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Abstract 
Numerous examples of actuated-movements with specific responses of the structure to 

external stimuli can be found in biological systems, which can be a potential source of 

inspiration for the design of energy-efficient “smart” devices. From the hydro-driven rapid 

snapping of the Venus fly trap leaves to simple hydro-responsive bending of wheat awns, 

various plants have evolved different mechanisms to utilize water as an actuator to undergo 

a desired deformation via sophisticated architecture at different hierarchical levels of their 

systems. Some species of the family Aizoaceae, also known as ice plants, show an 

ingenious example of such passive actuation systems, as they evolved a smart mechanism 

to open their protective seed capsules and release their seeds only in the presence of liquid 

water (rain).  

The scope of the first phase of the thesis was to investigate the underlying mechanism and 

the structural and compositional basis of the hydro-actuated movement of the ice plant seed 

capsules (Delosperma nakurense) at several hierarchical levels. Five hygroscopic keels 

were found to be the active muscles responsible for the reversible origami-like unfolding of 

the seed capsule upon wetting. Each keel consists of two honeycomb-like tissues made up 

of highly swellable hexagonal/elliptical shape cells running along an inert backing tissue. 

The significant swelling of a highly swellable cellulosic inner layer (CIL) inside the lumen 

of these cells was found to be the main engine of the actuation. The morphology and 

physicochemical response of the CIL to water was studied using a variety of techniques 

and it was shown that the entropic changes during water absorption were the main driving 

force for swelling of the cells. The translation of such relatively small available energy to 

the complex movement at a macro scale was explained by an optimized design at different 

hierarchical levels of the system. The cooperative anisotropic swelling of the cells in the 

hygroscopic tissue is translated into a flexing movement of the structure via simple 

Timoshenko’s bilayer bending principle, which then results in an unfolding of the seed 

capsules. 

Inspired by the underlying mechanism in ice plant, two different strategies were developed 

to translate small strains at micro scale into a pre-programmed macro movement of a 

honeycomb structure. Through a clever application of the same simple concepts, one can 

“mimic” the biological model system in a broader engineering sense, with potential 

applications of such passive switches in biomedicine, agricultural engineering or 

architectural design. 
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1 Introduction 

1.1 Nature as a source of inspiration 

Humans as a species capable of tool making, have always been curious and in search for 

better and more suitable material to make the necessary tools satisfying the variety of their 

needs, from early housing constructions and simple hunting tools to today’s space shuttles. 

One of the available resource from the early ages was the biological materials in human’s 

environments like wood, wool, bone, etc. which would to some extent satisfy the basic 

needs of the time by being utilized more or less in the same area of function they were 

designed for in the natural system. Beside some exceptions, the only processing needed 

from the human part was basic processing of the material with defined structure and 

properties, into the desired shape and form like weaving, carving etc. By further 

advancement of the societies the need for better and more complex tools led to further 

development of both “material” and “structural” aspects of human engineering. However, 

there are fundamental differences between the biological materials and structures and 

human engineered systems.  

One of the main differences between natural and engineered materials comes from the 

basic building blocks used in their structure (Figure 1). Being restricted to the available 

resources in the environment, natural systems utilize only a few basic elements from the 

periodic table, while human engineering makes use of a huge variety of elements from 

carbon and nitrogen to more scarce elements like titanium etc. Natural structures are 

mainly made up of composite materials which depending on the function, can be almost 

completely organic (skin, hair, tendon, cartilage, plant cell walls etc.), or organic-inorganic 

hybrid materials (tooth, bone, crustacean cuticle etc.). Besides, natural materials are more 

or less heterogeneous which enables them to preserve a local adaptation of their physical, 

chemical or mechanical properties suitable for the required local function.  

Biological material grow according to their genetic recipe, which itself is a result of an 

incremental change through 3.8 billion years of blind evolutionary R&D, which has given 

nature enough time to come up with more or less optimized design solutions to satisfy a 

variety of functions in need. Hence, these structures have evolved to be multifunctional, 

efficient in respect to the available resources and flexible in terms of adaptation in response 

to the changing environmental conditions. Human fabrication on the other hand, is based 

on a secure and exact design, fulfilling a specific function, mainly achieved through a not 

so efficient process which can be shortly described as “heat, beat, treat”; usually using high 
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energy (heat, pressure etc.) to extract, shape and adjust the required properties of the 

material into a quasi-final product, and ending with yet again costly finishing processes. 

The growth process also enables the biological systems to build up hierarchical structure 

from nano to macro scale. Although engineered structure can also show two to three levels 

of hierarchical design, the extent of this multi-level architecture in natural material can go 

as high ten levels of hierarchy, with composition and architecture at each hierarchical level 

preserving a specific function at that specific scale and in overall properties and function of 

the system in macro (Thompson 1992; Lakes 1993; Tirrell 1994; Jeronimidis and Atkins 

1995; Elices 2000; Fratzl 2003; Fratzl 2007; Fratzl and Weinkamer 2007; Aizenberg and 

Fratzl 2009; Bhushan 2009; Fratzl and Barth 2009; Dunlop and Fratzl 2010; Knippers and 

Speck 2012). 

Moreover, nature has a quite different set of boundary condition as opposed to those faced 

in human engineering, and any of those multitudes of boundary conditions might play a 

crucial role in the development of the structure. Biological materials are made through a 

bottom-up growth process where both material (microstructure) and the final form have to 

be designed simultaneously through self-assembly with regard to the required function. The 

whole growth process can be influenced by external environmental conditions (force, light, 

available resource, etc.), which makes it in essence a dynamic and adaptive process, 

completely different from the static top-down human fabrication where the possible 

external influences have to be considered and brought into an exact design in advance. 

Hence, in studying the natural systems, special attention has to be given to those limiting 

biological and physical conditions and the context in which that feature has developed 

(Thompson 1992; Jeronimidis and Atkins 1995; Fratzl 2007; Aizenberg and Fratzl 2009; 

Bhushan 2009; Knippers and Speck 2012). 
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Figure 1. Natural vs. Engineering materials. Difference between biological and 

engineering materials on environmental conditions, basic available elements as building 

blocks and modes of fabrication, results in different strategies to achieve the desired 

function (re-sketched with permission after; Fratzl 2007). 

However, considering all these conditions and constrains, nature has come up with smart 

solutions to deal with the environmental challenges faced over long evolutionary history. 

Few examples of such solutions that can be used as a source of inspiration for development 

and improvement of human engineering can be categorized as follow; 

- Variety of different surface properties such as super hydrophobicity, high/ low or 

reversible adhesion etc. (Barthlott and Neinhuis 1997; Arzt, Gorb et al. 2003; Federle, 

Barnes et al. 2006; Bhushan and Sayer 2008; Gorb 2009; Gorb 2012) 

- Self-healing and self-repair capacity (Mattheck and Bethge 1998; Thompson, Kindt et 

al. 2001; Keckes, Burgert et al. 2003; Fratzl, Burgert et al. 2004; Currey 2006; 

Fantner, Oroudjev et al. 2006; Gupta, Seto et al. 2006; Zwaag 2007) 

- Special photonic features like structural coloration etc. (Aizenberg, Tkachenko et al. 

2001; Sundar, Yablon et al. 2003; Vukusic and Sambles 2003; Michielsen and 

Stavenga 2008; Mäthger, Denton et al. 2009) 

- Outstanding mechanical properties in combination with light weight etc. (Vincent 

1990; Thompson 1992; Lakes 1993; Jeronimidis and Atkins 1995; Mattheck 1998; 

Mattheck and Bethge 1998; Rho, Kuhn-Spearing et al. 1998; Weiner and Wagner 

1998; Elices 2000; Kamat, Su et al. 2000; Collins 2004; Fratzl, Burgert et al. 2004; 

Fratzl, Gupta et al. 2004; Wegst and Ashby 2004; Raabe, Sachs et al. 2005; Burgert 

2006; Currey 2006; Fratzl 2007; Fratzl and Weinkamer 2007; Meyers, Chen et al. 
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2008; Ortiz and Boyce 2008; Bhushan 2009; Dunlop and Fratzl 2010; Keckes, Burgert 

et al. 2003). 

- Metabolism dependent or material-based sensory systems for actuated motion and 

stress generation (Barth 1998; Fratzl and Barth 2009, Haupt 1977; Forterre, Skotheim 

et al. 2005; Skotheim and Mahadevan 2005; Burgert and Fratzl 2009; Fratzl and Barth 

2009; Martone, Boller et al. 2010). 

1.1.1 Biomimetics 

The term biomimetic (bionic, bio-inspiration etc.) refers to the science of learning and 

transferring such optimized solutions observed in nature into the technical application in 

science, engineering, design etc., with the field covering a wide range of researches from 

the study of biologically produced materials and structures and the structure-function 

relation in the biological system, to understand a specific biological process, synthesis or 

mechanisms etc. The topic is in its essence an interdisciplinary field where researchers 

from various disciplines from biology, physics, chemistry, mathematics, materials science 

and engineering etc. work together to understand and extract the underlying principles 

behind the specific feature/property of interest and translate them into more abstract, 

simpler models applicable to technical problems (Vincent and Mann 2002; Fratzl 2007; 

Speck and Speck 2008; Aizenberg and Fratzl 2009; Bhushan 2009; Fratzl and Barth 2009; 

Martone, Boller et al. 2010; Paris, Burgert et al. 2010; Shimomura 2010).  

Most biomimetic research gets initiated in the biology discipline, with a particular feature 

of a biological system attracting the attention of researchers as a source of inspiration with 

the potential to be transferred into technical application (bottom-up approach). In the first 

step, a thorough multidisciplinary analysis of a biological system with a special feature of 

interest (e.g. outstanding mechanical behavior), helps to have a better understanding of the 

underlying principles responsible for that property (e.g. structure-function relationships). In 

next steps, by detaching from the biological system, the research focuses on the abstraction 

of the discovered principles into simpler models, which are more amenable for technical 

implementation. However, the motivation can also come from the engineering side (top-

down approach), where the need for the development of a new system or improvement of 

an already existing product can start a systematic investigation of various biological 

systems with the potential to offer a suitable solution to the problem in hand (Figure 2) 

(Vincent and Mann 2002; Speck and Speck 2008; Bhushan 2009; Paris, Burgert et al. 

2010).  
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Throughout the whole process, one has to look at the biological model as a concept 

generator rather than a direct blueprint, and consider the difference between the specific 

context (boundary conditions) in which the biological system has developed and the 

constraining factors in human fabrication (the existing engineering capabilities, safety 

issues, cost etc.). 

 

 

Figure 2. Biomimetic approaches. Bottom-up process; starting from the biological model 

system. Top down process; driven from the technological demands (re-sketched after Speck 

and Speck 2008). 

One of the research fields which has gained a rising interest in recent years as a rich source 

for bio-inspired design of “smart” systems, is the actuated movement and stress generation 

in plant kingdom. 

1.2 Hydro-actuated movement and stress generation in the plant 

kingdom 

Plants are commonly reflected to be stationary living organisms and are not as much 

known for their ability to move in a detectable time scale for human eyes. Nevertheless, 

movement is an essential part of plant life, from movements associated to plant growth and 

acquiring nutrition, to spatial reorientation, seed dispersal, defense, etc. (Hart 1990; Burgert 

and Fratzl 2009). To satisfy such needs, plants have evolved a variety of mechanisms for 

stress generation and organ actuations. In all those stress generation or movement related 

mechanisms water plays a crucial role. The interaction of water with the plant material at 
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the nanoscale of the cell walls gets transferred to a response in macro scale through a 

sophisticated structural hierarchy of the plant body (Burgert and Fratzl 2009). 

Skotheim and Mahadevan (Skotheim and Mahadevan 2005) categorize different plant 

movements according to their speed in three basic groups (Figure 3).  

 

Figure 3. Classification of plant and fungal movements. The duration of the movement (τ) 
is plotted against the smallest macroscopic dimension of the moving part (L). Different 

actuated movements are categorized into two modes of motion; slow (swelling/shrinkage) 

and fast (snap-buckling, explosive fracture), (Reprinted with permission from; Skotheim 

and Mahadevan 2005).  

The slow deformations limited by the speed of fluid transport categorized as 

swelling/shrinking movements can be found above the dotted line in figure 3. The 

relatively faster ones are based on the storage and sudden release of elastic energy via 
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geometrical constrains and are shown in between the dotted line and above the limit of the 

physically possible movements. The two subcategories of the fast movements, snap-

buckling and explosive fracture are only different in the mechanism of how the stored 

energy is released. 

In general, two basic categories of plant-water interactions that induce stresses and plant 

movements can be distinguished. The first category is based on variation of the inner 

pressure and volume of the living plant cells due to active influx/efflux of water into the 

cells (Hodick and Sievers 1989; Sibaoka 1991; Fromm and Lautner 2007; Moran 2007; 

Uehlein and Kaldenhoff 2008). Actuations based on variation of the turgor pressure are 

commonly slow movements like stomatal movements (Hetherington and Woodward 2003; 

Roelfsema and Hedrich 2005). However, faster movements can also be achieved when the 

turgor pressure based mechanisms are combined with geometrical instabilities to go beyond 

the speed limitation of fluid transport, as in case of the snap-buckling movement of Venus 

flytrap (Hodick and Sievers 1989; Forterre, Skotheim et al. 2005; Volkov, Adesina et al. 

2008). In some cases, an explosive seed dispersal is achieved through the release of the 

stored elastic energy accompanied by sudden rupture of pre-stressed tissues (Levin, Muller 

Landau et al. 2003). In contrast, the second category is passive hydro-actuation based on 

the swelling/shrinkage of thick and rigid dead cell walls, which can result in the generation 

of internal stresses or an organ movement. The required structural information for passive 

actuation is embedded at different hierarchical levels of the system, which allows even 

dead organs to be actuated by various environmental stimuli to perform a targeted 

deformation. As a consequence, these latter systems are independent of any control or 

energy input from the plant metabolism (Burgert and Fratzl 2009). Adjustments of the 

spatial orientation of organs such as leaning stems or branches is a wide spread example of 

extremely slow movements in this category (Okuyama, Yamamoto et al. 1994; Burgert, 

Eder et al. 2007; Goswami, Dunlop et al. 2008; Burgert and Fratzl 2009),
 
while opening 

and closing of pine cone scales (Dawson, Vincent et al. 1997)
 
or moisture dependent 

bending of wild wheat awns (Elbaum, Zaltzman et al. 2007) are examples of relatively 

faster but still rather slow passive hydro-actuated deformation.  

