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Passive Finite Dimensional Repetitive Control of Robot Manipulators

Josip Kasac, Branko Novakovic, Dubravko Majetic and Danko Brezak

Abstract—In this paper a new class of finite dimensional repet-
itive controllers for robot manipulators is proposed. The global
asymptotic stability is proved for the unperturbed system. The
passivity-based design of the proposed repetitive controller avoids
the problem of tight stability conditions and slow convergence
of the conventional, internal model-based, repetitive controllers.
The passive interconnection of the controller and the nonlinear
mechanical systems provides the same stability conditions as the
controller with the exact feed-forward compensation of robot
dynamics. The simulation results on a three degrees of freedom
spatial manipulator illustrate the performances of the proposed
controller.

Index Terms—Repetitive control, passive system, manipulators,
robot dynamics, stability

I. I NTRODUCTION

An important subject in the control of mechanical systems
is tracking periodic reference signals and attenuating periodic
disturbances. Many tracking systems, such as computer disk
drives [1], rotation machine tools [2], or robots [3], have
to deal with periodic reference and/or disturbance signals.
A promising control approach to achieving the tracking of
periodic reference signals is learning control or repetitive
control.

In most of the conventional approaches to robot trajectory
control, including parametric adaptive control, it is necessary
to compute in real time the so-called inverse dynamics equa-
tions of the robot or regression matrix. However, due to the
model uncertainties, it is difficult to derive the exact descrip-
tion of the system. Also, using neural networks for learning
feed-forward control has some drawbacks: slow convergence
and relatively large tracking errors.

There have been many studies on the topic of repetitive con-
trol for controlling mechanical systems in an iterative manner.
In contrast with the conventional approaches to robot trajectory
control, repetitive control schemes are easy to implement and
do not require the exact knowledge of the dynamic model.

Repetitive controllers can be classified as being either
internal model-based or external model-based [4]. Controllers
using the internal model are linear and have periodic signal
generators [5], [6]. In the external model controllers the
disturbance model is placed outside the basic feedback loop
[3], [7].

The internal model controllers are based on a delayed
integral action of the form(1−exp(−sT ))−1 which produces
an infinite number of poles on imaginary axes. However, the
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asymptotic convergence can only be guaranteed under restric-
tive conditions in the plant dynamics - zero relative degree
or direct transmission term. These conditions are generally
not satisfied in robot control applications because they imply
acceleration measurement. Further, the positive feedback loop
used to generate the periodic signal decreases the stability
margin. So, the repetitive controller is likely to make the
system unstable. To enhance the robustness of these repetitive
control schemes, the repetitive update rule is modified to
include the so-called Q-filter [5], [6]. Unfortunately, the use of
the Q-filter eliminates the ability of tracking errors to converge
to zero. Therefore, the trade-off between stability and tracking
performance has been considered to be an important factor in
the repetitive control system.

Another problem is that, due to infinite dimensional dynam-
ics of delayed line, a large memory space is required for digital
implementation of the control law. To overcome this problem,
in [8] a finite dimensional approximation of delayed line is
proposed in the form of a cascade connection ofN harmonic
oscillators and one integrator.

The advantages of the internal model controllers are that
they are linear, making analysis and implementation easier.
The disadvantages are that the stability is almost entirely
governed by the feedback loop of the repetitive compensator.
The frequency response of the system is altered and robustness
to noise and unmodelled dynamics is reduced.

The external model controllers are based on the feedforward
compensation of inverse dynamics. The disturbance model
is adjusted adaptively to match the actual disturbance. The
central idea in [3] is that the disturbance can be represented
as a linear combination of basis functions like Fourier series
expansion. In this way, an adaptive control law with regressor
matrix containing basis functions is obtained. In [7] unknown
disturbance functions are represented by integral equations of
the first kind involving a known kernel and unknown influence
functions. The learning rule indirectly estimates the unknown
disturbance function by updating the influence function.

