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Abstract

As system integration evolves and tighter design con-

straints must be met, it becomes necessary to account for

the non-ideal behavior of all the elements in a system. For

high-speed digital, and microwave systems, it is increas-

ingly important to model previously neglected frequency do-

main effects.

In this paper, results from Nevanlinna-Pick interpolation

theory are used to develop a bounded real matrix rational

approximation algorithm. A method is presented that allows

for the generation of guaranteed passive rational function

models of passive systems by approximating their scattering

parameter matrices. Since the order of the models may in

some cases be high, an incremental fitting strategy is also

proposed that allows for the generation of smaller mod-

els while still meeting the required passivity and accuracy

requirements. Results of the application of the proposed

method to several real-world examples are also shown.

1 Introduction

Especially in high-frequency applications, certain de-

vices are usually described and studied in the frequency

domain. Devices such as coil inductors, SAW filters, non-

ideal transmission lines and high-frequency transistors are

commonly described by manufacturers and designers by

their frequency dependent scattering parameter or admit-

tance matrices. Frequency domain data is either obtained

through measurement or through physical simulation. In ei-

ther case, the available data is sampled, incomplete, noisy,

and covers only a finite range of the spectrum.

It is not trivial to generate accurate circuit-level mod-

els for all the devices in a system. Such models are how-

ever necessary for the time domain simulation of larger de-

signs and to account for the non-ideal characteristics of the

devices. Although harmonic balance simulators can eas-

ily handle devices described by their frequency response,

they cannot adequately treat highly non-linear designs such

as oscillators and mixers. On the other hand, time-domain

simulators, using state-space model integration, that can

deal with high-order non-linearity, require time-domain

models. It is necessary that these models have frequency

responses that match the available data but, they must also

possess stability and passivity properties similar to those of

the physical system that they represent.

Several algorithms for stable rational approximation ex-

ist and can be used for frequency domain identification of

stable systems, see for example [15, 16, 18, 9, 5] and the

references therein. Several other algorithms can be used

for frequency domain identification of passive systems.

See [14, 10] and [8] for a convex programming approach

to positive real constrained rational approximation that can

be used to generate multivariable models for the impedance

or admittance matrices of a passive system. In [1, 12, 2]

several rational interpolation and approximation algorithms

that allow the generation of multivariable models with a pre-

scribed frequency response and norm bounds are presented.

Also in [13, 7, 6] norm-bounded and positive real models

are generated using rational interpolation and approxima-

tion algorithms and convex programming.

In this paper we propose a simple rational approximation

algorithm based on multivariable Nevanlinna-Pick interpo-

lation. We also consider interpolant parameterization and its

state-space representation and present results of the applica-

tion of the proposed method to several real-world examples.

This paper is structured as follows. In section 2, the

scattering, impedance and admittance matrices of passive

electric networks are characterized and background infor-

mation is provided. In section 3, a version of the matrix

Nevanlinna-Pick interpolation problem is presented. Since

the Nevanlinna-Pick algorithm assumes that the data points

are in the interior of the analyticity domain, a boundary in-

terpolation, or Löewner, problem is also considered. In sec-

tion 4, an incremental rational approximation algorithm us-



ing boundary Nevanlinna-Pick interpolation is proposed. In

section 5, a state-space representation for the Nevanlinna-

Pick interpolant is presented. In section 6, models are gen-

erated for several real-world data-sets. Effects of model pa-

rameterization on the interpolants frequency response are

also illustrated. Finally, section 7 conclusions and sugges-

tions for further work are drawn.

2 Background

Passivity is an important property of certain physical sys-

tems. Networks composed by resistors, capacitors and in-

ductors are passive, they do not generate energy. Systems

that always consume energy are called strictly passive. In-

terconnected (strictly) passive systems are (strictly) passive.

Stable systems do not possess this closure property. Stable

systems loaded by stable, and even passive systems, may

not constitute an overall stable system. Therefore, it is im-

portant that passive systems be represented by passive mod-

els.

The properties of the transfer function of a model rep-

resenting a passive system depend on the physical interpre-

tation of the model’s inputs and outputs. There exist sev-

eral standard system representations such as the impedance

parameter matrix � , the admittance parameter matrix ✁ ,

the hybrid parameter matrix ✂ , the chain parameter matrix✄✆☎✞✝✠✟
, the scattering parameter matrix ✡ , and the trans-

mission parameter matrix ☛ .

For an n-port network ✁ and � relate the port currents

and voltages. For higher frequency systems, impedances

and admittances cannot be accurately measured because the

required short-circuit and open-circuit tests are difficult to

achieve over a broad range of frequencies. The scatter-

ing matrix, s-parameter, representation is used for higher-

frequency by characterizing the n-ports through relations

between the incident traveling waves ☞ and the reflected

traveling waves ✌ , satisfying ✌✎✍✏✡✑☞ , The definition of the

scattering parameter matrix, ✡ and its relation to the other

system representations depends on the reference impedance

used in the measurement process, ✒✔✓ . It is assumed that✒✕✓ is real. In practice most measurement equipment uses

the standard ✖✘✗✚✙ . The reference impedance at each port

is represented by ✒ ✓✜✛ ✢ . Let � ✓ be a diagonal matrix such

that � ✓✚✣✥✤✧✦★✤✪✩ ✍✫✒ ✓✜✛ ✢ . The incident and reflected waves are

linearly related to the circuit’s input voltage and currents

according to✬ ☞✌✮✭ ✍✰✯✱✳✲ �✵✴✷✶✹✸✻✺✓ �✼✶★✸✻✺✓� ✴✷✶✹✸✻✺✓ ✽ � ✶✹✸✻✺✓ ✾ ✬❀✿ ❁ ✭ (1)✬❀✿ ❁ ✭ ✍ ✲ �❂✶✹✸✻✺✓ �❂✶✹✸✻✺✓� ✴❃✶★✸✻✺✓ ✽ � ✴✷✶✹✸✻✺✓ ✾❅❄ ✬ ☞✌❆✭ (2)

Assuming no singularities such as ideal short-circuits or

ideal open-circuits occur, each parameter set may be trans-

formed onto another. From (1), since � and ✁ are related

by matrix inversion �❇✍❈✁ ✴❃✶ , the scattering matrix and the

impedance matrix are related by� ✣❊❉❋✩ ✍●� ✶✹✸✹✺✓ ✣■❍✔❏ ✡ ✣❑❉❋✩★✩✜✣■❍ ✽ ✡ ✣❊❉▲✩✹✩ ✴❃✶ � ✶★✸✻✺✓ ❄ (3)