1.2.1 Water as an actuator 

Water possesses a large dipole moment that enables it to participate in a wide range of 

reactions, with a special one being the ability to build up hydrogen bonds with itself and 

other available solutes. The energy of a hydrogen bond lies in between the strong covalent 
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bonds and relatively loose Van der Waals forces, which makes a suitable compromise to 

have a degree of dynamism as well as stability. The ability to form hydrogen bonds with a 

large variety of biomolecules gives water the ability to be utilized as an ‘inflating’ or 

‘swelling’ agent and provide the energy required for the movement or stress generation. 

Inflation vs. Swelling  

Inflation can be defined as a change in the volume of a confined geometry due to the 

variation of pressure of the gas/liquid inside the cell. Changes in the water/gas pressure 

inside a confined geometry (sphere, cylinder, etc.) can exert stress on the walls. The 

generated stresses in the walls of a sphere or cylinder are illustrated in Figure 4. 

 

Figure 4. Inflation’s principle. Variation in the pressure of a gas/liquid inside a close 

sphere or cylinder leading to the generation of stress in the cell walls. (p is the internal 

pressure, R the radius and t the thickness of the cylinder or sphere and σt and σl are the 

hoop and longitudinal stress respectively. 

The hoop or tangential stress in a vessel under pressure equilibrates the internal pressure 

resulting from the water uptake in the cell. Hence, influx/efflux of water in such a thin-

walled cell can provide the required energy for deformation or stress generation in the 

confined system. 

Swelling is referred to the uptake of a liquid by a solid upon which the solid dimensions 

change while maintaining the macroscopic homogeneity. Flory-Huggins theory describes 

the swelling pressure (P ) for a polymer-liquid solution and its relation to the Gibbs free 

energy of mixing (DGmix) as (Teraoka 2002; Treloar 2005): 

P = -
¶DG

mix

¶V
+P

el
= -
RT

V
s

ln(1-n )+ (1-
1

r
)n - cn 2

æ

è
ç

ö

ø
÷+Pel

    (Eq. 1) 
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The Pel
 term corresponds to the counteracting elastic force associated with elastic 

expansion of the polymer chains, the -cn 2  part corresponds to the enthalpic term and the

ln(1-n )+ (1-
1

r
)n  part represents the entropic contribution, where V

s
 is the solvent molar 

volume, c  is the apparent interaction parameter depending on the specific properties of the 

particular polymer-liquid mix, r  is the number of repeating unit in a polymer chain, n , the 

polymer volume fraction, R, the gas constant and T , the absolute temperature. 

According to this theory, the water uptake and swelling of polymer networks in general can 

be described in a stepwise process: first the enthalpy driven hydration of the most polar 

hydrophilic groups occurs, and then after saturation of all bonding sites, the further 

adsorption is mainly entropy driven with adsorbed water filling the spaces between the 

network chains and centers of larger pores etc. (Hansen 1969; Teraoka 2002; Treloar 

2005). 

In the enthalpy driven stage, the interaction parameter  defines the affinity of a 

macromolecule to water and is related to the polymer solubility parameters. Hansen 

described the solubility of a solute in a solvent in three distinct parts; a non-polar part 

coming from the energy of dispersion bonds between molecules (δd), a polar part showing 

the energy from dipolar intermolecular force (δp) and a component representing the energy 

from hydrogen bonds between molecules (δh). Total solubility parameter δT is expressed as 

(Hansen 1969): 

2222

dphT  
         (Eq. 2) 

In the final step, when all bonding sites are occupied, the main mechanism for further water 

uptake is entropy-driven with the entropy of the mixing being related to polymer volume 

fraction (ν) and number of repeating units in polymer chains (r) (Teraoka, 2002, Treloar 

2005): 

DS
mix
= -R ln(1-n )+ (1-

1

r
)n

é

ë
ê

ù

û
ú       (Eq. 3) 

The infinite dilution at this stage is restricted by counteracting force due to the associated 

elastic expansion of the chain network and swelling continues only to the point where the 

entropic gain of the mixing and the elastic entropy of the network reach an equilibrium 

level. 

c



10 

 

Water in plant cells 

A special feature of the plant cells in comparison to animal cells is that plant cells have an 

extracellular matrix called ‘cell wall’ which encapsulates the cell’s plasma membrane. The 

cell wall acts as a supportive framework giving the cell its mechanical rigidity to withstand 

the cell’s inner turgor pressure, protecting the cell’s inner organ from environment organs 

etc. The plant cell wall is a relatively dense network of various macromolecules and its 

architecture in general can be described as a fibre-reinforced composite with stiff cellulose 

microfibrils being embedded in a much softer matrix which can consist of hemicelluloses, 

lignin, pectin etc. (Fengel 1984; McCann 1991; Carpita and Gibeaut 1993; Bacic 1998; 

Kerstens, Decraemer et al. 2001; Salmén 2002; Fratzl, Burgert et al. 2004). 

The two basic “swelling” and “inflation” mechanisms discussed above can be found in 

hydro-actuation systems in plants; 

Plants can utilize the basic ‘inflation’ principle to induce volume changes in the living 

cells, through active change of the pressure inside the cells. An increase in osmotic 

potential of the cells results in a decrease in water potential, and to maintain the 

equilibrium, water flows into the cells and results in either reversible or irreversible change 

of cell volume (Nobel 1970).  

On the other hand, cell wall behavior upon water adsorption can be understood and 

described as water uptake and swelling of a composite of polymeric chains, depending on 

the properties and architecture of the cell wall. This principle can be utilized for directing 

the response of the cell to humidity changes, or translate the changes in the cell’s inner 

pressure into a reversible elastic deformation of the cell wall and cell volume change, or an 

irreversible inflation with a permanent volume change. 

Cell wall components 

Natural cellulose (cellulose I) is a macromolecule made up of a linear chain of (1,4)-linked 

β-D-glucan which can be found in various organisms such as higher plants, algae etc. It is 

basically a composite of two polymorphs, I and Iwhich can coexist at different ratios, 

with I being the more dominant one in the cell walls of higher plants (Kovalenko 2010).
 

The intermolecular hydrogen bonding and Van der Waals forces between the neighboring 

chains result in a packing of the cellulose chains into relatively ordered aggregates (Moon, 

Martini et al. 2011). These cellulose fibrils are partly crystalline consisting of crystalline 

regions with highly ordered parallel arrangement of cellulose chains and more disordered 

amorphous regions. Depending on the species, fibrils can possess a diameter of 3–5 nm but 

their exact length is not clearly determined yet though it is estimated to be about 10 µm 
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(Cosgrove 2005).
 
Covalent bonds between the glucose units along the chain and the dense 

network of hydrogen bonds and Van der Waals forces in and in between the chains result in 

a high stiffness of the fibrils in the axial direction (Cosgrove 2005; Salmen 2006). The 

cellulose microfibrils are formed and extruded into the cell wall by complex structure 

called cellulose synthase complexes (Saxena and Brown 2000). The cortical microtubules 

can guid the movement of the cellulose synthase complexes, thus providing a degree of 

control over the direction of the deposition (Paredez, Somerville et al. 2006; Emons, Höfte 

et al. 2007; Lloyd and Chan 2008).  

  

Figure 5. Structure of the natural cellulose chains in the plant cell wall. Schematics 

illustrate a cellulose microfibrli (right) with the repeating unit of a cellulose chain (left). 

(Reprinted with permission from; Kovalenko 2010; Postek, Vladár et al. 2011). 

Hemicelluloses are one of the main building blocks of the cell wall matrix. These 

polysaccharides consist of various sugar units and their main role is to work as binding 

agents, forming a strong yet resilient network with cellulose fibrils on the basis of hydrogen 

bond formation. Pectins make up a complex and heterogeneous family of water soluble 

polysaccharides which provide a relatively flexible matrix for the cellulose-hemicelluloses 

network. Lignin is another constitute of the cell wall matrix which contains different 

phenyl groups that makes it more hydrophobic than the other constituents. Pectin and lignin 

are also the main constituents of the middle lamella between the cells gluing the 

neighboring cells. The matrix-microfibril interaction is an important determining factor in 

cell wall properties as the mechanical response of the fibre composite largely depends on 

the interface between the stiff cellulose fibrils and the resilient matrix (Fengel 1984; 

Carpita and Gibeaut 1993; Bacic 1998; Fratzl, Burgert et al. 2004; Cosgrove 2005; Salmen 

2006). 
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Primary cell wall; Growing plant cells possess a so-called primary cell wall, which 

consists mainly of cellulose, hemicelluloses, pectin and structural proteins. Besides 

protecting the cell against environmental factors such as intruding organisms etc., it also 

determines the structural support and shape of the cell. By resisting against the internal 

turgor pressure inside the cell, the primary cell walls tailor the direction and rate of the cell 

growth. The mechanical and chemical characteristics of primary cell walls need to be 

analyzed in combination with the effect of turgor pressure inside the living cells. Cellulose 

interactions with hemicelluloses and pectin are of specific importance during the cell 

growth or other functions that require elastic deformation of the cells. During these 

processes, the cell wall needs to be stiff enough to bare the hydrostatic pressure inside the 

cells and external loads, and yet compliant enough to respond to the cell turgor pressure to 

allow for the cell wall extension accompanied by cell enlargement (Cleland 1971; Taiz 

1984; Veytsman and Cosgrove 1998).  

 

Figure 6. Simple schematic of plant primary cell wall architecture and composition. Left: 

A turgid living plant cell surrounded by plasma membrane, primary cell wall and the 

middle lamella. Right: Primary cell wall with the cellulose microfibrils embedded in a 

relatively soft polymeric matrix of hemicelluloses and pectin. To allow for plastic 

deformation as a consequence of turgor driven cell growth, primary cell walls should be 

rather flexible and must be able to loosen some of the load-bearing linkages between the 

fibrils while bearing the inner pressure load. 

Secondary cell wall; Once the cell growth stops, secondary cell walls with thicker and 

stronger layers can be formed by the cell. These cell walls have no pectin and structural 

proteins but are rich in lignin as a matrix component which makes them much more rigid. 

Secondary cell walls have a distinct lamellar structure with a specific arrangement of 
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cellulose fibrils inside these layers (Figure 7). The angle between the microfibril orientation 

and the cell wall axis is known as microfibril angle (MFA) and is an important parameter in 

defining the mechanical and swelling properties of the cell wall as a whole. In wood cell 

walls, S1 and S3, the inner and outer layers of the secondary cell wall, have a relatively 

large MFA almost perpendicular to the cell axis. The middle layer (S2) is the thickest and 

the dominant layer determining the stiffness and the anisotropy of the cell wall. In 

“normal” wood cell walls cellulose fibrils in the S2-layer are laid almost parallel to the cell 

axis (MFA 0-10°), while specific reaction tissues in trees such as compression wood can 

possess an MFA of up to almost 60° (Reiterer A. 1999; Burgert, Keckes et al. 2002; 

Burgert and Fratzl 2009). The cellulose orientation dictates an anisotropic deformation of 

cells and tissues upon water uptake and release, which is utilized in the plant kingdom for 

directed actuation (more detail in chapter 1.2.3).  

 

Figure 7. Simple schematic of secondary cell wall architecture and composition. Wood 

cell wall with primary cell wall and different layers of the secondary cell wall (S1, S2 and 

S3) are depicted schematically separating the cell lumen (black) from the intercellular 

middle lamella (green). Hemicelluloses and lignin work as a cross-linking and filling agent 

in the secondary cell wall. The orientation of the cellulose fibrils towards the cell axis is 

known as microfibril angle (MFA) and is one of the crucial factors determining the 

anisotropy of the cell wall swelling (right). 

Cell wall-water interaction 

Adsorption of water results in the swelling of the cell wall matrix and the amorphous 

cellulose with the consequent effect on the bulk plant tissue. This applies to primary and 

secondary cell walls, but commonly the latter are studied in this regard from a wood 
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science perspective. To investigate the interaction of water with cell walls, the equilibrium 

moisture content of the tissue is usually monitored upon increasing/decreasing relative 

humidity at a given temperature. The result is a sorption isotherm that provides an entire 

picture of the different stages of interaction with water (Figure 8). 

Various models have been developed to understand the different adsorption stages in cell 

wall-water interaction with each stage corresponding to a different state of water in the cell 

wall. Due to various interpretations of the results the true nature of each state is still under 

debate. However, studies suggest that water can exist in two different states in freshly cut 

samples; as free water in the porous systems such as the lumen of the cells and as bound 

water inside the cell walls. From the chemical point of view the hydroxyl groups of the 

wood constituents are the main target for attracting water molecules. Hence, starting from 

low relative humidity, the initial adsorption of water into the cell wall is a hydration 

process where the first layer of water is adsorbed and fixed on the sorption sites mainly 

consisting of free hydroxyl groups of hemicelluloses and the amorphous regions of 

cellulose (Wallenberger 2003; Engelund 2013).
 
The reaction is exothermic and the 

enthalpic gain of the system is the main driving force for adsorption of the first few layers. 

 

Figure 8. A typical sorption isotherm for wood. The equilibrium moisture content (the 

weight of the adsorbed water per weight of the dry wood) is plotted against the relative 

humidity (RH %). In the initial adsorption region, the first layer of water is adsorbed into 

the cell wall and makes strong bonds with the accessible hydroxyl groups of the cell wall 

polymers. The sorption continues by adsorption of further water molecule into and in 

between each available sorption sites (Skaar 1998; Engelund 2013). 
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Up to 40-50 % RH, the enthalpy of the sorption is constant and could be related to binding 

of one water molecule per glucose unit (Engelund 2013).
 
At higher relative humidity from 

50 up to 85% RH, the enthalpy of the interaction was found to decrease which is 

contributed to the adsorption of a second and third water molecule on each sorption site or 

in between them (Çarçabal, Jockusch et al. 2005; Engelund 2013).
 
A modified version of 

the BET sorption theory (Brunauer et al. 1938) combined with the Dent sorption model 

(Dent 1977) was suggested to be able to cover the whole range of the sorption (Engelund 

2013). Further adsorption of water into the system helps to open up the intermolecular 

hydrogen bonds between the polysaccharides and ease the conformational changes and 

mobility of the chains (Kimura, Hatakeyama et al. 1974).
 
