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Passive Damping of Large Space Structures
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The complex stiffness matrix and the mass matrix of a uniaxial bar subjected to constrained layer damping
over its entire length are derived exactly by solving the differential equations of motion of the three-layered
structure. The stiffness and mass matrices of a bar with segmented damping treatments are obtained by
assembling the corresponding matrices for each segment and eliminating the internal nodes using a reduction
procedure similar to static condensation. The natural frequencies, mode shapes, and loss factor of a pin-
connected truss containing several damped members are computed by three different methods: truss finite
element (TFE) method (exact), equivalent beam element (EBE) method, and scaled beam element (SEE) method,
each method being more efficient than the preceding one. A 10-bay plane truss is considered as an example to
illustrate each method. The EBE method yields very good results, but the savings in computation is not
significant. The SBE method reduces the computational effort drastically and gives reasonably approximate
results.

I. Introduction

T HE space structures of future space stations and other
such facilities would be typically latticed, lightweight,

and flexible. During regular operation of these space stations,
they would be subjected to excitation, causing undesirable
low-frequency vibrations. The control of these vibrations is
vital for the successful operation of the space structure. In
addition to active controls, passive damping techniques can be
employed to minimize the mass of components of the active
control systems. Constrained layer damping is one of the
efficient passive vibration control techniques.1

In this paper we have developed a series of analytical and
numerical techniques for the analysis of a large space structure
(pin-connected truss) subjected to constrained layer damping.
Actually, these techniques are equally applicable to any type
of passive damping treatment. Figure 1 depicts the hierarchy
of models that can be used in analyzing a passively damped
large space structure. First, a closed-form expression is de-
rived for computing the complex stiffness matrix and mass
matrix of a uniaxial bar subjected to damping treatment along
the entire length (Fig. la). The problem of segmented treat-
ment on a uniaxial bar is solved by considering the bar as an
assemblage of fully treated bars (Fig. Ib). The stiffness and
mass matrices of the various uniaxial members are assembled
to form the global stiffness and mass matrices of the truss
structure (Fig. Ic). The loss factor can be computed using the
modal strain energy method.2 If the truss has a large number
of members—which is typical of large space structures—then
an equivalent beam or plate model can be derived. There are
several approaches for deriving the equivalent continuum
model for an undamped space structure, e.g., Sun et al.,3
Noor et al.,4 and Lee.5 All of these methods are based on the
assumption that the large space structure has a repeating unit
cell. In this paper we have modified the method described by
Lee5 to derive the complex stiffness and mass matrix of an
equivalent beam element, which can then be used in the analy-
sis of large structures. Two models, equivalent beam element
(EBE) method (Fig. Id) and scaled beam element (SBE)
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method (Fig. le), are derived. In the EBE method, each unit
cell of the truss is modeled as one equivalent beam element,
whereas in the SBE method the truss is modeled with beam
elements that are generally longer than the unit cell.

Numerical examples are given to illustrate the efficiency of
various methods and also their application in optimizing the
length of treatment and number of segments for maximum
damping.

II. Damping of a Uniaxial Bar with Full Treatment
Consider the uniaxial bar subjected to constrained layer

damping treatment along the entire length (Fig. 2). The equa-
tions of motion for the base structure and the constraining
layer are:

(1)

(2)
fily
——

fily
——

where U and V denote the axial displacements of the base
structure and the constraining layer, respectively; A, E, and p
are the area of cross section, Young's modulus, and the den-
sity, respectively, of the base structure; and Ac, EC9 and pc are
the corresponding properties of the constraining layer. The
viscoelastic damping layer is solely characterized by the shear
stiffness per unit length k, which is estimated as Gb/h, where
G, b, and h are, respectively, the complex shear stiffness,
width of the treatment, and thickness of the viscoelastic damp-
ing layer. Assuming the frequency of vibration as co, the
displacements can be written as

(3)

(4)

