemented in this form. The result of 
synthesis is a one-input two-output structure, with transfer 
functions G(z) and H(z), where G(z) is the desired FIR 
function and H(t) is an auxiliary function such that 
(G(ej”)(2 + ]H(ej”)12 =l. We thus have a bank of two 
filters. Section IV is a study of certain important proper- 
ties of this class of structures. Next, in Section V, we 
review the relation between the new structures and certain 
well-known lattice structures for digital filtering. In Sec- 
tion VI, we extend the idea of Section III to the case of 
a filter bank of M FIR transfer functions G,,(z), 

G,(z),- . .> G,-,(z) realized as a cascaded lossless FIR 
lattice structure. The bank is such that ]Go(eiW) (* + . . . 
]G,- ,(e@)]’ = 1. Section VII presents a general 
roundoff-noise/dynamic range analysis, which applies to 
all structures presented in the paper. In Section VIII, 
applications in analysis/synthesis filter banks are pre- 
sented. Finally, in Section IX, we present an application of 
the structures in multirate digital filtering, where 
sampling-rate changes are involved in addition to linear 
time-invariant filtering. 

Notations Used in the Sequel: In this paper, superscript t 
stands for matrix transposition, whereas superscript dagger 
(t) stands for transposition followed by complex conjuga- 
tion. Bold-faced letters indicate vectors and matrices. The 
tilde accent stands for transposition followed by reciproca- 
tion of functional argument; for example, E?(z) = H’( z-l). 
The notation A < B (where A and B are square matrices 
of equal dimensions) is abbreviation for “B - A is positive 
semidefinite.” Similarly, A < B means “B - A is positive 
definite.” 1, (with subscript possibly omitted) denotes the 
identity matrix of dimension m X m. For a (real symmet- 
ric) positive definite matrix P, we define its square root 
P1l2 according to the factorization P = P’/2P’/2, where 
P’12 is the transpose of P112. 

II. STRUCTURAL BOUNDEDNESS AND 
Low SENSITIVITY 

A stable digital filter transfer function H(z) with real 
coefficients is said to be bounded real (BR) if 

(ff(e+)( Gl, for all w. 0) 

If equality holds in (1) for all w, then H(z) is said to be 
lossless bounded real (LBR). An implementation is said to 
be structurally passive or structurally bounded [24] if, 
regardless of the multiplier values (as long as they are in a 
well-defined range such as - 1~ mk < l), the transfer 
function satisfies (1). If the multiplier values in a structur- 
ally passive implementation are such that ]H(ejw)] attains 
the upper bound of unity in the passband( then the 
structure has low passband sensitivity [14], [24]. It is useful 
to extend these definitions to the matrix case. A stable 
transfer matrix H(z) with real coefficients is BR if 
Ht(ej”)H(ej”) Q I for all w, and LBR (or “allpass”) if 
this inequality becomes an equality for all o. 

Given an FIR BR transfer function H(z) of order N 
satisfying (1) we can always find another FIR BR func- 
tion G(z) such that 

lG(ejw)12 + JH(ej”)J2 =l, for all w. (2) 

The vector G,(z) = [H(z) G(z)]’ of order N is, hence, 
FIR LBR (or “allpass”), and we show how this FIR vector’ 
can be realized in terms of FIR lossless building blocks. 
Such a realization exhibits low sensitivity in the passbands 
of both G(z) and H(z). This idea of embedding H(z) into 
a vector GN(z) is easily generalized. Thus, given M - 1 
FIR BR transfer functions G,(z), G,(z), . . . , G,-,(z) such 
that 

IGo(ej”)12flGl(e~w)12+ --’ +]G,-,(ej”)]*<l (3) 

for all w, we can always find an FIR BR function G,-,(z) 
such that the vector G,(z) = [G,(z),G,(z); . .,G,_i(z)]’ 
is FIR LBR (or “allpass”). 

III. LA~ICE STRUCTURES FOR TWO-COMPONENT 
FIR ALLPASS VECTORS 

Let us assume that we have an FIR allpass vector 

‘%-I(Z) = k-l(z) QN-dd1’ 
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Fig. 1. Realization of C,+,(~J. 

where 
N-l 

PN-l(Z) = c PN-l,nZ-” 
n=O 

N-l 

Q,-,(Z) = C qN-l,nZ-“. 
n=O 

(4) 

It is possible that one of them, say, P,-,(z), has linear 
phase. However, in view of the allpass property 

&.-,(z)pN-,(z>+ &dz>Q,-I(Z) =1 (5) 

it is not possible for both P,-,(z) and QN-i( z) to have 
linear phase, except in some trivial situations [31]. We wish 
to synthesize G,-i(z) as a nonrecursive cascaded-lattice 
structure. The basic step in the synthesis procedure is the 
order-reduction problem, which we address next. 

A. The Order-Reduction Problem 

Let G,+,(z) = [Pm+l(z) Q,+,(z>]~ be an (m +,l)th- 
order FIR allpass vector 

mtl 

en+dz> = c Pm+l,nz-n 
n=O 

m+l 

Q,+,(z) = c qm+l,nz-n 
n=O 

(6) 

tn+~(z>L+,(z)+ &z+dz)Qm+dz> =I- (7) 

We wish to realize G,+,(z) in the form shown in Fig. 1, 
where 7m + i( z) is a first-order 2 X 2 FIR allpass matrix, and 
where G,(z) = [P,(z) Q,(z)]’ is a lower order FIR 
allpass vector 

cl(z) = it Pw,nz-” 
n=O 

Q,(z) = 2 q,,nz-” (8) 
n=O 

8,,(4P,n(z)+ &n(z)Q,(z) =l. (9) 

Repeated application of the order-reduction process results 
in the desired cascaded-lattice realization. In order to 
accomplish this order reductionwe note that the allpass 
property of (7) implies, in particular, 

P m+l,0Pm+l,m+l+ qm+1,0qm+1,m+1= 0. 00) 

If Pm+l,m+l turns out to be zero, then (10) implies either 

4 m+l:m+l = 0 (in which case, the current order-reduction 
step is not necessary and TV+ 1 = 1) or q, + 1 o = 0, in which 

case we get 

Elw = en+lb) 

Q,(z) = zQm+dz> 

(114 

= 4 m+1,1+ 4m+1,2Z-1 + * * * + qm+l,m+lZ-m W) 

%?+1(4 = [; zol] w 
Having taken care of these simple situations, let us now 
assume that none of the four quantities in the left-hand 
side of (10) is zero. Define 

L(z) = km+lPm+l (4 + kn+lQm+dz) (12) 

where 

k 
- 4,+1,,+1 

m+1= 

P:+I,m+I + 4ri+l,m+l 

(13) 

L 
Pm+l,m+l 

m+1= (14 

P zI+l,m+l + 4il+1,m+1 

Clearly, with the above choice, the highest power, i.e., 
Z-(“‘+l) cancels on the right-hand side of (12). Now con- 
sider the quantity 

-6 ,+,f’m+,(z) + km+lQm+dz). 05) 

In view of (10) and the choices of kmtl and krn+i, we 
have 

-f m+l~m+l,o + k,+lqm+l,o =O. (16) 

Hence, the constant term in (15) is zero. In other words, if 
we force the highest term on the right-hand side of (12) to 
zero, then the lowest term in (15) is automatically zero 
because of the LBR property of G,+,(z). Accordingly, if 
we define G,(z) = [P,(z) Q,(z)]’ by 

K(z) km+1 kn+l Pm+&) 
Gm(z) = Q,(Z) = -‘im+lz [ I[ kmtlz 11 1 Q,+,(z) 

(17) 
with k,+l and i,,,+i as in (13) and (14), then P,(z) and 
Q,(z) indeed h ave lower order. Moreover, from (17) 

Gm+l(Z) ii 

i.e., 

k+1b> 

Q,+,(z) 1 
k m+l -R m+lZ -l cl(z> 

b m+1 k m+lZ I[ -’ Q,(z) 

Gm+,(z) = L+,(+‘%(z> 
where the matrix 

- L”‘+1y 
k m+lZ 1 

1 (18) 

09) 

(20) 

satisfies i;n+l~m+l = I and is, hence, LBR. Equation (19) 
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Fig. 2. Implementation of G,+,(z) from G,,,(z) 

Fig. 3. The resulting cascaded-lattice structure. 

therefore implies 

which shows that G,(z) is indeed lower order FIR allpass. 
This then completes the order reduction problem. 

Fig. 2 shows the implementation of Gm+i(z), in terms of 
G,(z) and ~~+i(z). Fig. 3 shows the cascaded-lattice 
structure that results by repeated application of the above 
process by starting with the FIR allpass function G,_ 1( z) 
=[P,-,(z) QNWl(z)]‘. Equation (17) which represents 
the “downward recursion” can also be rewritten as 

and this leads to a lattice section with minor difference in 
internal details. 