Above approximately 70% RH 

the sorption isotherm exhibits an increase in the slope of adsorption (Engelund 2013),
 

which was formerly explained as sorption of free water in capillaries (Sheppard 1933). 

However, recently it was shown both theoretically and experimentally that the capillary 

sorption is not that significant at this RH and the change in the slope cannot be contributed 

to the capillary sorption alone (Engelund 2010; Thygesen 2010; Engelund 2013).
 
 

The sorption hysteresis is a common feature for porous polymeric materials (e.g. wood, 

Figure 8) and can be related to the difference between the adsorption and desorption 

process; In adsorption the water molecules have to be adsorbed into a relatively dense 

structure, thus requiring a greater external pressure to re-open the structure which was 

collapsed during the prior drying and desorption process. While in desorption, water 

molecules have to escape from an already opened porous structure, thus requiring a 

relatively lower vapor pressure to maintain a specific moisture content (Engelund 2011).  

Upon drying of the fresh samples, the water inside the cell lumen is the first to leave, till 

the point where the main water in the tissue is the water saturated inside the cell wall. The 

amount of water contained within the saturated cell wall is known as fibre saturation point 

(FSP) (Skaar 1988; Engelund 2013). Water uptake/loss above this point has barely any 

influence on the dimension of secondary cell walls. However, adsorption/ desorption of 

water into the cell wall below this point results in anisotropic swelling/ shrinkage of the 

bulk tissue, and if restricted can exert huge stresses (Skaar 1988).  

In analogy, more sophisticated anisotropic deformation or stress generation in bulk tissues 

can be understood and explained through the work of water (swelling/inflation mechanism) 

on a structure elaborately designed at different hierarchical levels. 
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1.2.2 Actuation based on inflation/deflation of living turgid cell 

Differential Growth; Plastic deformation of primary cell wall 

Differential growth movements are probably the simplest way for a plant to perform a 

specific deformation in its organ. Cell growth is achieved through an irreversible plastic 

deformation of the primary cell wall, caused by an increase in the cell volume via water 

uptake. In normal state, the internal stress in the cell wall and the turgor pressure are in 

mechanical equilibrium. To allow the plastic deformation of the cell wall for growth, stress 

relaxation occurs via selective loosening of the load-bearing connection between 

microfibrils, which results in a drop in the turgor pressure and further water uptake and 

expansion of the cell (Lockhart 1965; Firn and Myers 1989; Fry, Smith et al. 1992; 

Cosgrove 2000; Cosgrove 2005; Burgert and Fratzl 2009).
 
The unequal irreversible 

differential growth of the cells on opposite sides of an organ can lead to an in-balance 

volumetric change and the consequent organ deformation. Growth-induced bending of 

coleoptiles of grasses is one of the most prominent examples of plant movement related to 

the differential irreversible growth of cells (Firn and Myers 1989; Hart 1990; Burgert and 

Fratzl 2009). 

Deformation by an elastic response of the cell wall upon turgor pressure 

To utilize a reversible movement, plants need an elastic response of the primary cell wall to 

changes in the cell’s inner pressure (Toriyama and Jaffe 1972; Morillon, Liénard et al. 

2001). The most abundant reversible turgor-based systems in plants are the stomatal 

movements for controlling the gaseous exchange between the plant interior and its 

environment.  

 

Figure 9. Stomatal movement. Left. Schematic illustration of the guard cells during 

stomatal movements. Cell volume increases during the opening and causes the cells to 

bend. The cross section of the cells changes from flat oval in close state to circular in the 

open state (Roelfsema and Hedrich 2005). 
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Plants can regulate the size of the small pores on their leaves by changing the volume and 

shape of their so called ‘guard cells’ through active variation of the cells turgor pressure 

(Figure 9) (Toriyama and Jaffe 1972; Morillon, Liénard et al. 2001; Hetherington and 

Woodward 2003; Roelfsema and Hedrich 2005; Burgert and Fratzl 2009). 

Light-induced or circadian movements of the leaves of many species are controlled by such 

variation of the inner pressure of special motor-cells in the joint-like hinges at the base of 

the stalk of the leaves called pulvini (Iino 2001; Moran 2007).
 
The same principle can also 

be found in relatively rapid leaf folding of mimosa upon external stimuli (Campbell 1977; 

Haupt 1977; Levin, Muller Landau et al. 2003; Moran 2007).  

Venus flytrap; a turgor-based rapid movement  

The carnivorous Dionaea muscipula leaves, better known as Venus flytrap uses a similar 

turgor based mechanism combined with a special metastable geometry of its leaves to 

perform one of the fastest plant organ movements (Hodick and Sievers 1989; Hart 1990; 

Fagerberg 1991; Forterre, Skotheim et al. 2005; Volkov, Adesina et al. 2008; Burgert and 

Fratzl 2009). The biochemical response of the plant to the external stimuli results in water 

flow and swelling of specific cells which leads to a significant volume change of the 

leave’s tissue on adaxial and abaxial sides. Yet, the process based on simple water flow in 

the leaf tissue would be relatively slow and can’t explain the astonishing speed of the leaf 

folding (Toriyama and Jaffe 1972; Hodick and Sievers 1989; Fagerberg 1991; Fagerberg 

1996). The fascinating translation of the small and slow cellular movement based on water 

flow to a much faster macro scale movement of the organ in Venus flytrap is achieved by 

coupling the cell turgor pressure variation with instabilities in the geometry of the entire 

organ (Forterre, Skotheim et al. 2005). 

In the open state, the leaf is curved outwards (concave) holding the leaves in an 

intermediate mechanically meta-stable phase through a high turgor pressure inside the 

responsive motor cells (Figure 10). Stimulation of hair sensors by a prey triggers the leaf 

volume change through the water flow between the inner and outer face of the leaf, which 

consequently instabilize the metastable folding state. To release the stress, the leaf goes 

through an elastic relaxation via a sudden curvature conversion to a convex (inward) 

folding, which results in a rapid closure and snapping of the trap (Forterre, Skotheim et al. 

2005; Burgert and Fratzl 2009; Fratzl and Barth 2009). 
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Figure 10. The Venus flytrap hydro-actuated movement. The leaves of Venus flytrap close 

in a fraction of a second when triggered by a prey (Adapted with permission from; Forterre 

et al. 2005). Right: Schematic of the Venus flytrap leaf in open and closed states, with the 

mechanical metastable curve separating the two forms. The high elastic energy stored in 

the metastable folding state can easily switch into the low elastic energy state upon trigger, 

resulting in the rapid snapping of the leaves (Reprinted with permission from; Burgert and 

Fratzl 2009). 

1.2.3 Passive actuation based on anisotropic swelling/shrinkage of dead 

tissue 

Some plants make use of basic swelling principles for generating internal stresses and 

organ movement. The principle can be well illustrated in a simple model of a composite 

consisting of almost undeformable stiff fibrils in a much softer swellable matrix (Figure 

11). The significant difference between the swelling/shrinkage capacity and stiffness of the 

reinforcing cellulose fibrils and the soft matrix, results in an anisotropic swelling of the cell 

wall perpendicular to the fibrils orientation. Hence, the orientation of the microfibrils in the 

cell wall is the main controlling factor to determine the directionality of the swelling. By 

having control over the architecture of the cell wall via controlling the orientation of the 

cellulose microfibrils in the cell-wall formation process in the living cell, plants can control 

the directionality of the swelling/shrinkage after cell death to generate relatively huge 

compressive or tensile stresses or perform a desired movement (Dawson, Vincent et al. 

1997; Reiterer 1999; Burgert, Eder et al. 2007; Elbaum, Zaltzman et al. 2007; Fratzl, 

Elbaum et al. 2008; Burgert and Fratzl 2009). 
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Figure 11. Anisotropy of swelling in the secondary cell wall. Schematic model of the 

secondary cell wall composite structure with stiff cellulose microfibrils embedded in the 

swellable soft matrix of hemicellulose, lignin etc. The main swelling occurs in direction 

perpendicular to the cellulose microfibrils, hence the variation of the microfibril angle 

(MFA) respect to the cell axis in the dominating secondary cell wall layer S2 (0-60°) can 

determine the anisotropy of the swelling/expansion in the cell wall (Burgert and Fratzl 

2009). 

Passive hydro-actuation based on bending bi-layer structures 

One of the simple yet ingenious strategies used by various plants is to use a bilayer 

structure to perform various movements. When two elements with different mechanical 

response to an external stimulus (temperature, humidity etc.) are connected to each other, 

the extension/compression of one side is hindered or resisted by the more passive part. The 

compromise for the element with more extensibility (active part) is to satisfy the elongation 

through bending (Figure 14a). 

A well-known example of passive hydro-actuated movement based on this principle is the 

pine cone seed dispersal, with the pine cone scales being closed in wet state and open upon 

drying to unveil the seeds. The reversible hydro-responsive bending movement of the 

scales is realized through a sophisticated architecture of the cell wall (Figure 12). Each 

scale is made up of two layers on the upper and lower sides with different structure 

regarding the cellulose MFA. The specific orientation of the cellulose microfibril in the cell 

wall during the plant growth, results in different shrinking responses of the two layers. On 

the upper side fibrils are almost parallel to the cell’s axis, which restricts the upper side to 

shrink only in the direction perpendicular to the scale. The lower side on the other hand, 

has a MFA of about 90°, thus water desorption of the cell wall matrix results in the 

shrinkage of the cells along the longitudinal direction. The combined material response of 

the two sides with different swelling response leads to the bending of the scale upon 

humidity changes (Dawson, Vincent et al. 1997; Burgert and Fratzl 2009). 
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Figure 12. Passive hydro-actuated bending of the pine cone scales. A cross-section of a 

pine cone along its longitudinal axis in wet and dry state is shown with schematic of the 

two layers on upper (white) and lower (blue) side of a scale. In the upper layer fibrils are 

oriented along the longitudinal direction while in the lower part fibrils are more 

perpendicular to the cell axis. The different swelling properties of the two layers result in 

the bending and opening of the scales upon drying (Re-sketched with permission after; 

Burgert and Fratzl 2009). 

A similar mechanism enables the wild wheat awns to actuate seed dispersal units via a 

swimming-like movement upon natural day-night humidity cycles. The seed dispersal unit 

consists of two antenna-like awns which land the seed in helical-descending movement to 

the ground (Figure 13). Each awn consists of two layers with different swelling properties. 

On the inner side of the awns (cap) the cellulose microfibrils are laid almost parallel to the 

cell axis which restricts the swelling/shrinkage in the direction perpendicular to the cell 

axis. The cells on the ridge (the outer part of the awns) have multi-layered cell walls with 

alternating MFA, which leads to a more isotropic shrinkage/swelling of the tissue upon 

humidity changes which is in general larger than the longitudinal swelling at the cap. As a 

result, the difference in the swelling/shrinkage of the inner and outer part of the awns 

results in a slow bending movement of the awns upon ambient humidity changes (Elbaum, 

Zaltzman et al. 2007).
 
The cyclic changes between the relatively dry air during the day and 

higher humidity at night, can lead to a very slow swimming movement of the seed dispersal 

unit, while small spike-like silica hairs on the outside of the awns ensure a progressive 

forward movement by preventing the unit to move backwards and out of the soil (Elbaum, 

Zaltzman et al. 2007). 
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Figure 13. Hydro-driven movement of wild wheat awns. The swimming movement of the 

wild wheat awns is shown schematically. A SEM- micrograph of the cross-section of the 

wheat awn depicts the active (ridge) and resistive (cap) part. The cellulose fibrils are 

oriented parallel to cell axis in the cell walls of the passive part (inner side), preventing the 

swelling of the cells in the longitudinal direction. The random orientation of the 

microfibrils in the cell walls of the cells in the outer ridge makes the active part swell more 

than the inner tissue. This leads to a periodic bending movement of the awns upon the 

humidity changes during day (1, 3) and night (2), which pushes the seed case into the soil. 

(Adapted with permission from; Elbaum, Zaltzman et al. 2007). 

The curvature of such bending-bilayer structure can be derived from the analogy of 

bending of bimetallic strip derived by Timoshenko (Timoshenko 1925),
 
and in simple form 

is proportional to the difference in swelling strains between the two layers and inversely 

related to the thickness of the bilayer. In the absence of an external load, both force and 

torque are balanced, so that; 

        (Eq. 4) 
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Where,  and  are the forces in each layer,  and  the 

moments of area and t the width, h1 and h2 the thickness of the lower and upper layer, E1 

and E2 the respective Young modulus and κ the curvature. 

In addition the strain at the interface between the two layers must be equal. 

       (Eq. 5) 

Where,  and  are the swelling strains in the two layers. 

Solving these equations for the curvature κ results in: 

      (Eq. 6) 

Where,  and . 

In the simplified case of m=n=1, the curvature can be calculated as: 

          (Eq. 7) 

Where, the curvature is proportional to the difference in swelling strains between the two 

layers and inversely proportional to the thickness of the bilayer. 

More sophisticated movements such as twisting can also be achieved if the contraction/ 

expansion mismatch between the two layers occurs at an angle with the main line (Figure 

14b). Just by changing this angle, the layered structure performs a bending, coiling or 

twisting movement (Chen et al. 2011; Forterre and Dumais 2011). 
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Figure 14. Principles behind actuated-deformation of bi-layer structures. The top image 

illustrates the bending of a bilayer made up of two materials with different strain response 

to a specific stimulus. The less responsive or passive layer resists the more pronounced 

expansion/ contraction of the active layer and the system bends to reach a compromise 

between the different response of the two layers (a). The schematic on the bottom (b) shows 

a simple paper-bilayer model where the dimensionless width and the fibre angle control the 

actuation pattern from simple bending to more complicated twisting movements (Adapted 

with permission from; Forterre and Dumais 2011). 

Passive hydro-actuation based on differential swelling of secondary cell wall 

layers 

Another sophisticated stress generation strategy is due to the formation of a highly 

swellable cellulosic layer inside the cell lumen of some species. Presence of these so called 

G-layers (gelatinous layers) in the cell lumen of the reaction wood of some hardwood 

species and some contractile roots etc. were found to generate high tensile stresses in the 

tissues, with the underlying mechanism of the stress generation being still under debate 

(Clair 2003; Clair, Ruelle et al. 2006; Burgert, Eder et al. 2007; Clair, Gril et al. 2008; 

Goswami, Dunlop et al. 2008; Mellerowicz, Immerzeel et al. 2008; Bowling and Vaughn 

2009; Burgert and Fratzl 2009; Schreiber, Gierlinger et al. 2010; Clair, Alméras et al. 2011; 

Mellerowicz and Gorshkova 2012).  