Furthermore, the scattering matrix is related to the admit-

tance matrix by✁ ✣❑❉❋✩ ✍▼�◆✴❃✶★✸✻✺✓ ✣■❍ ✽ ✡ ✣❊❉▲✩✹✩❖✣❑❍✔❏ ✡ ✣❑❉❋✩★✩ ✴✷✶ �◆✴❃✶★✸✻✺✓ ❄ (4)

2.1 Statespace Representation Transformations

Given a state space model of a device’s admittance or

impedance parameter matrix and � ✓ , it is possible to ob-

tain a state space model of the device’s scattering parameter

matrix. The converse is also true. These results are use-

ful because certain time domain simulators still require an

admittance or impedance representation of the model.

Assume a possible state space representation of a system

with a frequency response ✡ ✣❑❉❋✩ , ✣ ✄ ✦ ☎ ✦ ✝ ✦ ✟ ✩ is known.

The problem at hand is to determine a state space represen-

tation, ✣◗P✄ ✦❘P☎ ✦❘P✝ ✦✚P✟ ✩ , of a system whose transfer function is

given by (4).

Noticing that ✁ ✣❑❉❋✩ ✍▼� ✴✷✶✹✸✻✺✓ ✣ ✱ ✣■❍❙❏ ✡ ✣❑❉❋✩✹✩ ✴✷✶ ✽ ❍✜✩ � ✴✷✶✹✸✻✺✓ ,

and that a state space representation for a system with a

transfer function ✣■❍❚❏ ✡ ✣❑❉❋✩✹✩ ✴✷✶ is ✣ ✄ ✽ ☎ ✣■❍✚❏ ✟ ✩ ✴✷✶ ✝ ✦ ☎ ✣■❍✚❏✟ ✩ ✴✷✶ ✦ ✽ ✣■❍❯❏ ✟ ✩ ✴✷✶ ✝ ✦◗✣■❍❯❏ ✟ ✩ ✴✷✶ ✩ , assuming ✣❑❍❱❏ ✟ ✩ ✴✷✶
exists [11], a possible representation isP✄ ✍ ✄ ✽ ☎ ✣❑❍❲❏ ✟ ✩ ✴❃✶ ✝P☎ ✍ ☎ ✣❑❍✔❏ ✟ ✩ ✴❃✶ � ✴✷✶✹✸✻✺✓P✝ ✍ ✽ ✱ � ✴✷✶✹✸✻✺✓ ✣■❍✔❏ ✟ ✩ ✴✷✶ ✝P✟ ✍ �◆✴❃✶★✸✻✺✓ ✣■❍ ✽ ✟ ✩✜✣■❍✔❏ ✟ ✩ ✴✷✶ �◆✴❃✶★✸✻✺✓ ❄ (5)

Conversely, assume that a state space representation✣◗P✄ ✦✘P☎ ✦✘P✝ ✦✚P✟ ✩ for a system whose transfer function is ✁ ✣❑❉❋✩
is known. A state space representation of a system whose

transfer function is given by✡ ✣❑❉❋✩ ✍ ✣■❍ ✽ � ✶✹✸✹✺✓ ✁ ✣❑❉❋✩ � ✶★✸✻✺✓ ✩❖✣❑❍✔❏ � ✶★✸✻✺✓ ✁ ✣❑❉❋✩ � ✶★✸✻✺✓ ✩ ✴❃✶ ✦ (6)

can be obtained by solving (5) for ✣ ✄ ✦ ☎ ✦ ✝ ✦ ✟ ✩ . If✣■❍✔❏ �❂✶✹✸✻✺✓ P✟ �✼✶★✸✻✺✓ ✩ ✴✷✶ exists, a possible representation is✄ ✍ P✄ ✽ P☎❆❳ P✟ ❏ � ✴❃✶✓❩❨ ✴❃✶ P✝☎ ✍ ✱ P☎ � ✶✹✸✻✺✓ ✣❑❍✔❏ � ✶✹✸✹✺✓ P✟ � ✶✹✸✻✺✓ ✩ ✴❃✶✝ ✍ ✽ ✣■❍❬❏ � ✶✹✸✻✺✓ P✟ � ✶★✸✻✺✓ ✩ ✴✷✶ � ✶✹✸✻✺✓ P✝✟ ✍ ✣■❍ ✽ �✼✶★✸✻✺✓ P✟ �✼✶★✸✻✺✓ ✩❖✣■❍✼❏ �✼✶★✸✻✺✓ P✟ �✼✶✹✸✹✺✓ ✩ ✴❃✶ ❄ (7)

The state space representation transformations (5)

and (7) allow the model generation process to take place

by approximating either admittance, impedance or scat-

tering parameters. Not only can the data be transformed

through (3), (4) and their inverses, but also the models them-

selves can be transformed to a more convenient representa-

tion.



2.2 Model Properties

The admittance, impedance and scattering parameter

matrices of passive systems satisfy a set of physically im-

portant conditions.

In [4], Brune proved that the admittance and impedance

parameter matrices of passive electrical networks are posi-

tive real matrix rational functions. A matrix function ✂ ✣❊❉▲✩
is positive real if,✂ ✣❑❉❋✩ ✍ ✂ ✣ ❉❋✩ (8)✂ ✣❑❉❋✩ is analytic in �✂✁☎✄ ❉✝✆✟✞ ✗ (9)✂ ✣❑❉❋✩✑❏ ✂ ✣❑❉❋✩✡✠☞☛ ✗ in �✌✁☎✄ ❉✝✆✟✞ ✗ ❄ (10)

A matrix rational function is positive real if and only if (8)

and (9) hold and✂ ✣✎✍✑✏ ✩✑❏ ✂ ✣✎✍✑✏ ✩✒✠☞☛ ✗ for ✏✔✓✖✕ . (11)

Any pole on the imaginary axis must be simple and its

residue matrix must be Hermitian and nonnegative definite.

If ✂ ✣❑❉❋✩ has no poles on the closed right-half plane, it is

positive real if and only if (11) holds.

