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Passive Finite Dimensional Repetitive Control of Robot Manipulators

Josip Kasac, Branko Novakovic, Dubravko Majetic and Danko Brezak

Abstract—In this paper a new class of finite dimensional repet- asymptotic convergence can only be guaranteed under restric-
itive controllers for robot manipulators is proposed. The global tive conditions in the plant dynamics - zero relative degree
asymptotic stability is proved for the unperturbed system. The - girect transmission term. These conditions are generally
passivity-based design of the proposed repetitive controller avoids t satisfied | bot trol licati b thev imol
the problem of tight stability conditions and slow convergence not satis !e In robot control applications gqause ey 1mply
of the conventional, internal model-based, repetitive controllers. acceleration measurement. Further, the positive feedback loop
The passive interconnection of the controller and the nonlinear used to generate the periodic signal decreases the stability
mechanical systems provides the same stability conditions as themargin. So, the repetitive controller is likely to make the
controller with the exact feed-forward compensation of robot gystam ynstable. To enhance the robustness of these repetitive
dynamics. The simulation results on a three degrees of freedom trol sch th titi dat le i dified t
spatial manipulator illustrate the performances of the proposed .Con rol-schemes, the repe live update ruie 1S modied to
controller. include the so-called Q-filter [5], [6]. Unfortunately, the use of
the Q-filter eliminates the ability of tracking errors to converge
to zero. Therefore, the trade-off between stability and tracking
performance has been considered to be an important factor in
the repetitive control system.

I. INTRODUCTION Another problem is that, due to infinite dimensional dynam-

An important subject in the control of mechanical systenSS Of delayed line, a large memory space is required for digital
is tracking periodic reference signals and attenuating periodfigPlémentation of the control law. To overcome this problem,

disturbances. Many tracking systems, such as computer di'gk[s] a fir)ite dimensional approximation O_f delayed que is
drives [1], rotation machine tools [2], or robots [3], havroposed in the form of a cascade connectiodVoharmonic

to deal with periodic reference and/or disturbance signafés,c'r']Ialtors and one Ir}terg]]raFor. | | | A
A promising control approach to achieving the tracking of 1he advantages of the internal model controllers are that

periodic reference signals is learning control or repetiti®'€Y are linear, making analysis and implementation easier.
control. The disadvantages are that the stability is almost entirely

In most of the conventional approaches to robot trajecto verned by the feedback loop of the _repetitive compensator.
control, including parametric adaptive control, it is necessal e frequency response of the system is altered and robustness

to compute in real time the so-called inverse dynamics eql} _hoise and unmodelled dynamics is reduced.
tions of the robot or regression matrix. However, due to the The external model controllers are based on the feedforward

model uncertainties, it is difficult to derive the exact descrid:_ompensanon of inverse dynamics. The disturbance model

tion of the system. Also, using neural networks for Iearninge;djusmd adaptively to match the actual disturbance. The

feed-forward control has some drawbacks: slow convergeridgtral idea in [3] is that the disturbance can be represented
and relatively large tracking errors as a linear combination of basis functions like Fourier series

There have been many studies on the topic of repetitive Co%pqnsion. "_1 f[his way, an ad_aptiv_e control law with regressor
atrix containing basis functions is obtained. In [7] unknown

trol for controlling mechanical systems in an iterative manner, wrb functi ted by int I " f
In contrast with the conventional approaches to robot trajecto ?r ?E-C% _uncllqns arlia reprel;'sen el é’ n Egra equﬂa lons o
control, repetitive control schemes are easy to implement ¢ "rstkind involving a known kernet and unknown nfiuence
do not require the exact knowledge of the dynamic model. unctions. The learning rule indirectly estimates the unknown
Repetitive controllers can be classified as being eithglril;;bi:];ﬁ gj dn\f;'notg bg;ﬁiztlggté?ﬁa:ngizgzfu?gggﬂ.is that
internal model-based or external model-based [4]. Controllefs . advantage > approact
using the internal model are linear and have periodic sig there is no significant influence on the stability conditions of
e control system. The map between the feedforward function