The main advantage of the external model approach is that
there is no significant influence on the stability conditions of
the control system. The map between the feedforward function
error and the tracking errors is strictly passive. Thus, the
control system is robust to the imprecise estimation of the
robot inverse dynamics. The disadvantage is that the analysis
and implementation are more complex than for the internal
model-based algorithms.

In this paper a new class of internal model-based repetitive
controllers for robot manipulators is proposed. The proposed
finite dimensional repetitive controller is founded on the
passivity-based design and has a structure in the form of a
parallel connection ofN linear oscillators and one integrator.
The passive interconnection of the proposed controller with
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nonlinear mechanical systems has the same stability conditions
as the controller with the exact feed-forward compensation of
robot dynamics [9], [10].

Throughout the paper we use the notation:‖x‖ =
√
xTx for

the Euclidean norm of the vectorx ∈ Rn, λM{A} andλm{A}
for the maximal and minimal eigenvalues, respectively, of the
symmetric positive definite matrixA.

This paper is organized as follows. Robot dynamics and
its main properties are presented in Section II. In Section III
a class of finite dimensional internal model-based repetitive
controllers is introduced and conditions for global asymptotic
stability are established in Section IV. The passivity properties
of the proposed controllers are considered in Section V. The
simulation results are presented in Section VI. The concluding
remarks are emphasized in Section VII.

II. ROBOT DYNAMICS

The dynamic model of then-link rigid-body robotic manip-
ulator with revolute joints is represented by

M(q)q̈ + C(q, q̇)q̇ + g(q) = u+ d, (1)

where q is the n × 1 vector of robot joint coordinates,̇q is
the n × 1 vector of joint velocities,u is the n × 1 vector
of applied joint torques and forces,M(q) is then× n inertia
matrix,C(q, q̇)q̇ is then×1 vector of centrifugal and Coriolis
torques,g(q) is then× 1 vector of gravitational torques and
forces, obtained as the gradient of the robot potential energy
U(q)

g(q) =
∂U(q)
∂q

, (2)

and d is the vector of external disturbances and unmodeled
static nonlinearities.

We assume that the matrixC(q, q̇) is defined using the
Christoffel symbols, so that the matrixṀ(q) − 2C(q, q̇)
is skew-symmetric. This implies thatṀ(q) = C(q, q̇) +
C(q, q̇)T .

The dynamic model (1) for the robot manipulator with
revolute joints has the following properties that are used for
the stability analysis [11], [10].

Property 1. The inertia matrixM(q) is a positive definite
symmetric matrix which satisfies

λm{M}‖q̇‖2 ≤ q̇TM(q)q̇ ≤ λM{M}‖q̇‖2. (3)

Property 2. There exist positive constantskM , kC1, kC2 and
kg so that for allx, y, z, v, w ∈ Rn, we have

‖M(x)z −M(y)z‖ ≤ kM‖x− y‖ ‖z‖, (4)

‖C(x, z)w − C(y, v)w‖ ≤ kC1‖z − v‖ ‖w‖+
+ kC2‖z‖ ‖x− y‖ ‖w‖, (5)

‖g(x)− g(y)‖ ≤ kg‖x− y‖, (6)

‖C(x, y)z‖ ≤ kC1‖y‖ ‖z‖, (7)

where the values of the parameterskg, kC1, kC2 andkM can
be estimated by

kg = n

(
max
i,j,q

∣∣∣∣∂gi(q)
∂qj

∣∣∣∣) ,

kC1 = n2

(
max
i,j,k,q

|cijk(q)|
)
,

(8)

kC2 = n3

(
max

i,j,k,l,q

∣∣∣∣∂cijk(q)
∂ql

∣∣∣∣) ,

kM = n2

(
max
i,j,k,q

∣∣∣∣∂Mij(q)
∂qk

∣∣∣∣) ,

(9)

wherecijk(q) are Christoffel symbols.

