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A6airaci- The majority of model-based techniquen pro- 
posed to date for solving the multiple source direction-of- 
arrival (DOA) estimation problem operate under the as- 
sumption that the wavefronts impinging on the array are 
planar. However, when nourcea are located close to the array 
(i.e., in the near-field), the inherent curvature of the wavefront 
is no longer negligible. In this paper, we propose the use of 
high-resolution signal subspace methods in conjunction with 
a spatial version of the Wigner-Ville distribution (WVD) to 
solve the near-fleld problem. Advantages of this approach 
are that accurate source range/DOA estimates are obtained 
with relatively good resolution, and without computation 
or search of a three-dimensional spectral surface. The ef- 
fectiveness of the algorithm is demonstrated by extensive 
simulations, and its performance relative to the Cram&-Rao 
bound is also presented. 

1. Introduction 
In recent years, the focus of attention in emitter loca- 

tion research has been on model-based estimation of the 
directions-of-arrival (DOAs) of multiple plane-wave signals 
received by an array of sensors. Virtually all of the tech- 
niques developed to date rely heavily on the plane-wave 
assumption; i.e.., that the signal sources are located in the 
far-field of the antenna array aperture, and hence that the 
signal wavefronts are spatially described by a single loca- 
tion parameter (e.g., azimuth). However, when sources are 
located close to the array (i.e., in the near-field), the in- 
herent curvature of the wavefront is no longer negligible. 
Since the the wavefront in such casea is a spatial function 
of two independent location parameters (e.g., range and 
azimuth), algorithm based on the plane-wave assumption 
are no longer directly applicable and alternatives must be 
found. 

Traditional approaches to the near-field problem are 
based on either triangulation, shultaneour beamforming 
over range and azimuth, or time-delay estimation (cf. 
[I, 21). To improve the resolution performance of such 
methods, parametric range/DOA estimators have been pre  
posed [3,4], though they suffer from the high computational 
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load required in creating and searching a two-dimensional 
range/bearing spectrum. The desire to exploit the com- 
putational advantages of the recently developed total-least- 
squares (TLS)-ESPRIT algorithm [5, 61, together with re- 
cent discussions involving Dr. H. Whitehouse, has led us to 
consider a different approach, one based on a spatial ana- 
log to the Wigner-Ville distribution (WVD). The motiva- 
tion behind this approach is that for sources located in the 
Fresnel region of the antenna array aperture, the combined 
range/DOA estimation problem is similar in form to that 
of estimating the parameters of chirp signals in noise. This 
is a straightforward generalization of the isomorphism be- 
tween sinusoidal frequency estimation and DOA estimation 
problems. In this paper, the concept of a spatial WVD is 
described and used to develop an algorithm that provides 
estimates of the range and azimuth of multiple sources l e  
cated in either the near- or far-field. The algorithm is cur- 
rently limited in applicability to narrowband uncorrelated 
sources and a uniform linear array of sensors. 

J .  
Speiser in bringing to our attention a recent paper by Breed 
and Posch [7] which describes a spatial WVD mkthod for 
combined range/azimuth estimation. Our algorithm differs 
from that of [7] in that signal subspace methods are used in 
place of a discrete Fourier transform to generate the desired 
estimates. This approach offers the following advantages: 
the source locations are eatimated more accurately, closely- 
spaced sources are more easily resolved, the algorithm is 
more easily extended to the multiple-source situation, and 
no computation or search of a spectral surface is required. 
In the sections that follow, the signal model and algorithm 
steps are explained in detail, and the results of simulations 
are presented for a variety of scenarios. Comparisons are 
also made with the CramCr-Rao bound for the single-source 
case. 

We gratefully acknowledge the assistance of Dr. 

2. Signal Modeling Assumptions 
Consider the scenario depicted in Figure 1, where the 

signals from d sources located at range/bearing coordinates 
(&,Bi)  relative to some reference point impinge upon an 
array of m sensors. The array is assumed to be uniform 
and linear, with unity-gain omnidirectional sensors and an 
interelement spacing of 6. The signals are assumed e be 
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Figure I: Multiple Source Near-Field Scenario 

uncorrelated (i.e., the signal covariance matrix is diagonal) 
and narrowband. As shown in the figure, we will define the 
array aperture A to be A P (m- l)6. If the reference point 
is chceen to be at one of the sensors on the end of the array, 
the distance from the ith source to the kth sensor is given 
by a simple application of the law of cosines: 

&k = 4 R i  + k262 - 2k6&. sin Bi . (1) 

I n  this notation, I?, &I.  Using the narrowband aeeump- 
tion, the signal at the kth sensor, z k ( t ) ,  may thus be written 
as 

d 

Zk(t)  = si(t)e'wtd('*'x)(R'k-R') + nk(t)  , (2) 
k 1  

where s i ( t )  is the complex envelope of the ith signal and 
nk(t) is the additive noise present at sensor k .  It will be 
assumed throughout that the noise at each sensor has equal 
but unknown variance u2, and that it is independent from 
sensor to sensor. This assumption can be relaxed in casea 
where the noise spatial covariance matrix ie known to within 
a scale factor. 