generators [S], [6]. In the external model controllers ther or and the tracking errors is strictly passive. Thus, the
disturbance model is placed outside the basic feedback Iooc§5 ; 9 . Yy passive. j
ntrol system is robust to the imprecise estimation of the

o
3], [7]. : : : . .
31, [7] . robot inverse dynamics. The disadvantage is that the analysis
The internal model controllers are based on a delayed ;. : .
: . 1 and implementation are more complex than for the internal
integral action of the fornil —exp(—sT7"))~* which produces .
model-based algorithms.

an infinite number of poles on imaginary axes. However, the . . ..
P ginary ' In this paper a new class of internal model-based repetitive
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nonlinear mechanical systems has the same stability conditions koo = nd (‘max cijr(q) D 7
as the controller with the exact feed-forward compensation of igkla| O )
robot dynamics [9], [10]. ) OMi;(q)

Throughout the paper we use the notatifyaf = 27z for kv =mn (ZIEI?E o0 ) ;

the Euclidean norm of the vectere R™, Ay, {A} and\,,{A}
for the maximal and minimal eigenvalues, respectively, of tHénereci;x(q)
symmetric positive definite matrid.

This paper is organized as follows. Robot dynamics and I1l. CONTROL PROBLEM FORMULATION
its main properties are presented in Section Il. In Section W. Finite-Dimensional Repetitive Controller
a class of finite dimensional internal model-based repetitive The periodic reference trajectoy,(t) with the periodT
controllers is introduced and conditions for global asymptotian pe represented in the form of Fourier series
stability are established in Section IV. The passivity properties

are Christoffel symbols.

of the proposed controllers are considered in Section V. The N )
simulation results are presented in Section VI. The concluding qa(t) = ao + ) _ax cos(kwt) + by sin(kwt)], (10)
remarks are emphasized in Section VII. k=1
wherew = 2% is the fundamental frequency, anag, a; and
Il. ROBOT DYNAMICS b, are known constant vectors.

The dynamic model of the-link rigid-body robotic manip-  We consider the control law given by
ulator with revolute joints is represented by

N
M(q)i+ C(g,9)q + g(q) = u+d, 1)  uw=-Kpi—Kpj—kp ldlli— Kizo—Y_ Quér, (11)
. .. . . k=1
here the 1 tor of robot joint dinates; .
wnereq IS n X vector ot robot joint coordinatesy Is 5, +k2w22k _ Qk((j+0di), k= 1,...,]\7, (12)

the n x 1 vector of joint velocities,u is then x 1 vector ) . "
of applied joint torques and forces/(q) is then x n inertia Zo =4+ aq, (13)

matrlx,C(q,q)q is then x 1 vector of celjtrlfygal and Coriolis where§ = q — qu, § = ¢ — G4 are the joint position error
torques,g(q) is then x 1 vector of gravitational torques andg g velocity, respectivelyg, is the time periodic desired

forces, obtained as the gradient of the robot potential enegiht position represented by (10¥p, Kp, K; and Q

Ulq) oU() (k =1,..., N) are then x n constant positive-definite diagonal
g(q) = 5 a ) (2) matrix, kg), « is positive constant andV is the number of
1 harmonic oscillators.
andd is the vector of external disturbances and unmodeledThe desired joint position, is assumed to be twice con-
static nonlinearities. _ _ _ . tinuously differentiable. In other words, we assume that there
We assume that the matrik'(q,¢) is defined using the gyist finite upper bounds on the norm of the desired velocity
Christoffel symbols, so that the matrit/(q) — 2C(¢,d)  and acceleration, denoted B, || 1s and|dal| 7. The nonlinear
is skew-symmetric. This implies thal/(¢) = C(¢.9) + gerivative termk'!|]d in the control law (11) is introduced

