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ABSTRACT
We propose a method for classifying Wi-Fi enabled mobile
handheld devices (smartphones) and non-handheld devices
(laptops) in a completely passive way, that is resorting nei-
ther to traffic probes on network edge devices nor to deep
packet inspection techniques to read application layer infor-
mation. Instead, classification is performed starting from
probe requests Wi-Fi frames, which can be sniffed with in-
expensive commercial hardware. We extract distinctive fea-
tures from probe request frames (how many probe requests
are transmitted by each device, how frequently, etc.) and
take a machine learning approach, training four different
classifiers to recognize the two types of devices. We com-
pare the performance of the different classifiers and identify
a solution based on a Random Decision Forest that cor-
rectly classify devices 95% of the times. The classification
method is then used as a pre-processing stage to analyze
network traffic traces from the wireless network of a uni-
versity building, with interesting considerations on the way
different types of devices uses the network (amount of data
exchanged, duration of connections, etc.). The proposed
methodology finds application in many scenarios related to
Wi-Fi network management/optimization and Wi-Fi based
services.

CCS Concepts
•Networks → Network measurement; Network moni-
toring;

Keywords
Device classification; probe requests analysis; traffic analysis

1. INTRODUCTION
Network traffic from wireless devices will exceed traffic

from wired devices by 2019, accounting for 66% of the total
IP traffic [1]. That is almost double with respect to 2013,
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when non-PC devices generated 33 percent of the total IP
traffic.

For this reason, in the last few years there has been a
constantly increasing attention towards the analysis and the
profiling of traffic generated by WiFi-enabled devices, with
particular focus on the so called Bring Your Own Devices
(BYOD), that is smartphones, laptops and tablets more and
more frequently brought by people on their workplaces or
study places. Such a class of devices is substantially differ-
ent compared to traditional wired PCs for what concerns
the users behavior and the traffic pattern they produce. In-
deed, BYODs join and leave the network frequently and
their shape and size makes it possible to use them almost
everywhere. In addition, the vast range of networked ap-
plications running on top of such devices (instant messag-
ing, social networking, video streaming, online videogames,
etc...) makes them a concern for a series of reasons, includ-
ing network management and security [7].

At the same time, WiFi-enabled BYOD devices can be
separated in two different classes: mobile handheld devices
(MHD), composed of smartphones and tablets, and non hand-
held devices (NHD) or laptops. The two classes differ in a
series of physical and technical features (size, weight, bat-
tery capacity, type of wireless connectivity, operating sys-
tem, etc.) and are generally used for different purposes, with
direct implication on the network traffic pattern they pro-
duce. In this context, the knowledge (or prediction) of what
type of traffic (and devices) is actually using the network can
be leveraged to optimize the network configuration and/or
implement and support several services (e.g., management
of wide WiFi networks, smart content caching approaches,
etc.) [11, 8, 3, 15, 9, 10, 19, 18].

Clearly, any analysis on the traffic differences between
MHD and NHD builds on the capability to classify traffic
flows as belonging to MHD or NHD devices. The available
work in the field can be broadly grouped in two classes:
(i) approaches that exploit only the Medium Access Con-
trol (MAC) addresses contained in WiFi frames generated
by the devices, (ii) approaches that resort to some type of
active traffic/packet inspection tool available in the refer-
ence network (e.g., direct access to DHCP logs, inspection
of the User-Agent field of HTTP headers, etc.). Both classes
though have drawbacks. Namely, the approaches based on
MAC addresses perform device classification just by looking
at the vendor information contained in the Organization-
ally Unique Identifiers (OUIs) of the MAC address; how-
ever, since some of the most popular vendors (e.g. Ap-
ple, Samsung) produce both handheld and non-handheld



devices, many devices are excluded from the classification
due to the impossibility to assign them to a specific class
only by looking at their vendor.

On the other hand, the approaches based on active traf-
fic/packet inspection do have two major drawbacks: deploy-
ing traffic/packet inspection probes in the network might
not be always possible, and, even when this is possible, the
increase in encrypted traffic makes it hard to extract use-
ful information out of such tools; it’s a matter of fact that
web giants (Google, Amazon, Facebook, etc.) protect the
traffic through their servers with HTTPS: as an example, a
recent transparency report from Google [2] stated that 77%
of the requests to its servers used encrypted connections,
with such percentage destined to increase dramatically in
the next few years. Such trend imposes tight limits on the
use of those methods based on the inspection of application
layer information such as the User-Agent header field, which
is encrypted in HTTPS and thus hard to analyze.

