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IMPORTANCE Atrial fibrillation (AF) affects 34 million people worldwide and is a leading cause
of stroke. A readily accessible means to continuously monitor for AF could prevent large
numbers of strokes and death.

OBJECTIVE To develop and validate a deep neural network to detect AF using smartwatch
data.

DESIGN, SETTING, AND PARTICIPANTS In this multinational cardiovascular remote cohort study
coordinated at the University of California, San Francisco, smartwatches were used to obtain
heart rate and step count data for algorithm development. A total of 9750 participants
enrolled in the Health eHeart Study and 51 patients undergoing cardioversion at the
University of California, San Francisco, were enrolled between February 2016 and March 2017.
A deep neural network was trained using a method called heuristic pretraining in which the
network approximated representations of the R-R interval (ie, time between heartbeats)
without manual labeling of training data. Validation was performed against the reference
standard 12-lead electrocardiography (ECG) in a separate cohort of patients undergoing
cardioversion. A second exploratory validation was performed using smartwatch data from
ambulatory individuals against the reference standard of self-reported history of persistent
AF. Data were analyzed from March 2017 to September 2017.

MAIN OUTCOMES AND MEASURES The sensitivity, specificity, and receiver operating
characteristic C statistic for the algorithm to detect AF were generated based on the
reference standard of 12-lead ECG–diagnosed AF.

RESULTS Of the 9750 participants enrolled in the remote cohort, including 347 participants
with AF, 6143 (63.0%) were male, and the mean (SD) age was 42 (12) years. There were more
than 139 million heart rate measurements on which the deep neural network was trained. The
deep neural network exhibited a C statistic of 0.97 (95% CI, 0.94-1.00; P < .001) to detect
AF against the reference standard 12-lead ECG–diagnosed AF in the external validation cohort
of 51 patients undergoing cardioversion; sensitivity was 98.0% and specificity was 90.2%.
In an exploratory analysis relying on self-report of persistent AF in ambulatory participants,
the C statistic was 0.72 (95% CI, 0.64-0.78); sensitivity was 67.7% and specificity was 67.6%.

CONCLUSIONS AND RELEVANCE This proof-of-concept study found that smartwatch
photoplethysmography coupled with a deep neural network can passively detect AF but with
some loss of sensitivity and specificity against a criterion-standard ECG. Further studies will
help identify the optimal role for smartwatch-guided rhythm assessment.
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A trial fibrillation (AF) affects up to 34 million people
worldwide, and patients with AF exhibit a higher risk
of severe health consequences, including death and

stroke.1-3 Atrial fibrillation is often asymptomatic and thus can
remain undetected until a thromboembolic event occurs.1,4

Earlier detection of AF would enable the use of anticoagula-
tion therapy known to mitigate the risk of stroke and other
thromboembolic complications.1,4-9 Data from implantable car-
diac monitors has demonstrated that years of monitoring may
be required to detect clinically significant AF.10,11

An accessible means to continuously monitor for AF could
have a valuable clinical effect by enabling AF detection, such
as in patients with recurrent AF after ablation or pharmaco-
logic cardioversion.12,13 Various types of wearable sensors, rang-
ing from fitness trackers to smartwatches, can measure heart
rate and have exhibited rapid adoption among the general
population, providing an opportunity for highly scalable AF
detection.10,14

Deep neural networks are a type of machine learning al-
gorithm that has shown high accuracy in performing pattern
recognition from noisy, complex inputs, such as speech15 and
image recognition,16 including in medical applications, such
as detection of diabetic retinopathy17 and skin cancer.18 We
sought to develop and validate a deep neural network to de-
tect AF from smartwatch data.

Methods
Study Design
This study used 3 cohorts to achieve 3 goals: (1) algorithm de-
velopment and training using a remote cohort; (2) external vali-
dation of AF detection in an in-person cardioversion cohort;
and (3) an exploratory analysis to perform ambulatory AF de-
tection in a third cohort. All participants provided written in-
formed consent prior to enrollment. This study was ap-
proved by the University of California, San Francisco,
institutional review board.