Substituting from Eqs. (3) and (4) into Eqs. (1) and (2) and
solving the set of ordinary differential equations, the solution
for the complex displacements U(x) and V(x) can be written
as

(5)

(6)
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DAMPING TREATMENT

BASE STRUCTURE

a) UNIAXIAL BAR WITH DAMPING
TREATMENT ALONG ITS ENTIRE LENGTH

b) UNIAXIAL BAR WITH
SEGMENTED DAMPING TREATMENT

1 r i \ i

c)TRUSS FINITE ELEMENT

METHOD (TFEM)

d) EQUIVALENT BEAM
ELEMENT METHOD (EBEM)

Similarly, for the constraining layer,

U — V-> A Fcons — ' L-ti-c^c
dV
dX ' dx = V2qT[Kcons]q (13)

where Kcons is tne stiffness matrix of the constraining layer.
For the viscoelastic layer,

(14)

where KV1S is the stiffness matrix of the viscoelastic layer.
A similar procedure is used to derive the mass matrices from

the expressions for kinetic energy in each of the components.
For example, the mass matrix of the base bar can be derived
from

V2 PA\ \U\2dx =
Jo

(15)

The mass of the viscoelastic layer is assumed to be negligible
and its kinetic energy contribution is ignored.

The various stiffness and mass matrices are given in Ap-
pendix A.

e)SCALED BEAM ELEMENT
METHOD (SBEM)

Fig. 1 Hierarchy of models.

where \n are the roots of the characteristic equation and the
ratio Bn/An is given by

B / 1
-f = ( — \\AE\l + (n = 1, . . . , 4) (7)

The arbitrary constants An and Bn can be solved in terms of
end displacements Ui and U2 from the boundary conditions:

£7(0) = Ul9 U(L) = U2

dV
~dX dX = 0 (8)

We have assumed that the constraining layer is not anchored
and hence it is stress free at the ends. Thus the solutions for
U(x) and V(x) can be expressed in terms of U\ and U2 as

U(x) =

V(x) =

U2N2(x)

+ V2H2(x)

(9)

(10)

The expressions for X and the shape functions A^, 7V2, HI,
and H2 are given in Appendix A.

The stiffness matrices of the base bar, constraining layer,
and damping layer are derived by expressing the respective
strain energies in terms of the nodal displacements U\ and U2.
In the following equations, q is the column vector of displace-
ments Ui and C/2, i.e., qT = [Ui U2]. In the preceding expres-
sion and in what follows, a superscript T denotes conjugate
transpose of a matrix. The strain energy in the base structure
can be expressed as

( L

JO

dU
dX dx (U)

Substituting for U(x) in terms of q, the strain energy can be
derived as

(12)

III. Damping of a Uniaxial Bar with
Segmented Treatment

A uniaxial bar with damping treatment applied in discontin-
uous segments is depicted in Fig. 3. Each segment is consid-
ered as an individual fully treated member. For portions with-
out any damping treatment, the stiffness and mass properties
of the damping and constraining layers can be taken as zero.
The stiffness and mass matrices of all of the segmented parts
are calculated as described in Sec. II and then assembled to
form the complex stiffness matrix K and mass matrix M. For
a bar with N segments, the order of the stiffness or mass
matrices will be (N + 1) x (TV + 1). Since no forces are acting
at the internal nodes, a static condensation procedure can be
used to eliminate those degrees of freedom and reduce the
order of the stiffness and mass matrices to 2x2 .

The dynamic stiffness matrix D of the bar at a frequency o>
is

D = [Kr-u2M] (16)

where Kr is the real part of the stiffness matrix K. In Eq. (16),
the damping effects are assumed small and ignored. The equa-
tions of motion can be arranged as

Dec.

CONSTRAINING LAYER

(17)

VISCOELASTIC LAYER

=/

BASE STRUCTURE

Fig. 2 Constrained layer damping of a uniaxial bar.