Since a passive system is necessarily stable and has a

power gain at most one, the scattering matrix of a passive

system is bounded real. This property may also be inferred

through (3) or (4) and the definition of positive real trans-

fer matrices. A matrix function ✂ ✣❊❉▲✩ is bounded real if it

satisfies (8), (9) and✗✘✗ ✂ ✣❊❉❋✩ ✗✘✗✚✙ ✯ for �✂✁☎✄ ❉✝✆✟✞ ✗ . (12)

A matrix rational function is bounded real if it satisfies, (8)

and (9) and ✗✎✗ ✂ ✣✎✍✑✏ ✩ ✗✎✗✛✙ ✯ for ✏✔✓✖✕ . (13)

It is not necessary to actually calculate the infinity

norm model’s frequency response to determine that it is

less than one. If ✜ ✍✣✢ ❍ ✽ ✟✥✤ ✟✧✦ ✴✷✶ exists, the system✣ ✄ ✦ ☎ ✦ ✝ ✦ ✟ ✩ is bounded real if and only if the Hamilto-

nian matrix,★ ✍ ✬ ✄ ❏ ☎ ✜ ✝ ☎ ✜ ☎✩✤✽ ✝✪✤ ✜ ✝ ✽ ✄✫✤ ✽ ✝✪✤ ✜ ☎✩✤ ✭ (14)

has no purely imaginary eigenvalues [3]. If ❍ ✽ ✟✖✤✑✟
is ill-

conditioned, the alternative proposed in [17] may be used.

Note that the infinity norm is usually calculated through bi-

section and that, at each step, a similar eigenvalue problem

is solved [3, 17].

3 Matrix Nevanlinna-Pick Interpolation

Let ✬ represent the open right-half plane. Given a set of✭
data matrices, ✮ ✓ ✬✰✯ and ✂ ✓✥✱ ✯✳✲✎✴✶✵✛✷✛✴✹✸✻✺ . The ✼✟✽✿✾❀✼ ✢

matrix rational function ❁ interpolates the data set ✣ ✮ ✦ ✂ ✩ if❁ ✣❑❉❃❂✘✩ ✍ ✂ ❂✚✦ for ❄✞✍ ✯ ✦✝❅✝❅❆❅❖✦ ✭ . (15)

The Nevanlinna-Pick problem is to describe all interpolat-

ing functions ❁ , that are analytic in ✬ and that satisfy❇✒❈✛❉❊●❋✶❍✖■ ❁ ✣❊❉▲✩ ■✌❏ ✯ ❄ (16)

Since the scattering parameter matrix of a passive system

also satisfies (16), using the Nevanlinna-Pick interpola-

tion algorithm for passive multivarible system identification

seems to be a natural choice.

The matrix Nevanlinna-Pick problem may be formulated

as a special case of the two-sided Nudelman problem. Let✝ ✴ ✍▲❑ ❍ ✴ ✸ ❅✝❅❆❅ ❍ ✴ ✸◆▼ ✦ (17)

a ✼ ✢ ✾ ✭ ✼ ✢ matrix, and✝✪❖ ✍ ❑ ✂ ✶ ❅❆❅✝❅ ✂ ✯ ▼ ✦ (18)

also a ✼✟✽✌✾ ✭ ✼ ✢ matrix, and✄✫P ✍ ◗❘
❙ ❉ ✶ ❍ ✴ ✸ ❚

. . .❚ ❉ ✯ ❍ ✴ ✸
❯❲❱
❳ ✦ (19)

a
✭ ✼ ✢ ✾ ✭ ✼ ✢ block diagonal matrix.

Theorem 3.1 (Matrix Nevanlinna-Pick) There ex-

ists a rational function ❁ ✣❑❉❋✩ that interpolates a given

data set ✣ ✮ ✦ ✂ ✩ , that is analytic in ✬ and satisfies❇✒❈❨❉ ❊●❋✶❍ ■ ❁ ✣❑❉❋✩ ■✌❏ ✯ , if and only if the Pick matrix,

❩✂❬ ✛ ❭ ✍ ✲ ❍ ✽ ✂ ✠❬ ✂ ❭❉ ❬ ❏ ❉ ❭ ❄ ✾ ✶❫❪ ❬ ✛ ❭ ❪ ✯ (20)

is positive definite. In this case, there is a
✱ ✾ ✱ block matrix

function❴ ✣❑❉❋✩ ✍ ❍ ✴✶✵ ❖ ✴✹✸ ❏ ✬ ✝✪❖✝ ✴ ✭ ✣❑❉▲❍ ✯❵✴✹✸ ✽ ✄ P ✩ ✴❃✶ ❩ ✴❃✶ ❑ ✽ ✝ ✠❖ ✝ ✠ ✴ ▼
(21)

such that the solutions of the Nevanlinna-Pick interpolation

problem become,❁ ✣❑❉❋✩ ✍❛✄ ❴ ✶ ✛ ✶ ✣❑❉❋✩●❜ ✣❑❉❋✩ ❏ ❴ ✶ ✛ ✺ ✣❑❉❋✩❝✆ ✄
❴
✺ ✛ ✶ ✣❊❉▲✩●❜ ✣❑❉❋✩ ❏ ❴ ✺ ✛ ✺ ✣❑❉❋✩❝✆ ✴✷✶ ✦

(22)

where ❜ ✣❊❉▲✩ is an arbitrary ✼ ✽ ✾❞✼❃✢ rational function that is

analytic on ✬ and that satisfies
❇✒❈✛❉ ❊●❋✶❍ ■ ❜ ✣❑❉❋✩ ■✌❏ ✯ .

3.1 Boundary Interpolation

In Theorem 3.1, the data points are considered to lie

in the interior of ✬ . Since we intend to use Nevanlinna-

Pick for frequency domain identification, the available data

points will usually be placed on the imaginary axis. This is

the boundary interpolation problem, also called a Loewner

interpolation problem.



Definition 3.1 (Loewner Interpolation Problem) Given

a set of ✼✟✽ ✾ ✼ ✢ data matrices, ✂ ✶ ✦✝❅✝❅❆❅✜✦ ✂ ✯ , corresponding

to ❉ ✶ ✦✝❅❆❅✝❅✜✦✧❉ ✯ on
✁ ✬ , find an interpolating function ✂ ,

analytic in ✬ , such that❇✒❈✛❉❊●❋ ❍ ■ ❁ ✣❊❉▲✩ ■ ✙ ✯ (23)

and ❁ ✣❑❉❃❂✘✩ ✍❈✂ ❂ ✦ for ❄❅✍ ✯ ✦❆❅✝❅❆❅❖✦ ✭ ❄ (24)

It is clear that the data must satisfy ■ ✂ ❂ ■ ✙ ✯ , for all ❄ .