For sources in the far-field, & 2 b  A, and &k is ade- 
quately approximated by taking only the first two t e r m  of 
the binomial expansion of (1): 

&k = & - k6sinBi . (3) 

Equation (3) treats the spherical wavefronts as planar wave- 
fronts as they propagate across the array, and hence it is 
referred to (L(I the plane-wave approximation. When this 
approximation is substituted into Equation (2), the phase 
of the delay term becomes a linear function of k ,  the sen- 
sor index, and the signal part of z k ( t )  is seen to be a sum 
of sinusoids in the variable 1. This is, of course, the well- 
known connection between the time-series frequency esti- 
mation problem and DOA estimation with a uniform linear 
array (ULA). 

In many applications, the distances from the array to the 
emitters are on the order of only a few array apertures, and 
the approximation of (3) is no longer valid. Retaining an 
additional term from the binomial expansion of (1) leads to 

Figure 2: Curves of constant error for Fresnel approximation 

an expression that is quadratic in k: 

(4) 
(6 COS Bi)' 

2Ri 
&k = R, - k6sinBi + k 2 - .  

Equation (4) is sometimes referred to as the Fresnel approx- 
imation. The significance of this approximation is that in 
the vicinity of the array the spherical wavefronts are mod- 
eled as quadratic, rather than planar, surfaces. The error 
introduced by use of (4) is illustrated in Figure 2. The con- 
tours of constant % error shown on the plot correspond to 
the error in measuring am using (4) relative to the array 
aperture A (i.e., 1001&, - hm1/A). We will define the 
Fresnel region of the array to be roughly that region be- 
yond the 5% contour. 

As a consequence of Equation (4), sources in the Fresnel 
region of the antenna array are modeled as producing a 
quadratic, rather than linear, phase variation as the wave 
propagates across the array: 

d 

Instead of a sum of sinusoids in k ,  z r ( t )  is now modeled ae 
a sum of chirp or linear-frequency-modulated (LFM) sig- 
nah in k, parameterized by the 2d source location param 
etem (&,er), 1 5 i 5 d.  The problem of estimating these 
parameters is thus similar in form to the time-series prob- 
lem of chirp signal parameter estimation. This connection 
does not seem to have been exploited in the research lit- 
erature and used to develop algorithms for the near-field 
problem that parallel those already developed for its time- 
series counterpart. In the following section, this space/time 
duality is used to develop an algorithm for the near-field 
problem based on a spatial analog to the Wigner-Ville dis- 
tribution (see also (71). 
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3. The Spatial Wigner-Ville Algo- 
rit hm 

The Wigner dbtribution WM first described in 1932 by 
Wigner [SI M a space-momentum representation for use in 
the field of quantum mechania. Ville reintroduced the con- 
cept in 1948 [SI in the context of signal analysis, and it is 
typically referred to today as the Wigner-Ville distribution 
(WVD). The WVD has been the subject of a great deal of 
interest in the signal processing community over the past 
several years, primarily in the a r e a  of time-varying sig- 
nal analysis and synthesis. In the time-series context, the 
WVD can be thought of as a repreaentation of how signal 
energy is distributed jointly over time and frequency. This 
interpretation is not strictly true since the WVD cannot be 
guaranteed to always be positive, but the WVD pogsesses 
a large number of properties that one would expect from a 
"true" time-varying spectrum. An excellent review of these 
properties can be found in the series of papers by Cl-n 
and Mecklenbrauker [lo]. 