U, U,

where ATbase is the stiffness matrix of base structure. Fig. 3 Segmented damping treatment of a uniaxial bar.
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used in the numerical example later. The equation of motion
for this one-degree-of-freedom system is

0 . 6 0 . 8

Fig.

BAR LENGTH (m)

4 Loss factors for fully treated bars of various lengths.

CO
CC 0 .05 -e

NUMBER OF SEGMENTS

Fig. 5 Loss factor vs number of segments (bar length I m).

where the subscripts R and C denote the degrees of freedom to
be retained and condensed, respectively, and F is the vector of
forces at the end nodes. This gives a relation between the two
degrees of freedom to be retained and the condensed degrees
of freedom:

The transformation matrix T that relates the retained and
total degrees of freedom can be derived as

TT=[I2 - (19)

Then the reduced 2 x 2 complex stiffness and mass matrices
KTed and Mred for the segmented bar are

KTQd = TTKT
Mred =

(20)

(21)

IV. Numerical Examples for Damping Treatment
in Uniaxial Bars

The procedures described in Sees. II and III were applied to
a problem of a uniaxial bar fixed at one end and subjected to
a unit sinusoidal force at the other end. The frequency of the
force co is assumed to be 13 Hz, which is typical for the truss

(K22
d - o>2M22

d)U2 = (22)

Then the tip displacement U2 is given by l/(K22
d - u>2M22

d).
The loss factor is equal to the ratio of the imaginary part and
real part of U2. In Fig. 4 the loss factor is plotted for various
lengths of the bar treated with damping layer along their entire
length. In Fig. 5 the effect of the number of segments on a bar
of a given length is depicted. All of these results were com-
pared with a detailed finite element analysis6 of the problem,
and the comparison was excellent. The material properties
used in the examples are given in Table 1.

From Fig. 4 it may be seen that there exists an optimum
length of a fully treated bar for maximum damping. For the
example considered, the optimum length is about 0.18 m.
Figure 5 shows the variation of loss factor with the number of
segments of damping treatment on a bar 1 m long. The seg-
ments are assumed to be of equal length. It may be noted that
the optimum number of segments is six, and hence the length
of each segment is 0.167 m. In fact this is consistent with the
results shown in Fig. 4, i.e., the optimum segment length in
Fig. 5 is approximately equal to the treatment length for
maximum damping in Fig. 4.

V. Damping Evaluation Using the Truss
Finite Element Method

Consider the problem of a space truss consisting of several
pin-connected members subjected to constrained layer damp-
ing or any other passive damping devices. The stiffness and
mass matrices of these bars in the local coordinate system
parallel to the bar can be derived using the methods described
in the preceding sections. They can be transformed to the
global truss coordinates using the traditional transformation
matrices for truss elements.5 From the real part of the global
stiffness matrix and the global mass matrix the undamped
natural frequencies and mode shapes can be found. Then the
loss factor of the truss corresponding to the nth mode is2

(23)

where <j>n is the nth eigenvector (mode shape), and K' and K "
are the real and imaginary parts of the complex global stiff-
ness matrix.

Numerical results for several examples of treatment in a
plane truss are given in Tables 2-4 and are discussed in Sec.
VIII.

VI. Equivalent Beam Element Method
In the case of large space structures, one can derive an

equivalent continuum model, either a beam or a plate model,

Table 1 Material properties used in present study

Base structure
Constraining layer
Viscoelastic layer

Young's
modulus
E, GPa

70
200

Area of
cross section

A, m2

l x l O ~ 4

2xlO- 5

Density
p, kg/m2

2800
8000

Shear
stiffness

A:, Pa

8xl08

Table 2 Comparison of natural frequencies of a truss without
damping treatment

Method
TFE
EBE
SEE

Model
co, rad/s

72.47
72.65
66.44

i?
0
0
0

Mode II
co, rad/s rj
369.84 0
377.63 0
324.13 0

Mode III
co, rads/s 77
705.18 0
705.64 0
719.30 0
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Method