Equation (17), which enables us to synthesize the struc- 
ture starting from G,-,(z), is called the downwards recur- 
sion scheme, whereas (18), which enables us to compute 
G,-,(z) starting from a set of values k,, k,; . ., k,_,, is 
called the upwards recursion. 

B. Properties of the Cascaded FIR Lattice Structure 

1) It follows from (13) and (14) that the structure of 
Fig. 3 has* ki < 1 for all m, and moreover ki + /$i =l. 
Thus, the cascade shown in Fig. 3 is made of “building 
blocks” that are planar rotation operators, with successive 
building blocks being separated by a delay. The structure 
is therefore highly modular, and moreover only adjacent 

building blocks are directly connected. Notice that each 
planar rotation is equivalent to a complex-multiplication 
operation, with real and imaginary parts of operands and 
results defined in an obvious manner. 

2) Given any FIR filter transfer function PNpl(z) with 
no restrictions on the zero locations, we can always obtain 
an implementation as in Fig. 3 with kz G 1, as long as 
IPN-l(e’“)12 <l. 

3) The structure of Fig. 3 can also be looked upon as 
the interconnection of 2X2 LBR structures with transfer 

*If ki = 0 or 1, we call the corresponding section in Fig. 3 “degener- 
ate.” 

a,= Cm/k, (I, =k,/& 

(TYPE I) (TYPE 2) 

Fig. 4. Denormalized lattice sections requiring only two multipliers. 
The choice of the type should be made such that ai is less than unity. 

matrices as in (20). Accordingly, we call the structure a 
cascaded normalized lattice structure, or a cascaded loss- 
less lattice structure. 

4) Because of the allpass property of Gm+l(z), (10) 
holds, which gives us an alternative expression for k,, 1 
and I$ m+l of (13) and (14) 

k 
m+l= /* lktl= /*. 

(23) 

Substitution of (23) into (12) reveals that, in view of (lo), 
the term corresponding to the highest power zern-’ cancels 
in (12). Accordingly, the signs of kmtl and R,,,, 1 are those 

of Pm+l,O tnd 4m+1,0- In fact, only the relative signs of 
k m+l and krn+1 matters in the order-reduction process. 

5) Unless each building block is implemented as a 
planar rotation, the total number of multipliers per section 
is four. Thus, a pair of (N - l)th-order FIR filters PNpl(z) 
and QNpl(z) requires 4(N - 1) + 2 multipliers, i.e., (2N - 1) 
per transfer function. Recall that the direct-form imple- 
mentation requires only N multipliers (and only about 
N/2 for linear-phase filters). The increased multiplier over- 
head can be explained by observing that the normalized 
building blocks render it unnecessary to perform internal 
signal-scaling in the structure of Fig. 3. (Normalized reali- 
zations always have multiplier-overhead [4]-[6].) More- 
over, the structure of Fig. 3 has low passband sensitivity as 
expected from the structural-boundedness property and as 
demonstrated in later sections. 

It is possible to obtain “denormalized lattice-sections” 
as shown in Fig. 4. This structure is particularly feasible 
when the values of ki or &i are reasonably close to unity, 
as happens in most digital filtering examples. Notice that 
the multipliers (Y, in the denormalized sections continue 
to satisfy Iam] < 1. The denormalized structure requires 
N +l multipliers per transfer function. For filters with 
nonlinear phase, this is the same as for a direct-form 
implementation. For structures with linear phase, it is 
shown in Section IV that the lattice coefficients have a 
symmetry, i.e., k, = k k,-,-,; however, it is not clear 
how this can be exploited to reduce the number of multi- 
pliers by a factor of two. 

C. Design Example 1 

Consider an example where PNel(z) is a linear-phase 
low-pass equiripple FIR filter, designed with the 
McClellan-Parks algorithm [27] to meet the following 
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TABLE I 
LATTICECOEFFICIENTSFOREXAMPLE 1 

Section # k,,, 

0 0.002331 0.999997 
1 0.999871 0.016030 
2 0.999939 0.011081 
3 0.999974 0.007208 
4 -l.coQxxI 0. 
5 -0.999956 0.009332 
6 -0.999894 0.014533 
7 -0.999927 0.012089 
8 -0.999999 0.001686 
9 0.999926 0.012183 

10 0.999762 0.021803 
11 0.999793 0.020337 
12 0.999981 0.006167 
13 -0.999889 0.014912 
14 -0.999505 0.031474 
15 -0.999481 0.032228 
16 -0.999915 0.01x)47 
17 0.999824 0.018739 
18 0.998941 0.046OOO 
19 0.990748 0.05co15 
20 0.999760 0.021926 
21 -0.999587 0.028726 
22 -0.997249 0.074126 
23 -0.996791 0.080049 
24 -0.999647 0.026561 
25 0.997416 0.071841 
26 0.987856 0.155375 
27 0.991294 0.131669 
28 -0.995707 0.091698 
29 -0.867826 0.496068 
30 -0.713467 0.700689 

specifications: passband edge wP = 0.1967~, stopband edge 
w, = 0.27~, passband peak ripple 6, < 0.0013, stopband 
attenuation A, > 32 dB. The desired filter order turns out 
to be N - 1 = 60. Once the BR transfer function PNpl(z) 
is obtained, QNPl(z) can be found by solving for a spec- 
tral factor [l- lPNpl(e’“)12]. Mian and Namer [26] have 
outlined a procedure for computing spectral factors without 
going through tedious root-finding procedures. The method 
outlined in [26] works even if there are zeros on the unit 
circle, and is based on the computation of the complex 
cepstrum of a suitably modified sequence that does not 
have zeros on the unit circle. 

Once PNml(z) and QNP1(z) are obtained, the lattice 
structure of Fig. 3 can be synthesized as described earlier. 
Notice that QNPl(z) doe: not have linear phase. The 
lattice coefficients k, and k, are tabulated in Table I for 
0 i m G 30. In view of the linear phase nature of PNel(z), 
the lattice coefficients k, satisfy a symmetry property (see 
(36)) as shown in Section IV. Accordingly, we have not 
listed k31,. . . , k,,. Notice that a number of k-parameters 
have magnitude close to unity, and an unscaled version of 
the corresponding lattice sections can be used without 
seriously affecting internal scaling. Fig. 5 shows the magni- 
tude responses IPNwl(ej”)l and ]Q,-,(ejU)] of the simu- 
lated FIR lattice of Fig. 3 

In order to demonstrate the low passband-sensitivity 
properties of the cascaded FIR lattice structures, the de- 
normalized lattice structure for the above pair of transfer 
functions has been simulated, with coefficients quantized 
to three binary bits in canonic sign-digit code. More 

NORHllLILLO FREQUENCY 

Fig. 5. Example 1. Magnitude response in decibels for a simulated LBR 
lattice. 
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(b) 

Fig. 6. (a) Example 1. The simulated lattice response with 3 bits .y 
multiplier (in this paper b-bits per multiplier means that the multlp ler 
is approximated with b powers of two). (b) Example 3.1. The direct-form 

soecificallv. each multinlier is annroximated bv a sum of structure with 3 bits per multiplier. 
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Fig. 7. Pertaining to properties of the cascaded lattice. Fig. 8. Pertaining to symmetry properties. 

three powers of two. The resulting frequency response 
magnitude ]PN-i(ejo)] is shown in Fig. 6 for the cascaded 
FIR lattice structures, and for a conventional direct-form 
implementation quantized in the same manner. Even 
though the direct form has somewhat better stopband 
performance, the passband details shown in Fig. 6(a) clearly 
demonstrate the excellent passband behavior of the lattice 
structure. 

IV. ADDITIONAL PROPERTIES OF THE FIR 
CASCADED-LATTICE STRUCTURES 

In this section, we establish a few more interesting 
properties of the cascaded lossless lattice structures de- 
veloped in Section III. For simplicity, we assume that none 
of the k-parameters is “degenerate,” i.e., 0 # kz # 1 for 
any m. At the expense of additional notational complexity, 
all the properties we wish to study can be restated when 
this assumption is not true. Let us first consider the 
cascade shown in Fig. 7, which represents a cascade of 
IYI + 1 LBR sections. 