III. C ONTROL PROBLEM FORMULATION

A. Finite-Dimensional Repetitive Controller

The periodic reference trajectoryqd(t) with the periodT
can be represented in the form of Fourier series

qd(t) = a0 +
N̄∑

k=1

[ak cos(kωt) + bk sin(kωt)], (10)

whereω = 2π
T is the fundamental frequency, anda0, ak and

bk are known constant vectors.
We consider the control law given by

u = −KP q̃ −KD
˙̃q − k

(1)
D ‖q̃‖ ˙̃q −KIz0 −

N∑
k=1

Qkżk, (11)

z̈k + k2ω2zk = Qk( ˙̃q + αq̃), k = 1, ..., N, (12)

ż0 = ˙̃q + αq̃, (13)

where q̃ = q − qd, ˙̃q = q̇ − q̇d are the joint position error
and velocity, respectively,qd is the time periodic desired
joint position represented by (10),KP , KD, KI and Qk

(k = 1, ..., N ) are then×n constant positive-definite diagonal
matrix, k(1)

D , α is positive constant andN is the number of
harmonic oscillators.

The desired joint positionqd is assumed to be twice con-
tinuously differentiable. In other words, we assume that there
exist finite upper bounds on the norm of the desired velocity
and acceleration, denoted by‖q̇d‖M and‖q̈d‖M . The nonlinear
derivative termk(1)

D ‖q̃‖ ˙̃q in the control law (11) is introduced
to ensure the global asymptotic stability of the closed-loop
system [12].

The parallel interconnection of theN harmonic oscillators
(12) and the integrator (13) represents the internal model
of the periodic reference signalqd(t) including higher order
harmonics which are induced by nonlinear robot dynamics, so
that the conditionN ≥ N̄ must be satisfied.

B. Residual Robot Dynamics

The dynamic model of the robot manipulator (1) can be
rewritten in the following form

M(q)¨̃q + C(q, q̇) ˙̃q + h(q̃, ˙̃q) = u+ d− f(qd, q̇d, q̈d), (14)

where

h(q̃, ˙̃q) = [M(q)−M(qd)]q̈d + [C(q, q̇)− C(qd, q̇d)]q̇d +
+ g(q)− g(qd), (15)

is the so-calledresidual robot dynamicsintroduced in [13],
[14] and

f(qd, q̇d, q̈d) = M(qd)q̈d + C(qd, q̇d)q̇d + g(qd), (16)

represents the unknowndesired robot inverse dynamics.
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The functionf(qd, q̇d, q̈d) is a periodic function with the
same fundamental frequency asqd(t) and can be represented
by the infinite Fourier series expansion

f(qd, q̇d, q̈d) = ā0 +
∞∑

k=1

[āk cos(kωt) + b̄k sin(kωt)], (17)

whereā0, āk and b̄k are unknown constant vectors.
The following property of the functionh(q̃, ˙̃q) is important

in the subsequent stability analysis.
Property 4.By defining

c1 = kg + kM‖q̈d‖M + kC2‖q̇d‖2M ,

c2 = kC1‖q̇d‖M ,
(18)

the norm of residual dynamics (15) satisfies (see [9], [10])

‖h(q̃, ˙̃q)‖ ≤ c1‖q̃‖+ c2‖ ˙̃q‖. (19)

From the inequality (19) follows

−( ˙̃q + αq̃)Th(q̃, ˙̃q) ≤ αc1‖q̃‖2 + c2‖ ˙̃q‖2 +
+ (c1 + αc2)‖q̃‖ ‖ ˙̃q‖. (20)

The parametersc1 andc2 can be estimated on the basis of the
Fourier representation of the desired periodic signal (10)

c2 ≤ kC1

N̄∑
k=1

kω(‖ak‖+ ‖bk‖),

c1 ≤ kg + kM

N̄∑
k=1

k2ω2(‖ak‖+ ‖bk‖) +
kC2c

2
2

k2
C1

,

(21)

where we used the properties| sin(kωt)| ≤ 1 and
| cos(kωt)| ≤ 1.