Method

Table 3 Results for the truss with diagonal members damped

Model Mode II Mode III
co, rad/s co, rad/s co, rads/s

TFE
EBE
SBE

68.44
68.61
63.07

5.7357e-4
5.8151e-4
7.3708e-4

366.57
374.32
332.95

2.9157e-3
3.0668e-3
4.5889e-3

679.72
679.05
714.53

5.749e-5
6.1435^-5
1.2608e-3

Table 4 Results for the truss with horizontal members damped

Model Mode II Mode III
co, rad/s co, rad/s co, rads/s

TFE
EBE
SBE

86.68
87.36
79.31

1.7803e-2
1.8018e-2
1.7053e-2

416.79
427.49
358.7

1.1827e-2
1.2430e-2
0.9704e-2

728.09
716.77
734.36

1.9606e -2
1.9555e-2
1.8354e-2

for each repeating unit cell of the truss structure. Lee5 derived
the equivalent beam finite element stiffness and mass matrices
for the unit cell of a slender space truss. In the present study
the preceding method is extended to derive the imaginary part
of the stiffness matrix also. These equivalent matrices can then
be assembled to form the global stiffness and mass matrices
from which the natural frequencies, mode shapes, and damp-
ing in the original large space structure can be computed using
the method described in Sec. V. A brief description of Lee's5

method is given next.
In this method a unit cell of the truss is modeled as a single

three-dimensional beam finite element having the same length
as the unit cell. The beam element has two extreme nodes and
six degrees of freedom at each node. The six degrees of free-
dom are the displacements in the x, y, and z directions and the
rotations about the three coordinate axes. The displacements
at an arbitrary point in the beam can be obtained based on the
assumption that plane sections remain plane. Thus the dis-
placement components at any point on the left/right cross
section can be expressed in terms of the nodal displacements
and rotations at the left/right nodes of the beam element.
Then a transformation matrix T that will relate the displace-
ments of a real joint in the unit cell to the fictitious beam
degrees of freedom is derived. The stiffness and mass matrices
of each uniaxial member of the unit cell are transformed to the
beam coordinates by using the standard transformation and
then augmented to obtain corresponding matrices for the
beam element. It may be noted that in the present study the
stiffness matrices are complex due to the damping treatment.

The savings in the computational effort one can obtain
using this method can be expressed in terms of the reduction in
the numbers of degrees of freedom from the real structure to
the fictitious beam element. Assuming the number of joints in
the unit cell as N, the total number of actual degrees of
freedom is 3N, whereas the beam element has 12 degrees of
freedom. Hence the relative savings is equal to [1 - (4/7V)].
For plane trusses the relative savings will be equal to [1 -
(3/7V)j. For the example shown in Fig. 6, N = 4 and the
relative savings will be equal to 0.25.

The results from this model are compared with the exact
results obtained from the truss finite element (TFE) method in
Tables 2-4. The agreement in natural frequencies and struc-
tural loss factors is found to be excellent: A detailed discussion
of the results is presented in Section VIII.

VII. Scaled Beam Element Method
In Sec. VI we noted that the equivalent beam element

method reduces the total number of degrees of freedom; how-
ever, the reduction is not very significant. Thus there is no
advantage in using the method in the case of large space
structures. If we can use a beam element that is longer than the
unit cell, then the number of elements needed to model the
structure can be reduced, resulting in significant savings in
computation. Thus the problem reduces to that of deriving

1 m

1 m

Fig. 6 Ten-bay truss used in the numerical examples.

stiffness and mass matrices of beam elements of arbitrary
lengths from those of the equivalent beam derived from the
unit cell. One way of accomplishing this objective is to identify
a set of beam material and cross-sectional properties from the
continuum beam element properties,3'5 and to use them to
derive the stiffness and mass matrices of elements of arbitrary
length using the standard finite element derivation procedures.
When this method was applied to damping problems, the
results were not satisfactory. The method of equivalent beam
properties5 yields reasonably correct values for the real part of
the stiffness matrix and the mass matrix because the truss
structure behaves more or less like a beam on a global scale.
However, when the damping treatments are sparse, the assem-
blage of treated members does not behave like a beam. Hence
the beam properties derived for the imaginary part of the
stiffness matrix do not represent the damping effects accu-
rately.