Based on one theory, the suitable arrangement of the cellulose microfibrils in the 

surrounding secondary cell wall enables the cell wall to translate the tangential stress from 

the transverse swelling of the G-layer into a maximum axial contractile stress in the cell 

wall and the bulk tissue as depicted in Figure 15 (Burgert, Eder et al. 2007; Goswami, 

Dunlop et al. 2008; Burgert and Fratzl 2009; Schreiber, Gierlinger et al. 2010).  
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Figure 15. Proposed mechanisms for tensile stresses generation in tension wood fibres. 
The lateral swelling of the cellulose rich G-layer inside the cell lumen (yellow fibres) exert 

a tangential pressure (P) on the secondary cell wall which results in a circumferential 

stress σr within the cell wall. The specific orientation of the cellulose fibrils in the cell wall 

translates this stress into an axial tensile stress σa, so that the microfibril angle (MFA) 

determines the σa/σr ratio and leads to the shortening of the tension wood fibres (re-

sketched with permission after; Goswami, Dunlop et al. 2008). 

Other models on the active role of the G-layer in tension wood fibres have proposed 

different stress generation mechanisms with relation to various features such as, the role of 

xyloglucan in the stress generation process, a honeycomb model for cellulose structure in 

the G-layer, or variations in the cellulose fibril orientation in the surrounding secondary 

cell wall layers etc. (Clair B. 2003; Clair, Ruelle et al. 2006; Clair, Gril et al. 2008; 

Mellerowicz, Immerzeel et al. 2008; Mellerowicz and Gorshkova 2012).
 

1.3 Ice plant hydro-actuated seed dispersal 

One of the more ingenious examples of passive actuation in plant kingdom and the subject 

of this thesis, is the hydro-responsive unfolding of the ice plant seed capsules. Aizoaceae 

also known as ice plants grow in semi-arid areas and some of its species have evolved a 

sophisticated seed dispersal mechanism in which their seed containing fruit opens only 

upon sufficient hydration. The earliest mention of the hydro-responsive movement in 

Aizoaceae family in literature was from Steinbrinck who suggested that the ice plant fruits 

are primarily a protective carrier for the seeds that only open and relieve the seeds when 

wetted in rain thus enabling the germination of their seeds under these favorable conditions 

(Steinbrinck 1883). A systematic anatomical study of ice plant hydro-responsive seed 

capsules was first done by Kerner and Oliver (Kerner A. 1894). Preliminary studies mainly 
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aimed at simulation of the seed dispersal under rain by falling water droplets on the open 

capsules and suggested that the weight of the falling drops cause the seeds to eject up to 

half a meter away from the seed compartments (Berger 1908; Schmid 1925).
 
Yet many 

researchers suggested that the specific structure of the seed capsule prevents the seeds to 

disperse rapidly and concluded that the seeds get initially washed away to the upper side of 

the capsule and then get splashed out by the falling droplets (Brown 1921; Huber 1924; 

Bolus 1928). It was also observed that, upon repeated wetting/drying cycle only a few 

seeds would fall out from the open capsules and it was suggested that it could be an 

adaptation to dry climate to not waste all the seeds at once in case of insufficient rainfalls 

(Brown 1921). The most recent thorough investigation of ice plant hydro-actuated seed 

dispersal goes back to Lockyer and Garside (Garside and Lockyer 1930; Lockyer 1932). In 

their studies on the seed dispersal mechanism, they could show that all seeds could be 

ejected and dispersed through the center of the capsule within 20 minutes of dropping 

water experiment and concluded that falling of the rain drops is an efficient mechanism for 

ejection of the seeds (Garside and Lockyer 1930; Lockyer 1932). 

 

Figure 16. First anatomical illustration of the ice plant seed capsule. Surface view of an 

ice plant seed capsule (carpanthea pomeridiana N. E. Br.) depicts the two hygroscopic 

valves (1).The tangential section of an open fruit is illustrated in figure 2. Vertical and 

radial cross sections of the valve in closed and open capsules are depicted in figure 3 and 4 

respectively. A. An arch which keeps the two halves of the septum apart, B. Hygroscopic 

keel, C. Valve, I. Central axis of the capsule, K. Seed, L. Septum (Reprinted with 

permission from; Garside and Lockyer 1930). 
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In their study of the anatomical features of the ice plant fruits, Garside and Lockyer (1930) 

reported that each seed capsule can consist of 10-20 seed containing valves, each with two 

“fan-shaped” hygroscopic tissues responsible for the opening/closing of the capsules 

(Figure 16). In the dry state, the keels were found to be hard and folded toward the central 

axis of the capsule resulting in a closed configuration of the seed capsules. Upon wetting 

the hygroscopic keel absorbs water and expands and unfolds outward about the capsules 

surrounding wall (Garside and Lockyer 1930; Lockyer 1932). Various studies have 

reported the ice plant hygroscopic keels to be made up of a rhomboidal shape cells with 

each cell having a secondary deposit of mucilage which can readily absorb water and swell 

the keel’s cells (Huber 1924; Garside and Lockyer 1930; Lockyer 1932). 

1.4 Objectives of the thesis 

Earlier studies on the ice plant seed dispersal were mainly based on pure anatomical 

examination of the system at the macro and micro scale and investigations on the seed 

dispersal efficiency. The underlying mechanism for the complex hydro-actuated movement 

was not in the focus of these studies. The biomimetic potential of such sophisticated 

passive actuation system called for a more detailed thorough analysis of the underlying 

mechanism and was the primary motivation to study the biomechanical and physiochemical 

principles behind the hydro-actuated unfolding mechanism of ice plant seed capsules in 

more detail. 

In this thesis the seed capsules of ice plant species Delosperma nakurense (Engl.) Herre., 

were taken as the biological model system, with three main objectives: 

 

• To utilize a multidisciplinary approach to investigate the underlying mechanism 

of ice plant hydro-actuated seed dispersal to gain insight into the biomechanics 

of the actuation and the role of material structure at different hierarchical levels 

in the global function of the system as a hydro-responsive deformable structure.  

• To understand the physicochemical basis behind the water adsorption and the 

resultant swelling using a variety of experiments to extract a simple theoretical 

model for the chemo-mechanics of the actuation.  

• To abstract the underlying principles behind the hydro-actuated movement to 

design biomimetic passive actuation demonstrator as a proof of concept. 

The experimental procedures and a general background on the materials and main 

techniques that were applied through the three different phases of the project are presented 
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in chapter 2 “Materials and Methods”. The results of the experiment that were followed to 

pursue the answer to the questions proposed in the first and second objectives are presented 

in chapter 3 “Investigation of the ice plant hydro-actuated seed dispersal”. A discussion and 

comprehensive interpretation of the results in chapter 3 were put together in chapter 4 “The 

underlying mechanisms of the hydro-actuated movement“. The 5th
 chapter “Biomimetic 

design”, starts with a brief summary and abstraction of the discovered principles that can be 

used in the process of the biomimetic design, followed by two basic bio-inspired design 

ideas to develop biomimetic actuators as a proof of concept. The last chapter covers the 

conclusion of the whole project with a brief outlook on the potential future works. 
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2 Materials and Methods 

2.1 Analysis of the ice plant hydro-actuated movement 

Sample preparation 

Ripe seed capsules of ice plant species Delosperma nakurense, grown at the Botanical 

Garden of the Technical University of Dresden, accession nr. 009255-21, were collected 

and kept in dry conditions. Wet hygroscopic keels were dissected from the valve and other 

covering tissues with tweezers and scalpel. For some cell investigations keels were 

embedded in polyethylene glycol 2000 (PEG, MW = 2,000) and cut in 10–30 μm thick 

slices with a rotary microtome (Leica, RM2255, Wetzlar). Later, samples were washed 

with distilled water to remove PEG and were used for light, confocal or scanning electron 

microscopy and Raman spectroscopy. Further staining with a solution of fuchsin-

chrysoidin-astrablue mixture (FCA) was used when contrast and compositional analysis 

were needed. Staining with 0.1% aqueous safranine was used for confocal microscopy. In 

both cases, samples were immersed in the staining solution for 5–10 min and then washed 

three times in distilled water. 

Cell dimension measurements 

To quantify changes in the cell shape during wetting and drying cycles, the light 

microscopy was used for wet measurements and scanning electron microscopy for dry 

measurements. Both wet and dry measurements were made from the same region of a 

single piece of keel. Measurements were made using ImageJ v1.43 l and a computer 

drawing tablet to determine the length of cells along the X- and Y-directions, as well as 

their perimeter, and area. Analysis of the cell size at various parts of the keels was done by 

measuring the size of the cells in a fully open wet keel by live videos in a Nikon eclipse 

Microscope (Nikon Digital sight DS-2MV camera, NIS-elements D 3.1 software). The 

difference in cell size was compared along the keel length; from keel’s back connected to 

the capsule, to keel’s free tip, and keel height; from the keel’s base connected to the 

backing, to the free ridge of the keels (Figure 21). 

Raman spectroscopy 

Thin sections of keel tissue were fixed under a glass coverslide in distilled water or D2O. 

Raman spectra were collected with a confocal Raman microscope (alpha300; WITec) 

equipped with a piezoelectric scan stage (P-500, Physik Instrumente) and a Nikon objective 
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(100x oil immersed, NA = 1.25) (Gierlinger and Schwanninger 2006). A laser of λ = 532 

nm was focused onto the sample and Raman scattering was detected with a CCD camera 

(DV401-BV; Andor) behind a spectrometer (UHTS 300; WITec) with a spectral resolution 

of 3 cm
-1. Samples were mapped in 0.33 μm steps using an integration time of 0.5 s. Data 

were analyzed and images were produced using ScanCtrlSpectroscopyPlus software 

(WITec). 

Confocal microscopy 

Laser scanning confocal microscopic imaging was performed with a Zeiss LSM 510 

scanning system (Zeiss MicroImaging GmbH) equipped with a ×40 objective (NA = 1.25) 

on small pieces of the keel using natural lignin fluorescence for contrast to observe cell 

shape (Donaldson et al. 2004) and using fluorescence from safranine staining for contrast 

between the cell wall and CIL (Bond et al. 2008). For safranine-stained samples, 10 μm 

were microtomed away from the top of cells to allow safranine to infiltrate the cell. For all 

samples, the laser excitation wavelength was 488 nm. Emissions were collected with the 

filter set to 530–600 nm for lignin autofluorescence and with two channels set to 515–545 

nm and 590–700 nm for safranine stained samples. 

Enzymatic removal of cellulosic inner layer 

To investigate the role of the cellulosic inner layer (CIL) in keel actuation, the CIL was 

removed by enzymatic treatment as described previously (Schreiber 2010). Briefly, FCA-

stained sections of a keel (30 μm) were treated with Cellulase ONOZUKA RS from 

Trichoderma viride (EC 3.2.1.4) (2.3 enzyme units per mg) (Yakult Pharmaceutical 

Industry.). Samples were placed in Eppendorf tubes filled with a 1 ml of solution of 100 

mg ml
-1

 enzyme in ammonium formate buffer (pH 5) and were placed in shaking water 

bath (40 °C, 60 r.p.m.) for 10 h. As a control, two samples were prepared and stained the 

same way but were treated only in 1 M ammonium formate (pH 5). The swelling behavior 

of the cells was measured as described before. 

Cryo Scanning Electron Microscopy (Cryo SEM) 

To investigate the morphology of the cellulosic inner layer (CIL), scanning electron 

micrographs in cryo conditions were obtained Cryo SEM (Jeol JSM7500F) equipped with a 

cryo preparation system (Gatan Inc., ALTO-2500, Abingdon). Common sample 

preparation methods such as microtome cutting turned out to be troublesome here, as upon 



30 

 

slightest wetting, some of the CIL spongy tissues tended to come out of the lumen and 

cover and conceal the inner structure. To avoid the problem, sample preparation was done 

inside the cryo-stage of the preparation chamber. Wet keels were frozen in liquid nitrogen, 

transferred into the cryo-stage of the preparation chamber (–130°C), and sublimated at a 

temperature difference of –90°C and –130°C for few minutes to remove contamination by 

condensed ice crystals. Afterward the specimens were cryo-fractured to expose the inner 

cellulosic layer, subjected to palladium magnetron sputter coating (3 nm thickness) in the 

frozen condition and finally transferred from the cryo-preparation chamber to the gas 

cooled SEM stage and observed at a temperature of –130°C and accelerating voltage of 1-3 

kV. 

Measuring keel’s water uptake 

The dissected keels were soaked in water until they fully opened. A fully wet open keel 

was placed on a precision laboratory balance (Sartorius, ME5) with a camera mounted on 

top. Keel weight loss was monitored upon drying and the point at which the keel’s closing 

started was taken as the weight of the fully wet open keel. The keel weight was also 

measured in complete dry state at room temperature. The keel’s moisture content at room 

temperature (~50% RH) was measured using TGA data and was subtracted from the dry 

weight measured at room temperature, to gain the keel’s dry weight. The keel water uptake 

till full opening was calculated as follows: 

  Dry weight sKeel'

Dry weight sKeel'- weightkeelOpen Wet 

 weight  keelDry 

  stateopen in content  water keels
)mg (mg uptake Water Keels 1- 

 

Thermogravimetric analysis (TGA) 

The keel’s water adsorption-desorption was measured with a Thermogravimetric analysis 

device (SETARAM, SENSYS evo TG-DSC), connected to a humidity generator 

(SETARAM, WETSYS, Lyon). For a better gas circulation, 10 symmetric holes were 

punched into the wall of the aluminum sample holders. About 15 dissected keels with dry 

weight of about 3.8 mg were put in the prepared sample holder and placed in TGA furnace 

for thermo-gravimetric analysis. The water adsorption-desorption isotherms of the keels 

were measured at 31°C by applying a step-by-step humidity program with 10% RH steps 

and equilibrium time of 3h to get the equilibrium moisture content. Further a continuous 

adsorption-desorption ramp with 3% RH change per hour was obtained. Each experiment 

was repeated at least 2 times.  
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To gain the overall water uptake and also investigate the adsorption-desorption mechanism, 

the keel’s weight loss from the fully wet open state to the completely dry state was 

monitored at 31°C and 0% RH. 