Remark 1. One of the simplest motion control schemes for
the system (14) is PD control with feedforward compensation
[9], [10]: u = −KP q̃ − KD

˙̃q + f(qd, q̇d, q̈d). The imple-
mentation of the above-mentioned control law requires the
exact knowledge of the matricesM(q), C(q, q̇) and the vector
g(q). However, due to the model uncertainties, it is difficult to
derive the exact dynamic model of the robot manipulator. The
main idea of using the controller (11)-(13) is the model-free
feedback compensation of the periodic functionf(qd, q̇d, q̈d).
This idea will be clarified through the derivation of the error
equations of the closed-loop system.

C. Error Equations

Introducing the change of variables̃zk = zk − z∗k, k =
0, 1, ..., N , with

z∗0 = −K−1
I ā0,

z∗k = k−1ω−1Q−1
k [b̄k cos(kωt)− āk sin(kωt)],

(22)

the following error equations are obtained

M(q)¨̃q + C(q, q̇) ˙̃q + h(q̃, ˙̃q) = ū+ w, (23)

ū = −KP q̃ −KD
˙̃q − k

(1)
D ‖q̃‖ ˙̃q −KI z̃0 −

N∑
k=1

Qk
˙̃zk, (24)

¨̃zk + k2ω2z̃k = Qk( ˙̃q + αq̃), k = 1, ..., N, (25)
˙̃z0 = ˙̃q + αq̃, (26)

where we used the Fourier series expansion (17) of the
functionf(qd, q̇d, q̈d) and the propertÿz∗k+k2ω2z∗k = 0, which
follows from (22) for k = 1, ..., N . The functionw in (23)
has the following form

w = d−
∞∑

k=N+1

[āk cos(kωt) + b̄k sin(kωt)]. (27)

where the second term represents the error in the estimation
of the desired robot inverse dynamics that consists of the
harmonics ofN + 1 order.

Remark 2. From the equation (27) we can conclude that
the tracking error has zero harmonic content at the repetitive
frequency and its harmonics up toN (whereN is the number
of harmonic oscillators in the controller). Also, the bound on
the tracking error decreases withN . In the limit N →∞ the
above-mentioned model of the repetitive controller works as
well as the ideal infinite dimensional model in achieving the
perfect tracking of periodic reference signals [15]. Note that
this conclusion is valid only for twice continuously differen-
tiable periodic reference signals, and cannot be generalized to
arbitrary periodic reference signals, as shown in [5]. In that
ideal case the stationary state of the system (14), (11)-(13) is
q = qd, q̇ = q̇d, zk = z∗k, k = 0, 1, ..., N .

IV. STABILITY ANALYSIS

In this section we provide the proof for global asymptotic
stability of the unperturbed systems (23)-(26), wherew = 0,
and in the subsequent section we prove the passivity properties
of the proposed controller, which guarantee the robustness to
the disturbancesw 6= 0.

We consider the stability by the Lyapunov’s direct method.
First, we propose the appropriate Lyapunov function candi-
date. Then, global stability conditions on the controller gains
are established. Finally, the LaSalle invariance principle is
invoked to guarantee the asymptotic stability.

A. Construction of Lyapunov Function

Multiplying the equation (23) by the output variabley1 =
˙̃q + αq̃, the equation (25) by the output variabley2 = żk, the
equation (26) by the output variabley3 = KIz0 and summing
them all up, we get a nonlinear differential form which can
be separated in the following way

d

dt
V (q̃, q̇, z̃0, z̃1, ˙̃z1, ..., z̃N , ˙̃zN ) = −W (q̃, q̇), (28)

(for more details see e.g. [12]) whereV = V1 + V2 is the
Lyapunov function candidate

V1 =
1
2

˙̃qTM(q) ˙̃q + αq̃TM(q) ˙̃q +
1
2
q̃TKP q̃ +

+
1
2
αq̃TKD q̃ +

1
3
αk

(1)
D ‖q̃‖3, (29)