In this study we propose a least-squares method that com-
pares the stiffness matrix of the equivalent beam element with
the stiffness matrix of an anisotropic beam finite element.7 In
the present plane truss problem there are 21 stiffness terms in
the 6 x 6 symmetric stiffness matrix of the EBE method,
whereas the stiffness matrix of an anisotropic beam element
involves six beam properties and the element length as given in
Appendix B. Hence, a least-squares solution procedure is used
to obtain the six best-fitting properties of the beam from the
21 equations obtained by equating each term of the an-
isotropic beam stiffness matrix to that of the equivalent beam
element. The stiffness matrix of a beam element of arbitrary
length can be computed from Eq. (B13) in Appendix B. The
same procedure was also applied to the imaginary part of the
stiffness matrix. Approximation of the mass matrix was more
forgiving than the stiffness calculations. Hence it was assumed
that the mass matrix scales linearly with the length of the
element, as it does for an anisotropic beam,7 i.e., my =
Mijt/L, where ra// is a term in the mass matrix for element
length £, M// is the corresponding term for the equivalent beam
element, and L is the unit cell length.

VIII. Results and Discussion
The material properties used in this study are given in Table

1. The plane truss depicted in Fig. 6 was analyzed with and
without any damping treatments.
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Two cases of damping treatment were considered: 1) only
diagonal members subjected to damping, and 2) only the
horizontal members (parallel to the x axis) subjected to damp-
ing. The results for natural frequencies and damping were
obtained for the first three modes of the truss. The results are
presented in Tables 2-4. It should be mentioned that the
methods presented in this paper assume the frequency of
vibration a priori, and hence an iterative method has to be
used to find the correct frequencies for the calculation of
stiffness and mass matrices of a damped uniaxial bar. In this
iterative method, a frequency is assumed to compute the stiff-
ness and mass matrices of a uniaxial bar, which are used in the
truss calculations to determine the natural frequencies of the
truss. The calculated natural frequency of the truss is used to
correct the uniaxial bar matrices, and the computations were
repeated. Usually two or three iterations were needed to esti-
mate the correct natural frequencies. The results were com-
puted using three methods: 1) truss finite element method,
which is a full-scale modeling of the truss and yields exact
results; 2) equivalent beam element method, where each unit
cell is modeled as one beam element; and 3) scaled beam
element method, in which the beam element is longer than the
unit cell.

The efficiency of computation can be measured in terms of
the number of degrees of freedom (DOF) used in each
method. For the 10-bay plane truss, the TFE method used 44
DOF, the EBE method used 33 DOF, and the SEE method
with four elements used 15 DOF.

From Tables 2-4 it may be seen that the EBE method
predicts the natural frequencies accurately, whereas the SEE
method has an error of about 10%. In predicting loss factor,
the EBE method is very good. The SEE method works reason-
ably well for the truss with only horizontal members damped,
whereas it fails to predict damping for the case when only
diagonal members damped. However, the loss factors for the
diagonal members damped case (0.06%) is much smaller than
the horizontal members damped case (2%). So, in practice,
treatment on the top and bottom members is suggested, and
the SEE method yields satisfactory results at a much reduced
computational effort.

Appendix A: Equations for a Uniaxial Bar
with Damping Treatment

In this Appendix the derivations of the solutions for U(x)
and V(x)9 the complex displacements of the base structure and
constraining layer, are presented. The derivations of the ex-
pressions for the stiffness and mass matrices are also included.