For a discrete stochastic signal z(t) ,  the WVD is defined 
as follows [lo]: 

Ws(t,w) E 2 Ks( t ,  r)e-ib+ , (6) 
,=-W 

where the Wigner-Ville kernel K s ( t ,  T )  is given by 

Ks(l!, T )  = E{Z(t + T ) Z * ( t  - T ) )  . (7) 
In the above equation, * denotea complex conjugation and 
E{  .) denotes expectation. When viewed as a function of T ,  

the WV kernel K*(l!,r) is made up of the even-numbered 
lags of the signal's autocorrelation at time t .  It is a simple 
matter to incorporate the odd autocorrelation lags into (6) 
as well, though to simplify the derivation of the algorithm 
we will poetpone doing so until section 4.1. The WVD is 
seen to be the frequency scaled Fourier transform of the 
even autocorrelation lags of 2. The frequency scaling by 
a factor of 2 is. necessary to ensure that frequency com- 
ponents of z(t) at w occur in Wc(t, .)  at w M well. One 
consequence of defining the WVD in this fashion is that 
W,(t, w )  is periodic in w with period r instead of 2r. Thus, 
to avoid aliasing, z(t)  muet either be oversampled (at, say, 
twice the Nyquist frequency) or the frequency support of 
z(t) must be entirely contained in 2r periodic intervals of 
length r (e.g., z(t) analytic). This imue will be raised in 
later discussions of the spatial WVD. 

It is well known that the WVD is particularly useful in 
applications involving LFM, or chirp, signals. To see why 
this is so, consider the following (deterministic) discrete- 
time chirp signal: 

z(t) = . (8) 

The WVD of this signal is 
W 

W,(t,w) = rIAI' C 6(w - pt - h) , (9 )  
k=-= 

where a(.) represents the Dirac delta function. Thin m an 
intuitively appealing result since it shows that for any time 
t ,  the WVD of a chirp signal is highly concentrated around 
the signal's instantaneous frequency. 'In other words, for 
fixed t ,  the WV kernel K , ( t , r )  for a chirp signal is sinu- 
soidal in r with frequency Bt. The motivation for using a 
spatial version of the WVD to solve the near-field problem 
stems primarily from this ability of the WVD to convert the 
chirp parameter estimation problem to one of sinusoidal fre- 
quency estimation '. 

With this idea in mind, consider the signal of Ekluation 
(5 )  and switch the time and space indices by rewriting z&(t) 
as t t ( k ) ,  thus fixing time and viewing the signal as a func- 
tion of the spatial index k. Next, define a spatial WV kernel 
M follows: 

K&T) = E { z t ( k  + T)z;(k - T ) }  , (10) 

where T is now a sensor index. Substitution of (5) into (10) 
leads to the following expression for K,(L, 7): 

d 

K,(A,  T )  = u;ej(4*/A)(0i-&Pi) ,  + 6'6, , (11) 
i = l  

where ai and pi are as defined in (5), U: is the power of the 
Ph source, U' is the noise power, and 6, is the Kronecker 
delta function. In deriving (1 1), use is made of the fact that 
the sources are completely uncorrelated. If this assumption 
were not made, cross-product terms would appear in the 
result. 

As in the time-series caw, the signal part of K,(k, T )  for 
each k is sinusoidal in T .  Furthermore, the sinusoidal fre- 
quencies are linear functions of k, with slope and intercept 
given by non-linear functions of the signal location parsma 
ters (&, Od), 1 5 i 5 d .  This fact suggests that the following 
high-level algorithm could be used to estimate the source 
locations: 

1. Compute the WV kernels for a central subset of the 
sensors in the array. 

2. Obtain an estimate of the number of signals d and the 

3. Estimate d frequencies from each WV kernel. 

4. Fit d lines to the frequency data and obtain range and 

noiae variance U'. 

bearing eatimates M follows: 

where ai and bd are respectively the slope and intercept 
of the ith line. 

In [7], step 2 was not an issue since only the noise-free, single 
source case was considered, and step 3 was solved using the 

lThe Urd-reducing" effect of the non-linear tramformstion from 
t to Ks ir preciocly that noted by Kumsnssn and V- in 1111, 
though no cannection with the WVD WM made. 
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peaks of the Fourier transform for each WV kernel. In the 
following oection each step is considered in detail, and the 
following improvemenb to the algorithm described in [A 
are proposed: 

0 signal-subspace ideas are wed to extend application of 
the algorithm to caaea where both noise and multiple 
signals are present. 

0 the total-least-squares (TLS)-ESPRIT [5,6] algorithm 
is used in place of a Fourier transform in order to in- 
crease the accuracy and resolution of the resulting pa- 
rameter estimates. 