Clg,)" to ensure the global asymptotic stability of the closed-loo
The dynamic model (1) for the robot manipulator Witrg ste;u[lz] ¢ Sympotic Stabiity S P

revolute.j_oints has_the following properties that are used fo}/The parallel interconnection of th& harmonic oscillators

thePstablltlty 1ar%erl]lys_|s [ji.l]’ [1?].' M () i itive definit (12) and the integrator (13) represents the internal model
rop(tar_y t'e mhgrrl]a rrltgfr_l (¢) Is a positive definite of the periodic reference signaj;(¢) including higher order

symmetric matrix which satishies harmonics which are induced by nonlinear robot dynamics, so

A {M}dlI* < ¢" M(q)g < A {M}|dl>. (3) that the conditionV > N must be satisfied.
Property 2 There exist positive constarts,, kc1, koo and _ _
k, so that for allz,y, z,v,w € R", we have B. Residual Robot Dynamics
IM(z)z — M(y)z|| < karllz — yl| [|2]] 4) The dynamic model of the robot manipulator (1) can be

rewritten in the following form
1Oz, 2w — Cy, v)w|| < keallz — o] [lwl] + ewritten In te following fo

+okeollll e — gl Jwl, &) M@¢+Cla,)q+h(Gq) = u+d— f(g4,da: Ga), (14)

lg(z) = gl < kgllz =yl (6) where
IC(z,y)z]| < keallyll |2l 7 hd,q) = [M(q) — M(qa)lia + [C(a,d) — C(qa, da)]da +
where the values of the parameté(s kc1, ko2 andky, can + 9(q) — 9(qa), (15)
be estimated by ) ) o ]
9g:(q) is the so-calledresidual robot dynamicsntroduced in [13],
kg =n (max i3 D ) [14] and
ig,q | 0g;

, (®) f(4a,da, Ga) = M(ga)da + C(qa, da)da + 9(qa),  (16)
ker=n <ZHJI%}§ leisn (q)|> : represents the unknowdesired robot inverse dynamics
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The function f(qq, 4a, Gq) is a periodic function with the where we used the Fourier series expansion (17) of the
same fundamental frequency @gt) and can be representedfunction f (g4, 44, Ga) and the propertg; +k*w?z;: = 0, which

by the infinite Fourier series expansion follows from (22) fork = 1,..., N. The functionw in (23)
oo has the following form
1(qa,qGa, Ga) = ao + Z[dk cos(kwt) + by, sin(kwt)], (17) oo B
k=1 w=d— Y [aycos(kwt) + besin(kwt)].  (27)
whereay, @, andb, are unknown constant vectors. k=N+1
The following property of the functioh(q, ¢) is important where the second term represents the error in the estimation
in the subsequent stability analysis. of the desired robot inverse dynamics that consists of the
Property 4.By defining harmonics ofN + 1 order.

Remark 2 From the equation (27) we can conclude that
(18) the tracking error has zero harmonic content at the repetitive
c2 = ke |ldallas frequency and its harmonics up 16 (where N is the number
the norm of residual dynamics (15) satisfies (see [9], [10]) of harmo_nic oscillators in the cpntroller). Algo, the bound on
. ) the tracking error decreases with. In the limit N — oo the
1h(q, Dl < cllgll + c2llqll- (19) above-mentioned model of the repetitive controller works as
well as the ideal infinite dimensional model in achieving the
] ] ] perfect tracking of periodic reference signals [15]. Note that
—(G+ad)"h(G,q) < aci]ldl]® + c2)|q)” + this conclusion is valid only for twice continuously differen-
+ (e1 + ae)||g]l 4]l (20) tiable periodic reference signals, and cannot be generalized to
arbitrary periodic reference signals, as shown in [5]. In that

The parametersl andcz can be es.timated'on. th? basis of th?:t'jeal case the stationary state of the system (14), (11)-(13) is
Fourier representation of the desired periodic signal (10) 0= qa 4= da 2 =25 k=0,1,...,N.