The substitution of the solutions for U(x) and V(x) in the
equations of motion gives a characteristic equation whose
roots X are given by

X2 = - [(<JPA-k)AcEc c - k)AE]
2AEACEC

The displacement U(x) is given by

U(x) = \e^x e^2X £^3* £^4*1[.<4

The displacement V(x) is given by

(A4)

(A5)

(A6)

and using the expressions for the strain energy and kinetic
energy from Sec. II, the various stiffness and mass matrices
can be derived as follows.

The stiffness matrix of the base is given by

where

Substituting for {A } from Eq. (A3)

[A } = [T]

U = l , , . . , 4 (A8)
iyv/ -t- Ay-;

The stiffness matrix of the constraining layer is given by

(A9)

where

neons __ . , 4 (A10)

The stiffness of the viscoelastic layer is given by

where

Pf = -———————————————- /, y = 1, . . . , 4 (A12)

The mass matrices are derived from the expressions of ki-
netic energies, of the base and constraining layer.

The mass matrix of the base structure is given by

where

/ + x,)

(A13)

(A14)

-k)AcEc - k)AcEc]2- 4AcEcAE(u2pA-k)(u2pcAc-k)
2AEACEC

Using
« = !,... ,4

(Al)

(A2)

The constants in the solution of U(x) and V(x) can be determined in terms of the end displacements t/i and U2 by using the
boundary conditions in Sec. II and Eq. (8):

1 1

R2A2\2

1 1

#3^3X3 #4^4X4
U2
0
0 (A3)
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The mass matrix of the constraining layer is given by

Mcons = pcAc[T]T[Q™*][T] (A15)

where

u2-

Gcons __ \
ij \i + \j (A16)

Appendix B: Stiffness Matrix of an Anisotropic
Beam Finite Element

In this Appendix the derivation of the stiffness matrix of an
anisotropic beam finite element is presented. The method is
similar to that given in Ref. 7. Let the constitutive relations of
an anisotropic beam be

C21

C31 C33

(Bl)

_ .. _ /I i ... _ n flJO^

where w, w, and 0 are the axial displacement at the midplane,
transverse displacement, and rotation of the cross section; P,
V, and M are the axial force resultants, shear force resultant,
and the bending moment, respectively; and the subscript x
after a comma denotes differentiation with respect to x. The
symmetric matrix [c] is a function of the beam material pro-
perties and cross-sectional properties. Consider a beam finite
element of length L. The beam element has two nodes and six
degrees of freedom Ui, Wi, and 0i at the first node and u2, w2,
and 02 at the second node. Let the corresponding nodal forces
be Fxi, Fzl, and mi and F&, Fz2t and m2. The average beam
deformations, axial strain, shear strain, and curvature at the
center of the beam can be expressed in terms of the nodal
variables as

C13 I C\2 Ci3\ C\\

[*] =

C33 /C23 C33\ CB

62

(B3)

(B4)

(B5)

The average force resultants at the center of the beam are

p=Fx2-^Fxl (R6)

V = Fz2~2
Fzl (B7)

M = ̂ ^ (B8)

Then we require that the average force resultant and the
average deformations satisfy the beam constitutive relations
(Bl). Thus we obtain three equations relating the nodal forces
and nodal displacements. Further the nodal forces should
satisfy the equilibrium conditions as

(B9)

(BIO)

011)

Fzi + Fz2 = 0

+ m2 - LFz2 = 0

From the six equations a relation between the nodal forces and
nodal displacements can be derived as

= [Fxi Fzi mi FX2 FZ2 m2]T (B12)

where the beam element stiffness matrix [k] is given by

Cll / £12_£13

/ 2

33

— — (SYMMETRIC)

13

£33

_£23_£33

/ 2

£12 £13

/ 2

(B13)
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