The boundary interpolation problem may be solved by

a shifting procedure. Let ❁☎✄ be the Nevanlinna-Pick in-

terpolant of the data set ✣ ✮ ❏✝✆ ✦ ✂ ✩ , with ✆ real satisfying✆ ✞ ✗ . The interpolating function ❁ ✣❊❉▲✩ ✍ ❁☎✄ ✣❊❉❂❏✞✆❃✩ satis-

fies conditions (23) and (24) and is analytic for �✂✁☎✄ ❉ ✆ ✞ ✽ ✆
which contains ✬ . The Nevanlinna-Pick interpolant exists

if the Pick matrix❩ ❬ ✛ ❭ ✍ ✲ ❍ ✽ ✂ ✠❬ ✂ ❭❉ ❬ ❏ ❉ ❭ ❏ ✱ ✆ ✾ ✶❫❪ ❬ ✛ ❭ ❪ ✯ (25)

is positive definite. If ■ ✂ ❂ ■ ❏ ✯ for all ❄ , it is always

possible to choose a small enough ✆ so that (25) is positive

definite.

Although it is always possible to generate an interpolant

by choosing a small enough ✆ the behavior between data

points is severely affected by these parameters. As ✆ tends

to zero, the poles of the rational function are allowed to ap-

proach the imaginary axis or the unit circle resulting in a

highly oscillatory frequency response.

4 An Incremental Fitting Strategy

From equation (22), the Nevanlinna-Pick interpolant will

have at least
✭ ✼ ✢ poles. The minimum order is achieved if❜ ✣❑❉❋✩ is chosen to be a constant matrix. Unfortunately, even

for scalar data sets of moderate size, the generated models

become too large for practical use. In this section an it-

erative algorithm, based on the boundary Nevanlinna-Pick

interpolation algorithm, is presented. The basic idea is to

choose, either randomly, manually, or through some heuris-

tic procedure, an initial set of points. Then perform the

Cholesky factorization of the Pick matrix associated with

the initial set and determine the

❴ ✣❑❉❋✩ matrix. Choose ❜ , a✼ ✢ ✾✳✼ ✢ constant matrix, so that the weighted quadratic error

between the unused data points and the model’s frequency

response is minimized. Then, iteratively, choose the set of

data points with the largest error norm, update the Cholesky

factorization of the Pick matrix, determine the new

❴ ✣❊❉❋✩
and a new ❜ matrix. The iterative procedure should be

stopped when the error reaches a certain threshold or when

the order exceeds a predetermined limit.

The choice of the constant matrix ❜ may use a differ-

ent criteria such as the square error between the models

frequency response and a spline-interpolated version of the

Algorithm 1 Iterative Interpolation Algorithm

input
✭

, ✼ ✢ , ✼✟✽ , ❉ , ✟ , ✆ , ✼ ✓ , ✠ , ✡☞☛✍✌✏✎✒✑✔✓ .

output ✂
Set ✤✖✕ ✍ ✗ ,

Choose ✼✷✓ data points and form the set of the interpola-

tion points ✗ .

Form the Cholesky factor ✘✆✓ of
❩ ✓ .

if The Cholesky factorization fails then

Choose a new set of points until ✘ ✓ exists.

Move the points that lead to failure to the set of the

rejected points ✙ .

end if

Choose ❜ such that ✚ ✺✓ ✍✜✛ ✯ ❂✣✢ ✶ ■ ❁ ✣❑❉❃❂✘✩ ✽ ✂ ❂ ■ ✺✺ is

minimized.

while ✚ ✢✥✤ ✞ ✠ and
✗ ✗ ✗ ❏ ✡☞☛✦✌✧✎✒✑✔✓ do

Choose a set of data points not in ✗ or ✙ .

Update the Cholesky factor of the Pick matrix★✪✩✬✫✥✭✯✮✏✰✲✱✳✩✵✴✱✶✩✸✷✴ ✱✶✩✸✹✻✺✽✼ ★✿✾ ✷✫✥✭✯✮✏✰ ❀✱ ✾❁✷✴ ✱ ✾✿✷✹ ✺ ★✿✾ ✫✥✭✯✮✏✰ ✱ ✾ ✴❀ ✱ ✾ ✹ ✺
(26)

where
✁ ✘❃❂ ✍❄✘ ✴❃✶✢❅✤ ✴✷✶ ✁ ❩ ❂ and

✁ ✘❇❆ is the Cholesky

factor of
❩ ❆ ✽ ✁ ✘ ✠❂ ✘ ❂ if it exists.

if The Cholesky factorization of
❩ ❆ ✽ ✁ ✘ ✠❂ ✁ ✘ ❂ fails

then

Move the subset of the new points that lead to failure

to the set ✙ .

Choose a new set of points until either
✁ ✘❈❆ exists

or all the remaining points are in ✙ .

end if

Choose ❜ such that ✚ ✺✓ ✍❉✛ ❂ ✸❋❋❊ ■ ❁ ✣❊❉ ❂❘✩ ✽ ✂ ❂ ■ ✺✺ is

minimized.

end while

original data. This may be used to regularize the behavior

of the interpolant between data points.

Given the boundary interpolation shift parameter ✆ , the

size of the initial set of data points ✼ ✓ and the data set itself,

Algorithm 1 uses Nevanlinna-Pick boundary interpolation

to generate a bounded real rational approximant.

If a fixed number of points is added at each iteration, the

computational cost of updating the Cholesky factorization

in (26), is asymptotically proportional to
✗ ✗ ✗ ✺ , where

✗ ✗ ✗
is the number of elements in the set ✗ . The cost of recal-

culating the Cholesky factorization at each step would be

asymptotically proportional to
✗ ✗ ✗ ●

.

In order to get a model with a real impulse response, ❜
must be a real matrix and any complex interpolation point✣❑❉❃❂ ✦ ✂ ❂ ✩ must be accompanied by its complex conjugate✣ ❉❃❂ ✦ ✂ ❂ ✩ .