1 = kg + kalldall v + kezlldall3s,

From the inequality (19) follows

N
co < ken ka(HakH + |Ib& D), IV. STABILITY ANALYSIS
k=1 1) In this section we provide the proof for global asymptotic
N Foono 2 stability of the unperturbed systems (23)-(26), where= 0,
1 <kg+ky Z E2w? (lak]l + ||bx ) + 022 2 and in the subsequent section we prove the passivity properties
k=1 ke of the proposed controller, which guarantee the robustness to

where we used the propertiessin(kwt)] < 1 and the disturbances) 0. _

| cos(kwt)| < 1. _We consider the stability by t_he Lyapunov’'s dlrec_t method_.
Remark 1 One of the simplest motion control schemes fdfirSt. We propose the appropriate Lyapunov function candi-

the system (14) is PD control with feedforward compensatié@te- Then, global stability conditions on the controller gains

9], [10]: v = —KpG — Kpg + f(qa,da,dq). The imple- &ré established. Finally, the LaSgIIe invariance principle is

mentation of the above-mentioned control law requires tif&/0ked to guarantee the asymptotic stability.

exact knowledge of the matricéd (¢), C(q, ¢) and the vector . )

g(q). However, due to the model uncertainties, it is difficult t§\ Construction of Lyapunov Function

derive the exact dynamic model of the robot manipulator. The Multiplying the equation (23) by the output variabje =

main idea of using the controller (11)-(13) is the model-fre¢+ ag, the equation (25) by the output variabje = %, the

feedback compensation of the periodic functipfy,, ¢4, Gq). €quation (26) by the output variablg = Kz, and summing

This idea will be clarified through the derivation of the errothem all up, we get a nonlinear differential form which can

equations of the closed-loop system. be separated in the following way
d ~ . o~ ~ ~ ~ Z ~ .
C. Error Equations %V(qaquOaZthv ~-~7ZNaZN) = _W(qaq)v (28)
Introducing the change of variableg = z, — 2, k = (for more details see e.g. [12]) whefé = V; + V4 is the
0,1,..., N, with Lyapunov function candidate
* —1_ ]. 5y 5 o L ]- o ~
% =~k ao, . 22) Vi = 5d" M(@)q+oq" M(9)q+ 53" Kpq +
zp =k w T Qy by cos(kwt) — ay, sin(kwt)), 1 1
. . . + Sag"Kpg+ zak) |, (29)
the following error equations are obtained 2 3
. . . N N
M(q)q + C(g,d)d + h(d,q) = u +w, (23) Vo = silK s+ 2 S A+ 2w S5, (30)
) N 2 24 2 =
_ ~ 2 1 ~ A~ ~ i - -
u=—Kpq—Kpq—kp'llqlq—Krzo — Z QrZr, (24) and —W is its time derivative
k=1
o . P ) 1))~ AT ~ P L ) o\~
5o+ kw22, = Qu(d + ad), k=1,..N, (25 W =d"Kpj+ky|dli"q—ai"M(q)i— " C(q.q)q +

% =G+ ad, @6)  + ad"Kpi+(G+aq)"h(g,q). (31)
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B. Stability Conditions by invoking the LaSalle invariance principle, we conclude the

The following step is to determine conditions for the pos3Symptotic stability. § N
itive definiteness of the functiov and the positive semi- Remark 3 Note that the stability conditions (39)-(40), for

definiteness of the functiofi’. «a = 1, are exactly the same as the local stability conditions
1) Positive definiteness of the Lyapunov functiofne in [10]. The global stability of the repetitive controller (11)-
Lyapunov functionV can be rearranged as follows (13) is achieved by the nonlinear derivative term whose gain

1. - . 1 kg) satisfies the condition (38). So, the proposed repetitive
V="Vy+ 5 (G+ aq) M(q) (q+aq) — 5oﬂchM(q)chr controller practically has no influence on the closed-loop
1 1 stability. It is obvious from the stability conditions which do
Lo P A ¢ NTPTE: - . . . . .
+ 54 (Kp+aKp)q+ 3akD llq]°. (32) not contain the interaction gaing, and the integral gain
K. This fact is a consequence of the passive interconnection