V2 =
1
2
z̃T
0 KI z̃0 +

1
2

N∑
k=1

˙̃zT
k

˙̃zk +
1
2
ω2

N∑
k=1

k2z̃T
k z̃k, (30)

and−W is its time derivative

W = ˙̃qTKD
˙̃q + k

(1)
D ‖q̃‖ ˙̃qT ˙̃q − α ˙̃qTM(q) ˙̃q − α ˙̃qTC(q, q̇)q̃ +

+ αq̃TKP q̃ + ( ˙̃q + αq̃)Th(q̃, ˙̃q). (31)
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B. Stability Conditions

The following step is to determine conditions for the pos-
itive definiteness of the functionV and the positive semi-
definiteness of the functionW .

1) Positive definiteness of the Lyapunov function:The
Lyapunov functionV can be rearranged as follows

V = V2 +
1
2

( ˙̃q + αq̃
)T
M(q)

( ˙̃q + αq̃
)
− 1

2
α2q̃TM(q)q̃ +

+
1
2
q̃T (KP + αKD)q̃ +

1
3
αk

(1)
D ‖q̃‖3. (32)

Using the property (3) we get

V ≥ 1
2

(
λm{KP }+ αλm{KD} − α2λM{M}

)
‖q̃‖2 +

+
1
2
λm{M}‖ ˙̃q + αq̃‖2 +

1
2
λm{KI}‖z̃0‖2 +

+
1
2

N∑
k=1

‖ ˙̃zk‖2 +
1
2
ω2

N∑
k=1

k2‖z̃k‖2, (33)

that will be satisfied when

λm{KP }+ αλm{KD} > α2λM{M}. (34)

2) Negative semi-definiteness of the time derivative of Lya-
punov function: The following step is the derivation of the
condition which ensures that the time derivative of Lyapunov
function is a negative semi-definite function, i.e.,W ≥ 0.

First, notice that the upper bound on term̃̇qTC(q, q̇)q̃ in
(31) can be estimated by

˙̃qTC(q, q̇)q̃ ≤ αkC1‖q̃‖ ‖q̇‖
∥∥ ˙̃q

∥∥ ≤
≤ kC1‖q̇d‖M ‖q̃‖

∥∥ ˙̃q
∥∥ + kC1‖q̃‖

∥∥ ˙̃q
∥∥2
, (35)

where we used the triangle inequality‖q̇‖ ≤
∥∥ ˙̃q

∥∥ + ‖q̇d‖.
Applying the properties (3), (20) and (35), we get

W ≥ (λm{KD} − αλM{M} − c2)
∥∥ ˙̃q

∥∥2
+

+ (k(1)
D − αkC1)‖q̃‖

∥∥ ˙̃q
∥∥2

+ α(λm{KP } − c1)‖q̃‖2 −
− (c1 + 2αc2)‖q̃‖

∥∥ ˙̃q
∥∥ ≥ 0. (36)

Finally, W can be bounded by a quadratic plus a cubic
function

W ≥
[
‖q̃‖∥∥ ˙̃q

∥∥ ]T

R

[
‖q̃‖∥∥ ˙̃q

∥∥ ]
+ (k(1)

D − αkC1)‖q̃‖
∥∥ ˙̃q

∥∥2
, (37)

with the matrixR given by

R =
[
α(λm{KP } − c1) − 1

2 (c1 + 2αc2)
− 1

2 (c1 + 2αc2) (λm{KD} − αλM{M} − c2)

]
.

The functionW is positive definite if the following conditions
are satisfied

k
(1)
D > αkC1, (38)

λm{KP } > c1, (39)

λm{KD} >
(c1 + 2αc2)2

4α(λm{KP } − c1)
+ αλM{M}+ c2. (40)

We can see that the condition (34) is trivially implied by the
conditions (39)-(40). So, the conditions (38)-(40) are the final
stability criterions which guarantee global stability. Finally,

by invoking the LaSalle invariance principle, we conclude the
asymptotic stability.