The choice of the initial data set and the shift determines

most of the outcome. If the points are chosen randomly, a

fixed number of approximants should be generated and the

best one chosen. If a small shift is used, most combina-

tions of data points will yield a positive definite Pick matrix

but the model poles will have a small real part and the fre-



quency response will be oscillatory. If a large shift is used,

not many points will be accepted because it will not be pos-

sible to generate an interpolation function whose poles have

such a large real part. However, in the later case, the fre-

quency response tends to be smoother and, with an appro-

priate choice of ❜ , a better approximation for the non in-

terpolated points is usually more likely to be achieved than

with a small shift. However, if the shift is too large, most

of the points will be rejected. By starting with a large shift

and reducing it until enough points are accepted, a heuristic

algorithm for the choice of ✆ is obtained. If the interpola-

tion points are somehow arbitrated, the smallest eigenvalue

of
❩ ✣✯✆❃✩ may be imposed to any desired accuracy by using

a bisection method in ✆ . Since all the eigenvalues of
❩

are

real, if the smallest eigenvalue is positive, all the others will

also be positive and
❩

will be positive definite. By choosing

a small enough value, the largest ✆ that still yields a positive

definite
❩

may be approximated.

At each step, the choice of ❜ is determined by the so-

lution of a non-linear least squares problem involving the

matrix linear fraction (22). Assuming that ❜ is a constant

matrix and knowing that the error at the interpolation points

is zero, the problem may be stated as

minimize ✛ ❂ ✸❋❋❊ ■ ✄
❴
✶ ✛ ✶ ✣❊❉ ❂ ✩ ❜✮❏ ❴ ✶ ✛ ✺ ✣❊❉ ❂ ✩❝✆✄

❴
✺ ✛ ✶ ✣❑❉❃❂❘✩●❜ ❏ ❴ ✺ ✛ ✺ ✣❑❉❃❂✘✩ ✆ ✴❃✶ ✽ ✂ ❂✁��� ✺✺

subject to ■ ❜ ■✌❏ ✯ ❄ (27)

In our implementation this problem is solved by using

constr from Matlab’s optimization toolbox. For greater

control on the behavior between interpolation points a finer

grid, containing spline interpolated values of ✂ ✣❑❉❋✩ can be

used.

For certain applications it is desirable to change the uni-

tary upper bound. A constant non-unitary upper bound

for the norm, ✂ , may be obtained by first scaling the data

by ✯ ✄ ✂ , determining the Nevanlinna-Pick interpolant, and

scaling the interpolant by ✂ .

Using the incremental fitting strategy described, the size

of models can be reduced without noticeable deterioration

in accuracy and while guaranteeing passivity of the result-

ing model.

5 State-space Representations

For time domain simulation, a state space model is usu-

ally required. In this section a state space representation of

a system with a transfer function (22) is presented. It is as-

sumed that ❜ ✣❊❉▲✩ is a constant ✼ ✽ ✾ ✼❃✢ matrix with norm less

than one and that there are ☎✭ interpolation points.

Recalling equations (22) and (21), and defining ✆ ✍❩ ✴✷✶ ✣ ✝ ✠ ✴ ✽ ✝ ✠❖ ❜ ✩ , we get
❴
✶ ✛ ✶ ✣❑❉❋✩ ✍ ❍ ✴✶✵ ✽ ✝✪❖ ✣❑❉▲❍✞✝✯❵✴ ✸ ✽ ✄ P ✩ ✴❃✶ ❩ ✴✷✶ ✝ ✠❖ (28)

❴
✶ ✛ ✺ ✣❑❉❋✩ ✍ ✝❞❖ ✣❊❉▲❍✟✝✯❵✴ ✸ ✽ ✄ P ✩ ✴✷✶ ❩ ✴❃✶ ✝ ✠ ✴ (29)

❴
✺ ✛ ✶ ✣❑❉❋✩ ✍ ✽ ✝ ✴ ✣❊❉▲❍✞✝✯❀✴✹✸ ✽ ✄ P ✩ ✴❃✶ ❩ ✴❃✶ ✝ ✠❖ (30)

❴
✺ ✛ ✺ ✣❑❉❋✩ ✍ ❍ ✴ ✸ ❏ ✝ ✴ ✣❑❉▲❍✞✝✯❵✴✹✸ ✽ ✄ P ✩ ✴❃✶ ❩ ✴✷✶ ✝ ✠ ✴ (31)

and hence ❁ ✣❊❉▲✩ ✍✡✠ ✣❑❉❋✩ ✟ ✣❊❉▲✩ ✴✷✶ is given by☛✌☞✎✍✑✏ ✼✓✒✕✔✗✖✙✘✛✚ ☞✎✍✢✜✤✣✦✥★✧✩✏ ✮✏✰✫✪✭✬ ✒ ✜✯✮ ✸ ✖✰✘ ✮ ☞✎✍✑✜✤✣✦✥✱✧✫✏ ✮✧✰✲✪✭✬ ✮✧✰✴✳
(32)

Let
✝ ✲ ❂ ✺❖ represent the ❄ th ✼ ✽ ✾ ✼❃✢ matrix entry in

✝✪❖
,
✝ ✲ ❂ ✺✴

the ❄ th ✼ ✢ ✾ ✼ ✢ matrix entry in
✝ ✴ , and ✆ ✲ ❂ ✺✴ the ❄ th ✼ ✢ ✾ ✼ ✢

matrix entry in ✆ . By (19) and (32),

❁ ✣❑❉❋✩ ✍ ✵✶ ❜❆❏ ✝✯✷❂ ✢ ✶ ✝ ✲ ❂ ✺❖ ✆ ✲ ❂ ✺❉ ✽ ❉ ❂ ✸✹✺✵✶ ❍ ✴ ✸ ❏ ✝✯✷❂✣✢ ✶ ✝ ✲ ❂ ✺✴ ✆ ✲ ❂ ✺❉ ✽ ❉ ❂ ✸✹ ✴❃✶ ❄
(33)

After some algebraic manipulation☛✌☞✎✍✑✏ ✼✼✻✽✔✿✾❁❀❂❃❅❄ ✰ ☞✎✍❆✣❇✍ ❃ ✏ ✖❉❈❊❀❂❃❋❄ ✰ ✘❍● ❃❋■✚ ✪ ● ❃❋■ ✾✭❏▲❑❄✴❃ ☞✎✍▼✣✦✍ ❏ ✏❖◆✻ ✜✯✮ ✸ ✾P❀❂❃❋❄ ✰ ☞✎✍▼✣❇✍ ❃ ✏ ✖◗❈❘❀❂❃❅❄ ✰ ✘❍● ❃❋■✮ ✪ ● ❃❋■ ✾✭❏❙❑❄❚❃ ☞✎✍❆✣❯✍ ❏ ✏❖◆ ✮✏✰
(34)

is obtained. It can be seen that if ❉ ✍ ❉ ❂ then ❁ ✣❑❉❃❂❘✩ ✍ ✝ ✲ ❂ ✺❖
which, by definition, is ✂ ❂ .