Property 1: Let T(Z) = [qj] represent the LBR transfer 
matrix of this overall cascade, i.e., let 

Y,(z) [ I[ L(z) T,,(z) Xl(Z) y,(z) = T,,(z) T,*(z) I[ 1 x2(z) . (24) 

Then its elements are related as follows 

T,,(z) = Z-(m+1)T22(Z-1) 

T,,(z) = - Z-(m+l)T,,(z-‘). (25) 

Because of the linear-phase property of Ti2(z), we have 
the following symmetry relation: 

T 12,k = A’T12,m-k, Ogk<m (29) 

where A is a constant equal to 1 or - 1. Recall our 
assumption that none of the lattice sections is degenerate. 
Accor_dingly, 0 # kfzl in (28), and we have, by (28) and 

(29) k,k,+, = A.k,k,+l, which on simplification leads to 

The next property is concerned with the behavior of 
internal transfer functions. Let us redraw Fig. 7 in the 
form of Fig. 8. The transfer matrix [Sjj(z)] is defined 
according to 

ylw 
[ Ii 

&(z) s,,(z) x;(z) 

Y;(z) = s,,(z) I[ 1 %2(z) x;(z) 

(30) 

whereas qj(z) are defined according to (24). 
Prcperty 3: If T12(z) has linear phase, then S,,(z)‘has 

linear phase. 
Proof: In order to show. this, first recall that the 

qj(z) parameters satisfy (25) whereas the parameters 
Sij( z) satisfy 

s,,(z) = z-‘“-w22(z-1) 

S,,(z) = - z-‘“-“s21(z-1).. 

Next, from Fig. 8 it is clear that 

(31) 

For the case of m = 0, (25) can be explicitly verified. Next, 
assuming that the relation of this form is true for a cascade 
of m sections, it can be shown that it continues to be true 
if a new section is added to the cascade. In this manner, 
(25) can be inductively established; details are omitted. 

Property 2: In the cascade of Fig. 7, let T12(z) be a 
linear phase FIR transfer function. Then the following is from which we obtain 

T,,(z) ‘T,,(z) 
T,,(z) T,,(z) 1 

k, -I$ -’ 
,. 
k,z-’ k,z-’ 1 (32) 

true: 

LA -%1(z)+ k&,,+J&)+ k,kn+,z-‘T,,(z) + hk&2;(41 
/ sJz) = klkm+lz 

z-2 (33) 

Recall that (25) and (31) are true; moreover, since T12(z) 

kf = k;,,. 
(26) has linear phase, (29) holds, and klkm+l= A*k,k,+, 

holds. It can therefore be verified by explicit substitution 

Proof: Denote the polynomial T12(z) by in (33) that 

T,,(z) = T12,0 + T12,1Z-1 + . . . +,T12,mz-m. (27) 
z-(~-~)&(z-~) = AC?,,(z) (34) 

which shows that Si2(z) has linear phase as well. 

Inspection of Fig. 7 reveals that Property 4: In Fig. 7, if T12(z) has linear phase, then we 
have 

T 12,0 = - kk,k, . . . kn+l 
i&,+l= A*k&,,+l, t%,k, = A. k2iim, i3kme1 

T 12.m = - k,k,k, . +. im+l. (28) = A. k3im-1,. . . . (35) 
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s &X ::I-,,.,-, 
Fig. 9. The FIR filter structure related to linear-predictive coding. 

Accordingly, kf = ki,,, ki = ki; * .,and so on. This 
property follows merely by applying Properties 2 and 3 
repeatedly to the cascaded structure of Fig. 7. 

The main consequence of these properties is the follow- 
ing: in the structure of Fig. 3, if PNel(z) is a linear-phase 
transfer function, then the following is true: 

k: = k;-,-,, Ogl<N-1. (36) 

V. ‘RELATION TO OTHER KNOWN DIGITAL FILTER 
STRUCTURES 

The denormalized structure of Fig. 4 immediately re- 
veals the graphical similarity of the new lattice filters to 
the well-known FIR filter lattice structures arising in lin- 
ear-prediction theory (reproduced in Fig. 9) [lo], [ll], [21]. 
However, the. main difference is the appearance of a nega- 
tive sign in each section of Fig. 4, unlike in linear-predict- 
ion FIR filters. This difference makes it possible for the 
circuit to realize arbitrary FIR transfer functions (within a 
scale factor) with arbitrary magnitude and phase re- 
sponses. 

The building blocks represented by (20) are themselves 
well known in the implementation of IIR orthogonal filters 
and IIR lattice digital filters [6], [14]. The normalized 
nature of these building blocks is primarily responsible for 
several excellent finite-wordlength properties of IIR or- 
thogonal and lattice filters. Similar properties are inherited 
by the FIR structures of Fig. 3, as elaborated on later. 

It is well known that the FIR filter of Fig. 9 arising in 
linear prediction is associated with a “corresponding” IIR 
digital filter, as shown in Fig. 10. The values of the 
corresponding k-parameters are the same in Figs. 9 and 
10. The transfer functions H(z) and z-(~-‘)H(z-~) in 
Fig. 9 are related to the transfer functions G,(z) and 
G2(z) of Fig. IO by 

G,(z) =1/H(z) G2(z) =z-(“-)H(z-~)/H(z). (37) 

Thus, G,(z) is an “all-pole” function, whereas G2( z) is 
allpass. The normalized version of the structure of Fig. 10, 
known as the normalized Gray-and-Markel IIR cascaded 
lattice, is shown in Fig. 11. Notice that the basic building 
blocks in the IIR structure of Fig. 11 have the same 
transfer matrix as the FIR filter building blocks in Fig. 3. 

The fact that the linear-prediction FIR filter of Fig. 9 
has a “corresponding” IIR version in the sense described 
above raises the following question: What is the IIR filter 
structure that “corresponds” to the FIR structure of Fig. 
3? The answer is easy to find, but the resulting structures 
do not seem to have particularly interesting properties. For 
example, the denominator of the IIR version turns out to 
be P,+l(z), which is an arbitrary (not necessarily mini- 
mum-phase) polynomial. Thus, even with all ki < 1, there 
is no guarantee that the IIR structure results in stable 

Fig. 10. The IIR counterpart of the linear-prediction FIR lattice of 
Fig. 9. Here, G*(Z) = Yz(z)/U(r) and C,(z) = Y1(z)/U(z). 

Fig. 11. The normalized version of Fig. IO. 

Fig. 12. The basic lattice section of the “corresponding” IIR filter. 

transfer functions under a quantized environment. For 
completeness of discussion, Fig. 12 shows the basic build- 
ing block of this IIR filter. The transfer matrix of this 
building block is not LBR, and, hence, the IIR structure of 
Fig. 12 has no relation to orthogonal implementations. 

Relation to Continuous-Time Electrical Networks 

Since each building block in our structure of Fig. 3 is 
lossless, it is possible, in principle, to find a counterpart of 
our structures in the continuous-time domain. This can be 
done by employing the bilinear transformation and the 
wave-to-immittance transformations. Subsequent to the re- 
vision of this manuscript, a recent reference [32] was 
brought to our attention by its author, in a private con- 
versation. This reference indicates how a FIR filter can be 
derived from certain electrical networks by the wave-filter 
approach. 

VI. EXTENSION OF THE SYNTHESIS, PROCEDURE TO 

M-COMPONENT FIR ALLPASS FUNCTIONS 

The ideas of Section III can be extended in order to 
synthesize a set of M FIR transfer functions PNel(z), 

Q+dz),. . .> S,- i( z) such that 

IPN_l(ejw)12+lQN-l(ejw)12+ ... +JSN-l(ejw)12=1. 

(38) 

A typical application of such filter banks is in subband 
coding, and Sections VIII and IX deal with some of the 
applications. The purpose of this section is to outline a 
procedure for synthesizing a structure for such filter banks, 
based on a cascade of lossless lattice building blocks. We 
begin by considering three-component FIR allpass vectors. 

In order to synthesize a three-component FIR 
allpass function of the form G,-,(z) = [P,-,(z) 
QN--l(z)RN--l(~)]f as a cascade of appropriate lattice 
building blocks, we should first extend the “order-reduc- 
tion” scheme of Section III to the three-component case. 
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Pm(Z) 

O,(z) 

R,(z) 
El= 

Pnl+1(~) 

~ln+i(~) Qrn+1(z) 

%tl(2) 

Fig. 13. Realization of G,+,(z). 