For these reasons, we propose here a less invasive but still
effective way to perform device classification. Our proposal
is entirely passive, in that it does resort neither to traffic
probes on network edge devices nor to deep packet inspec-
tion techniques to read out application layer information.
Instead, we claim that device classification can be performed
by collecting (and parsing) only probe requests Wi-Fi man-
agement frames. Such frames are transmitted in-the-clear
by any Wi-Fi enabled device to requests information from
in-range access points, can be captured with almost any
low-cost commercially available Wi-Fi interface and carry
enough information to perform device classification accu-
rately. Our proposed classification framework first labels
each device with a set of features extracted from the probe
request frames the device itself is generating; the reference
set of feature capture information on the temporal process of
probe request transmission (how frequently probe requests
are transmitted) and the power levels used in the probe re-
quest transmission. Then, a supervised learning approach is
used to train different classifiers able to predict the type of
the transmitting device just by looking at its corresponding
features.

The rest of this paper is structured in the following way:
Section 2 and Section 3 describe how we collected the data
used to train the classifiers and which are the features ex-
tracted from the captured probe request frames. Section
4 describes the supervised classification approaches and re-
ports on their performance evaluation. A selected classifica-
tion method is then used to perform the analysis of Wi-Fi
network traffic in a university campus: results of such an
analysis are reported in Section 5. Section 6 summarizes
recent works related to MHD / NHD traffic analysis, focus-
ing in particular on the device classification methods used,
as well as works related to probe request frames analysis.
Finally, Section 7 concludes the paper.

2. DATA COLLECTION
Our dataset consists of network data traces lasting sev-

eral hours and containing only sniffed probe request frames
collected during particular university classes (“tutorials” or
“hands-on” lectures) where students have their own laptops
and smartphones with them. At the beginning of the lecture,
students are asked to (i) turn on the Wi-Fi interfaces of their
devices and (ii) compile an anonymous form and insert the
MAC addresses of their smartphones and laptops to serve as

ground truth for our classification methods. In addition to
those entries whose MAC addresses are labeled by students
as belonging to either the “laptop” or “mobile” class, we also
add to the database all those probe request frames from de-
vice manufactured by a laptop-only or mobile-only producer.
The manufacturer is identified from the first 3 octets of the
MAC address (the so-called Organizationally Unique Iden-
tifier - OUI). In detail, probe request frames from Intel and
Liteon devices are automatically marked as coming from lap-
tops, while probe requests from Huawei, Nokia, Sony Mobile,
Xiaomi and onePlus are labeled as“mobile”. The data is col-
lected using a standard laptop running Linux and equipped
with a Wi-Fi card set in monitor mode on 802.11 channel 1.
We used tshark (the terminal version of WireShark) to cap-
ture only probe request frames, which are stored in a local
MySQL database for further analysis. Each database en-
try thus contains the following fields: source MAC address,
OUI, timestamp, probe request sequence number, received
signal strength (RSS) and the Service Set Identifier (SSID)
of the probe request. Note that the latter can be either
“Broadcast” or a string containing the SSID of a Wi-Fi net-
work known to the device. In total, our database consists of
more than 2×105 different probe request entries, spanning
10 different hours over 5 days and belonging to 279 different
devices of known type (groundtruth). For simplicity, let Ns

be the number of entries in the database having s as source
MAC address.

3. FEATURE EXTRACTION
For each MAC address contained in the database the fol-

lowing features are extracted:

• Inter-Probe Period (IPP): Many works related to probe
requests analysis have highlighted that different de-
vices transmit probe requests with different temporal
frequencies. Moreover, mobile devices vary a lot their
probing pattern depending on their status. As an ex-
ample, the probing frequency is generally decreased
when the screen is turned off, and each time a user
presses a button or unblock the phone a new probe
request is transmitted. We attempt to capture those
behaviours with two specific features. In particular, all
timestamps ti belonging to a single MAC address are
extracted and sorted in chronological increasing order
in an array T = [t1, t2, . . . , tNs ]. Let pi = ti+1 − ti
be the i-th inter-probe period. We define the average
inter-probe period as:

µp,s =
1

Ns − 1

Ns−1∑
i=1

pi. (1)

Similarly, we define the standard deviation of the inter-
probe period as:

σp,s =

√√√√ 1

Ns − 1

Ns−1∑
i=1

(pi − µp,s)2. (2)

Figure 1(a) shows the Cumulative Distribution Func-
tion of the average inter-probe period for laptops and
mobile devices. We can observe that laptop devices
probe more frequently than smartphones: 50% of all
laptops have an inter-probe period of less than 60 sec-
onds, and 95% of them have an IPP of less than 1000
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Figure 1: (a) CDF of the inter-probe period for laptops and mobile devices; (b) CDF of the standard deviation
of the RSS for laptops and mobile devices; (c) CDF of the inter-probe period for mobile devices of different
vendors (best viewed in color)

seconds. The IPP for the same percentages of smart-
phones are considerably higher, 120 seconds and 2300
seconds, respectively.

• Received Signal Strength (RSS): The received signal
strength measures the power of a probe request as seen
from the receiver (sniffer) and depends on the distance
between the transmitter and the receiver as well as
on other effects characterizing the radio environment
(presence of obstacles, mutual antenna orientations,
etc.). Similarly to the IPP, we capture the RSS using
two features, namely:

µr,s =
1

Ns − 1

Ns−1∑
i=1

ri, (3)

and

σr,s =

√√√√ 1

Ns − 1

Ns−1∑
i=1

(ri − µr,s)2 (4)

that is, the average and standard deviation of the RSS
of the captured probe request frames. The reason be-
hind the use of such two features is the following: we
posit that handheld devices exhibit a higher variance
in the RSS compared to non-handheld devices. Indeed,
smartphones and tablets are more frequently handled
and moved than laptops, creating fluctuations in the
RSS measurements captured by σr,s. Such difference is
clearly illustrated in Figure 1(b): as one can see, 95%
of the laptops in our dataset have standard deviation
of the RSS lower than 5 dBm, while for mobile devices
this value is almost double.

• Coefficients of variation: For both IPP and RSS fea-
tures we also compute the coefficients of variation

cp,s =
σp,s

µp,s
, (5)

and

cr,s =
σr,s

µr,s
. (6)

Such coefficients are useful to provide a dimension-
less feature and to compare the degree of variation of
measurements from different devices regardless of their
mean value.

• Number of probe requests with broadcast/known SSID:
For each source MAC address s we store the number
of probe request frames with a“Broadcast”destination
SSID Nb,s and the number of probe request frames
with a textual SSID (that is, the SSID of a Wi-Fi net-
work to which the device associated at least once)Nk,s.
Note that Ns = Nb,s +Nk,s. We also compute the pro-
portion of broadcast and known probe request frames,

that is
Nb,s

Ns
and

Nk,s

Ns
. Finally, we also store the num-

ber of unique SSIDs contained in the probe request
frames, that is Nu,s.

• Device manufacturer: Several works in the past have
exploited the vendor information contained in the MAC
address to infer the class of a device ([9, 10]). Given
that some vendors produce only mobile or laptop de-
vices, it is reasonable to include the vendor as a fea-
ture for classification. We observe that the set of OUIs
contained in the database is limited to V different ven-
dors. At the same time, we observe that devices from
different vendors have very different probing behav-
iors. As an example, Figure 1(c) illustrates the CDF
of the inter-probe period for 5 different vendors of mo-
bile devices, with Huawei and Sony devices having the
smallest inter-probe period while Apple devices have
the largest one. To capture such differences, we create
V − 1 dummy binary variables d1,s, d2,s, . . . , dV −1,s,
such that:

di,s =

{
1 if s is from the i-th vendor

0 otherwise
(7)

Note that the V-th vendor is identified by having all
di,s equal to zero.

In summary, each device in the database is represented
with the following feature feature vector:

f = {µp, σp, µr, σr, cp, cr, Nb, Nk,
Nb

N
,
Nk

N
, d1, . . . , dV −1},

(8)
where we have suppressed the subscript s for simplicity. Fi-
nally, we label each entry in the dataset with its ground truth
class“Laptop”or“Mobile”. After the feature extraction step,
our dataset consists of 279 labeled entries belonging to 150
laptops and 129 mobile devices.