Remark 3. Note that the stability conditions (39)-(40), for
α = 1, are exactly the same as the local stability conditions
in [10]. The global stability of the repetitive controller (11)-
(13) is achieved by the nonlinear derivative term whose gain
k

(1)
D satisfies the condition (38). So, the proposed repetitive

controller practically has no influence on the closed-loop
stability. It is obvious from the stability conditions which do
not contain the interaction gainsQk and the integral gain
KI . This fact is a consequence of the passive interconnection
between robot dynamics (1) and the repetitive controller (11)-
(13).

V. PASSIVITY PROPERTIES OFREPETITIVE CONTROLLER

Unknown and unmodeled nonlinearities play an important
role in the high-precision control of the robot manipulator.
Friction is one of the most common nonlinearities present in
mechanical systems. Despite the many efforts to characterize
and estimate frictions, it is still difficult to identify and com-
pensate them. Moreover, any cancellation of nonlinearities by
feedback which is not exact, may produce undesirable closed-
loop behavior like large tracking errors, limit cycles and stick-
slip motion. In contrast with model-dependent controllers, the
passivity-based controllers are robust to model uncertainties
and external disturbances. In this section we prove the passiv-
ity properties of the proposed repetitive controller.

Consider dynamical systems represented by

ẋ = f(x, u), (41)

y = h(x, u), (42)

where x ∈ Rn, y, u ∈ Rm, f(0, 0) = 0 and h(0, 0) = 0.
Moreover,f(x, u) andh(x, u) are supposed to be sufficiently
smooth so that the system is well-defined.

Definition 1. (see [16]) The system (41)-(42) is said to be
passive if there exists a continuously differentiable positive
semidefinite functionV (x) (called the storage function) so
that

uT y ≥ V̇ (x) + ε‖u‖2 + δ‖y‖2 + ρψ(x), (43)

whereε, δ, andρ are nonnegative constants, andψ(x) : Rn →
R is a positive definite function ofx. The termρψ(x) is called
the state dissipation rate. Furthermore, the system is said to be:
lossless, if (43) is satisfied with equality andε = δ = ρ = 0;
input strictly passive, ifδ = ρ = 0 and ε > 0; output strictly
passive, ifε = ρ = 0 and δ > 0; state strictly passive, if
ε = δ = 0 andρ > 0.

Proposition 1.The robot dynamics

M(q)¨̃q + C(q, q̇) ˙̃q + h(q̃, ˙̃q) = u1 + w1, (44)

in a closed-loop with the nonlinear PD controller

u1 = −KP q̃ −KD
˙̃q − k

(1)
D ‖q̃‖ ˙̃q, (45)

is state strictly passive from the input torquew1 to the output
y1 = ˙̃q + αq̃, with a radially unbounded positive definite
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storage functionV1 defined by (29) and the state dissipation
rate is given byW ,

wT
1 y1 ≥ V̇1(q̃, ˙̃q) +W (q̃, ˙̃q). (46)

Note thatV1 is a positive definite andW is positive semidef-
inite function if the conditions (39)-(40) are satisfied.

Proposition 2.The system

¨̃zk + k2ω2z̃k = Qkw2, k = 1, ..., N, (47)
˙̃z0 = w2, (48)

is lossless from the inputw2 to the outputy2 = KIz0 +∑N
k=1Qk

˙̃zk with a radially unbounded positive definite stor-
age functionV2 defined by (30),

wT
2 y2 = V̇2(z̃0, z̃1, ˙̃z1, ..., z̃N , ˙̃zN ). (49)

Note thatV2 is positive definite for any positive definite matrix
KI .