Keel opening in water-PEG solution 

To study the keel’s water adsorption-desorption in higher ranges of water activity, keel 

opening was monitored in different concentrations of water- polyethylene glycol 2000 

(Carl Roth, PEG, MW = 2,000, Karlsruhe) solutions. Keels were fixed and secured from 

their passive septum on a holder, standing freely in a beaker with cell’s side (XY plane) 

facing the microscope. A thermostat (LAUDA, Tich-Kältethermostat RM6 T) was utilized 

to control the solvents temperature. A 50 wt.% water-PEG solution was prepared and was 

used as a stock solution. Samples were placed in the stock solution or pure water and by 

gradual addition of water to the stock solution (or the stock solution to water), keel opening 

state was monitored in different PEG-water concentration. For each concentration the 

solution was left to reach the equilibrium temperature and opening state. Images of the 

keels in different opening stages were taken by light microscopy. By choosing and tracking 

three fixed points at the keel center (where the maximum bending takes place), the 

corresponding opening angle (α) was measured and normalized according to the keels 

opening angle in completely dry and completely open wet states (αd and αw respectively). 

Keel opening states were calculated by means of an ‘opening factor’ (OF) defined as: 

OF =
a -ad( )
aw -ad( )

         (Eq. 8) 

With OF values ranging between 0 in dry and 1 in fully wet state.  

Keels opening factor was plotted against water potential in the actuating medium. 

2.2 Biomimetic design 

Super porous hydrogel in 3D printed honeycomb frame 

Diamond-shaped honeycomb models based on the geometrical features of the keel’s cell 

geometry (Guiducci 2013), were built by rapid prototyping of the a polymeric mixture of 

polyacrylates and polyurethanes (“VeroWhite®”) with an Objet® Connex 500 

multimaterial 3D printer by the group of Dr. James Weaver at Wyss Institute, Boston. 

Super porous poly-acryl-co-acrylamide hydrogels were synthesized following the protocol 

for the radical polymerization reaction presented by Gemeinhart et al. (Gemeinhart, Chen 
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et al. 2000). The main monomeric precursors, acrylic acid (AA, 15% vol) and acrylamide 

(AM, 10 wt.%) were mixed with N,N´-methylene-bis-acrylamide (BIS, 0.25 wt.%) as the 

cross-linker and the pH of the stock monomer solution was adjusted to 5.1 using 50 wt.% 

sodium hydroxide (NaOH). For stabilization of the bubbles formed in the polymerization 

process, 0.5 wt.% “PLURONIC® F127” surfactant was added to the solution. The total 

volume of the stock solution was increased to 20ml by adding pure water. The redox 

initiator pair, N,N,N´,N´-tetramethylene diamine (TEMED, 2 wt.% of the monomer 

solution) was added to the solution and the ammonium persulfate (APS) was added only at 

the time of polymerization. 50 mg of sodium bicarbonate powder were added to the system 

roughly about 210 seconds after addition of APS, and the final solution was stirred 

manually with a spatula to obtain a homogeneous dispersion. A rapid prototyped 

honeycomb was inserted in the solution as the reaction was taking place. The synthesis of 

the super porous hydrogel inside the honeycomb structure was left to be completed for 4-5 

hours, and the extra hydrogel surrounding the honeycomb structure was trimmed and 

removed afterwards. Finally, hydro-actuated deformation of the hydrogel-filled 

honeycombs was monitored upon exposure of the prepared honeycomb-hydrogel hybrids in 

water. 

To study the swelling behavior of the super porous hydrogels, the swelling of the separately 

synthesized hydrogel were measured (in water uptake %) upon swelling of the oven-dried 

hydrogel discs in micro pure water, acidic (HCl, pH 1.2) and basic (NaOH, pH 8) solutions. 

Hydro-actuated bilayer-cell prototype 

For construction of the bilayer-cells, we tested various wood veneers with different 

geometry and swelling properties as active layer, and various polymeric films, papers, 

scotch tapes, wood veneers etc. acting as the resistive passive layers. For the final 

experiment 0.6mm thick spruce veneers (estimated 107 years old Norway spruce Picea 

abies (L.) Karst., (Lanvermann, Evans et al. 2013), cut by a horizontal slicing machine at 

Technical University of Dresden, Germany), was used as the active layer, while 0.2 mm 

thick papers (Supersilk DCP; 222200, Fischerpapier) were used as the passive resisting 

layer. For single bilayers, 6×2 cm pieces of spruce veneer were cut with the spruce fibres 

running perpendicular to the longer axis of the rectangle, and were glued (PUR Bond HBS 

309 polyurethane glue) on 6×2 cm pieces of the paper cut with the longer axis being 

parallel to the longer side of the paper (where fibres are more aligned due to the rolling 

direction in paper manufacturing). Hence upon actuation cycles the spruce veneer would 

expand/contract due to the swelling/shrinkage perpendicular to the fibre direction, while 
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the paper layer swell less along the fibre/rolling direction and resist the swelling of the 

spruce.  

For investigation of a bilayer-cell, two of such bilayers were made with an extra 1cm 

longer paper tale on both sides. Each tale was attached to the tale of the other bilayer by 

wrapping a tape around them so that the paper sides of the two bilayers face each other 

with the spruce veneers making up the outer side of the final cell structure (Figure 40).  

To scale up the cells into a honeycomb structure, 4 active elements (6×2 cm
2
 spruce 

veneers) were glued on to 26×2 cm
2
 paper strips with 3mm space in between them, leaving 

two 1cm tales on both end of the paper strip free. Two of such strips were attached together 

by wrapping a tape around the two tales and the space between the veneers, to have a row 

of four cells with the paper as their inner walls and the wood covering their outer layers. 5 

to 6 of such rows of cells were connected to each other from the middle of each cell by a 

double-sided tape to build up a honeycomb structure. To be able to monitor the actuation of 

the prototype upon changes in relative humidity (or wetting/drying cycles), the resulted 

honeycomb was fixed at two vertical bars with two wires running through the paper tales 

on both sides of the rows. 

Modulus of elasticity of spruce veneers and paper 

The elastic modulus of the active and passive layers were measured to be used as an input 

for modeling the actuation of the spruce-paper bilayer and bilayer-cells. Samples of spruce 

veneer and paper were cut in 3×2 cm
2
 pieces in both parallel and perpendicular direction to 

wood fibres and paper’s rolling direction. These dimensions were chosen to have similar 

sample size for measurements in both directions parallel and perpendicular to the fibril 

orientation. Unidirectional tensile tests were performed by an in-house-built bi-directional 

tensile test device for 3 samples of each material and direction (100N mini load cell, 

ALF259-Z3923, Kelkheim, Germany; Velocity controlled mode, strain rate 10 μm s
-1

, 

room condition 25°C, ~50% RH). The strain upon tension were measured by monitoring 

the displacement of the two sets of points on sample surface by an in-situ installed camera, 

and the module of elasticity was obtained by measuring the slope of the linear part of the 

stress-strain curve (~0.2% strain). Average of measurements for 3 samples of each material 

and each direction were calculated and presented for finite element simulation purposes. 

Swelling properties of spruce and paper 

The same tensile tester was used to measure the swelling properties of the two layers 

required for the modeling of the actuation (Motor position controlled, room condition 
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25°C, ~50% RH). Samples of spruce veneer and paper were cut in 3×2 cm
2
 pieces in both 

directions parallel and perpendicular to fibre directions (or rolling direction in case of the 

paper) and were clamped into the two gages of the instrument. The software was 

programmed to set the force to zero upon detection of any increase in the force upon 

swelling of the samples, so that the samples were free to expand upon wetting. Swelling 

and dimensional changes of the samples upon wetting were monitored through measuring 

the distance between the two set of points at two ends of the samples near the gages by an 

in-situ installed camera. Average of swelling measurements for 3 samples of each material 

and each direction were calculated and presented for finite element simulation purposes. 

Bilayer-cell hydro-actuated movement 

To analyze the actuation of spruce-paper bilayers and bilayer-cell, samples of bilayer and 

bilayer-cells (6×2 cm
2
) were fixed horizontally in the air on their tales, with the edge of the 

bilayer stripes facing the camera. Actuation was monitored by taking sequential images of 

the set, and changes in the curvature of the bilayer stripes and the opening of the cells 

(distance between the outer edge of the two walls of the bilayer-cells) were measured using 

ImageJ v1.43l and a computer drawing tablet in two different set of experiments; in the 

first experiment the set was placed from the initial state in room temperature (25°C, ~50% 

RH) into an insulated in-house-built humidity chamber with relatively constant RH of 92-

95% inside (~ 75×50×30 cm
3
, insulated box with the in-flow of humid air). In the second 

experiment liquid water was sprayed on all sides of the samples for a couple of minutes 

until final equilibrium opening and the actuation upon wetting and the consequent drying at 

room condition (25°C, ~50% RH) was monitored.  

To investigate the potential of utilizing such bilayer-cell structure in a real prototype, the 

bilayer-honeycomb set was placed from room conditions (25°C, ~50% RH) into a climate 

room with 95%RH (Institute for Building Materials, ETH, Zurich), where the actuation was 

monitored by taking pictures of the honeycomb opening/closing structure every 10 minutes 

for 18 hours. 

Bilayer-cell hydro-actuated force generation 

For a preliminary study of the force generating capability of the bilayer-cells, a close 

bilayer-cell (6×2 cm
2
) was placed under a glass slide with a tip of a load cell in close 

contact (almost touching) to the glass slide, pointing almost exactly on the middle of the 

bilayer-cell wall (where maximum bending occur). The whole set were moved from the 

room condition (25°C, ~50% RH) into a climate room with 95%RH (Institute for Building 
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Materials, ETH, Zurich). The load cell on top of the glass slide would prevent the opening 

of the cells and measured the force exerted from the bilayer cell-walls restricted from 

bending. The force exerted by the single bilayer-cell after reaching the equilibrium state 

after 18 hours was taken as the maximum force the single bilayer-cell was able to generate. 

 

Figure 17. Experimental set up for hydro-actuated force generation in bilayer-cells. 

Schematic illustration of the experimental set up for measuring the force exerted by a 

bilayer-cell upon actuation in 95%RH. 
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3 Investigation of the ice plant hydro-actuated seed dispersal 

Ice plants seed dispersal is an example of an ingenious evolutionary adaptation in plant 

kingdom, where the plant seed capsule undergo a complicated 3-dimensional movement 

and opens upon hydration with water to release the seeds under favorable conditions for 

germination. The hydro-responsive seed capsules of ice plants are non-living tissue at the 

point of actuation, hence unlike the turgor driven plant movements (e.g. in chapter 1.2.2), 

their actuation is completely independent of an active metabolism and can be categorized in 

passive hydro-actuation systems. However, while most of the passive hydro-actuation 

discussed earlier (e.g. in chapter 1.2.3), is based on simple movements such as bending, ice 

plants seed capsules exhibit a more complex origami-like movement upon 

hydration/dehydration cycles. To understand the basic principles behind this sophisticated 

hydro-actuated movement, seed capsules of the ice plant species Delosperma nakurense 

were taken as a biological model system and different aspects of the actuation, from the 

biomechanical nature of the sophisticated movement at the macro scale to the physical 

chemistry of the water uptake etc., were investigated at various hierarchical levels of the 

system. 

3.1 Ice plant hierarchical structure and basic movements 

The hierarchical structure of the seed capsules from Delosperma nakurense is shown in 

Figure 18 in the dry and hydrated states, with the respective schematic representation of the 

structure at each hierarchical level. Ice plant seed capsules consist of five protective valves 

which are closed in the dry state and covering the seed compartments, hence preventing 

premature dispersion of the seeds. The valves are partitioned by five septa lying beneath 

the valves in closed dry state (Figure 18 a). Upon hydration with liquid water all five 

protecting valves flex and unfold outward over an angle of ~150° within a couple of 

minutes and unveil the seeds (Figure 18 c). A 3-dimensional schematic of a seed capsule is 

illustrated in Figure 18b with each valve depicted at a different stage of opening from fully 

close to fully open state. 
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Figure 18. Ice plant seed capsule hierarchical morphology. The light and confocal 

microscopy images show the ice plant seed capsule structure at various hierarchical levels 

in wet (right: c, f, h, k) and dry states (left: a, d, g, i). An illustrated schematic provides a 

simplified representation of structures at each hierarchical level and the progressive 

actuation movement upon changes in the hydration states (b, e, j). Cross-section of the keel 

two halves (g-h) was stained with FCA to provide a contrast for depicting the longitudinal 

axis of the cells. Lignin autofluorescence provides the contrast in confocal microscopy 

images of the transverse cell cross-section (i, k)(Reprinted from; Harrington, Razghandi et 

al. 2011). 

The active “muscles” responsible for this reversible movement was found to be a hydro-

responsive tissue (hygroscopic keel) attached on a “backing tissue” along the centre of the 

inner valve surface (Figure 18 b, c, e). Each keel halves undergoes a deformation from a 

closed retracted state (Figure 18d) to an open flexed conformation (Figure 18f) upon 

wetting/drying cycles. Schematic in Figure 18e depicts the structure of the hygroscopic 

keel with the two keel halves being connected to the backing tissue at the keel base and free 

at their edges, and illustrates the progression of the reversible hydro-actuated flexing 
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movement of the keel’s two halves upon wetting and drying. Each keel halve was found to 

be made up of a network of hexagonal/elliptical shaped cells of different lengths running 

from the top edge of the keels towards the keel base where they are attached to the backing 

tissue (Figure 18i and k). Schematics in Figure 18e and j depict the orientation of the cells 

within the hygroscopic keel and the cell shape in wet and dry states, with the Z-direction 

representing the longitudinal axis of the cells, and the shorter and longer axes of the 

transverse cell cross-section being assigned as Y and X directions respectively. The 

transverse cross-sectional cut of the hygroscopic keel (XZ-plane) stained with fuchsin-

chrysoidin-astra blue mixture (FCA) are shown in Figure 18 g and h. Figure 18i and k are 

the lignin autofluorescence confocal microscopy images of the transverse cross-sectional 

cut of each keel’s halves honeycomb tissue (XY-plane) and shows how upon drying, the 

eye-like shaped cells collapse and close almost completely in the shorter axis of the 

transverse cell cross-section (Y-direction). The schematic illustrations of the hierarchical 

structure of the ice plant seed capsule in Figure 18 j, e and b, give the first impression of 

how anisotropic swelling of the cells in the honeycomb tissue would result in the unfolding 

of the ice plant seed capsules. 