In view of (43) and (46), eq. (45) becomes 

_ k2 rm+l,m+l’rm+l,o 

+ R2rm+l,0 =o. (47) 

P rt+I,m+l + 4~+1,m+1 

Accordingly, let us consider a three-component FIR all- 
Inspenction of (47) reveals that the following choices of k, 

pass function 
and k, are appropriate: 

Gm+~(z) = k+l(z> Q,+dz> ~,+dz)l~ (394 
tn+ltzk+~tz)+ kn+dz>Q,n+,tz) 

+ k,,+,t+L+,tz) =1 t39b) 
with 

m+1 

p,+1(4 = c P,+l,nZ-n 
n=O 
m+l 

Q,+,(z) = c qm+l,nz-n 

n=O 

mt1 

R,+1(4 = c rm+l,X” (40) 
n=O 

where at least one of Pm+l,m+l~qm+l,m+l,rm+l m+l is 

nonzero. Let us assume pm+l ,,,+ i # 0, without ‘loss of 
generality. We wish to realize the given function G,,,+,(z) 
starting from an appropriately defined lower order FIR 
allpass function 

G,(z) = kntz> Q,(Z) Rm(z)l’ (41) 

by means of the interconnection of Fig. 13, where Ym+i( z) 
is an LBR transfer matrix. Indeed, this turns out to be 
possible, as demonstrated by the following procedure. First, 
define 

where 

L(z) = Vm+,tz) + &Q,+,(z) r (42) 

k, = 
-4 m+l,m+l 

P:+l,,+l+ d+l,m+l 

fC,= 
Pm+l,m+l 

(43) 
P ~+lJn+l + 4zl+1,m+1 

Clearly, the highest term in the right-hand side of (42) 
cancels, and moreover kf < 1. Next, define Q,(Z) by 

z-‘Q,tz> =k,[L,P,+,(z)-k,Q,+,(z)1+~2Rm+l(z). 

(44 

The polynomial Q,(z) represents a causal FIR transfer 
function of order m if and only if 

k2 [~lPm+l,O - bn~l,O1 + ~zL+l,o = 0. (45) 

But the allpass property given by (39b) implies, in particu- 
lar, 

Pm+l,~Pm+~,m+l + qm+l,Oqm+l,m+l + rm+l,Orm+l,m+l = 0. 

(46) 

k, = 
!/Plt+Lm+l + 4zl+l,m+l 

JP i+l,m+l + d+l,m+l+ rm+1,*+1 
(48) 

i2 = 
r m+l,m+l 

\iP ~+I,~+I + 4i+l,m+l + rm2+l,m+l 
(49) 

We have thus produced two lower order polynomials 
P,(z), Q,(z) by employing the following equations: 

where k:, kt < 1, and kf + i,’ =l, i =1,2. We finally wish 
to produce the third mth-order polynomial R,(z) such 
that [P,(z) Z-‘Q,(z) R,(z)]’ (or equivalently 
[P,(z)Q,(z)R,(z)]‘) is FIR allpass. This can be accom- 
plished by “completing” the 2 x 3 matrix in (50) by adding 
a third row such that the 3 X 3 matrix becomes orthogonal 

%+1(z) 
= %I+1 

i 1 
Q,+,(z) . (51) 
JL+1(4 

In view of the fact that kf + kj? =l, i ;1,2, the matrix 
.x- In+1 is indeed orthogonal, hence 

6ntz>Pm(z>+ &ztz)Q,tz)+ &ntz)R,tz) 

= tn+,tzkz+ltz)+ kn+~tz)Qm+,tz) 

+ ~i,+lt4Rm+lt4 =l. (52) 

It only remains to show that R,,,(z) is of order m. Now, 
the highest coefficient of R,(z) is given, according to (51) 

by 

r m,m+l =R2(~1~m+l,m+l-k14,+1,,+1)-k,r,+,,,+,. 

(53) 

Substituting from (43), (48), and (49), eq. (53) immediately 
reveals that r, m+l = 0. Thus, R,(z) is an mth-order 
polynomial. In ‘conclusion, we have generated a lower 
order FIR allpass vector G,(z) as in (41) starting from the 
FIR allpass vector G,+,(z) of (39a), such that (51) holds. 
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Fig. 14. Complete implementation of G, + 1(z) in terms of G,(z) 

PO 
P+,(Z) 

4 z-1 
+ 

1: 33 . . . *I4 4 ON-,(Z) 

R,-,(Z) 

Fig. 15. Overall cascaded-lattice implementation of G,- I( z). 

Inversion of (51) leads to 

(54) 

Equivalently 

where the transfer matrix 

I 
k, z-$k2 & 

Ym+I(z) = k1 -z-‘k,k, -k,,& (56) 

0 Z-V& -k2 I 

is clearly LBR. Notice that the orthogonal matrix Xii1 
can be factorized into two planar rotations 

x+,= [; ->1 a][ i i; JJ (57) 

Fig. 14 shows the corresponding implementation of (54). 
Notice that the quantities k, and k, in (57) should have 
had an additional subscript (m + 1) in order to indicate the 
“section number.” As a matter of notational simplicity, we 
omit this subscript. It is clear that by repeated application 
of the order-reduction procedure, we can synthesize any 
three-component FIR allpass vector in the form of a 
normalized cascaded-lattice structure (or orthogonal struc- 
ture) as shown in Fig. 15, where constants PO, Q,, R, are 
such that Pt + Qi + Ri = 1. 

-80.000 

-100.000 
0 
I. 0.100 0.200 0.300 0.400 0.!J00 

- 

0. 

-80.000 

-100.000 
0. 0.100 0.200 0.300 0.400 0.500 

NORl!RLIZEU FREBUENCY 

(4 

NORHALIZELI FREQUENCY 

Fig. 16. (a) Example 2. The frequency responses for unquantized LBR 
lattice. (b) Example 2. The frequency responses for 4-bit quantized LBR 
lattice. 

A. Design Example 2 

Let us consider the transfer function G,,(z) = [P&z) 

QsoW R3&)lr~ where Mz), Qdz), R,,(z) are ob- 
tained as follows: Pjo(z) is a 30th-order linear-phase 
equiripple FIR low-pass transfer function with band edges 
tip = 0.04(2~) radians and o, = (0.10)277 radians, designed 
by invoking the McClellan-Parks program [27]. QsO(z) is 
a 30th-order linear-phase FIR bandpass transfer function, 
generated by modulating the impulse response of Pjo(z), 
i.e., 

q30,n=2P30,nCOS~o (n-y) (58) 

where w. = (0.43)2~, and N- 1 = 30. The transfer func- 
tions P30(z) and Q30(z) are scaled so that IP30(e’“)j2 + 
]Q;o(e’“)]2 ~1. The third FIR function R30(~) is chosen 
such that (39b) holds. The required spectral factorization is 
done using [26]. The frequency response of the resulting 
cascaded lossless lattice structure is shown in Fig. 16(a). 
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The quantized lattice implementation, with 4 bits per 
k-parameter, has a frequency response as shown in Fig. 
16(b), and is close to the ideal response of Fig. 16(a). 

B. Further Generalizations 

Recall the order-reduction scheme of Section III. Given 
the polynomials P,+l(z) and Q,+,(z), we first selected 
k m+l so that P,(z) defined by (12) has order m. We 
found that, if Q,(Z) is then defined as in (17), it automati- 
cally has degree m. Similarly earlier in this section, we 
found k, and k, such that P,(z) and Q,(Z) have order 
m. Then the definition of R,(z) according to (51) auto- 
matically ensures that R,(z) has the reduced order m. 

The above facts give us evidence that there is something 
fundamental about allpass vectors and LBR transfer 
matrices which forces this order-reduction automatically 
on the Mth component, provided the k-parameters are 
chosen to ensure order-reduction of the first M - 1 compo- 

e&> 
Q,(z) 
&&I 

KiZ) 

= 

kl Ll 0 

k2k -k,k, i2 

such that 

Q,(z) = 4 bhf’m+dz) - hQ,+,(z)] + ~2R,+,(4 

(62) 

is of order m, i.e., has coefficient of ~-(~+i) equal to zero. 
Moreover, k, and k, are such that ki ~1 and k; + k,’ =l 
(see (61)). Once we form Q,(z), we can next define an 
(m + l)th-degree polynomial 

S(z) = i2 t h%+l(+ k1Qm+d41- Wm+dz> (63) 

and then proceed to generate the m th-degree polynomial 

R,(z) = V(z) + kK,+,(z> (64) 

and so on. In this manner, given the M-component FIR 

vector G,+,(z) = [Pm+l(z)> Qm+l(z), R,+l(z),- . -9 
t&+i(z), Sm+i(z)]‘, we can always generate the M-l 
polynomials of order m, {Pm(z), em(z), R,(z),. . ., 
U,(z)}. Thus 

0 0 ... 0‘ 

0 0 *** 0 

k,&,k, -k,k,k, -k,k, ff, 0 “. 0 

. L-l 

nents. We now proceed to establish a certain property 
which explains the reason why we can always force an 
order-reduction in the above manner. 