Proposition 3.The feedback interconnection between the
system (44)-(45) and the system (47)-(48),

w1 = −y2 + w, w2 = y1, (50)

is output strictly passive from the input torquew to the output
y1 = ˙̃q + αq̃, with a radially unbounded positive definite
storage functionV = V1 + V2,

wT y1 ≥ V̇ + δ‖y1‖2, (51)

where

δ ≤
a1a2 − 1

4a
2
3

a2 + α2a1 + αa3
, (52)

and
a1 = λm{KD} − αλM{M} − c2,

a2 = α(λm{KP } − c1),
a3 = c1 + 2αc2.

(53)

Proof. Insertingw1 = −y2 + w, w2 = y1 in (46) and (49)
we get

wT y1 ≥ V̇ (q̃, ˙̃q, z̃0, z̃1, ˙̃z1, ..., z̃N , ˙̃zN ) +W (q̃, ˙̃q). (54)

Further, inserting the inequality (36) with the notation (53) in
(54), and comparing with (51) we get

wT y1 ≥ V̇ + a1

∥∥ ˙̃q
∥∥2

+ a2‖q̃‖2 − a3‖q̃‖
∥∥ ˙̃q

∥∥ ≥
≥ V̇ + δ‖ ˙̃q + αq̃‖2, (55)

The final step is determining the parameterδ which satisfies
the above mentioned inequality. By rearranging the inequality
(55) and using the property of the scalar productq̃T ˙̃q ≤
‖q̃‖

∥∥ ˙̃q
∥∥, we get the following inequality

(a1 − δ)
∥∥ ˙̃q

∥∥2
+ (a2 − α2δ)‖q̃‖2 − (a3 + 2αδ)‖q̃‖

∥∥ ˙̃q
∥∥ =

=
[
‖q̃‖∥∥ ˙̃q

∥∥ ]T [
(a2 − α2δ) − 1

2 (a3 + 2αδ)
− 1

2 (a3 + 2αδ) (a1 − δ)

] [
‖q̃‖∥∥ ˙̃q

∥∥ ]
≥ 0

which is satisfied for

(a1 − δ)(a2 − α2δ) ≥ 1
4
(a3 + 2αδ)2. (56)

Solving the inequality (56) with respect to the parameterδ we
get (52). Note that, from the conditions of positive definiteness

of the matrixR in (37), the numerator on the right side of the
inequality (52) is always positive.

Proposition 4.The feedback interconnection between the
system (44)-(45) and the system (47)-(48) has the finiteL2

gain γ ≤ 1
δ where δ is defined by (52). For proof see e.g.

[16].
The L2 gain, which characterizes the disturbance attenua-

tion capabilities of the control scheme, can be used for the
controller gains tuning. TheL2 gain γ is a function of the
controller parametersα, λm{KP } and λm{KD}. It can be
seen that the functionγ = γ(α, λm{KP }, λm{KD}) has
no isolated minimum regarding the parametersλm{KP } and
λm{KD}, i.e. theL2 gain γ can be decreased by increasing
the values of the gainsKP andKD. On the other hand, for
the given values ofλm{KP } and λm{KD}, there exists an
isolated minimum regarding the parameterα.

VI. SIMULATION EXAMPLE

The manipulator used for simulation is a three degree of
freedom spatial manipulator with revolute joints, considered
in [17]. The manipulator parameters, which are taken from
the first three links of the PUMA 560 robot [18], have the
following values:
I1 = 0.35 kg m2, m2 = 17.4 kg, m3 = 4.8 kg,
m = 0.5 kg, l2 = 0.4318 m, l3 = 0.4331 m,

where I1 is inertia of the first link,m2 andm3 are masses
of the second and third links,m is load mass,l2 and l3 are
lengths of the second and third links.

The parameterskg, kC1, kC2, kM and λM{M}, which
can be estimated by using the expressions (8) and (9) de-
rived in [10] and [11], have the following values:kg =
214.65 kg m2/sec2, kC1 = 63.86 kg m2, kC2 =
383.20 kg m2, kM = 162.74 kg m2 andλM{M} ≤ 28.17 kg.