By monitoring the drying of a fully open wet keel the progressive closing movement of the 

keel was tracked (Figure 19d). The tip of the keel (point A in Figure 19a-c) undergoes a 

flexing movement around the keel base (point E), with the maximum bending of the keel 

occurring at a point between points C and D, defined as the “hinge” point of the flexing. 

A closer look at the transverse cut of the two halves of the keel revealed that, the free edges 

of the keel’s two halves are touching on their ridges in wet state and move apart from each 

other upon drying, creating an empty space which allows for the tight packing around the 

middle septum upon closing of the capsule (Figure 18 g-h, insets in Figure 19a-c and 

Figure 20). It was also observed that the backing tissues supporting the keel’s two halves is 

slightly curved outward in the dry state and changes its curvature to a fully straight line 

upon wetting (Figure 20 c, d). 
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Figure 19. Detailed analysis of keel movement. The gradual closing of a fully open wet 

keel was monitored upon drying using image correlation. A dissected keel attached to the 

middle septum is shown in fully open wet state (a), an intermediate state (b), and the 

close/dry state (c). Five different spots on different parts of the keels labeled as A-E were 

monitored through the closing movement of the keels and the trajectory of the relative 

movements of each point during drying were plotted (d). The cross-sectional cut of the two 

keels between points D and E are shown in wet (a) and dry (c) state revealing how the two 

keel halves pack around the middle septum in the dry state (Reprinted from; Harrington, 

Razghandi et al. 2011). 

 

Figure 20. Separation of the two keels upon drying. The top view of the keels shows how 

the two keel’s ridges are touching in wet state (a) and move apart and separate upon 
drying (b) allowing for a fit packing of the keels on the middle septum of the capsule. The 

cross-sectional cut of the two keels shows how the backing tissues curvature changes from 

a fully straight line in wet state (c) to a slightly outward curved (d) in the dry state 

(Adopted from; Harrington, Razghandi et al. 2011). 
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3.2 Characterization of Hygroscopic keel cells 

 Keel’s cells morphology and composition 3.2.1

The first observations with the light and lignin autofluorescence confocal microscopy 

(Figure 18 i-k) revealed that the eye-like shaped cells show a large anisotropy of 

deformation in their cross-sectional axis upon wetting/drying cycles. The observation 

indicated that the origin of the observed hydro-responsive movement in macro scale must 

be the collaborative opening/closing of all cells in the shorter axis of their cross-section (Y-

direction) resulting in the unidirectional expansion and retraction of the keels. A more 

systematic measurement of the short and long transverse cross section of the cells in wet 

and dry states showed that cell’s length along the Y-direction (short cross-sectional axis) 

increase 4-fold upon wetting while the cell’s length shows only a slight 10% changes in the 

long cross sectional axis of the cells along X-direction (Table 1). The cell’s cross sectional 

area undergoes a near 4-fold change upon wetting and drying cycles, whereas the cells 

perimeter shows only a slight 20% increase. 

Table 1. Transverse cell shape changes during wetting and crying cycles. 

  Dry Wet W/D  P values * 

Length X (μm) 77.2±14.5 84.4±16.5 1.09* 4.4×10
-4

 

Length Y (μm) 5.9±1.1 24.4±5.5 4.15* 4.0×10
-95

 

Perimeter (μm) 166.1±29.7 198.1±34.4 1.19* 5.4×10
-13

 

Area (μm2) 394.5±110.5 1477.4±491.5 3.75* 4.0×10
-61

 

Y/X 0.076 0.289     

n 110 129     

  All values are mean ± s.d. 

  
*
A two-sample T-test was performed for each property to determine if mean values were significantly 

different between wet and dry states. 

The cell size and shape were also found to vary along the cell’s length (Y-direction) and 

cell’s height (Z-direction). Moving from the back of the keel toward its tip along the Y-

direction (Figure 21) cells become slightly bigger in circumference and more elongated in 

X-direction (lower Y/X ratio).  
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Figure 21. Variation of the size of the keel’s cells in wet open state. Light microscopy 

image of a fully open wet keel with cells shape and orientation illustrated in exaggerated 

size on top. Free cells close to the ridge of the keels are in average 25% larger in the Y-

direction (shorter axis of the cell’s cross-section) than the cells near the keel’s base 
attached to the backing tissue. Going from the back of the keels connected to the middle 

septa in the seed capsules to the keels tip (Y-direction), cells perimeter increases while 

cells become more elongated in the longer transverse cross-section (X-direction).  

Further, it was observed that in the wet open state, the cells at the base of the keel attached 

to the backing tissue were in average about 25% shorter in the Y-direction than the cells 

near the ridge of the keel (T-test P<0.005), revealing that the free cells on the ridge of the 

keels open more than the cells on the keel’s base, probably because they don’t have the 

restriction of being attached to the passive backing tissue (Figure 21).  

In the initial investigation of the keel’s cells composition, a cross-sectional cut of network 

of cells was stained with a fuchsin-chrysoidin-astra blue mixture (FCA) (Figure 22a). The 

cell walls showed a red stain indicating presence of lignin in the cell walls. Moreover, 

staining revealed the presence of a non-lignified cellulosic (bright blue staining) structure 

filling the lumen of the keel’s cells. This cellulosic inner layer (CIL) found in the lumen of 

the keel’s cells partly resembled the ‘G-layer’ found in the cell lumen of the tension wood 

(Clair et al. 2003; Clair et al. 2006; Burgert et al. 2007; Goswami et al. 2008; Schreiber et 

al. 2010; Mellerowicz et al. 2008). Laser scanning confocal microscopy images of 

safranine-stained keel cell’s depicts the cell walls in red colour and the cellulosic inner 

layer (CIL) in yellow, and revealed that upon drying and closing of the cells, the CIL 

retracts towards the cell walls suggesting an active role of the cellulosic inner layer in the 

reversible deformation of the cells upon wetting and drying (Figure 22 b-c). 
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Confocal Raman spectroscopy helped to study the composition and role of the cellulosic 

inner layer in water uptake and swelling of the cells in more details. The main Raman 

peaks for cellulose (1,067-1,143 cm
-1

) appear in both the cell wall and the cellulosic inner 

layer (shown at two different intensities in figure 22 d, e). Integration at higher intensities 

revealed that the CIL has an organized structure with lamellae running along the X-

direction (Figure 22e). As was expected from the FCA staining, the peak representative for 

lignin (1,546-1,643 cm
-1

) appeared only in the cell walls and not in the cell lumen where 

the CIL was found (Figure 22f). The Raman peaks for water (2,223-2,725 cm
− 1) showed 

that the cellulosic inner layer can absorb and contain large amounts of water and contribute 

to the main swelling and expansion of the cells (Figure 22g).  

 

Figure 22. Composition and morphology of hygroscopic keel cells. FCA staining (a) 

shows a lignified cell wall (red) with a non-lignified cellulosic inner layer (CIL) filling the 

lumen of the keel’s cells (blue). Confocal Raman spectroscopic images of keel cells 

integrated for cellulose at two different intensity levels (d and e, 1,067-1,143 cm
-1

), lignin 

(f, 1,546-1,643 cm
-1

), and water (g, 2,223-2,725 cm
-1

). Consecutive confocal microscopy 

images of safranine-stained keel in wet (b) and during drying (c) with cell wall colored in 

red and the cellulosic inner layer (CIL) in yellow. Scale bars are defined as follows: a= 25 

μm; b-c= 50 μm; d-g= 20 μm. (Adopted from; Harrington, Razghandi et al. 2011). 
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 Morphology of the cellulosic inner layer (CIL) 3.2.2

To gain a better understanding of the underlying mechanism of the cell’s swelling, the 

structure and morphology of the cellulosic inner layer (CIL) inside the keel’s cell was 

investigated using Cryo scanning electron microscopy (Cryo-SEM). 

The Cryo-SEM images of the cell’s transverse cross-section (XY-plane) showed the 

lamellar structure of the CIL in more details (Figure 23). Since the top membrane was cut 

off in the XY-slices, some of the CIL material was swollen out and lost in the preparation 

process, which may explain the voids seen in the cell lumina.  

 

Figure 23. Cryo-SEM micrographs of a cell transverse cross-section in swollen state. The 

left micrographs show 20-30μm thick slices of the cell’s transverse cross-section (XY-

plane) in the frozen swollen state, with a magnified image of an individual cell presented 

on the right. The lamellar structure of the cellulosic inner layer (CIL) inside the cell wall 

(CW) is visible in the micrographs. The absence of the cell’s top membrane in the cut slices 

let most of the CIL material swell out of the cells, explaining the voids observed in the 

cell’s lumen. 

To preserve the CIL material inside the cell lumen, the frozen wet keels inside the Cryo-

SEM preparation chamber. The micrographs of the cryo-fractured cells frozen in the fully 

open wet state are presented in Figures 24-26. The colour-coded schematic in the figures 

illustrates a typical cell in the micrographs, with red representing the broken cell wall 

covering the underlying CIL lamellae depicted in blue. 
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Figure 24. Cryo-SEM micrographs of a cell in swollen state. A frozen swollen cell 

fractured longitudinally along the XZ-plane is depicted in micrograph (a), with the 

schematic illustrating a typical fractured cell where the cell wall (red) with a broken front 

reveals the inner structure of the cellulosic inner layer (blue). The lamellar structure of the 

CIL can be clearly seen in the higher magnification (b,c), where the dense sheets of 

cellulose nanofibres are connected with a much more porous network of cellulose 

nanofibres (Adopted from; Razghandi et al. 2014).  

Figures 24 a, b show the XZ-plane of a cryo-fractured cell where the lamellar structure of 

the cellulosic inner layer can be easily observed. A closer look at the lamellar structure 

revealed that the CIL consists of sheets of densely packed cellulosic nanofibres running 

parallel to the cell wall, with a much more porous network of cellulose fibrils running in 

between them (Figure 24b-c).  

 

 



45 

 

 

Figure 25. Cryo-SEM micrographs of keel’s cell in swollen state. A schematic of a typical 

cell is illustrated on top-left; The cell wall is depicted in red with its front part broken (as 

in cryo-fractured cells) to reveal the lamellar structure of the cellulosic inner layer in the 

cell lumen (blue). A micrograph of a longitudinal view of a cryo-fractured cell is shown in 

figure (a), where except for a small part on the top, most of the cell wall is broken leaving 

some of the CIL still in contact (schematic on top-right). The structure of the CIL in left 

and right side of the broken cell are presented in higher magnifications in b and c. A closer 

look shows the lamellae of densely packed cellulosic nanofibres with a much more porous 

sponge-like network of cellulose fibres filling the space in between them (b:1400x, c: 

3700x, d:4300x, e:9500x). (Adopted from; Razghandi et al. 2014).  
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A fractured part of a frozen cell in open state is depicted in Figure 25, where absence of the 

broken cell wall in most part of the cells reveals the structure of the inner cellulosic layer. 

A broken half of CIL lamellae is visible at the right side of the cell. The right and left side 

of the broken cell are depicted in higher magnifications in Figure 25b and c, respectively. 

The lamellar structure of the CIL is clearly visible in the magnified images, with the highly 

porous layer filling the space in between them (magnification increasing from Figure 25b 

to d). 

Figure 26 depicts the structure of the cellulosic inner layer in higher magnification. Both 

the lamellae and the porous layers are clearly visible in the micrographs.  

 

Figure 26. Cryo-SEM micrographs of CIL in higher magnification. Micrographs of 

cellulosic inner layer (CIL), with both densely packed lamellae and the sponge-like porous 

network of cellulosic nanofibres visible in figures (a) to (d) (magnification increased). 

Figure (e) depicts the structure of the sponge-like highly porous network of cellulosic inner 

layer, while micrograph in (f) shows the surface of a densely packed mat of cellulose 

nanofibres making up the lamellae. 

 Enzymatic removal of the cellulosic inner layer 3.2.3

To study the role of cellulosic inner layer in the hydro-actuated flexing movement of the 

keels, the non-lignified inner layer was removed enzymatically and the response of the 

cell’s network upon wetting/drying cycles was monitored (Figure 27). 
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Figure 27. Effect of enzymatic removal of cellulosic inner layer (CIL) on cell’s 
actuation. Left: Network of keel cells after enzymatic removal of the cellulosic inner layer. 

Right: Relative cell shapes are represented as idealized hexagons with the appropriate 

ratios of X to Y lengths. Thick black arrows represent the direction of change in the X and 

Y lengths of the cell following the respective treatment (Adopted from; Harrington, 

Razghandi et al. 2011). 

Table 2 shows the changes in dimensions of enzyme-treated cells (without the CIL) upon 

wetting/drying cycles. It is clear that the cell’s network without the cellulosic inner layer 

loses its actuation response and, except a slight relaxation due to the swelling of the cell 

wall, does not undergo the previously observed 4-fold expansion/ retraction.  

Table 2. Relative changes in dimension of the cells with and without CIL (enzymatically 

removed) upon wetting/drying cycles. 

  Wet Dry Wet (no CIL) Dry (no CIL) 

Length X (μm) 100 91.6 121.4 104.3 

Length Y (μm) 28.8 7.0 23.3 21.9 

Y/X 0.288 0.076 0.191 0.210 

  Relative values were calculated by normalizing all values so that the length X in the wet state (with CIL) is 

100. This was necessary because average cell size varies between individual keels. 

3.3 Physicochemistry of keel’s actuation   

As a first step in investigating the swelling behavior of the CIL in detail, the actuation of 

the keels were monitored in a humidity chamber and it was observed that, the keels did not 

open even in relative humidity reaching up to almost 85%, and keel unfolding only 

occurred in the presence of liquid water. To find out the amount of water necessary for the 

full actuation of the keels, weight and actuation state of drying fully open keels were 

monitored. The water content of a fully open keel at the point where the closing started was 

measured to be about 3±0.8 mg water per milligram of the dry keel. 
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 Thermogravimetric analysis (TGA) 3.3.1

Sorption isotherm 

For further investigation of CIL water interaction, keel’s water adsorption-desorption 

isotherm was obtained by thermogravimetric analysis (TGA) (Figure 28). The sorption 

isotherm experiment was limited to relative humidities below 90% as working at higher 

relative humidity had the potential problem of water condensation and inaccurate RH in 

adsorption-desorption measurements. However, the keel's moisture content at the 

maximum reliable RH of about 85% was measured to be about 15 wt.%, which was found 

to be insufficient to initiate actuation. 