Data Collection
We used the publicly available Cardiogram mobile applica-
tion (Cardiogram Inc) to access data from standard, commer-
cially available Apple Watches (Apple Inc). Heart rate data ob-
tained from the photoplethysmography sensor and step count
data from the accelerometer were accessed by the Cardio-
gram application and input into a deep neural network. The
frequency of heart rate recordings depended on whether the
watch was in standby mode, during which heart rates were ob-
tained every 5 minutes, or Workout mode, during which heart
rates were continuously recorded and obtained as 5-second av-
erages.

Algorithm Development and Training (Remote Cohort)
A large, geographically diverse remote cohort was used to per-
form deep neural network development and training (eFig-
ures 1 and 2 in the Supplement). Data gathering and study man-
agement were performed using the Health eHeart Study
infrastructure (http://www.health-eheartstudy.org), an online

cohort study coordinated at the University of California, San
Francisco. The Health eHeart Study enrolls English-speaking
adults 18 years and older with an active email address recruited
through academic institutions, lay press, social media,
promotional events, and, for the current study, the Cardiogram
mobile application. From March 2, 2016, to March 15, 2017,
Health eHeart Study participants with an Apple Watch were
sent an invitation to participate, and individuals providing
informed consent were enrolled. Demographic information was
self-reported.

Algorithm Development
We used a purpose-built neural network consisting of 8 lay-
ers, each of which had 128 hidden units, for a total of 564 227
parameters (eFigure 3 in the Supplement), that transformed
raw sensor measurements—heart rate and step counts—into a
sequence of scores corresponding to probabilities that a par-
ticipant was in AF at each time interval. This deep neural net-
work was trained sequentially using a semisupervised ap-
proach, described below. Our primary classification task was
to passively detect AF from Apple Watch data while in
Workout mode. The network was trained using an unsuper-
vised approach, which we call heuristic pretraining, using
Google’s TensorFlow framework.19 This training used 57 675
person-weeks of unlabeled data from the remote cohort
(n = 6682) to compute several representations approximat-
ing R-R intervals (ie, time between heartbeats). Modeled af-
ter a heuristic previously used for AF detection,20 we calcu-
lated the average absolute difference between successive heart
rate measurements across window sizes of 5 seconds, 30 sec-
onds, 5 minutes, and 30 minutes.

Evaluation and Validation of the Algorithm
(Cardioversion Cohort)
Tovalidatetheneuralnetwork,weenrolledconsecutiveconsent-
ing patients with AF presenting to the University of California,
San Francisco, for electrical cardioversion or pharmacologic car-
dioversion (using dofetilide during hospitalization with continu-
ous monitoring) between March 24, 2016, and February 24, 2017.
Patients with atrial arrhythmias other than AF at the time of en-
rollment, ventricular pacing, or a ventricular-assist device were
excluded.

Key Points
Question How well can smartwatch sensor data analyzed by a
deep neural network identify atrial fibrillation?

Findings In this cohort study of 51 participants presenting for
cardioversion, a commercially available smartwatch was able to
detect atrial fibrillation with high accuracy. Among 1617
ambulatory individuals who wore a smartwatch, those with
self-reported atrial fibrillation were correctly classified with
moderate accuracy.

Meaning These data support the proof of concept that a
commercially available smartwatch coupled with a deep neural
network classifier can passively detect atrial fibrillation.
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A 12-lead electrocardiogram (ECG) was obtained, and an
Apple Watch (paired with an iPhone [Apple Inc] preloaded with
theCardiogramapplication)wasappliedtotheparticipant’swrist
for at least 20 minutes in Workout mode. Patients undergoing
electrical cardioversion remained supine during the study. A
study coordinator time-stamped the moment of cardioversion
and removed the Apple Watch after at least 20 minutes follow-
ing cardioversion. Patients receiving dofetilide were monitored
for conversion to sinus rhythm on cardiac telemetry, after which
a 12-lead ECG and at least 20 minutes of Apple Watch data were
obtained.AppleWatchdatawereusedasinputstotheneuralnet-
work, and rhythm diagnoses were determined by 12-lead ECGs
overread by board-certified cardiac electrophysiologists.