Using the property (3) we get between robot dynamics (1) and the repetitive controller (11)-

1 - 13).
V> 2 (nlEp} + oA {Ep) — a2 M) a2+ @
1 . . 1 -
+ iAm{M}”q +agl]® + §>\7n{KI}HZOH2 + V. PASSIVITY PROPERTIES OFREPETITIVE CONTROLLER
N N . " .
1 R B . Unknown and unmodeled nonlinearities play an important
+ §Z||Zk|| Tow Zk l12e 1, (33) role in the high-precision control of the robot manipulator.
k=1 k=1 Friction is one of the most common nonlinearities present in
that will be satisfied when mechanical systems. Despite the many efforts to characterize

9 and estimate frictions, it is still difficult to identify and com-
Am{Kp}+ adn{Kp} > " A {M}. (34) pensate them. Moreover, any cancellation of nonlinearities by
2) Negative semi-definiteness of the time derivative of Lyi@edback which is not exact, may produce undesirable closed-
punov function: The following step is the derivation of theloop behavior like large tracking errors, limit cycles and stick-
condition which ensures that the time derivative of Lyapunaslip motion. In contrast with model-dependent controllers, the

function is a negative semi-definite function, .8/, > 0. passivity-based controllers are robust to model uncertainties
First, notice that the upper bound on tefiC(q,¢)G in and external disturbances. In this section we prove the passiv-
(31) can be estimated by ity properties of the proposed repetitive controller.
~ o~ e 1A Consider dynamical systems represented by
q"C(q,4)q < akealld) lall |d]| <
. ~ X ~ 2012 R
< ke lldalla 1l 1]l + kel [ldll” 35) = flz,u), (41)
y = h(z, u), (42)

where we used the triangle inequalify|| < ||q|| + l|dal|-
Applying the properties (3), (20) and (35), we get wherez € R™, y,u € R™, f(0,0) = 0 and ~(0,0) = 0.
22 Moreover, f(x,u) andh(x,u) are supposed to be sufficiently
Wz (Am{Kp} - a/\M{Mi —c2)[l]|" + smooth so that the system is well-defined.
+ (k5 = ake)lldl 4] + aOm{Kp} —e)ldll? - Definition 1.(see [16]) The system (41)-(42) is said to be
— (e1 + 2ae)||q] ||QH > 0. (36) passive if there exists a continuously differentiable positive

semidefinite functionV'(z) (called the storage function) so
Finally, W can be bounded by a quadratic plus a cubigat

function aTy > V(@) + ellull +dllyll® + pua),  (43)
- _ o
W= [ Hg:H } R [”?ILH + (k) — ake) )] lal|”, (37) wheree, 5, andp are nonnegative constants, ank) : R* —
. _ . R is a positive definite function of. The termpy(z) is called
with the matrix 2 given by the state dissipation rate. Furthermore, the system is said to be:
aAm{Kp} —c1) —L(e1 + 20 !ossless,' if (43) is. sati.sfied with equality and= 6§ = p =0
= —L(e1+20¢0) An{Kp} — adu{M} — o) | input strictly passive, i = p = 0 ande > 0; output strictly

) ) - o ) . passive, ife = p = 0 andd > 0; state strictly passive, if
The functionlV" is positive definite if the following conditions . _ 5 _ andp > 0.

are satisfied Proposition 1.The robot dynamics

kg) > ake (38) . . .
) M + C 5 + h s =uy +w , 44
)\m{Kp} > c, (39) (q)q (q Q)q (q Q) 1 1 ( )
(c1 + 2acy)? in a closed-loop with the nonlinear PD controller
AmiK A {M . (40
3 D}>4a(,\m{Kp}_cl)+o‘ m{M} + c2. (40)