The desired periodic reference trajectories are

qdj =
1
2j

+
1
4

3∑
k=1

j

jk + 1
sin

(
kωt+

πj

2k

)
, (57)

wherej = 1, 2, 3 andω = 1 rad/s. The numerical values of
the parametersc1 andc2 can be calculated from the expression
(21): c1 = 915.52 kg m2/sec2, c2 = 62.61 kg m2/sec.

The controller gainsα, KP andKD are chosen to minimize
theL2 gainγ in accordance with the stability conditions (38)-
(40) and control torques limitations due to actuator saturation.
First, we chose the gainKP in agreement with (38) as
KP = diag{1200, 1200, 1200} N m. In that case, we can
consider theL2 gain γ as a function of the parametersα
and λm{KD}, γ = γ(α, λm{KD}). The contour lines of
this function, for different positive values ofγ, are shown
in Fig. 1. From the contour lines we can determine the
minimal values ofλm{KD} and the corresponding values
of α which ensure the appropriate values of theL2 gain
γ. Then, we chose the minimum possibleL2 gain γ with
the corresponding values ofα andλm{KD}, avoiding actu-
ators saturation during the simulations. The controller gains
α and KD were finally set toα = 2.47 sec−1, KD =
diag{982.98, 982.98, 982.98} N m sec, as shown in Fig. 1.
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Fig. 1. The dependence ofL2 gainγ on controllers parametersα, λm{KP }
andλm{KD}.
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Fig. 2. The periodic reference signals and positions of robot manipulators.

Using the numerical values ofα and c2, the controller
gain k

(1)
D is chosen in agreement with (38):k(1)

D =
200 Nm sec. The gainsKI and Qk, k = 1, ..., N are
not included in the stability conditions andL2 gain. Their
values are determined during the preliminary simulations:
KI = diag{150, 150, 150} N m, Qk = diag{20, 20, 20} for
k = 1, ..., N . The number of oscillators isN = 12, and the
fundamental frequency of oscillators isω = 1 rad/s.

Fig. 2. shows a comparison of the positions of the robot
manipulators and reference signals. In Fig. 3. we can see a
comparison of the tracking errors for the repetitive controller
(RC), linear PID controller (defined by (11)-(13) withk(1)

D = 0
andQk = 0, k = 1, ..., N ) and the computed torque (CT)
controlleru = M(q)(q̈d−KP q̃−KD

˙̃q)+C(q, q̇)q̇+ g(q), in
the case of (a) compensated and (b) uncompensated viscous
and dry frictiond = −FV q̇ − FCsign(q̇), whereFV = FC =
diag{5, 5, 5} N m. From the figure we can conclude that
the PID controller can not asymptotically track the periodic
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Fig. 3. A comparison of tracking errors for the repetitive controller (RC),
linear PID controller and computed torque controller (CT) in the case of (a)
compensated and (b) uncompensated viscous and dry friction.
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Fig. 4. The convergence rate and tracking errors, depending on the number
of oscillators.

reference signal. In contrast with the PID controller, the
repetitive controller shows exponential convergence toward an
arbitrary small tracking error which depends on the number
of oscillatorsN . Although the model-based CT controller has
faster convergence in the case of compensated friction, the RC
controller has a significantly smaller tracking error in the case
of uncompensated friction.

The dependence of the tracking error and convergence rate
on the number of oscillatorsN is illustrated in Fig. 4. We
can see that an increase in the number of oscillators decreases
the tracking error. Further, from the figure we can see that the
convergence rate is independent of the number of oscillators.
So, there is no trade-off between convergence and accuracy,
which is characteristic of most of the internal model-based
repetitive controllers.

VII. C ONCLUSIONS

In this paper a new class of the finite dimensional repetitive
controllers for robot manipulators is proposed. The proposed
repetitive controller connects the main advantage of the in-
ternal model controllers - implementation simplicity, with
robustness based on the passivity of the external model con-
trollers. The future work will be directed to the experimental
verification of the proposed repetitive controller.
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