Second Validation: An Exploratory Analysis
Using a subset of the remote cohort, we performed an explor-
atory analysis for a second classification task: detecting AF from

ambulatory data. In this remote cohort subset, the reference
standard AF diagnosis was limited to self-reported persistent
AF. The heuristic pretrained network underwent a second, su-
pervised training phase using labels of AF or no AF obtained
from AliveCor devices. The AliveCor Kardia (AliveCor Inc) is a
smartphone-based device equipped with 2 electrodes that en-
ables remote participants to obtain a single-lead ECG. The first
200 remote cohort participants who self-reported an arrhyth-
mia diagnosis were mailed a device and instructed to use it at
least once per day while wearing the Apple Watch in Workout
mode; 183 (91.5%) were ultimately successfully connected. A
validated AliveCor algorithm approved by the US Food and Drug
Administration demonstrating high specificity for AF
detection21,22 was used to label AliveCor recordings. Super-
vised training of the network used 6338 mobile ECGs from the
183 participants, including 625 recordings from 100 partici-
pants who exhibited AF. Inputs included more than 139 mil-

Table 1. Baseline Characteristics of Remote Cohort Participantsa

Characteristic

No. (%)

P Value
Atrial Fibrillation
(n = 347)b

No Atrial Fibrillation
(n = 8216)

Age, mean (SD), y 55.7 (14.2) 41.5 (11.9) <.001

Unknown 3 (0.9) 52 (0.6) .41

Sex

<.001
Male 263 (75.8) 5132 (62.5)

Female 73 (21.0) 2122 (25.8)

Unknown 11 (3.2) 962 (11.7)

Race/ethnicity

<.001

White 307 (88.5) 5925 (72.1)

Black 12 (3.5) 248 (3.0)

Asian 10 (2.9) 386 (4.7)

Other/unknown 18 (5.2) 1657 (20.2)

Hispanic

<.001
Yes 14 (4.0) 873 (10.6)

No 319 (91.9) 6284 (76.5)

Unknown 14 (4.0) 1059 (12.9)

Education

<.001

High school or less 27 (7.8) 497 (6.0)

Some college 68 (19.6) 1408 (17.1)

Bachelor’s degree 81 (23.3) 1752 (21.3)

Postgraduate 126 (36.3) 1523 (18.5)

Other/unknown 45 (13.0) 3036 (37.0)

Other medical conditions

Hypertension 178 (51.3) 3016 (36.7) .01

Diabetes 40 (11.5) 624 (7.6) .04

Coronary artery disease 53 (15.3) 468 (5.7) .006

Myocardial infarction 34 (9.8) 257 (3.1) .007

Congestive heart failure 36 (10.4) 117 (1.4) .002

Stroke 36 (10.4) 198 (2.4) .004

Sleep apnea 93 (26.8) 1379 (16.8) .01

Implanted heart device 37 (10.7) 128 (1.6) .002

Congenital heart disease 23 (6.6) 176 (2.1) .01

Chronic obstructive pulmonary
disease

20 (5.8) 223 (2.7) .03

Peripheral vascular disease 17 (4.9) 96 (1.2) .009

a Baseline characteristics of remote
cohort participants after excluding
those who did not complete
medical history surveys (n = 1187).

b Atrial fibrillation was determined by
participant self-report.
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lion Apple Watch sensor measurements; unlabeled inputs were
retained using output masking.