A transfer function establishes a frequency domain

input-output relationship ✁ ✣❑❉❋✩ ✍▲❁ ✣❑❉❋✩❲❱ ✣❑❉❋✩ , where ✁ ✣❊❉▲✩
is the output and ❱ ✣❑❉❋✩ is the input. Define ❳ ✣❊❉▲✩ and❳✥❂ ✣❊❉❋✩ for ❄ ✍✫✗ ✦✝❅❆❅✝❅❖✦ ☎✭ , such that ❳ ✣❊❉▲✩ ✍ ✟ ✣❑❉❋✩ ✴✷✶ ❱ ✣❑❉❋✩ ,✁ ✣❑❉❋✩ ✍✡✠ ✣❑❉❋✩ ❳ ✣❑❉❋✩ and❱ ✣❊❉❋✩ ✍ ❨ ✝✯ ❂✣✢ ✶ ✣❑❉ ✽ ❉❃❂✘✩ ❳ ✣❊❉❋✩✹❏✛ ✝✯ ❂✣✢ ✶ ✝ ✲ ❂ ✺✴ ✆ ✲ ❂ ✺❚❨ ❬✫❩✢✟❂ ✣❑❉ ✽ ❉ ❬ ✩ ❳ ✣❑❉❋✩✍ ❳ ✓ ✣❊❉▲✩ ❏ ✛ ✝✯ ❂✣✢ ✶ ✝ ✲ ❂ ✺✴ ✆ ✲ ❂ ✺ ❳✧❂ ✣❑❉❋✩ ❄ (35)

The output can be obtained as a combination of ❳ ❂ ✣❊❉❋✩ and❱ ✣❊❉❋✩ as indicated below✁ ✣❑❉❋✩ ✍ ❜ ❨ ✝✯ ❂✣✢ ✶ ✣❊❉ ✽ ❉ ❂ ✩ ❳ ✣❑❉❋✩✹❏
✛ ✝✯ ❂ ✢ ✶ ✝ ✲ ❂ ✺❖ ✆ ✲ ❂ ✺ ❨ ❬✫❩✢✟❂ ✣❑❉ ✽ ❉ ❬ ✩ ❳ ✣❑❉❋✩✍ ❜✦❱ ✣❊❉❋✩✑❏ ✛ ✝✯ ❂✣✢ ✶ ❳❋✝ ✲ ❂ ✺❖ ✽ ❜ ✝ ✲ ❂ ✺✴ ❨ ✆ ✲ ❂ ✺ ❳ ❂ ✣❊❉❋✩ ❄

(36)

Noticing that ✣❑❉ ✽ ❉❃❂❘✩ ❳ ❂ ✣❑❉❋✩ ✍P❳ ✓ ✣❑❉❋✩ and using the input

equation to solve ❳ ✓ ✣❑❉❋✩ for ❳ ❂ ✣❑❉❋✩ and ❱ ✣❊❉❋✩ , an expression

for ❉ ❳✥❂ ✣❑❉❋✩ is obtained❉ ❳ ❂ ✣❊❉❋✩ ✍ ❱ ✣❑❉❋✩ ❏ ❉❃❂ ❳ ❂ ✣❑❉❋✩ ✽ ✝✯✷❬ ✢ ✶ ✝ ✲ ❬ ✺✴ ✆ ✲ ❬ ✺ ❳ ❬ ✣❊❉▲✩ ❄ (37)

The inverse Laplace transform of ❳ ❂ ✣❑❉❋✩ may be used as a

state space variable and the state space representation

✥ ❂✤❬ ✼ ✥ ✧ ✣❪❭❫❴ ✜ ✮ ✸.
..✜✯✮ ✸
❵ ❛❜ ❭❫❫❴

✪ ● ✰ ■❖❝
...✪ ● ❀❂ ■ ❝

❵ ❛❛❜
❝

❞ ❂✤❬ ✼❢❡ ✜ ✮ ✸❤❣❅❣❋❣ ✜ ✮ ✸❥✐ ❝✮ ✸✯❦ ❀❂ ✮ ✸✘ ❂✤❬ ✼✗❧ ✻ ✘❍● ✰ ■✚ ✣ ✔ ◆ ✪ ● ✰ ■ ❣❋❣❅❣ ✻ ✘❍● ❀❂ ■✚ ✣ ✔ ◆ ✪ ● ❀❂ ■♥♠♦ ❂✤❬ ✼✦✔q♣
(38)



may be formed.

For the boundary interpolation problem, the desired

function is ❁ ✣❑❉❋✩ ✍ ❁ ✄ ✣❑❉ ❏ ✆❃✩ . In this case,
✄ ✯✁�✄✂ ✍✄ ✯✁� ✽ ❍ ✆ which shifts the poles of the system by ✽ ✆ .