First notice that, given two arbitrary polynomials PL(z) 
and QL(z) (not necessarily forming an allpass vector) 

P,(z) = ; pnzC” 
n=O 

Q,(z) = t qnz- (59) 
n=O 

with pL # 0, we can always find a lower order polynomial 
PL- i( z) simply by defining 

Pm+l(Z> 
Q,+,(z) 
R,+,(z) 

(65) 

In (65), each ki satisfies k? < 1 and k? + Lf = 1. Let us 
now define a polynomial J,(z) simply by appending a row 
to the (M - 1) X M matrix of (65) such that the resulting 
A4 x A4 matrix is orthogonal 

Kz(z) A kh)Qrn(z)Rm(z) 1.. Um(z>Jm(z>lf 

= Kn+,Gm+,(z) (66) 

x?i+lxl+l = I&f- (67) 
If we now impose the additional restriction that G,,,+,(z) 
be (FIR) allpass, then H,(z) is also (FIR) allpass because 
of (67). Under this condition, we claim that J,(z) is 
automatically of the form 

P,-,(z) = kP&) + iQ,(z) (60) J,(z) = Jm,lZ -‘+ J,,*z-* + . . . + Jm,m+l~-(m+l) (68) 

where 

k = - qr/\llm 

i.e., J,,, o = 0. In other words, zJ,,,(z) represents a causal, 
m th-order FIR filter. In order to see this, it only remains 
to note that the allpass property of Hm(z), i.e., 

Clearly, k2 <1 and k2 + R* =l. 
Now, assume that we have a set of A4 polynomials of 

order G m + W’m+lW~ Qm+dz>, R,+dz)~ 
Jfjm+l(z),. . ., Um+i(z),S,,,+i(z)}, with at least one poly- 
nomial having order m + 1. Thus, let P,,,+~, m+ 1 # 0. We 
can always generate an m th-order polynomial P,(z) as in 
(42) simply by choosing k, and &i as in (43). Once this is 
done, the quantity [&,Pm+l(z)- k,Q,+,(z)] is just another 
(m + l)th-order polynomial, and we can always find k,, R, 

~,(z)P,(z)+~,(z)Q,(z)+ .a. +&(z)J,,,(z)=l 

(69) 

implies in particular that 

Jm,OJm,m+l =o (7Q 
because, by construction of P,(z), Q,(z), . . . , U,(z), we 
have 

P m,m+1= 4 m,m+1= . . . um,m+l = 0. (70 

If Jm,m+~ = 0 in (70), then all the components in H,(z) 
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(4 

. . . 

(b! 

Fig. 17. (a) Implementation of Gm+ 1 (z) in terms of G,(z). (b) Internal 
details of XA+l m Fig. 17(a). 

are m th-order polynomials, and hence 

‘%+I(z> = x;,‘+An(z~ (72) 

cannot have order m + 1. Thus, (70) necessarily implies 
J m,O = 0. This shows that J,(z) is of the form shown in 
(68). Having established that J,(z) is as in (68), we next 
define the allpass vector G,(z) to be 

G,(z) = k(z)Q,(z) . - - U,(Z)%(Z)~~ (73) 

S,(z) A zJ,,,(z). (74) 

We have thus shown how to construct an mth-order 
FIR allpass vector G,(z) from an (m + l)th-order FIR 
allpass vector G,+r(z). Fig. 17(a) shows how G,+,(z) can 
be reconstructed from G,(z). Notice that the circuit of 
Fig. 17(a) involves only one delay unit z-l. 

In order to complete the process, it remains to indicate 
how the orthogonal matrix X,, i should be obtained. For 
this, let us consider an example where M = 4; the 3 x 4 
matrix of (65) is 

I 

kl bl 0 0 

cY’= k,L, - k,k, ff, 0 . (75) 

k,i,L, - k3k2k, -k,k, f, 1 
The 4 x 4 orthogonal matrix Xm+ i is obtained by append- 
ing the row 

[ lc,R,L, -c3i2kl -i3k2 - k3] 

1055 

to (75). It is easily seen that Y,,, can be written as 

k, I?, 0 0 

. Ll 

I I 

-k, 0 0 

0 0 10’ 
(76) 

0 0 01 

Each factor in (76) is an orthogonal matrix involving one 
planar rotation. Thus, the orthogonal matrix Z,Y,Y+i in- 
volves a succession of three planar rotations. In general, 
for M-component FIR filter synthesis, the orthogonal ma- 
trix xm+l in (66) can be written as 

0 0 I 

(77) 

where 0 and ‘I in (77) stand for the identity matrix and 
null matrices of appropriate dimensions. Accordingly, (72) 
gives 

Gm+l(Z) = 

%+1(z) 
Q,+,(z) 
Kn+Sz) = 

s,+;(z) _ 

i k, 4 0 -k, I$ 0 0 0 I 1 *** 

kh> 
I 0 0 Q,(z) 
0 k,-, ff,-, 

0 R,-, 1 . R,(z) . 

-k,-, : 

z-‘s,( z) 

(78) 

Thus, given the allpass vector G,(z) = [P,(z) . . . S,(z)]‘, 
we can reconstruct G,+,(z) as shown in Fig. 17(b), and 
this involves one delay operator and M - 1 planar rotation 
operators. Clearly, an M-component FIR allpass vector of 
order N - 1 can be implemented by cascading N - 1 build- 
ing blccks, as shown in Fig. 18, where each Ym+,(z) is an 
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II 
Pp+,(Z) 

%lcl) : 

q+,(L) 

. 

SN-I(L) 

Fig. 18. Cascade of N - 1 building blocks, where each 3$(z) has the 
form in Fig. 17. 

M x A4 LBR transfer matrix of the form 

k, R, 0 

%+1(Z)= [ I$ -k, 0 1 ... 

0 0 I 

I 
I 0 0 

* 0 kM-1 z-%,-1 . 1 (79) 
0 &,,,e, -z-‘k,-, 

This leads to the cascaded normalized lattice structure or 
orthogonal implementation of the FIR allpass function 

G,-,(z) = [f’w~(z) Q,v-l(z) . . . &-1(z)l’. 
The M-input M-output building block for the cascaded 

FIR lattice structure has striking resemblance to a well- 
known single-input single-output IIR digital filter struc- 
ture, namely, the normalized Gray-and-Markel lattice 
structure [6] reproduced in Fig. 11 earlier. It can be shown 
[28] that, if the IIR single-input single-output allpass filter 
G2(z) in Fig. 11 is represented in state-variable form 

x(nS1) =Ax(n)+Bu(n) (80) 

y(n) =Cx(n)+Du(n) (81) 

where x(n) = [xi(n) *. . xN-r(n)]‘, then the following 
NxNmatrix: 

rD C 
9= B A 1 1 (82) 

is orthogonal, and moreover, is structurally similar to the 
M X M matrix X, + i of (77).3 

It should, however, be borne in mind that the matrix .?Z 
in (82) pertains to a single-input single-output IIR allpass 
structure, whereas the matrix XjY+i of (77) pertains to one 
section of a one-input M-output FIR allpass function of 
arbitrary order N - 1. Notice also that the IIR structure of 
Fig. 11 is related to the theory of orthogonal polynomials 
[6], [7], [ll], whereas the FIR structures of Fig. 18 cannot 
be directly related to orthogonal polynomials. Finally, the 
IIR allpass cascaded lattice can in turn be related to the 
theory of linear prediction and Gram-Schmidt ortho- 
gonalization of random variables, whereas no such inter- 
pretation of the cascaded FIR lossless lattice structure of 
Fig. 18 seems to be evident. 

3More precisely, if the quantity N in Fig. 11 were the same as M, and 
if the subscripts on the k-parameters were read backwards, then .GZ is 
equal to sm+,. 

P 
, ,+P 

Qm+W 

Fig. 19. Building blocks based on alternative order-reduction scheme. 

. . . 

f--pPN-,k) 

Fig. 20. Cascaded lattice corresponding to Fig. 19. 

C. Variations of the Cascaded-Lattice Implementation 

The procedure described above for the synthesis of an 
M-component FIR allpass vector does not necessarily lead 
to a unique structure. For example, the value of k, in (65) 
depends on which one of the M polynomials is defined to 
be the first polynomial Pm+r(z). Thus, at each one of the 
N - 1 stages of iteration, we have a wide choice available. 
A permutation of the components in G,+r(z) in general 
leads to more than a mere permutation in G,(z). 

From the point of view of finite-wordlength behavior, 
there does not seem to be any reason to expect this 
multitude of equivalent structures to behave differently 
from each other. This is because all the structures are 
cascaded interconnections of orthogonal building blocks, 
with each building block being a succession of M- 1 
planar rotations. However, it might turn out that a particu- 
lar realization has certain k, coefficients that have simple 
values (such as k, = kl or 0). In general, it is difficult to 
anticipate this, and the choice of the “best structure” does 
not seem to be an easily tractable problem. 