For this ambulatory validation, we held out a subcohort
of participants randomly selected from the remote cohort not
used for algorithm development. Those with pacemakers and
implanted cardioverter/defibrillators, those who reported that
their AF “comes and goes,” and those with inadequate heart
rate measurements (averaging 8 hours or less per day) were ex-
cluded. Participants completed online questionnaires regard-
ing demographic characteristics and medical history. The self-
reported diagnosis of persistent AF by a health care professional
was the primary outcome for this exploratory analysis.

Statistical Analysis
Normally distributed continuous variables are presented as
means with standard deviations and were compared using
t tests, and continuous variables with skewed distributions are
presented as medians with interquartile ranges and were com-
pared using the Wilcoxon rank-sum test. Categorical vari-
ables were compared using the χ2 test or Fisher exact test. Test
characteristics with 95% CIs and receiver operating character-
istic curves with C statistics were calculated using standard
techniques. Unadjusted and multivariable logistic regression
was used to determine odds ratios.

In the validation cardioversion cohort, we estimated that
76 participants would provide a margin of sampling error of
5% for a sensitivity and specificity of 95%. We used an early
stopping rule for efficacy, testing the joint null hypothesis that
either the sensitivity or specificity would be less than 85%. The
P value for the joint test was calculated by comparing the mini-
mum of the sample sensitivity and specificity to its simu-
lated null distribution, with both parameters set to 0.85. We
planned to compare the resulting 2-tailed P values after 50 par-
ticipants were enrolled and, if needed, after 76 participants to
critical α values (as specified by the O’Brien-Fleming stop-
ping rule23) of .0031 and .0490, respectively. Otherwise, for
all other aspects of the study, a 2-tailed P value < .05 was con-
sidered statistically significant.

For comparison with the deep neural network, we con-
currently analyzed input heart rate data using 2 statistical tech-

niques used previously for AF detection: root mean square of
successive difference (RMSSD),20 reflecting heart rate vari-
ability, and Shannon entropy (ShE),24 which characterizes
rhythm complexity. Odds ratios were computed in R, version
3.4.0 (The R Foundation), and area under the receiver oper-
ating characteristic curve was computed using the scikit-
learn, version 0.19.1, package in Python (Python Software
Foundation).

Results
Remote Cohort
We enrolled 9750 Health eHeart Study participants with an
Apple Watch who downloaded the Cardiogram mobile appli-
cation, completed an intake survey, and linked their Cardio-
gram account (eFigures 1 and 2 in the Supplement). Table 1
shows the baseline demographic characteristics of the re-
mote cohort. Those with AF were more likely to be older, male,
and white and were more likely to have completed more edu-
cation and exhibited concurrent clinical comorbidities.

Cardioversion Cohort Validation
After 50 patients were enrolled, the early stopping rule was ap-
plied for efficacy given evidence that neither sensitivity nor
specificity was less than 85% (P < .001). One additional pa-
tient was enrolled during this interim analysis and was in-
cluded in the final data set. Of these 51 patients, 43 (84%) un-
derwent electrical cardioversion (all successful) and 8 (16%)
converted with dofetilide (Table 2). Fifty-three total hours of
Workout mode data were obtained.

Figure 1 shows a t-distributed stochastic neighbor embed-
ding for AF and sinus rhythm.25 The C statistic for AF detec-
tion for the deep neural network was 0.97 (95% CI, 0.94-
1.00; P< .001) (Figure 2A). At an operating threshold set to the
high sensitivity of 98.0%, the specificity was 90.2% to detect
ECG-diagnosed AF. In comparison, the C statistic for RMSSD
using the same data was 0.91 (95% CI, 0.85-0.97) and for ShE
was 0.86 (95% CI, 0.79-0.93). Normalizing all tracings by heart
rate did not meaningfully reduce the accuracy of the neural
network, yielding a C statistic of 0.96 (95% CI, 0.94-0.97).