However, since✄ P ✍ ❍▼✝✯ ✴ ✸ ✆❅❏❇✤ diag( ☎ ) ✆ ❍ ✴✹✸ ✦ (39)

where diag ✣ ☎ ✩ represents a diagonal matrix whose diagonal

elements are those of the vector ☎ ✍ ✄ ✏ ✶ ✦❆❅✝❅❆❅❖✦✒✏✿✝✯ ✆ ✤ , and

✆ represents the Kronecker product, the ❍ ✝✯❵✴ ✸ ✆ terms cancel

out leading to✄ ✯✁� ✂ ✍ ◗❘
❙ ✤❝✏ ✶ ❍ ✴✹✸ ❅✝❅✝❅ ✗

...
...✗ ❅✝❅✝❅ ✤ ✏ ✝✯ ❍ ✴ ✸

❯ ❱
❳ ✽ ◗❘

❙ ❍ ✴✹✸...❍ ✴ ✸
❯ ❱
❳
◗❘❘
❙ ✆ ✲ ✶ ✺ ✤

...✆ ✲ ✝✯❵✺ ✤
❯ ❱❱
❳
✤
❄

(40)

It is often more convenient to have a real state

space representation. Assuming that the inter-

polation points are all complex conjugates, and

that they are ordered so that ❉ ✺ ❂ ✴✷✶ ✍ ❉ ✺ ❂ and✆ ✲ ✺ ❂ ✴✷✶ ✺ ✍ ✆ ✲ ✺ ❂ ✺ for ❄✞✍ ✯ ✦✝❅❆❅✝❅❖✦ ☎✭ ✄ ✱
, a real state

space representation ✣ ✄✞✝ ✯✁� ✦ ☎✟✝ ✯✁� ✦ ✝✠✝ ✯✁� ✦ ✟✡✝ ✯✁� ✩
is obtained through the similarity transform✣ ☛ ✴❃✶ ✄ ✯✁� ☛ ✦ ☛ ✴❃✶ ☎ ✯✁� ✦ ✝ ✯✁� ☛ ✦ ✟ ✯✁� ✩ where☛❩✍ ✯☛ ✱ ❍▼✝✯ ✸✻✺ ✆ ✬ ✤ ✯✽ ✤ ✯ ✭ ✆ ❍ ✴ ✸ ✦ (41)

and ☛ ✴✷✶ ✍ ✯☛ ✱ ❍✞✝✯ ✸✻✺ ✆ ✬ ✽ ✤ ✤✯ ✯ ✭ ✆ ❍ ✴ ✸ ❄ (42)

More explicitly,

✥✠☞ ❂✤❬ ✼ ❭❫❫❫❫❫❴
✜ ✮ ✸ Re✌ ✍ ✰✎✍ ✜ ✮ ✸ Im✌ ✍ ✰✏✍ ❣❋❣✢❣ ❀ ❀✣✞✜❅✮ ✸ Im✌ ✍ ✰ ✍ ✜❅✮ ✸ Re✌ ✍ ✰ ✍ ❣❋❣✢❣ ❀ ❀

..

.
..
.

..

.
..
.❀ ❀ ❣❋❣✢❣ ✜ ✮ ✸ Re✌ ✍ ❀❂ ✍ ✜ ✮ ✸ Im✌ ✍ ❀❂ ✍❀ ❀ ❣❋❣✢❣ ✣✞✜ ✮ ✸ Im✌ ✍ ❀❂ ✍ ✜ ✮ ✸ Re✌ ✍ ❀❂ ✍

❵ ❛❛❛❛❛❜
✣ ❭❫❫❫❫❫❴

❀ ✮ ✸✜ ✮ ✸
.
..❀ ✮ ✸✜ ✮ ✸

❵ ❛❛❛❛❛❜
❭❫❫❫❫❫❫❫❫❫❫❴
✑
Im ❧ ✪ ● ✰ ■ ♠ ❝✣ ✑
Re ❧ ✪ ● ✰ ■ ♠ ❝

.

..✑
Im ❧ ✪ ● ❀❂ ■ ♠ ❝✣ ✑
Re ❧ ✪ ● ❀❂ ■ ♠ ❝

❵ ❛❛❛❛❛❛❛❛❛❛❜

❝

❞✒☞ ❂✤❬ ✼✔✓ ✑ ❡ ❀ ✮ ✸ ✜❅✮ ✸ ❣❋❣❋❣ ❀ ✮ ✸ ✜❅✮ ✸ ✐ ❝ ❀❂ ✮ ✸ ❦ ✮ ✸✘ ☞ ❂✤❬ ✼ ✓ ✑ ❧ ✣ Im ❧ ✘ ● ✰ ■❂✤❬ ♠ Re ❧ ✘ ● ✰ ■❂✤❬ ♠ ❣❅❣❋❣ ✣ Im ❧ ✘ ● ❀❂ ■❂✤❬ ♠ Re ❧ ✘ ● ❀❂ ■❂✤❬ ♠✕♠♦ ☞ ❂✤❬ ✼ ♦ ❂✤❬
(43)

The resulting model has order ☎✭ ✼ ✢ . In time domain

simulation and certain model order reduction algorithms,

matrix-vector products involving
✄ ✯✁� and

✄ ✝ ✯✁� are very

important. This operation should take advantage of the fact

that
✄ ✯✁� and

✄ ✝ ✯✁� are the result of rank ✼ ✢ perturbations

to block diagonal matrices. The cost of the optimized oper-

ation is proportional to ☎✭ ✼ ✢ instead of ☎✭ ✺ ✼ ✺✢ .
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b) Out-band behavior.

Figure 1. Order 50 approximation of the ❉ ✶ ✛ ✶
parameter of a coil inductor.

6 Experimental Results

In this section several experimental results are presented.

The examples were chosen to illustrate certain issues that

were found to be relevant and the properties of the generated

models. The frequency responses were obtained using both

the state-space representation and (22) thus validating the

results from section 5.

The first example is the ❉ ✶ ✛ ✶ parameter of a coil inductor.

In Figure 1-a), the data is approximated by a 25 point in-

terpolant, the value of ✆ was manually chosen, ✆ ✍●✗ ❄ ✗ ✯ ✱ ✖was found to be adequate. The out band behavior is quite

smooth as can be seen in Figure 1-b). Since 25 interpo-

lation points were used, the model has order 50 which is

clearly excessive. By determining the poles of the system,

it can be seen that the approximation is stable (it was ver-

ified that, as expected, the real part of the poles is always

less than ✆ ✍ ✗ ❄ ✗ ✯ ✱ ✖ ). The infinity norm of the system’s

frequency response, calculated to an accuracy of 1e-3, using

the method in [3], was determined to be ■ ✟ ■ ✍●✗ ❄ ✕✗✖ ✖ ❏ ✯
which proves the model is passive.