We, however, wish to outline one particular variation of 
the synthesis procedure that we shall find useful in the 
analysis-synthesis filter-bank application of Section VIII. 
Recall that, when we constructed the lower-order function 

G,(z) from Gm+lWy we ensured that each one of the 
polynomials P,(z), Q,(z), . . . , U,(z) has the highest 
power (corresponding to z-(~+‘) canceled, whereas J,(z) 
has the lowest power (constant term) canceled. Accord- 
ingly, Fig. 17(a), which reconstructs G,,,+r(z) from G,(z) 
involves only one delay operator. 

Instead of proceeding as above, let us assume that we 
cancel the lowest power (constant term) in each one of 
f’,(z), Q,(z),-. 0, U,(z), and then cancel the highest term 
(coefficient of zeCm+l) ) in J,(z). Then the resulting 
cascaded-lattice structure has building blocks as shown in 
Fig. 19, whereas the overall cascaded structure is as in Fig. 
20. Notice that, for a given G,+r(z), the set of polynomi- 
als [Pm(z). . . fij(z), &(z)] in Fig. 19, and the orthogonal 
matrix X,,, are in general different from the quantities 

[P,(z). . . U,(z)&(z)] and X*+, appearing in Fig. 17. 
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Accordingly, we have two equivalent realizations, described 

G,-,(z) = 

p,-,(z) 
Q,-,(z) 

fdr Fig. 18 and 

PO 
QO q(z) . 
II 

I . 

s, 

(83) 

G,-l(z) =2&(z). . + yl(z) 

(84) 
for Fig. 20. Note that ym(z), y(z), Ym(z), and r(z) are 
all M X M LBR transfer matrices. Moreover, the follow- 
ing property is satisfied by the constants involved: 

P,‘+Q;+ a.0 +S;=l, @+&;+ ... +$;=l. (85) 

Notice that Fig. 19 involves M -1 delays, and, accord- 
ingly, the implementation of Fig. 20 involves (M - 1) 
(N - 1) delays and is highly nonminimal in z-l. In con- 
trast, the structure of Fig. 18 requires a total of only N - 1 
delays (i.e., the smallest possible number for order N - 1). In 
spite of this, as we shall elaborate on in Section VIII, the 
circuit of Fig. 20 actually enables us to generate another 
transposed structure with the smallest number (N - 1) of 
delays. This finds application in the analysis-synthesis 
bank of Section VIII. 

Before we conclude this section, it should be noticed 
that, given an M-component FIR allpass vector G,- i( z), 
the procedure for synthesizing it as a cascade of the form 
shown in Fig. 18 involves matrix-polynomial manipula- 
tions, at each stage of order-reduction. Accordingly, there 
can be numerical inaccuracies of significant amount when 
N and it4 are large. While computerizing the synthesis 
procedure, double-precision arithmetic is recommended 
strongly. 

VII. FINITE-WORDLENGTH PROPERTIES OF THE 

CASCADED-LATTICE FIR STRUCTURES 

In view of the LBR (or orthogonality) property of the 
building blocks of Fig. 17, the cascade of Fig. 18 exhibits a 
number of interesting properties relating to finite-word- 

Fig. 21. Pertaining to internal-signal scaling 

length behavior. First notice that, since the k, parameters 
satisfy kf f 1, they can be represented as fixed-point num- 
bers in the range [ - 1, 11. We now proceed to look at a few 
other significant properties. 

A. Automatic Scaling of Internal Signals 

In order to scale a fixed-point implementation (with 2’s 
complement arithmetic), it is sufficient to ensure that the 
signals which are input to internal multipliers be in the 
range (- 1,l). If the transfer function Hk(z) from the 
filter input to the k th multiplier input is such that its L, 
norm satisfies ]]Hk(ej”)l12 ~1, and if this holds for all 
multipliers, then the structure is scaled in an L, sense. 

Let us consider the cascade of Fig. 18. The transfer 
function (vector) from the filter input x(n) to the set of M 

internal points (Ye, (pi,. f . , (~~-i in the Lth building block 
(see Fig. 21) is given by 

(86) 

Since 3Qz) are LBR and since ki + &i = 1, the entire 
M X M matrix on the right-hand side of (86) is LBR. Thus 

~o(z)Fo(z)+ ... + FM-dz)F,-I(Z) 

=P,“+Q;+ a.. i-$=1 (87) 

in view of (85). In other words 

lF,(e@)j*+ a.. + IFM-l(ejw)12 =l, for all w. 

Accordingly 

IIFJej”)ll~ = gTjF.,(,i”)j2~ ~1. (88) 
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q,rJ(“) qo(n) e2,0(n) eN-l,O(“) 

7-?-&J@..@;:;;; 

eo,wI(“) .I,M:l(“) ‘P.M-A”) eN-I,M-l(“) 

Fig. 22. Noise model for M-component cascaded lattice. 

However, it should be emphasized that, in practice, we 
cannot in general quantize both k, and k, simultaneously, 
and yet satisfy kj? + I$: = 1. Thus, under quantized condi- 
tions, (93) does not in general hold. A more accurate 
sensitivity analysis seems to be therefore appropriate. Let 
us assume that for each module of the form 

Thus, all the multiplier-inputs in Fig. 18 are L,-scaled, 
automatically. 

B. Roundoff-Noise Gain 

A noise model as shown in Fig. 22 can be assumed to 
hold for the structure of Fig. 18, provided that we do not 
permit any quantization inside the building block of Fig. 
17. If this assumption is not true, then a slight modifica- 
tion of the following analysis can readily be made, so as to 
incorporate a general noise model. 

The M X M transfer matrix from the M-component 
noise vector [e,,,(n) . . . e,, M- i( n)]’ to the M-output 
terminals of the filter is given by 

s(z) 4% 9&(z). . . Ym+l(z) (89) 

which is clearly LBR. Assuming that each noise source is 
zero-mean and white with variance u,‘, and that different 
noise sources are mutually uncorrelated, we have for the 
total noise variance at the k th-output of the filter due to 
noise sources at the input of Ym+i(z) 

-where S(z) = [S&z)]. Since S(z) (and hence S’(z)) is 
LBR, (90) simplifies to 

uk” = u,‘. (91) 

Thus, the total noise variance at the kth-output of the 
M-component filter, due to all noise sources, is 

u;,totd = N. u,‘. (92) 

Recall that, for the direct-form implementation in an 
arbitrary (not necessarily linear-phase) FIR filter, the noise 
variance is given precisely by (92), provided that signals 
are quantized after each multiplication. 

C. A Word On Coefficient Sensitivity 

The ‘structure of Fig. 18 is such that, as long as all the 
k-parameters satisfy kf 6 1, the function G,-,(z) is vec- 
tor-allpass. Accordingly, the equality 

IPNml(e@)12 + lQ,,-l(ejw)12 + ... + IS,+l(ejw)12 =l 

(93) 

holds for all w, regardless of the actual values of k,. In 
other words, each component of G,-,(z) is structurally 
bounded, and according to the discussions in Section II, 
we expect low passband sensitivity. 

the quantities k, and k, are quantized independently. 
Under this condition, let us derive an expression for 
dG,-,(z)/dk,. For simplicily, we consider only the struc- 
ture of Fig. 3. I 

We have %1(z) GN-l(Z) = Q,-l(Z) [ 1 
= z3-1(z)~-2(z) * * * q(z) ; I 1 (95) 

0 

where the transfer matrices 

(96) 

are LBR and PO, Q, satisfy P: + Q,’ = 1. Let us denote 

s,+,(z) A %1(z) . *. ~+dz’) 

R,~l(z)~.Y;_1(z)*4-l(z) (97) 

whence 

G,-,(z) =S,+,(Z)~(Z)R,-&)* 2 . [ 1 (98) 
0 

Now 

WA4 

A(z) A 
%,-1(z) 

I 1 

ak, 
= ak 

I aQ,v-l(z) 

which shows that A(z) itself is LBR because S,+,(z) and 
R/-,(z) are LBR. Thus 

which shows that each variational term in (100) is bounded 
above by unity. This gives us additional insight concerning 
low-sensitivity behavior of the cascaded-lattice structure. 
The partial derivatives with respect to k, also satisfy a 
relation similar to (100). 
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VIII. APPLICATIONS IN THE DESIGN OF DIGITAL 

FILTER BANKS 

The structure of Fig. 18 can also be used to implement a 
set of M FIR transfer functions [G,(z)G,(z) *. ., 
G M-1(~)]f = G,-,(z) such that they form a uniform filter 
bank [23]. Thus, we can let , 

G,h) = G,(zWk), k=O,l.. *M--l (101) 

where W p e-jzniM so that G,(ej”) are shifted versions of 
G,(ej”). If we have a set of A4 FIR functions as in (lOl), 
and in addition if they are such that the vector G,-,(z) is 
allpass, the structure of Fig. 18 can be further simplified, 
leading to a saving in computations by a factor of about 
M, for N - 1~ M. In order to see this, note that 

G,(z) = go + glz-’ + . . . + gNplz+-‘) (102) 

can always be rewritten in the form [23], [29] 
M-l- 

G,(z) = c z-~E,(z~) (103) 
k=O 

where Ek(z) = (gk + gk+Mz-l + gk+2Mz-2 + . . a). Equa- 
tion (101) thus leads to 

Gk(z) =E,(z~)+W-~Z-~E~(Z~)+ ... 