 

Figure 28. Water adsorption-desorption isotherm in TGA. Adsorption-desorption data 

collected during continuous ramping of relative humidity changes (red solid lines) and the 

equivalent data acquired from equilibrium moisture content steps (blue triangles). The 

maximum possible relative humidity achievable by TGA was about 85%, with the keel’s 
maximum moisture content measured to be about 15%, which is much less than the keels 

water content at fully swollen open state (300%) (Reprinted from; Razghandi et al. 2014). 

Desorption experiment 

The free desorption experiment was done to provide the required information for filling the 

experimental gap for relative humidity above 85%. The desorption isotherm of the fully 

wet keels was obtained over time at 31°C and 0% RH, and is shown by means of a thick 

black curve on the top of Figure 29. The derivative of the water content over time (
dWC

dt
) 

is also plotted at the bottom as a light-blue line. 
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Figure 29. Keel water loss in TGA. The black thick curve at the top presents the keel water 

content (WC) over time at 31°C and 0% RH and the light blue curve at the bottom shows 

the derivative of the water content over time (dWC). The enthalpy change upon water loss 

is also presented by the black dotted line at the bottom. At the beginning and up to about 

510 minute, the evaporation of the free water outside and adjacent to the keels occurs. 

From there on, two distinct desorption phases could be distinguished in the dWC graph. 

The onset of each desorption phase could be defined by the appearance of the first 

deviation in the slope of the curve (the cross-section of the two red dotted-lines), with the 

green windows showing the range at which the different stages start. The first decline in 

the desorption rate (dWC) occurs around water content of about 3.3 mg mg
-1

 (about 545 

minute). Most of the water content of the keel responsible for the cell swelling is desorbed 

in the entropic stabilization phase (I), while the partial enthalpy of the desorption remains 

constant. In the second phase (II) a significant drop in the desorption rate is accompanied 

by sudden increase in the enthalpy of the interaction (Reprinted from; Razghandi et al. 

2014). 
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In the first few hours, the evaporation rate was constant and evaporation of the free water 

inside the sample holder and on the keel’s surface occurred (up to about 510-540 minute). 

ΔH, the partial enthalpy of desorption (calculated from the measured heat flow), was about 

42.3 kJ mol
-1

 and constant throughout this region. Considering the inherent fluctuations at 

zero relative humidity, this value was consistent with the enthalpy of water evaporation at 

this temperature (Skaar 1988). 

After evaporation of the free water, two distinct desorption phases were detected in the 

desorption curve (Figure 29). To be able to distinguish the onset of each, the best linear fit 

for each region was plotted on the curve as red dotted line. The intersect of the two trend 

lines was taken as the onset of the first phase where the desorption rate starts to decrease, 

and the keel water content at this stage (about 540 minute) was measured to be about 3.3 

mg mg
-1, consistent with the keel’s water content in the fully open state measured with 

precision laboratory balances. Hence, this could be an indication of the beginning of 

desorption of the water from inside of the keels. ΔH is still constant throughout the 

desorption phase (I), suggesting an entropy based desorption mechanism. An abrupt 

increase in the enthalpy of the interaction (ΔH) below water content of about 0.4 mg mg-1
 

(green window ~678-688 minute), suggests the presence of a second desorption phase, 

where the enthalpic term plays a significant role in the adsorption-desorption mechanism. It 

is also clear that the desorption rate drops significantly at this stage (Phase II in Figure 29). 

The significant difference between the moisture content of 15% measured at 85% RH 

(Figure 28) and the final water uptake of 300-350 wt.% in the completely swollen state, 

suggests that a boost in water uptake must occur beyond RH of 85%. This finding is 

corroborated by the results from the water-PEG experiments where the swelling was 

monitored at higher ranges of effective relative humidity.  

 Keel’s actuation at various concentration of PEG-water solutions  3.3.2

To investigate the keels actuation at higher ranges of equivalent relative humidity, keel 

opening/closing was monitored upon changing the concentration of water-polyethylene 

glycol (MW= 2,000) solutions at 12, 20 and 35°C. As it was observed that FCA dye 

molecules could not pass through the covering membrane on top of the cells and stain the 

CIL, it was concluded that the much bigger PEG-2000 molecules are too spacious to pass 

the membrane. Hence, the PEG osmotic pressure in water solution was the determining 

factor whether water molecules tend to migrate to cellulose fibres or PEG chains, giving us 

a mean to monitor the keel’s actuation at various water potentials (aw). 
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Figure 30. Keel actuation in various PEG-water concentrations. Image sequences depict 

the keels at different opening states in various concentrations of water-PEG2000 solutions; 

from dry keel in top-left to 50 wt.% PEG-water solution to pure water at bottom-right. The 

graph shows the changes in the keel opening angle monitored upon increasing/decreasing 

water concentration in water-PEG solutions for 12, 20 and 35°C, and were plotted against 

the calculated water activity in the solvent (aw, as an equivalent of relative humidity). The 

opening starts only above equivalent relative humidity of about 95% (Reprinted from; 

Razghandi et al. 2014). 

To measure the swelling pressure upon keel opening, PEG-water concentration was 

converted to PEG osmotic pressure using a phenomenological one-parameter equation of 

state proposed by Cohen et al. (Cohen, Podgornik et al. 2009). By applying the equation of 

vapor pressure osmometry (Teraoka 2002), the water potential aw was calculated from the 
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PEG osmotic pressure as an equivalent of relative humidity. Keel opening angles ( ) at 

different water-PEG2000 concentrations and temperatures were measured and normalized 

to the keel’s opening angle in the completely dry and wet states ( d  and w respectively). 

The degree of keel opening was quantified by means of an ‘opening factor’ (OF) calculated 

as follow; 

         
(Eq. 8) 

Where OF can take values between 0 (dry) and 1 (fully wet) and increases by increasing 

the water to cellulose volume ratio in the cell lumen.  

The opening factor vs. aw can be interpreted as the adsorption-desorption curves for high 

relative humidity ranges (Figure 30). Keel opening started only above water potential (aw, 

equivalent relative humidity) of about ~95%. 

 Actuation in different swelling agents 3.3.3

To investigate the influence of various features of a solvent on its actuation capability for 

ice plant actuation system, actuation power of water was compared to various other 

solvents with different characteristics. Ice plant keels were placed in different media and 

their actuation state at equilibrium state was measured and compared as “opening factor” 

(detail in methods), with the reported opening factor ranging from 0 at completely dry and 

close state to 100% at fully open state. 

The swelling behavior of a solvent depends on different parameters such as solvent molar 

volume and Hansen solubility parameters (Eq. 1-2). The solubility is directly related to the 

internal energy of solvents and solutes. The relation between the total solubility parameter 

(δT) and the cohesive energy density (CED, as the energy that binds the molecules in 1 

cubic centimeter) is defined as; 

dT
2 =CED =

DE

Vm
=
DH -RT

Vm
=dh

2 +dp
2 +dd

2
      (Eq. 9) 

Where; T= absolute temperature, R = gas constant, Vm= molar volume, H= enthalpy of 

vaporization, E= the energy of vaporization and δh, δd, δp are hydrogen bonding, non-polar 

and polar parts of the Hansen solubility parameter respectively (defined in Eq. 2) (Hansen 

1969; Barton 1990). 

OF =
a -ad( )
aw -ad( )
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Keel opening in each solvent is plotted against solvents CED, where the bubble size depicts 

the comparative molar volume of the solvents (Figure 31). At first glance, water was found 

to be the best swelling agent for CIL to actuate the keel’s flexing movement. 

 

Figure 31. Role of different solvent parameters in actuation of the ice plant keel. The 

table shows the different solvents used as actuating media for the keel’s actuation, with 

their Hansen solubility parameters shown in blue bars (δ in MPa
1/2

). The three partial 

solubility parameters δp, δh and δd represent a polar interaction, hydrogen bonding 

component and a non-polar part of the total Hansen solubility parameter, respectively. The 

correlation between keel opening factor in different solvents and the solvents cohesive 

energy density (CED) calculated from the solubility parameters is shown at the bottom. 

The bubble size represents comparative solvent’s molar volume (Cm3
/mol). 
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4  The underlying mechanisms of the hydro-actuated 
movement 

4.1 The cellulosic inner layer (CIL) as an actuator 

The experiment with the enzymatic removal of the cellulosic inner layer (CIL) inside the 

lumen of the keel’s cells resulted in cells losing their ability to open and close upon 

wetting/drying cycles, which proved the active role of the CIL in hydro-actuated movement 

of the ice plant keels. The removal of the CIL in the wet open cells led to relaxation of the 

cell walls, so that the cells length slightly decreased in the Y-direction and increased in the 

X-direction. The only dimensional changes observed upon wetting/drying cycles of the 

cells without CIL, were the slight expansion/shrinkage of the cells in X-direction, due to 

the swelling/shrinkage of the cell wall materials (Figure 27 and Table 2).  

Initial Raman spectroscopy imaging revealed the lamellar structure of the cellulosic inner 

layer (CIL) with the concentric lamellas running parallel to the cell wall (Figure 22). 

Further investigation of the cells frozen in open wet condition with Cryo-SEM revealed 

that, CIL is made up of lamellae of dense mats of cellulose nanofibres running parallel to 

the cell wall with a highly porous sponge-like network connecting and filling the gap 

between the lamellae (Figure 23-26). The highly porous sponge-like structure of the CIL 

resembles the structure and morphology of the cellulosic networks observed in artificial 

cellulose hydrogels and aerogels, which are highly porous gel-like structures made of 

interwoven cellulose nanofibrils (Jin, Nishiyama et al. 2004; Cai, Kimura et al. 2008). The 

main swelling contribution is considered to arise from this sponge-like porous structure. It 

was observed that the CIL morphology is not uniform through different parts of a sample, 

indicating that the pore size and the orientation of the fibres in the network show only a 

short-range local order, which can be related to the different adsorption/desorption 

dynamics in different regions frozen at different swelling states. One can speculate that the 

observed lamellar architecture most probably plays a role in determining the directionality 

of the swelling (Figure 22-24). 

4.2 CIL water uptake and swelling mechanism 

In the hydro-actuated plant systems based on water-cell wall interaction (Dawson et al. 

1997; Elbaum et al. 2007), an incremental change in relative humidity induces a certain 

level of actuation in the system, so that the movement is a direct function of the relative 

humidity. A remarkable peculiarity of the hydro-driven unfolding of ice plant seed capsule 
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was that the actuation did not occur until a surprisingly high relative humidity and needed a 

certain threshold for unfolding to occur (above ~95% RH). It was also observed in the 

initial water uptake experiments, that in the fully open actuated state, keels contain 3±0.8 

mg water per milligram of the dry keel. This was significantly more than the moisture 

content known for wood cell wall, indicating that the CIL adsorption mechanism might 

differ from that known for plant cell walls.  

The TGA sorption isotherm experiment (Figure 28) was limited to RH of 0-85%, yet it 

revealed that even up to such high relative humidity keel adsorb only maximum water of 

about 0.15 mg mg
-1

 which was significantly lower than the water content measured for a 

fully wet open keel (3 mg mg
-1

).  

On the other end of the spectrum, the water-PEG experiment captured the keel’s actuation 

above water activities of about 90% (Figure 30). To understand the relation between the 

two experiments, water activity in the PEG-water solution was correlated with the relative 

humidity in the TGA sorption experiment, while the opening factor could be correlated to 

the water content. The results from the osmotic experiment showed that the actuation 

occurred only beyond a water activity (aw) of about 95%. At such high equivalent relative 

humidity water starts to condense suggesting that actuation starts only in presence of liquid 

water. A trend similar to the sorption hysteresis in TGA experiment was observed in the 

PEG-water experiment. However, the effect of temperature on the observed hysteresis was 

not consistent with the known reverse effect where the sorption hysteresis decreases by 

increasing the temperature (Skaar 1988). Here, the desorption isotherms (obtained through 

decreasing the water concentration in the solution) were similar for different temperatures 

and slight differences were negligible compared to the errors of opening factor 

measurements. Adsorption curves on the other hand, were found to be temperature 

dependent where by going to higher temperature the keel opening was shifted to higher 

RH% resulting in a bigger sorption hysteresis. A possible explanation for the significant yet 

unusual temperature sensitivity of the adsorption curves can be that, PEG chains have less 

entanglement and more mobility at higher temperatures so that smaller molecules might 

find the chance to enter the cell lumen and sit on cellulose fibres in CIL and act as a barrier 

against water adsorption shifting the water adsorption and actuation to the higher water 

activities in the solution. This can also explain why such temperature dependency was 

absent in desorption curves while the starting point in the desorption experiment was 

always pure water covering the CIL chains, eliminating the possible effect of the small 

PEG molecules.  
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The free desorption experiment provides the required information for further speculation 

about the experimental gap above 85% RH (Figure 29). The sudden increase in the 

enthalpy of evaporation at a water content of about 0.4 mg mg
-1

 coupled with a further 

decline in the slope of the desorption rate, suggest a change in the adsorption-desorption 

mechanism at this moisture content. Initial water adsorption below this point is mainly 

enthalpy driven, with the first few layers of water adsorbed onto the cellulose chains. This 

implies that for the discussed experimental gap above 85%RH (Figure 28), adsorption 

would continue with the same mechanism up to about ~0.4 mg mg
-1

, which still would not 

be enough to trigger the actuation. The constant ∆H above a water content of 0.4 mg mg-1
, 

suggests that the water uptake at this stage is mainly entropically driven and continues until 

full water uptake of about ~3.5 mg mg
-1

 (Figure 29). This was in agreement with the 

previously measured keel water content in fully open state. Thus it could be concluded that 

the entropically driven adsorbed water in this region (phase I) is the mechanically working 

water, responsible for swelling of the CIL inside the lumen of the cells and opening of the 

keel. 

To explain the observed difference between the actuation mechanism in ice plants and 

other hydro-actuated movements resulting from the swelling in the cell wall, one has to 

consider the observed structural spacing and morphological difference between CIL and 

other systems. The cell wall, as the hydro-responsive element in pine cones or wheat awns 

is in general a relatively compact structure. The matrix components lignin and 

hemicelluloses function as filling and cross-linking agent and connect the cellulose 

microfibrils, which results in the mechanical stability of the system and constrains the 

excess of water flow into the cell wall (Raven, Evert et al. 1999). In such compact 

structures, a few layers of adsorbed water can fill the distance between the relatively close 

fibrils. The enthalpic gain for this initial adsorption results in relatively small swelling 

strains limited to the thickness of the first layers of the adsorbed water, yet it exerts 

relatively large enough forces on the fibrils to actuate the movement of the organ.  