Analysis of Ambulatory AF Detection
In this ambulatory subcohort, 1617 participants were avail-
able, 64 (4%) of whom reported having persistent AF. From
these participants, 18.5 million of 27.9 million heart rate mea-
surements (66.3%) were obtained while in Workout mode. The
C statistic for the deep neural network to detect an individual
with persistent AF was 0.72 (95% CI, 0.64-0.78) (Figure 2B).
The C statistics for RMSSD using the same data was 0.45 (95%
CI, 0.38-0.52) and for ShE was 0.48 (95% CI, 0.40-0.55). Using
an operating cut point for the neural network that maximizes
the sum of sensitivity (67.7%) and specificity (67.6%), those
with neural network–predicted AF had an unadjusted odds ra-
tio of 3.95 (95% CI, 3.02-5.17; P< .001) for persistent AF. After
adjusting for age, sex, race/ethnicity, hypertension, diabetes,
heart failure, and coronary artery disease, neural network–
predicted AF remained significantly associated, with an ad-

Table 2. Baseline Characteristics of Cardioversion Cohort Participants

Baseline Characteristics Total, No. (%) (n = 51)
Age, mean (SD), y 66.1 (10.7)

Male 43 (84)

White 39 (76)

Medical characteristics

Hypertension 43 (84)

Hyperlipidemia 31 (61)

Current smoking 7 (14)

Diabetes 13 (25)

Coronary artery disease 8 (16)

Left ventricular ejection fraction >55% 37 (72)

Obstructive sleep apnea 13 (25)

Prior cardioversion 30 (59)

Stroke/transient ischemic attack 11 (21)
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justed odds ratio of 1.98 (95% CI, 1.48-2.65; P = .02) for per-
sistent AF. Table 3 shows the performance characteristics of
the algorithm in both validation cohorts. In the setting of the
low (4%) AF prevalence in the remote cohort, the positive pre-
dictive value was low.

Discussion
We demonstrate that a commercially available smartwatch can
passively detect AF using a readily available mobile application
usingadeepneuralnetwork.Inexternalvalidationusingthestan-
dard 12-lead ECG as the reference, algorithm performance
achieved a C statistic of 0.97. The passive detection of AF from
free-living smartwatch data has substantial clinical implications.
Importantly, the accuracy of detecting self-reported AF in an am-
bulatory setting was more modest (C statistic of 0.72). Although
the deep neural network’s AF classification in the exploratory
analysisexhibitedhigheroddsratiosthanothermeasuredAFrisk
factors, this proof-of-concept experiment likely demonstrates
the challenges of accurately detecting ambulatory arrhythmia
among constantly mobile individuals in natural environments.

Atrial fibrillation is the leading cause of stroke, and its de-
tection is difficult because of its often asymptomatic nature
and paroxysmal frequency.1,4,10,11,14 Readily accessible means
to detect and screen for silent AF are needed. Even though
monitors with automated capabilities, such as implantable loop
recorders, can be used to detect AF, they are invasive, expen-
sive, and inconvenient.26,27 The ideal instrument for AF de-
tection would be noninvasive and provide real-time, accu-
rate AF detection in a passive fashion—specifically, not
requiring the user to remember to perform some action and
not limited to any one snapshot in time. Smartwatches are well
positioned to accomplish these goals in a cost-efficient and re-
source-efficient fashion. Wearable technology has shown a
steady increase in global usage,28 and the smartwatch, most
popular among all wearable sensors, is projected to reach 55
million global shipments by 2020.29

Prior efforts to automatically detect AF among free-
living participants have predominantly used ambulatory blood
pressure monitors,30 although some recent studies21,31 have
used smartphones and wearable devices. Two studies20,21

showed that AF can be detected using a photoplethysmogra-
phy waveform obtained via the iPhone camera. Similar to the