+ W-k(M-l)z-(M-l)EM-l(ZM). (104) 

In matrix form, we therefore have 

G,-,(z) = W+E( z) (105) 

where W is the M X A4 DFT matrix (superscript dagger 
denotes transposed conjugation), and E(z) stands for 

E(z) = [Eo(zM) z-~E,(z~)- z-@‘-~)E~-~(z~)]‘. 

006) 

From (105) we’ have, in view of the allpass property of 

G,-,(z) 

l= G”,~,(z)G,~,(z) =,??(z)WW+E(z) = ME”(z)E(z). 

007) 

In other words, the vector mE(z) also represents an FIR 
allpass vector. In fact, given an FIR vector G,-,(z) with 
the components forming a uniform filter bank (i.e., (101) 
holding), G,-,(z) is allpass if and only if mE(z) is 
allpass. Note that, if the vector mE(z) is allpass, then so 
is the vector 

P(z) =JiCi[E,(z) E,(z)...E,-,(z)]‘. (108) 

Here, each function Ek(z) has an order approximately 
equal to (N - 1)/M. More specifically, letting 

N-l=mo+m,M, O<mo<M 009) 

the polynomials Eo(z), E,(z), . . ., E,,Jz) have order ml, 
whereas Emo+ 1( z), . . . , E,- 1 (z) have order (ml - 1). Since 
F(z) is an FIR allpass vector, it can be implemented as in 
Fig. 18, as a cascade of only m, sections. We then replace 
each delay in the resulting structures with zz”, and thus 
generate the set &?[ E,( z M), . . . , E,,,- i( z “)I’. The desired 
filter-bank vector G,-,(z) is finally obtained by perform- 

yet 

GM-I(Z) 

Fig. 23. Efficient implementation of uniform filter bank, using the 
cascaded lattice. 

Analysis-bank 
* 

Synthesis-bank 

Fig. 24. The analysis-synthesis filter banks. 

ing the M-point IDFT, as summarized in Fig. 23. Note 
that, as long as the IDFT operation Wt is performed using 
efficient techniques, the circuit of Fig. 23 is much more 
efficient than that of Fig. 18 for N - 1 x=- M. 

A. Design of Analysis-Synthesis Banks 

Once again consider the filter bank of Fig. 18, imple- 
menting the vector G,-,(z) = [ G,( z.) . . . G,-1(z)]‘, where 

Gk(z) may or may not be related as in (101). Let X(z) 
denote the system input and let Y(z) = [Y,(z) * * . 
YM-i(z)]’ be the system outputs. Now consider the system 
shown in Fig. 24. Note that 

G,-,(z)= [ G;-;;j]=$=F(z)[!j (110) 

hence 

which results in 

if(z) = [PO Q,... so]9-‘(z-1).9-(z) 

(11.2) 

Because of the LBR property of y(z) and in view of (85) 
we get 

2(z) =x(z). 013) 
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Fig. 25. The building blocks involved in z~(~-~).Y’(z-~). 

@FJI--~- j;pJ @FJI--~- j;pJ 
t t 

Analysis-bank Analysis-bank Synthesis-bank Synthesis-bank 

Fig. 26. Fig. 26. The modified analysis-synthesis filter bank. The modified analysis-synthesis filter bank. 

Thus, Fig. 24 represents a perfect analysis-synthesis signal 
reconstruction system, primarily because of the LBR prop- 
erties indicated. Notice that Yf(zP1) is noncausal, and in 
practice we need to use z -(N-1).7f(~-1) in order to obtain 
a realizable system. Thus, a(n) = x( n - N + l), in a practi- 
cal circuit of this type. 

If the set of functions Gk(z) happen to be related as in 
(101) (uniform filter bank), then the simplified version 
shown in Fig. 23 can be used in the analysis bank, and the 
corresponding transpose structure in the synthesis bank. 

B. Further Simplification of the Analysis -Synthesis 
Bank of Fig. 24 

Recall that the “analysis bank” of Fig. 24 is a cascade of 
building blocks as in Fig. 18. Accordingly, z-(~-~).Y(z-‘) 
has building blocks of the form shown in Fig. 25, which 
therefore involves M - 1 delays per section. Thus, the 
synthesis bank is highly nonminimal in terms of delays. 
Recall that, in Section VI, we developed an alternative 
cascaded lattice structure for vector FIR allpass functions 
(Figs. 19 and 20). Thus, G,-,(z) can be implemented 
either as 

G,-,(z) = y(z)Go (114) 

or equivalently as 

G,-,(z) =3+)d, 015) 

where Go = [PO Q,.. -So]’ and &,=[Fo do-..$o]‘. 
The alternative implementation of the analysis-synthesis 
filter bank, shown in Fig. 26, involves z-(v-‘)Y’(z~‘). 
Since the implementation of each section (Fig. 19) in Y(z) 
requires M - 1 delays, the implementation of each section 

Fig. 27. The building blocks involved in zYCN-‘).@(zC1). 

in z-(~-‘)@~(z-‘), shown in Fig. 27, requires only one 
delay. Thus, the analysis-synthesis bank of Fig. 26 is 
minimal in terms of delays. Notice that, because of‘inher- 
ent automatic scaling of internal signals, our structures are 
not minimal in terms of the number of multipliers when 
compared to direct-form structures. 

IX. ‘AN APPLICATION IN THE DESIGN OF QMF 
(MULTIRATE) FILTER BANKS 

An important class of filter banks used in the subband 
coding of signals is the quadrature-mirror-filter (QMF) 

‘banks [23], [30]. These find application in cases where a 
signal should be split into several frequency bands and 
undersampled before coding and transmission, and then 
suitably recombined at the receiver. A number of versions 
of such QMF banks are known, some based on IIR filters 
and some on FIR filters. 

A typical filter bank of this type is shown in Fig. 28, for 
which detailed analyses can be found in [23] and [30]. 
Here, H,(z) and H,(z) are, respectively, low-pass and 
high-pass functions, designed to meet certain attenuation 
requirements in their respective stopbands. In general, one 
can always find combinations of Ho(z), Hi(z), G,(z),-and 
G,(z) such that X(z,) is free from aliasing errors. With 
such combinations, X(z) is then related to X(z) by means 
of a transfer function 

2(z) = T(z)X(z). (116) 

Thus, the reconstructed signal a(n) is a distorted version 
of x(n). If T(z) is an IIR allpass function, then we have 
only phase distortion, while if T(z) is a linear-phase FIR 
function, we have only amplitude distortion. 

Smith and Barnwell have shown [30] that, if H,(z) and 
H,(z) are restricted to be FIR, but not constrained to be 
linear-phase FIR, then the circuit of Fig. 28 can be suit- 
ably designed such that, not only is the aliasing error 
perfectly canceled, but, in addition, T(z) becomes a simple 
delay. In other words, a(n) is an exact replica of x(n) 
with no amplitude or phase distortion, except for a fixed 
amount of time delay. The precise choice of the relation 
between the transfer functions Ho(z), Hi(z), G,(z), and 
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0.. w 4 

Analysis-bank Synthesis-bank 

Fig. 28. The quadrature-mirror filter bank 

G,(z) that meets these objectives is given by 

q(z) = z+-wo( - z-l), G,(z) = z-(~-~%&,(z-~) 

G,(z) = K,(- 4 017) 

which leads to perfect cancellation of the aliasing term and 
hence 

-[]H0(ej”)]2+ ]H,(-e~“)]2]X(e~w). (118a) 

Or, in terms of H,(z) 

(118b) 

It is possible to design nonlinear-phase FIR filters H,(z) 
and H,(z) such that 

H,(z) = Z-(N-lwo( - z-l) 019) 

and 

IHo(ei”)12 + IHl(e’o)12 =l 020) 

as shown in [30]. Such designs, therefore, lead to perfect 
reproduction of the signal x(n) in Fig. 28, except for an 
overall delay to ensure causality of building blocks. It 
should be noticed that, unlike the structure of Fig. 28, the 
original circuit in [30] contains an additional delay oper- 
ator and an additional advance operator. A causal version 
of this circuit, along with appropriate redefinitions of 
H,(z), G,(z), and G,(z) leads to Fig. 28. The choice in 
(117) is merely a causal version of the method outlined in 

[301. 

where H,(z) is of order N - 1, and has real coefficients. 
Moreover, in view of (121) F,(z) satisfies 

F,(z)+FO(-z) =constant. (123b) 

The constant in (123b) can be made equal to unity trivially 
by scaling. Thus, if H,(z) is defined as in (117), then in 
view of (123), eq. (120) automatically holds. Specifically, 
for the purposes of our numerical example, we take H,(z) 
to be the minimum-phase spectral factor of (123a) and 
then define 

H,(z) = z-‘~H,( - z-‘),G,(z) = z-~~H,,(z-‘) 

Now in view of (120), the analysis filter bank in Fig. 28 
can be most conveniently implemented in the form of the 
cascaded lossless FIR lattice structure of Fig. 3. A numeri- 
cal example is presented next. 