4. Algorithm Details 

4.1 Computing the W V  kernels 
Since our array contains a finite number of sensors and 

since we will later require kernels of length at least greater 
than d + 1, the functions K,(k,r) will only be computed 
for some subset of sensors near the center of the array. Ex- 
amination of Equation (11) reveals that K,(k,7) is not a 
function of time (due to the assumption that the noise is sta- 
tionary over the data collection interval), and hence sample 
averages can be employed to approximate the expectation 
operation. In fact, K,(k, r is nothing more than the anti- 

covariance matrix. Thus, computation of the spatial WV 
kernels is embedded in the formation of the sample covari- 
ance. The desire to use all the anti-diagonals of the sample 
covariance (i.e., even those that do not possess an element 
on the main diagonal) leads to an expanded symmetric def- 
inition of the discrete WVD incorporating both the even 
and odd lags of the autocorrelation kernel: 

diagonal containing the kt I diagonal element of the array 

where by half-inieger k we mean k = n/2 for -me inte- 
ger n. The definition given for integer k corresponds to 
the definition of Equation (6) through a simple change of 
the summation index. The half-integer t e r m  are “inter- 
sensorn WV kernels; i.e., instead of being associated with 
a specific sensor, they correspond to a point between two 
sensors. Note that the expanded set of WV kernels is also 
sinusoidal in T with linearly increasing frequency in k .  The 
introduction of the half-integer t e r m  effectively doubles the 
amount of information used in forming the parameter esti- 
mates. This is especially critical for the case of the spatial 
WVD presented here since typically the number of sensors 
in an array is relatively small. 

The previous discussion on aliasing for the time-series 
WVD applies as well in the computation of the spatial WV 
kernels. To avoid spatial aliasing, Z k ( i )  must either be spa- 
tially oversampled or the sources must lie within a restricted 

region in space (“spatial bandlimiting”). In the absence of 
a priori knowledge about source locations, it ia sufficient to 
set 6 = A/4. 
4.2 Estimating the number of signals 

Steps 3 and 4 of the above algorithm require that the 
number of signals d and the noise variance u2 be known, 
though typically this is not the case in practice. The prob- 
lem of estimating these parameters for the situation consid- 
ered here is the same as the regular far-field DOA detection 
problem. The covariance matrix in each case has the fol- 
lowing form: 

where S is the signal covariance matrix and where the ith 
column of A is given by the steering vector ai: 

R = ASA+ + u21 , 

= [I ,4(2*/A)(&i-Ri)  . . . ,+(2*/A)(Rim-Ri) . I’ 
Estimation of d is usually accomplished by exploiting the 
underlying multiplicity of the minimal eigenvalue of R. 
Since only an estimate of R is available in practice, reli- 
able statistical procedures have been developed to estimate 
the eigenvalue multiplicity (cf [12, 131). Therefore, in the 
simulations of the next section, d is assumed to have been 
correctly determined. Performing an eigendecomposition of 
R in order to estimate d also allows one to use the following 
simple estimator for u2: 

1 m-d 
8 2  = - 

m - d  X i  1 

i= l  

where A1 5 A 2  5 
covariance matrix. 
4.3 Esthnatinn the kernel freauencies 

5 A,,, are the eigenvalues of the sample 

The finite length of the array aperture leads to a rectan- 
gular windowing of the WV kernels, and hence for a given 
k ,  &(k, 7 )  is defined only for relatively few values of 7. As 
such, there is little hope of accurately estimating or resolv- 
ing the frequencies of the underlying sinusoids using Fourier 
transform based methods. Parametric (specifically autore- 
grewive) modeling of the WVD haa previously been pr+ 
pooed [14, 16,161 and in [14,16] applied to the chirp signal 
estimation problem. The use of eigenstructure baeed meth- 
ods has also been propoeed in [14, 171, though simulation 
results using these methods were not given. 
We will also take a parametric approach in estimating the 

kernel frequencies, using the recently developed total-least- 
squares (TLS)-ESPRIT algorithm [5,6]. There are two rea- 
sons for choosing this algorithm. First, it directly eatimatea 
the sinusoidal frequencies, and thus eliminates the need to 
search for peaks in some spectral measure. Second, simula- 
tions have shown its performance to be superior in terms of 
both accuracy and robustness when compared with other 
high-resolution spectral estimators [5]. The displacement 
invariance required by ESPRIT is satisfied in this appli- 
cation since the samples of the WV kernels are uniformly 
spaced in 7.  As alluded to earlier, the noise variance term 
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of Equation (11) must be subtracted from the r = 0 sample 
of the even-lag WV kernele before ESPRIT may be applied. 