In the next example, the 2 by 2 scattering parameter ma-

trix of the same coil inductor is approximated. The gener-

ated model uses 50 interpolation points which means that

it has 200 states. The approximation is illustrated in Fig-

ure 2. The poles of the system matrix are all in the left

half plane and have a real part smaller than ✽ ✆ , where✆ ✍ ✱ ❄ ✖✌✾ ✯ ✗ ✴ ●
. It was interesting to notice that, the condi-

tion number of the system matrix is relatively small for its

size, cond ✣ ✄ ✩ ✍ ✯ ❄ ✘✚✙✗✙ ✾ ✯ ✗✗✛ . The infinity norm, calculated

to a tolerance of ✯ ✗ ✴ ●
, is ■ ✟ ✣❊❉▲✩ ■✢✜ ✍ ✗ ❄ ✕✄✕ ✯ which proves

that the model is passive. The behavior of the model outside

the data set is also seen to be smooth.

In the next example the ❉ ✶ ✛ ✶ parameter of a SAW filter is

approximated. The frequency band is very narrow and the

data is very close to one showing little magnitude variation.

Since the values are very close to one, ✆ must be small.

However, a small ✆ leads to an oscillatory frequency re-

sponse. In order to reduce the magnitude of the oscillations

a large number of interpolation points is required. Figure 3

shows an approximation for ✆ ✍ ✱ ✾ ✯ ✗ ✴ ✛ using
✙ ✯ interpo-

lation points. The oscillations of the 122 order model are at

most 0.4dB but, since the data has almost constant modulus,
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Figure 2. Multivariable approximation of the

scattering matrix of a coil inductor using ✆ ✍✗ ❄ ✗❚✗ ✱ ✖ and 50 points.
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Figure 3. Approximation of a SAW filter’s ❉ ✶ ✛ ✶
parameter using ✆ ✍ ✱ ✾ ✯ ✗ ✴ ✛ and

✙ ✯ interpo

lation points.

qualitatively, the approximation is quite bad.

In order to try a larger value for ✆ , the data was scaled

down by ✯ ✗ . The scaled problem allows for larger values of✆ . However, it is no longer guaranteed that the generated

model will be passive. Figure 4-a) shows an approximation

with ✆ ✍ ✯ ❄ ✖ ✾ ✯ ✗ ✴ ●
and �✚✖ interpolation points. The os-

cillations are smoother and the order is smaller, although

still very high since a model with 90 states is quite large.

Unfortunately, calculating the infinity norm it comes that■ ✟ ✣❑❉❋✩ ■✢✜ ✍ ✗ ❄ ✖ ✗ ✱ � . The model, in the original scale, is

not passive since its infinity norm is larger than one. This

may confirmed by observing the out band behavior of the

approximant in Figure 4-b).

This example shows that scaling the model so that a

larger ✆ may be used is an unreliable technique, since pas-

−0.02 −0.018 −0.016 −0.014 −0.012 −0.01 −0.008 −0.006 −0.004 −0.002 0
−1.07

−1.06

−1.05

−1.04

−1.03

−1.02

−1.01

−1

−0.99

norm s
1,1

w/max(w
data

)

lo
g
1
0
(|

|.
||
)

interpolation points
intepolation        
data                

−0.02 −0.018 −0.016 −0.014 −0.012 −0.01 −0.008 −0.006 −0.004 −0.002 0
−1.5

−1.45

−1.4

−1.35

−1.3

phase s
1,1

w/max(w
data

)

ra
d

a) Data-range

−0.1 −0.05 0 0.05 0.1
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

norm s
1,1

w/max(w
data

)

lo
g

1
0

(|
|.
||
) passivity limit

interpolation points
intepolation        
data                

−0.1 −0.05 0 0.05 0.1

−3

−2

−1

0

1

2

3

phase s
1,1

w/max(w
data

)

ra
d

b) Out-band

Figure 4. Approximation of a SAW filter’s ❉ ✶ ✛ ✶
parameter, scaled by 0.1, with ✆ ✍ ✯ ❄ ✖ ✾ ✯ ✗ ✴ ●
and �✚✖ interpolation points.
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Figure 5. Multivariable approximant of the

scattering matrix of a SAW filter using 80 in
terpolation points, ✆ ✍ ✱ ❄ ✖✩✾ ✯ ✗ ✴ ✛ and relative

error norm.

sivity is no longer guaranteed. However, this is not always

the case and, if a passive model is not required, scaling may

be considered.

The problem of fitting data with different magnitudes is

even more important in the multivariable fitting problem.

For matrix function interpolation, the choice of the interpo-

lation points and ❜ becomes harder as there are conflicting

objectives. The choice of the point with the largest matrix

error norm or even relative matrix error norm may not suf-

fice, especially when the magnitude of the entries is differ-

ent.

Our final example shows the approximation of the scat-

tering parameter matrix of a SAW filter. In Figure 5 the

frequency response of an approximant using 80 interpola-

tion points, ✆ ✍ ✱ ❄ ✖ ✾ ✯ ✗ ✴ ✛ and the relative error norm is

illustrated. In Figure 6 the frequency response of an approx-

imant using 80 interpolation points, ✆ ✍ ✯ ❄ ✱ ✖✰✾ ✯ ✗ ✴ ✛ and

the absolute error norm is illustrated. The results agree with

what was expected after the previous example. The differ-

ent shifts are due to the use of different interpolation point

sets.
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Figure 6. Multivariable approximant of the
scattering matrix of a SAW filter using 80 in

terpolation points, ✆ ✍ ✯ ❄ ✱ ✖❞✾ ✯ ✗ ✴ ✛ and square

error norm.

7 Conclusions

The Nevanlinna-Pick interpolation algorithm and the,

more general, two-sided Nudelmann problem and its so-

lution are powerful mathematical tools that, appropriately

used, may have an important role in frequency domain sys-

tem identification. Since the interpolants are guaranteed to

be stable and norm bounded by one, they are natural models

for the scattering parameter matrices of passive systems.

In this paper, results from Nevanlinna-Pick interpolation

theory were used to develop a bounded real matrix ratio-

nal approximation algorithm. The algorithm was used to

generate rational function models of passive systems by ap-

proximating their scattering parameter matrices. During the

course of this research it was determined that factors such

as the choice of ❜ as well as the choice of an appropri-

ate ✆ are critical for approximation accuracy and efficiency.

While the order of the generated models may in some cases

be high, it is still much smaller than what would result from

the direct application of the Nevanlinna-Pick interpolation

algorithm to the full data set and the models meet the re-

quired passivity and accuracy requirements.
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