G,(z) = f&t - z) 
so that, referring to Fig. 28 

(124) 

R(Z) = ;z-‘9.X(z). 025) 

Design Example 3 

The transfer functions H,,(z) and H,(z) satisfying (119) 
and (120) simultaneously are obtained by following the 
procedure outlined in [30]. Specifically, for our numerical 
example, we first invoke the McClellan-Parks algorithm 
[27] to obtain a zero-phase low-pass FIR transfer function 
R e( z) of order 2( N - l), and having specifications that are 
symmetric with respect to 1r/2: passband edge wp = 0.457, 
stopband edge ws = 0.657, and order 2(N - 1) = 38. The 
symmetry of the response of R,(z) around o = 1~/2 ensures 

TABLE II 
LATTICE COEFFICIENTSAND ~,(~)FORE~AMPLE 3 

(Values shown arc unquantized) 

m k 
m 

i 
m am ho(m) 

0 
1 
2 

3 

4 

5 
6 
7 

0 

9 
10 
11 
12 
13 
14 
15 
16 
17 
16 
19 

-0.707097 0.707117 

-0.340853 0.937177 
l.oocooo 0. 
0.753874 0.657019 
l.CbXCO 0. 

-0.096040 0.443950 
1.000000 0. 

0.308638 0.951160 
-l.OcxJxlO 
-0.975950 
-1.OcocOO 
0.986218 

-1.000000 
-0.994523 

1.000000 
0.997696 
l.OOCiMO 

'0.999148 
l.ocoooO 

-0.027714 

0. 
0.217959 
0. 
0.153050 
0. 

O.lo4517 

0. 
0.067843 

0. 
o.o4i279 

0. 
0.999616 

0.99997 
-0.37224 

0. 
0.87152 

0. 
-0.49546 

0. 
0.32448 

0. 

-0.22333 

0. 
0.15487 

0. 

-0.10509 
0. 
0.06800 
0. 

-0.04131 

0. 
-0.02772 

0.15149 
0.40694 
0.46409 
0.16371 

-0.15944 

-0.13227 

0.07705 

0.09205 

-0.04738 

-0.06209 

0.03285 

0.04060 

-0.02403 

-0.02443 
0.01746 

0.01314 

-0.01215 

-0.00670 

0.01131 
-0.c0420 

that the following condition holds4 

R,(z) + R,( - z) = constant. (121) 

Next, a zero-phase low-pass FIR transfer function F,(z) is 
contructed from R,(z) such that Fo(eJw) is nonnegative 

F,(z) = R,(z)+ 6. (12-4 

F,(z) can therefore be spectral-factorized 

F,(z) = fmfcJ(z-l) (123a) 

The FIR allpass vector H,(z) = [H,(z) z-19H,,- z-l)]’ 
is now implemented as a cascaded lossless lattice, as in 
Fig. 3. This, then, completes the “analysis bank” design in 
Fig. 28. The “synthesis bank” vector H,(z) in Fig. 28 is 

f&(z) = [‘z!:r”] = z-~~H,(z-‘). (126) 

4Notice that, if N - 1 is even then, because of (121), the coefficient of 
R 
a& 

(z) corresponding to z -cN-‘) is zero. Hence, N - 1 can always be 
t en to be odd, wit out loss of generality. 
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Fig. 29. Example 3. Responses of the lattice-simulated QMF analysis 
filters. 

H,(L) 

Fig. 30. A direct-form implementation of the analysis filters H,(z) and 
HI(z) with 20 multipliers. 

TABLE III 
THE QUANTIZED, DENORMALIZED LATTICE COEFFICIENTS, 

FOR EXAMPLE 3 

m 

1 

3 

5 

7 

9 

11 

13 

16 

17 

10 

-0.37225 

0.87166 

-0.49510 

0.32475 

-0.22327 

0.15487 

-0.10510 

0.08800 

-0.04131 

-0.02772 

Quantised 

am 

-0.3710937 

0.8710937 

-0.4956054 

0.3231250 

-0.2226562 

0.1642968 

-0.1054667 

0.0633594 

-0.O410156 
, 

-0.0273320 

Power-of-Two 
representation 

-2-l + 2-5 + 2-n 

I- 2-S - 2-S 

-2-I + 2-8 + 2-11 

2-2 + 2-4 + 2-6 

-2-2 + 2-S _ 2-S 

24+2-s-2-9 

-2-a + 2-a + 2-a 

2-'+2-'-2-O 

-2-s - 2-l _ 2-o 

-2-5 + 2-8 _ z-11 

-10.000 

bz 

z 
-20.000 

NORfltlLIZEO FREQUENCY 

(4 

PASSBAND MAGNlT"DE \ 

-50.000 L 
0. 0.100 0.200 0.300 0.400 0.500 

NORl!ALIZEO FREQUENCY 

(b) 

0. 
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g 
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-30.000 -30.000 % 

z 

-50.000 -50.000 - 
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(4 

Fig. 31. (a) Example 3. Responses with 3-bit quantization. (b) Example 
3. Res onses with 2-bit quantization. (c) Example 3. Response of the 
2-bit direct form structure. 
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Fig. 32. Example 9.1. Response of the direct-form structure. The pass- 
band response is close to ideal if 5 bits are used per coefficient. The 
stopband response is satisfactory even with 3 bits. 

TABLEIV 
PERFORMANCESUMMARYFOREXAMPLE 3 

DenormaIised 20 3 60 10 
Lattice 

It can be shown that, with H,(z) and H,(z) related as in 
(119) and (120), the lattice coefficients in Fig. 3 satisfy the 
property 

ki=Rz=1/2, kz,=l, m+O. (127) 

Thus, the even-numbered lattice sections are multiplierless. 
In view of this, and in view of the fact that the lattice 
structure automatically satisfies (120), we feel that these 
structures are particularly well suited for this particular 
subclass of QMF banks. The odd-numbered lattice sec- 
tions can be implemented in denormalized form (Fig. 4) if 
it is necessary to minimize multipliers. Table II shows the 
lattice coefficients, and the denormalized multiplier-coeffi- 
cient (Y,. The table also includes the direct-form coeffi- 
cients of the low-pass transfer function H,(z) (which is 
QN-i(z) according to Fig. 3 notation). Fig. 29 shows the 
magnitude responses of H,(z) and Hi(z). 

The total number of multipliers in the denormalized 
lattice is equal to 20, for the entire analysis bank. For the 
direct-form, a structure with 20 multipliers (19, if an 
overall scale factor is ignored) for the analysis bank can be 
obtained as in Fig. 30, because of (119). 

The multipliers (Y,,, in the denormalized lattice, quan- 
tized to a sum of three powers of two, are shown in Table 
III, along with the nonzero powers of two in the binary 
representations. Fig. 31(a) shows the magnitude response 
of H,(z) with multipliers quantized to 3 bits. The pass- 
band details for 3-bit quantization are also shown here. 
Figs. 31(b) and (c) show the lattice structure and the 
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direct-form responses, with 2 bits per multiplier. The 
quantized lattice has much superior response than the 
direct;form and essentially resembles the ideal, unquan- 
tized ‘response. 

In order to obtain a comparison measure based on 
bit-multiplier products, the direct form was simulated at 
higher precisions. The 5-bit direct-form was found to have 
a performance comparable to the 3-bit lattice (Fig. 32). 
Table IV summarizes the results, including bit-multiplier 
products. 

X. CONCLUDING REMARKS 

In this paper, a procedure has been outlined for the 
synthesis of a cascaded-lattice structure that can realize an 
arbitrary M-component FIR allpass transfer function 
G,-,(Z). The structure is in the form of a nonrecursive 
cascade of lossless, nonrecursive building blocks. Each 
building block is either a planar rotator or a succession of 
planar rotators. The structures are automatically internally 
scaled in an L, sense. These structures are passive and 
find applications in low-sensitivity FIR filter implementa- 
tions and in the implementation of filter banks, including 
quadrature mirror filter implementations for multirate sig- 
nal processing. Some of these applications were demon- 
strated in the paper by numerical design examples. 
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