4. CLASSIFICATION ALGORITHMS
We aim at solving the following problem: given a feature

vector f belonging to a device of unknown type T (and com-
puted through processing of sniffed probe request frames as
explained in Section 3), predict wether the device is a lap-
top or a mobile device. We solve such a problem taking a
supervised learning approach: we use different classifier al-
gorithms that are trained with a set of labeled observations
and are then evaluated on a set of completely new obser-
vations. In particular, we test the following classification
algorithms:

• Näıve Bayes (NB): this simple algorithm assigns to the
feature vector f a probability value P (T |f), computed
using the Bayes Theorem and assuming that features
are independent, that is:

P (T |f) =
P (f |T )P (T )

P (f)
= P (T )

∏
i

P (fi|T ), (9)

where fi denotes the i-th component of f and the de-
nominator P (f) can be ignored as it is the same for all
classes. In the training phase, the Näıve Bayes classi-
fier learns P (fi|T ) by fitting probability distributions
to each individual feature: for real valued features,
normal (Gaussian) distributions are used, while for bi-
nary features (e.g. d1 to dV −1) binomial distributions
are used to model the data. In the test phase, given a
newly observed feature vector f , the NB classifier re-
turns the most probable class, that is the class T for
which P (T |f) is maximized.

• Support Vector Machine (SVM): SVM classifiers are
very popular supervised algorithms that construct a
hyperplane in the subspace of features so that obser-
vation belonging to different classes are separated by
a margin as wide as possible. In addition, when the
different classes are not linearly separable, SVMs al-
lows to perform non-linear classification efficiently by
first transforming the feature space with a non-linear
kernel function, and then constructing a separating hy-
perplane in the transformed space.

• Decision tree (DT): a decision tree is a classification al-
gorithm that returns the predicted class by iteratively
making decisions on the value of the input features.
Decisions are learned with a training process, start-
ing with the most discriminative feature at the top
(root) of tree and iteratively aggregating decisions in
branches, finally arriving to the tree leaves (predicted
classes). As a result, the learned tree can be more eas-
ily interpreted than a SVM classifier (e.g., it can be
displayed graphically). As a drawback, decision trees
generally do not have the same level of predictive ac-
curacy as SVM, due to their tendency to overfit the
training data.

• Random Forest (RF): this ensemble algorithm is gen-
erally used to prevent overfitting when using decision
trees, and has been shown to perform very well in sev-
eral machine learning tasks. A random forest classifier
constructs several decision trees at training time, and
outputs as a prediction the mode of the classes pre-
dicted by the individual trees (majority voting). The

Table 1: Classification accuracy using only dummy
features

Algorithm Accuracy
Naive Bayes 0.8029
Support Vector Machine 0.7957
Decision Tree 0.778
Random Forest 0.8129

individual trees are obtained selecting each time a ran-
dom training sample in order to decrease model vari-
ance (i.e. overfitting) and a random subset of the input
features to produce weakly correlated trees.

The performance of such classifiers are obtained resort-
ing to k-fold cross validation: first, the original set of 279
observations is divided in k complementary subsets; then,
k − 1 subsets are used for training each classifier, while one
is used for testing. The process is repeated k times, aver-
aging the results. Here, we used k = 5. The performance
metric used throughout the tests is the classification accu-
racy, that is the fraction of correctly classified observations
over the total number of tests.

We test the performance of the different classifiers in three
different scenarios:

• Quantitative features only (QF): we consider only the
numerical features extracted from the database of probe
requests, that is {µp, σp, µr, σr, cp, cr, Nb, Nk,

Nb
N
, Nk

N
},

for training and testing the classifiers. This scenario
reflects the case in which the OUI information of a
device cannot be read. This can happen if the MAC
addresses of the devices are encrypted through ran-
domization, a solution that several vendors are grad-
ually implementing in the operating systems of their
devices (e.g., iOS8, Android 6.0).

• Dummy features only (DF): conversely, we consider
only the dummy features obtained with the OUI in-
formation available from the MAC address to perform
classification. This approach applies machine learning
techniques to the same information available to other
approaches available in the literature [9, 10].