" T wr = —Kpi— Kpg— k5 |1dd, (45)
We can see that the condition (34) is trivially implied by the
conditions (39)-(40). So, the conditions (38)-(40) are the fina state strictly passive from the input torque to the output

stability criterions which guarantee global stability. Finallyy, = ¢ + ag, with a radially unbounded positive definite
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storage functionl; defined by (29) and the state dissipationf the matrixR in (37), the numerator on the right side of the
rate is given byiv, inequality (52) is always positive.
o -z Proposition 4.The feedback interconnection between the
wl'ys > Vi(@.4) + W(7.9). (46) b

system (44)-(45) and the system (47)-(48) has the fifife
Note thatV; is a positive definite andl is positive semidef- gain v < % where ¢ is defined by (52). For proof see e.g.
inite function if the conditions (39)-(40) are satisfied. [16].

Proposition 2.The system The L, gain, which characterizes the disturbance attenua-
= - tion capabilities of the control scheme, can be used for the
et Fo'se = Quws, k=1, N, “47) " controller gains tuning. Thé, gain v is a function of the

Zo = wa, (48)  controller parameters;, A,,{Kp} and \,,{Kp}. It can be
seen that the functiony = ~(a, \p,{Kp}, \n{Kp}) has
no isolated minimum regarding the parametgrs{ Kp} and
An{Kp}, i.e. theL, gain~ can be decreased by increasing
] ) ) the values of the gain&p and K. On the other hand, for
wy Yo = Va(Z0, %1, 21, -y AN, 2N (49) the given values oh\,,{Kp} and \,,{Kp}, there exists an
isolated minimum regarding the parameter

is lossless from the inputv; to the outputys = Kjzp +
Zivzl Q1 Z, with a radially unbounded positive definite stor
age functionV, defined by (30),

Note thatl; is positive definite for any positive definite matrix
K.
Proposition 3.The feedback interconnection between the VI. SIMULATION EXAMPLE

system (44)-(45) and the system (47)-(48), The manipulator used for simulation is a three degree of

w =—Yy2+w, wy=y, (50) freedom spatial manipulator with revolute joints, considered
, , ) ) in [17]. The manipulator parameters, which are taken from
'S output strictly passive from the input torqueto the output e first three links of the PUMA 560 robot [18], have the
y1 = 4+ aq, with a radially unbounded positive denn'tefollowing values:
storage functior = Vi + Vs, I = 0.35 kgm?2, my — 17.4 kg, mg — 4.8 kg,
wlyy >V + 6|l ||% (51) m=0.5kg, [ =0.4318 m, I3 = 0.4331 m,
where I is inertia of the first link,ms, and ms are masses

where a1as — +a2 of the second and third linksn is load mass/, andis are
< m, (52) lengths of the second and third links.
J 2 1 3 The parameters:,, kci, kca, kar and Ay {M}, which
an can be estimated by using the expressions (8) and (9) de-
=M{Kp} —ady{M} — co, . ) :
“ {Kp} =M} = e rived in [10] and [11], have the following values:, =
az = a(An{Kp} — 1), (53) 214.65 kgm?/sec?, ko1 = 63.86 kgm?, kcy =
az = ¢1 + 2acs. 383.20 kg m?, kpr = 162.74 kg m? and Ay { M} < 28.17 kg.
Proof. Insertingw; = —y» + w, ws = y; in (46) and (49)  The desired periodic reference trajectories are
we get o1& i
. iy
wTyy > V(@G 20,21, 31, oo 20 20) + WG, 0. (54) “Wi=5 "] ]; [T (’“"” %) - 6D

Further, inserting the inequality (36) with the notation (53) iOvhere ' = 1,2,3 andw = 1 rad/s. The numerical values of
(54), and comparing with (51) we get J =% N j

the parameters, andc, can be calculated from the expression
Wy 2 V4 an 4] +alldl? - aslal [ 2 (2L): 1 = O15.52 kg m'/sec”, ca = G261 ke mijocc.