Figure 1. T-Distributed Stochastic Neighbor Embedding Visualization of the Deep Neural Network’s Last Layer
Using Data From the Cardioversion Cohort
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This t-distributed stochastic neighbor embedding, which is a technique that
assists in visualizing high-dimensional data in 2 dimensions, depicts the deep
neural network’s internal representation of the data derived from the last
recurrent layer of the neural network. Each point represents a 10-minute
segment of data from our validation (cardioversion) data set; orange points
represent atrial fibrillation segments (precardioversion) and blue points
represent normal sinus rhythm segments (postcardioversion). The neural
network has largely clustered atrial fibrillation from normal sinus rhythm

segments, as depicted when plotted on 2 dimensions (axes) that were chosen
arbitrarily. Most points classified as normal sinus rhythm are in the upper part of
the visualization, while atrial fibrillation points are separated in alternate
clusters. The upper inset shows an example of raw smartwatch heart rate data
associated with normal sinus rhythm, and the lower inset shows raw atrial
fibrillation smartwatch data; each vertical bar represents a 5-second average
heart rate color-coded by beats per minute (BPM; blue, <60; orange, 60-99;
red, �100).
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limitations of ambulatory blood pressure cuffs, smartphone-
based data collection is limited in requiring active participa-
tion from the participant (dependent on user adherence) and
by the episodic nature of data obtained. A Samsung Simband
(Samsung) exhibited high sensitivity and specificity for AF de-
tection among 46 individuals.32 However, validation in an ex-
ternal cohort was not performed, and these findings are tied
to a single stand-alone device used for research that is not com-
mercially available. To our knowledge, our study represents
the first to use a deep neural network to passively detect AF
using smartwatch data.

When tested against 12-lead ECG–diagnosed AF in our vali-
dation experiment, the deep neural network outperformed 2
conventional methods for the detection of AF.20 Although the
mean heart rate may differ between those in AF and sinus
rhythm, our results were not meaningfully changed after heart
rate data were normalized. This external validation demon-
strates that the neural network can passively detect AF from
smartwatch data with excellent performance characteristics
obtained in sedentary individuals captured at high temporal
resolution (ie, Workout mode). Even within these con-
straints, public health implications for AF screening may be
broad because periods of sleep can provide long, uninter-
rupted periods of sedentary data, and it is technically fea-
sible to enable high temporal resolution data collection at
scheduled periods.

In light of the relative frequency of subclinical AF de-
tected by implanted devices among patients at risk of
stroke,33-35 it is very likely that the widespread use of an ac-
curate algorithm to detect AF among the large population con-

tinuously wearing smartwatches would result in a substan-
tial increase in new AF diagnoses. While there may be increased
costs associated with the care of those patients, the potential
reduction in stroke could ultimately provide cost savings.

Several factors make detection of AF from ambulatory data
an inherently more difficult classification task: (1) the pre-
dominance of ambulatory heart rates are represented by non–
Workout mode data sampled every 5 minutes, which trans-
lates to a significant loss of temporal resolution; (2) the
variability in heart rate in an ambulatory population is signifi-
cantly increased by a wide range of activities; and (3) heart rate
sensor noise is increased with movement. Because the re-
mote cohort data set was limited to using self-reported diag-
noses of persistent AF rather than ECG-diagnosed AF as in our
validation cohort, we considered this analysis exploratory. We
did not know how many participants were actually in AF at the
time the Apple Watch measurements were taken. Acknowl-
edging these limitations, when using conventional algo-
rithms to analyze the ambulatory data (RMSSD and ShE), C sta-
tistics were similar to predictors based on chance alone. In
contrast, even after adjustment for conventional risk factors,
the neural network’s algorithm classified individuals with per-
sistent AF. As technology develops, expected improvements
in sensors and battery life will likely improve the temporal reso-
lution of ambulatory heart rate measurements, enabling en-
hanced algorithm performance for disease detection.