• All features (AF): finally, in this scenario, we train and
test the classifiers using both quantitative and quali-
tative features.

Table 1 shows the classification accuracy for the dummy
features scenario. As one can see, the different classifiers
have similar values of accuracy, around 80%. Note, how-
ever, that this value strongly depends on the distribution of
device vendors in the dataset. As an example, if the majority
of the devices in the dataset is from a vendor that produces
both handheld and non handheld devices (e.g., Apple, Sam-
sung), the accuracy of such method is expected to decrease
dramatically due to the impossibility to link a vendor with
a particular device class.

For the quantitative features and the all features scenar-
ios, the tests are performed considering only those samples
belonging to devices whose features are extracted starting
from at least Ns probe request frames, each time increas-
ing the value of Ns. Such value as a twofold effect on the
performance of the classifiers: on one hand, increasing Ns
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Figure 2: (a) Classification accuracy when using only quantitative features; (b) Classification accuracy when
using both quantitative and dummy features. (c) Number of training samples at different values of Ns. (best
viewed in color)

allows to train the classifiers with more “stable” features, as
those features involving mean and standard deviation oper-
ation are computed with an increasing set of samples. On
the other hand, increasing Ns makes the number of sam-
ples available for training the classifiers decrease, as shown
in Figure 2(c). Note also that Ns is related to the amount
of time one should spend to capture probe request frames,
which increases with Ns.

Figure 2(a) shows the classification accuracy of the differ-
ent classifiers when using only quantitative features. As one
can see, the accuracy of all classifier tends to increase for
small values of Ns and decreases for high values of Ns. The
first effect is due to the increasing stability in the computed
features, while the latter effect is due to the decreasing num-
ber of training observations, as explained above. Overall,
the Random Forest classifier exhibits the best performance,
with a peak accuracy value of 83% for Ns = 15. The perfor-
mance of the different classifiers in the scenario where both
quantitative and qualitative features are used is illustrated
in Figure 2(b). First, it is possible to appreciate the great
performance increase given by using both kind of features.
In this case, all methods but the Naive Bayes classifier ex-
hibit similar performance, with the Random Forest classifier
correctly classifying more than 95% of the test samples. In
this case, the positive effect of increasing Ns seems shadowed
by the use of dummy features. On the contrary, increasing
Ns too much hurts the performance of all classifiers, due to
the decrease in the number of training samples.

5. TRAFFIC ANALYSIS
This section shows the results of the analysis of network

data traces extracted from the wireless network of a uni-
versity campus building, performed after applying the pro-
posed classification method to identify which traces belong
to MHD or NHD. The wireless network under study is com-
posed of 28 different wireless access points (AP) located on
four different floors of the building. The access points run
the AirWave Management Platform system, which allows
to observe every device connected to the wireless network.
For each access point, the uplink/downlink bandwidth us-
age and the number of connected clients are available with
a sampling period of 5 minutes. Additionally, for each con-
nected client, the following information are available: MAC
address of the device, timestamp of the association with the

AP, duration of the session (time elapsed from the associa-
tion with the AP), average and variance of the bandwidth
usage during the session [kbps] as well as average and vari-
ance of the signal quality during the session [dB]. We focus
our analysis on a period of two weeks, from the 20th of May,
2016 to the 3rd of June, 2016. A single Raspberry PI 3
coupled with a Netgear WNA1100 Wi-Fi dongle in monitor
mode is used to capture probe request frames. Such device
is placed in an open space of the building that students use
to study, work on their projects or simply pass time be-
tween two lectures. Such a place is therefore characterized
with a good mix of MHD and NHD devices, whose emitted
probe request frames are captured by the Raspberry PI. We
analyze the frames with our classification algorithm (using
the Random Forest classifier fed with both quantitative and
qualitative features), labeling each observed MAC address as
“Laptop” or “Mobile”. Note that, differently from what pro-
posed in Section 4, no groundtruth is available to assess the
accuracy of our classification. We restrict the analysis of the
data traces from the AirWave Management Platform only
to those devices seen and classified by our method. Over
the two weeks object of our analysis, a total of 2519 unique
devices were observed, generating a total of 10287 different
sessions. Figure 3 shows the distribution of different vendors
in our dataset: note that Apple and Samsung, vendors who
produce both laptops and smartphones, together sum up to
almost 40% of the total devices seen. This confirms that ap-
proaches only based on the OUI for device classification may
exclude a lot of data from the analysis. Table 2 reports the
result of our classification on the available data. As one can
see, over 75% percent of the observed devices and sessions
are classified as non handheld devices. Considering that the
university wireless network bandwidth is limited to 2 Mbps
per user, the results in Table 2 can be due to a growing
tendency of mobile users to use their cellular connections
(e.g., LTE, 3G) instead of Wi-Fi in the university campus
to experience better quality of service.