> V4 sllé s 55 e controller gaing, K'p and K are chosen to minimize

= V+ola+eadl, (55) the L5 gainv in accordance with the stability conditions (38)-
The final step is determining the paramegewhich satisfies (40) and control torques limitations due to actuator saturation.
the above mentioned inequality. By rearranging the inequalijrst, we chose the gaip in agreement with (38) as
(55) and using the property of the scalar prodgél; < Kp = diag{1200,1200,1200} Nm. In that case, we can

4l ||a]|, we get the following inequality consider thel, gain v as a function of the parameters
L2 R, . and \.{Kp}, v = v(a, A\, {Kp}). The contour lines of
(a1 = 08) [lal|” + (a2 — @?0)[|]1* — (a5 + 2a0)q]| ||g]| = this function, for different positive values of, are shown

Tl T (a2 — a?®8)  —31(az +2a8)] [ |4l in Fig. 1. From the contour lines we can determine the
- hq” [—§(a3+2a5) (a1 —9) } th] =20 minimal values of),,{Kp} and the corresponding values
of o which ensure the appropriate values of tlig gain
~. Then, we chose the minimum possible gain v with

(a1 — 8)(as — a25) > }(ag +2a0)2. (56) the corresponding values of and \,,{ Kp}, avoiding actu-

4 ators saturation during the simulations. The controller gains

Solving the inequality (56) with respect to the paramétare « and Kp were finally set toa = 2.47 sec™!, Kp =
get (52). Note that, from the conditions of positive definiteneskag{982.98,982.98,982.98} N msec, as shown in Fig. 1.

which is satisfied for
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AN
— 4, (rad) / . .
0 - - 0y (rad) reference signal. In contrast with the PID controller, the
_02 L L L L L 1 L T T 11 1
S T 1o 15 20 25 30 3 40 45 =0 repgtmve controller ;hows expongnnal convergence toward an
time (sec) arbitrary small tracking error which depends on the number

of oscillatorsN. Although the model-based CT controller has
Fig. 2. The periodic reference signals and positions of robot manipulatoss; gtar convergence in the case of compensated friction, the RC
controller has a significantly smaller tracking error in the case
of uncompensated friction.

The dependence of the tracking error and convergence rate
on the number of oscillatorév is illustrated in Fig. 4. We
200 Nmsec. The gainsK; and Qx, k = 1,..,N are can see that an increase in the number of oscillators decreases
not included in the stability conditions and, gain. Their the tracking error. Further, from the figure we can see that the
values are determined during the preliminary simulationgsnvergence rate is independent of the number of oscillators.
K; = diag{150, 150,150} Nm, @ = diag{20,20,20} for So, there is no trade-off between convergence and accuracy,
k =1,..,N. The number of oscillators i& = 12, and the which is characteristic of most of the internal model-based
fundamental frequency of oscillatorsds= 1 rad/s. repetitive controllers.

Fig. 2. shows a comparison of the positions of the robot
manipulators and reference signals. In Fig. 3. we can see a
comparison of the tracking errors for the repetitive controller
(RC), linear PID controller (defined by (11)-(13) wikig) =0 In this paper a new class of the finite dimensional repetitive
and @, = 0, £k = 1,...,N) and the computed torque (CT)controllers for robot manipulators is proposed. The proposed
controlleru = M (q)(Gq —Kpj—Kpq) +C(q,9)¢+9(q), in repetitive controller connects the main advantage of the in-
the case of (a) compensated and (b) uncompensated visdeusal model controllers - implementation simplicity, with
and dry frictiond = —Fy ¢ — Fesign(q), whereFy, = Fo =  robustness based on the passivity of the external model con-
diag{5,5,5} Nm. From the figure we can conclude thatrollers. The future work will be directed to the experimental
the PID controller can not asymptotically track the periodigerification of the proposed repetitive controller.

Using the numerical values ok and cp, the controller
gain k:[}) is chosen in agreement with (38)%3) =

VIl. CONCLUSIONS
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