4.4 Determining source locations 
ESPRIT provides d frequency estimates for each WV ker- 

nel. The murm location estimates are formed from the 
slope and intercept of lies fit to the frequency estimates 
as functions of k, the a e " r  index. It is thua necessary to 
associate the individual estimates with one of d (or more) 
lines. If the sources are assumed to be located such that the 
frequency tracke in k do not cr-, thie association can be 
trivially accomplished by sorting the estimatea for each ker- 
nel; however, more complicated clustering procedures are 
required both to detect and to separate overlapping lines 
[ H I .  In the application considered here, this difficulty arisea 
only when two sources, one near the array and one in the 
far-field, po%sess nearly coincident DOAs. 

Actual 
R e SNR N 
80 10 20 500 

5. Simulation Results 

Eetimated 
R 4 

86.7 f 28.0 I 10.00 f .077 

For all the simulations presented in this section, a 16 
element ULA with interelement spacing d = A/4 WM at+ 
sumed. In each case nine WV kernels were computed, 
corresponding to sensor and inter-sensor locations be- 
tween the sixth and eleventh array elements (i.e., k E 
{6.5,7, . . . ,  10.5)). Tables 1 and 2 present results for the 
single and multiple source scenarios, respectively. In these 
tables, R is the range in wavelengths, 0 the DOA in degrees, 
SNR the signal-to-noise ratio in dB, and N the number of 
snapshots used in forming the WV kernels. For each case, 
100 independent trials were conducted, and the estimates 
shown represent the corresponding sample mean and stan- 
dard deviation. 

The performance of the algorithm is particularly impres- 
sive for cases involving only one source. When multiple 
sources are present, reasonable results are obtained only 
for relatively large values of N. This is a result of the 
fact that the aources are, rtrictly speaking, only ssymp 
totically uncorrelated; when the WV kernels are computed 
from time intervals of Bnik length, the cross-product t e r m  
have not completely decorrelated and are preeent in the 
result. It is interesting, however, to observe that even in 
situations where the range estimate is degraded due to the 
cross-product phenomenon or low SNR, the DOA estimate 
retains a high degree of accuracy. 

Further simulations have shown that the ranging error of 
Figure 2 may be as large as 5% before the performance of 
the algorithm is seriously degraded. This waa the reason 
for the definition of the Resnel region as given in Section 
2. Thus, according to Figure 2, the algorithm may be a p  
plied to estimate source locations beyond about three array 
apertures. If the sources are located near broadside, the al- 
gorithm is applicable at even closer ranges. 

In Figures 3 and 4, the performance of the algorithm 
relative to the Cram6r-Rao bound (CRB) is presented for 
the case R = 75A, fl = loo,  and N = 250. The DOA 
estimate is seen to be near this performance limit in all 
cases considered, while the range estimate appears to have 

Actual 
R e SNR N - 
80 -30 20 100 
80 60 20 100 
80 24 15 500 
80 24 10 500 
80 24 5 500 
80 24 0 500 

100 24 20 100 

Estimated 

60 24 20 100 60.5 f 3.5 I 20 24 20 100 I 20.0 f 0.41 I i"3::: ::ii I 
Table 1: Fhulta  for Single Source Cases 

100 25 20 I 114 f 61 I 24.99 f .074 
80 10 20 750 I 84.5 f 21.6 I 10.00 f .068 

80 14 20 I 79.2 f 22.6 I 14.01 f .057 
44 -25 20 1000 i 44.3 f 3.1 1 -24.98 f .023 
65 40 20 I 73.9 f 30.6 I 39.98 f .025 I I 80 0 20 114 f 117 027 f .051 

Table I: Results for Multiple Sources 

a relative efficiency of about three or four compared to the 
CRB. 

6. Concluding Remarks 
An algorithm for simultaneously ertimating the range and 

bearing of multiple near-field sourcea hm been preaented. 
The method is based on the application of signal-subspace 
idea8 to the spatial Wigner-Ville distribution approach orig- 
indly preeented in [I .  The principal advantages of us- 
ing signal-subspace methods are that the range/DOA e% 
timates are obtained with improved precision and resolu- 
tion, and without computation or search of a complicated 
spectral surface. Additionally, these methods allow a sim- 
ple and more effective extension of the spatid Wigner-Ville 
approach to cases in which noise and/or multiple signals 
are present. Simulations have shown that the algorithm 
performs well for a wide variety of test cases, and com- 
parisons with the Cramdr-Rao bound indicate near optimal 
DOA estimates. 
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