5.1 Session start time
First, we look at the distribution of starting time of ses-

sions. We identify the minute of the day (from 1 to 1440)
at which each connection starts and plot in Figure 4(a) its
probability distribution for MHD and NHD device. Several
observations can be made from the inspection of such dis-



Figure 3: Distribution of the different device ven-
dors (best viewed in color)

tribution:

1. The global trend follows the human daily pattern, with
very few sessions started during night. Two sharp
peaks are visible in the morning and in the afternoon,
divided by a valley corresponding to the lunch break
at minute 800 (1.30 PM).

2. From minutes 1 to 180 and from 1200 to 1440, corre-
sponding to the period 8 PM - 3 AM, the probability
of a MHD starting a session is higher than that of a
NHD. This can be explained taking into account that
online activities at the end of a working day (chatting,
email checking) are carried out more frequently with a
MHD.

3. Conversely, during the day, there is no clear difference
between MHD and NHD devices: in the morning (8:30
- 10:30 AM) we observe a higher probability for MHD
device, while in the afternoon NHD sessions are more
frequent.

5.2 Network usage
Then, we analyze how MHD and NHD devices use the net-

work. Figure 4(b) shows the cumulative distribution func-
tion of the network usage (total volume of data exchanged
with the AP divided by the duration of the session) in kbps
for the two different class of devices, together with the CDF
obtained considering all devices together. As one can see
there is a dramatic difference between MHD and NHD usage:
handheld devices have an average usage of about 50 kbps,
while non-handheld devices have an average usage which is
more than 4 times higher (203.9 kbps). Also, 95% of MHD
have an usage below 200 kbps, while for NHD this value

Table 2: Classification results on the period of two
weeks

Observed Devices MHD NHD
2519 658 (26.12%) 1861 (73.88%)
Observed Sessions MHD NHD
10287 2429 (23.61%) 7858 (76.39%)

raises to 1 Mbps. This can be explained considering the dif-
ferent applications typically run on MHD (e.g., email, mes-
saging services, quick browsing, etc...) compared to NHD
(file download, heavy browsing, etc.). Indirectly, such a re-
sult confirms the goodness of our classification method in
segmenting MHD and NHD devices.

5.3 Session duration
Finally, we also look at the distribution of the duration of

the sessions in Figure 4(c). Differently from previous studies
([9, 10]), in which the duration of sessions of MHD was ob-
served as notably lower than NHD, here we do not find such
a great difference. The average session duration for MHD
is 70.4 minutes, while for NHD is 86.5 minutes. Coupling
this result with what explained previously in Sections 5.1
and 5.2, it seems that both MHD and NHD users tend to
remain connected to the network for a long period of time
and their behaviour differ just in the amount of data trans-
ferred over the network and partially in when they start
connections with the network.

6. RELATED WORK
To the best of our knowledge, the first work analyzing dif-

ferences in the traffic behavior of MHD and NHD devices
is the one from Maier et al. [11], where network data from
residential DSL lines spanning a period of 11 months is an-
alyzed. To identify which DSL lines hosted MHD and hence
to identify the corresponding traffic traces, the authors rely
on the user-agent strings contained in HTTP headers, which
are generally precise indicators of a device and its operating
system. For non-HTTP traffic traces, the authors take ad-
vantage of the IP TTL field, which turns out to be different
in MHD operating systems compared to the most commonly
used PC OSs. As a result of such an analysis, the authors
show that MHD traffic is dominated by multimedia content
and downloads of mobile applications, and that MHD HTTP
objects are larger on average than NHD ones.