In contrast to methods used in other recent medical ap-
plications of deep neural networks,17,18 we developed a semisu-
pervised heuristic pretraining procedure that is not depen-
dent on manual physician annotation of training data. Here,

Figure 2. Accuracy of Detecting Atrial Fibrillation in the Cardioversion Cohort
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A, Receiver operating characteristic
curve among 51 individuals
undergoing in-hospital cardioversion.
The curve demonstrates a C statistic
of 0.97 (95% CI, 0.94-1.00), and the
point on the curve indicates a
sensitivity of 98.0% and a specificity
of 90.2%. B, Receiver operating
characteristic curve among 1617
individuals in the ambulatory subset
of the remote cohort. The curve
demonstrates a C statistic of 0.72
(95% CI, 0.64-0.78), and the point on
the curve indicates a sensitivity of
67.7% and a specificity of 67.6%.

Table 3. Performance Characteristics of Deep Neural Network in Validation Cohortsa

Cohort

%

AUCSensitivity Specificity PPV NPV
Cardioversion cohort (sedentary) 98.0 90.2 90.9 97.8 0.97

Subset of remote cohort (ambulatory) 67.7 67.6 7.9 98.1 0.72

Abbreviations: AUC, area under the receiver operating characteristic curve;
NPV, negative predictive value; PPV, positive predictive value.
a In the cardioversion cohort, the atrial fibrillation reference standard was

12-lead electrocardiography diagnosis; in the remote cohort, the atrial
fibrillation reference standard was limited to self-reported history of persistent
atrial fibrillation.

Research Original Investigation Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch

414 JAMA Cardiology May 2018 Volume 3, Number 5 (Reprinted) jamacardiology.com

© 2018 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

http://www.jamacardiology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamacardio.2018.0136


the deep neural network automatically learned features rep-
resentative of a heuristic relevant to our specific task of AF de-
tection, namely an approximation of the R-R interval.20 Deep
neural networks pretrained using this approach can subse-
quently be trained in a supervised manner using a relatively
small amount of labeled data to perform more specialized clas-
sification tasks, exemplified in our exploratory analysis. Deep
neural networks are data-hungry algorithms, typically requir-
ing tens of thousands of labeled examples for optimal
performance.17 However, labeled data at this scale is not read-
ily available for most medical applications and is costly to la-
bel when it is possible to obtain. Our semisupervised method
can be generalized to train data-efficient deep neural net-
works for other medical tasks, requiring significantly less la-
beled data than previously required.

Limitations
Our study has several limitations. Many participants initially
contacted for the study did not complete surveys and link Car-
diogram accounts, which may result in selection bias. This
would likely not invalidate positive associations but would limit
generalizability. All participants already owned a smartwatch
or, among the patients undergoing cardioversion, had a coor-
dinator provide assistance; therefore, it is possible these re-
sults would not generalize to less tech-savvy individuals. How-
ever, as demonstrated by the growing majority that now use
the internet and own smartphones,28,36 the regular use of
smartwatches may become more mainstream with time. The
training using the AliveCor devices relied on an automated al-
gorithm. Although the algorithm is approved by the US Food

and Drug Administration and has exhibited reasonable
accuracy in previous studies,21,22 it is possible that manual over-
reads may have enhanced algorithm performance in the ex-
ploratory ambulatory analysis. These data focused on indi-
viduals with a known history of AF. Therefore, we did not
demonstrate an ability to identify a new diagnosis of the dis-
ease. Finally, despite the excellent test characteristics ob-
served among sedentary patients undergoing cardioversion,
the modest performance in the ambulatory scenario, a con-
text more representative of the ultimate application of this
technology, suggests that these data should be primarily in-
terpreted as a proof of concept.

Conclusions
In conclusion, we showed that a commercially available smart-
watch can passively identify AF against the criterion-
standard 12-lead ECG among sedentary individuals when heart
rate data are collected at a high temporal resolution. We also
present an exploratory analysis demonstrating that our deep
neural network substantially outperforms standard tech-
niques to detect self-reported persistent AF from ambulatory
data, albeit with modest accuracy in these free-living natural
environments. Given the broad and growing use of smart-
watches and ready accessibility of downloadable mobile ap-
plications, this approach may ultimately be applied to per-
form AF detection at large scale, ultimately leveraging common
wearable devices to guide AF management and rhythm
assessment.
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