In [8] network traffic traces from a campus wireless net-
works are analyzed by examining their content and flow
properties (transport and application protocols used, flow
length and durations, etc..). Handheld devices are filtered
looking at HTTP user-agents as primary method, followed
by a confirmation step using the Organizationally Unique
Identifiers (OUIs) contained in the MAC addresses: 14% of
the devices remain uncategorized and are excluded from the
analysis. The key findings of such an analysis are that (i) the
majority of handheld traffic is HTTP, (ii) the top content
type for MHD is video and (iii) MHD tend to have smaller
TCP flows and narrower range of flow durations, compared
to NHD. A similar study with comparable results is per-
formed by Zhu et al. in [19], where tcpdump traces from the
Dalian university of technology are analyzed. Once again,
device classification is performed by relying on the User-
Agent field in HTTP headers.

Chen et al. in [3] analyze 3 days of WiFi network data
collected by a monitor located at a gateway router fo the
network. Again, MHD identification is performed by looking
at keywords in the HTTP user-agent. The authors report
a small increase in the percentage of HTTPS flows (4.3%),
which are impossible to classify as belonging to MHD or
NHD. The main findings are that MHD have longer local
RTTs, and that the number of concurrent flows has negative
effect on performance (and this effect is more significant on
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Figure 4: (a) Probability distribution of the starting minute of Wi-Fi sessions; (b) Cumulative distribution
function of the average bandwidth usage for MHD and NHD devices; (c) Cumulative density function of the
average session duration for MHD and NHD devices (best viewed in color)

MHD than on NHD).
Papapanagiotou et al. in [15] study the web browsing be-

haviour of MHD and NHD devices on a 3 weeks long full-
packet trace in a wireless enterprise environment. Classifi-
cation is performed analyzing DHCP request header fields
(Host-name, Vendor-name) and the OUIs, allowing to clas-
sify 97% of the devices (although no ground truth is pro-
vided [14]). The main finding of the analysis is that (i)
NHD devices have more intelligent browser caching capabil-
ities and (ii) a 10 MB browser cache in smatphones would
be enough to provide 10% - 20% bandwidth savings.

In [9] and [10] Kumar et al. analyze wireless association
traces connected at hte University of Florida. Classification
of MHD and NHD is done only via inspection of the OUI,
since no other information is available. Since some man-
ufacturers (e.g. Apple and Samsung) produce both MHD
and NHD, the authors conduct a user survey where users
of smartphones were asked to give the first 3 octets of their
MAC address (i.e., the OUI). The authors performed then
classification assuming that a manufacturer does not use the
same MAC address range for both smart-phones and lap-
tops. The analysis include several spatio-temporal features
(average session duration, number of session per days, mo-
bility etc.), and shows dramatic differences between MHD
and NHD behaviors.

Finally, Wei et al. in [18] propose Brofiler, an approach
for studying how MHD behaves along different dimensions
(protocol and control plane, data plane, temporal behav-
ior). MHD and NHD are classified with the method pro-
posed in [14] (i.e., looking at DHCP logs). Interestingly,
the authors find that 24% of MHD have 50% of their traf-
fic encrypted. This confirms the increasing trend in the use
of HTTPS, with serious implication for those classification
methods that use the HTTP User-Agent field.

In the last few years, many works have focused on the
analysis of Wi-Fi probe request frames sniffed with off-the-
shelf hardware. Such data traces have been used for several
purposes, including estimating crowd densities and pedes-
trian flows [17, 6], user tracking and trajectory estimation [13,
16], privacy-related issues and device-to-identity linking [12,
5, 4].

7. CONCLUSIONS
We proposed a method for classifying handheld (smart-

phones) and non-handheld (laptops) Wi-Fi enabled devices
in a passive way, relying only on probe request frames cap-
tured with low-cost, commercially available hardware. We
compared different algorithms to perform such a classifica-
tion and identified a solution which correctly classifies the
devices more than 95% of the times. Finally, we have used
the proposed method to classify devices and performed an
analysis of the network traffic traces in a university building,
identifying interesting differences in the behavior of hand-
held and non-handheld devices. We believe that the pro-
posed classification method can be used as a pre-processing
stage in many scenarios related to Wi-Fi network manage-
ment and optimization and Wi-Fi based services. To cite
an example, we plan to apply the proposed methodology
to improve the performance of localization systems based
on radio-map fingerprinting by constructing different radio
maps for MHD or NHD devices.
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