The network of the interconnected cellulose fibrils in CIL on the other hand, is not 

restricted by the surrounding matrix and shows a much more open structure than in the cell 

wall, making the space between the lamella-like structure more prone to water adsorption 

and the consequence swelling (Elbaum et al. 2008). In such an open sponge-like structure, 

the distance between the fibrils is too big to be filled with the first layers of adsorbed water, 

thus the initially adsorbed water alone could not be responsible for the swelling of the cells. 

At high relative humidity, when all adsorption sites have been saturated, the enthalpic gain 



57 

 

fades and then the entropic gain of the system is most probably the driving force for further 

water uptake and swelling of the cells. Here, the enthropic gain of the system upon swelling 

of the cellulosic inner layer generates relatively low forces but leads to high swelling 

strains which cumulates to initiate the observed large deformation. 

The experiment with keel’s actuation in different media could help to gain further 

understanding of the cell water uptake by giving us a mean to compare the influence of 

various features of a solvents on the swelling of the cellulosic inner layer (Figure 31). In 

the first glance one can see that solvents with higher CED values showed more swelling 

power. On the other hand, the swelling power of a solvent is expected to decrease with 

increasing molar volume, as osmotic pressure (defined the ability of a network to adsorb an 

adsorbent) is inversely related to solvent molar volume represented by Flory-Huggins 

equation (Eq. 1). This can explain the comparatively minor swelling of the cells in glycerol 

compared to ethylene glycol. Despite slightly higher CED, glycerol’s molar volume is 

significantly higher than ethylene glycol which makes it a weaker actuator. All three 

alcohols (Ethanol, Methanol and Propanol) induce only a partial swelling of the CIL, 

though, their minor actuation followed by the same trend of losing the swelling power by 

lower solubility parameters and higher molecular size. Comparison of keel’s opening in 

glycerol and methanol put even more weight on the impact of hydrogen bonding power 

compared to the other solubility parameters, as despite having similar value of the polar 

part (δp) and relatively higher molar volume, glycerol showed double the actuation power 

of methanol thanks to its significantly higher hydrogen bonding power (δh). Hence, 

comparative studies of the swelling power of various solvent to actuate the ice plant keels 

illustrate how water with the highest hydrogen bonding power and dipolar intermolecular 

interaction, and the additional advantage of having the lowest molar volume, is the most 

favorable choice for swelling of ice plant CIL to fuel the actuation systems. 

4.3 Swelling-Inflation: a coupled strategy 

It can be concluded that ice plant utilize the cellulosic inner layer (CIL) as a smart system 

for adjustment of their inner pressure after cell’s death, providing yet another strategy for 

passive hydro-actuated movements. In hydro-actuated movement discussed in chapter 

1.2.2, active metabolism-dependent adjustment of turgor pressure was found to control the 

inflation/deflation in the living cells, while for passive hydro-actuated movement discussed 

in chapter 1.2.3, enthalpy driven adsorption of water into the densely packed cell wall was 

the driving force for the passive hydro-actuated deformation of dead tissues. Through 
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coupling of both, the ‘swelling’ and ‘inflation’ mechanisms, ice plant can utilize passive 

swelling of a highly swellable inner layer (CIL) to maintain the inflation/deflation function 

even in the dead cells. The concept of harvesting the actuation energy from water uptake 

via coupling of the two mechanisms was observed before in the so called G-layers inside 

the cell lumen of tension wood (e.g. tension wood in chapter 1.2.3). The peculiarity of the 

ice plant system is that the driving force for the actuation comes from the entropic gain of 

the system upon adsorption of water into the porous CIL, introducing a passive mean for 

inducing inflation/deflation in the dead cells, which leads to a large complex movement 

through specific architecture of the system at higher hierarchical levels. 

The difference between the underlying concept of the actuation based on the swelling of 

the cell wall and the one achieved through the swelling-inflation mechanism become more 

crucial when discussed in terms of the energy and the conditions required for achieving 

such large movements. In case of actuation based on the swelling of the cell wall, the 

chemical bonding of water as a solvent with the ability to form hydrogen bonds, and the 

densely packed cell wall constituents with hydroxyl sites available for adsorption of the 

water molecules, is crucial and the enthalpic gain of the system upon the interaction is the 

main energy source for the swelling and the consequent actuation. On the other hand, 

‘swelling-inflation’ coupled mechanisms requires a relatively lower energy from entropic 

gain of the system upon swelling and can be achieved through free swelling of any suitable 

macromolecule in such confined cells, which will be shown with a simple chemo-

mechanical model in chapter 4.5 (Razghandi et al. 2014). 

4.4 Unidirectional expansion and flexing of the keels  

In previously discussed examples of passive hydro-actuated movement in plants (e.g. 

chapter 1.3.3), tailoring the anisotropy of deformation was introduced at the cell wall level, 

where specific arrangement of the cellulose fibrils in the cell wall matrix (MFA) would 

direct the swelling and deformation. In case of the ice plant, the transaction from the simple 

swelling-inflation into the large directed movement comes from the architecture at cell 

level. It was observed that cell deformation upon swelling is not isotropic and cells swell 

up to 4 times in the Y-direction (shorter axis of the transverse cell cross-section), while 

undergo only a slight 10% expansion in X-direction (Figure 18, Table 1). The highly 

anisotropic deformation could be explained by the elastic deformability of the cells solely 

based on the anisotropy in the geometrical features of the cells. In general, the geometrical 

properties of cellular materials have a great influence on the mechanical properties of the 
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whole structure (Gibson and Ashby 1988). By simplifying the eye-like shape of the cells 

into an ideal cellular solid with an elongated hexagonal shape (Figure 32) the ratio between 

the stiffness of the cell’s frame in the X- and Y-direction can be calculated by applying the 

following equation derived from the Gibson and Ashby model for the cellular solids 

(Gibson and Ashby 1988): 

        (Eq. 10) 

Where, h is the longer side, l the shorter side, and α the opening angle in this simplified 

elongated hexagon model of the cells. 

 

Figure 32. Simplified model of the hygroscopic keel cells. An ideal cellular solid with an 

elongated hexagonal shape representing the eye-like shape cells of the hygroscopic keel 

(Adopted from; Harrington, Razghandi et al. 2011). 

By taking these simplified geometrical features of the cells in the dry state and assuming 

the cell wall material to be isotropic, the model predicts the stiffness of the keel’s 

honeycomb tissue to be ~5,500 times stiffer in the X-direction than in the Y-direction. This 

ratio between the stiffness in two directions decreases to about ~30 for the cells in the wet 

open state. Based on this simple model, the mechanical and geometrical anisotropy 

observed in the cells network is the key factor in translating the swelling of the CIL inside 

the keel’s cells into a directional deformation. It should be noted that the observed lamellar 

structure of the CIL (Figure 22-24) may also have a facilitating role in the observed 

directional swelling of the cells in Y-direction, though based on the calculation this does 

not seem to be a necessary requirement for the anisotropic deformation. 

Although the highly anisotropic cooperative swelling at the cell level could account for the 

unidirectional movement of the keel’s honeycomb tissue, it could not explain the flexing of 

the keels and the consequent unfolding of the seed capsules. To understand how the simple 

expansion/shrinkage of the keel honeycomb tissue can lead to unfolding/folding of the seed 

capsule, one has to bring the concept of bilayer bending into the account (Timoshenko 

1925). Thorough study of the size and shape of the cells in fully open wet keels showed 
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that, compared to the free cells near the ridge of the keel, the cells connected to the inert 

backing tissue at the base of the keel are 25% shorter in the Y-direction. The presence of 

the passive backing tissue introduces a gradient in the swelling of the cells along the X-

direction with two different swelling properties at the two extremities (Figure 21). To 

compromise between the different cooperative expansions of the cells at different distances 

from the backing tissue, the keel-backing structure would bend as a whole, leading to the 

opening/closing of the seed capsules. 

4.5 Chemo-mechanical model for actuation 

For a better understanding of the general energetic changes that accompany the opening of 

the keels, the equations of thermodynamic and mechanical equilibrium of the system were 

considered. The keel could be treated as an ensemble of several osmotic compartments (the 

cells), each containing a polymer that swells in water. The amount of the macromolecules 

inside each cell was assumed not to change during the experiments due to the 

impermeability of the osmotic membrane covering the cells. The only component that 

could be exchanged across the membrane was assumed to be the solvent (water in this 

case). It was also assumed that the CIL is made of a non-cross-linked polymer so that there 

is no work term included to account for the elastic energy required to swell the polymeric 

network.  

As the CIL is confined inside the cells, upon swelling it pushes against the cell walls to 

open the keel. At equilibrium, the partial free energy of the absorbate outside and inside the 

keel is identical, so that:  

−𝛱(𝛼) = 1�̅� 𝜕∆𝐺𝑚𝑖𝑥(𝜙𝑤)𝜕𝑛 + 𝑃(𝜙𝑤)       (Eq. 11) 

Where   is the osmotic pressure of the solvent outside the keel cells (i.e. in the gas phase 

or in the PEG solution), which depends on the activity,a . V is the molar volume of the 

solvent, n is the number of water moles, the water volume fraction in the cells and p the 

mechanical internal pressure due to the elastic response of the structure to the strains 

imposed by the swelling.  

Equation 11 defines an implicit relation between the water activity (through the osmotic 

pressure) and the amount of water molecules inside the cells at equilibrium. As this 

equation describes the sorption behavior of the keels, it could be applied to model their 

opening. To do so, a model for the partial free energy of the solvent and a model for the 

mechanical work as a function of the water content were defined as follows.  

fw
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Chemical model: As the molecular structure of the CIL is partly unknown, there is no 

precise thermodynamic model for the partial free energy of the solvent. Nevertheless, a 

semi-quantitative treatment could be done considering that the CIL consists of 

polysaccharide macromolecules and the Flory-Huggins relation could express the chemical 

potential of the solvent. For several water-polysaccharides solutions, the first term of the 

Eq.11 can be approximated by (Treloar 2005): 

 
¶DGmix fw( )

¶n
= RT ln fw( )+1-fw + c 1-fw( )

2

( )     (Eq. 12) 

Where c  is the Flory interaction parameter.  

In principle the equation describes the chemical potential of the solvent in the whole 

dilution range, provided that the value c  is known at every volume fraction. For 

concentrated polymeric solutions, c  depends on the nature of the macromolecule, but in 

the dilution ranges we are interested in (fw  higher than 0.2), a constant value for c  of 

about 0.5 was taken to approximate the chemical potential of water (Eckelt et al. 2008; van 

der Sman and Meinders 2011). 

Mechanical model: Upon actuation, the valve flexes from a closed configuration with a 

convex curvature to an open one with reversed curvature. From a mechanical perspective 

and given the morphology of the actuating system, each actuating unit was considered as a 

bilayer of two materials (keel honeycomb tissue + backing layer), with different thickness, 

stiffness and expansion coefficient. An approximate estimation of the change of curvature 

due to hindered keel expansion against a non-expanding backing could then be provided by 

the theory of Timoshenko (Timoshenko 1925): 

Da =
6lDe 1+m( )

2

ttot 3 1+m( )
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      (Eq. 13) 

Where, Δα is the increment of the curvature angle of the bilayer; m= tk
tb

 and n=
Ek
Eb

 are 

respectively the thickness and stiffness ratios between the keel (k) and the backing tissue 

(b); l is the length of the portion of bilayer that is actually flexing; Δε is the keel-backing 

differential swelling strain and depends on the internal pressure (resulting from the 

swelling of the model macromolecules inside the confined cells), leading to the expansion 

of the keel cells (the backing is assumed not to swell).  
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Mechanical testing on dissected keels and backing specimens has proven to be unviable 

due to the small dimensions of the specimens. Hence, their mechanical properties were 

extrapolated from geometrical features of their microstructure (Table 3), and were utilized 

as input for the finite element simulation of the keel’s flexing, where the keels were 

modeled as a regular two-dimensional cellular structure with highly anisotropic diamond 

shaped cells. The geometrical data of keel and backing microstructure were collected from 

the representative samples. The stiffness of the keel in a direction parallel to the cells short 

axis has been calculated with the Gibson-Ashby formula for 2D cellular materials (Gibson 

and Ashby 1988): 

          (Eq. 14) 

The backing layer is a foam material with thicker lignified cell walls. Mechanical 

properties are extrapolated by using a closed cells foam model with rhombic dodecahedra 

topology: 

       (Eq. 15) 

Where, f  is the fraction of material contained in the cell’s edges, while 1- f  is the 

fraction contained in the faces. 

Table 3. Geometrical data of ice plant hygroscopic keel and backing tissue. 

 Keel Backing 

Microstructural data 

Microstructure type 
2D cellular, 

diamond-shaped cells 

Closed cells foam, 

rhombic dodecahedra cells 

Cell wall thickness (μm) 2.15 5.71 

Cell parameters 
Xcell=83.16 

lwall=17.24 
Ycell=6.36 

Bilayer data 

Layer thickness (μm) 720 44.4 

Swelling strain (from FE simulation) 0.  
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Through a simple 2D finite element simulation (performed by Guiducci L., Razghandi et 

al. 2014), the final configuration of keel’s microstructure upon exposure to hydraulic 

pressure inside the cells could be predicted. In this way the keel’s extension along the Y-

axis was derived as a function of the internal pressure. The simulations revealed that a 

value of pressure p*=150 kPa is sufficient to open the model cells up to about 4-fold that 

was observed in the fully actuated keel cells (Figure 33a-d). 

On the curve in Figure 33d, the transition from the initial wet state (where only the walls 

are swollen) to the full swollen state (where the keels has expanded 4-fold) corresponds to 

the portion of curve delimited by the dotted line. It is worth noticing that the value of 

pressure is in the order of hundreds of kPa, hence only a relatively small mechanical work 

is needed to reach the fully swollen state. 

Finally, to describe qualitatively the opening of the keel with the chemo-mechanical model, 

we had to relate the opening factor with the water volume fraction inside the cells. This was 

done by considering that the volume of the cell’s lumen relates to the keel’s strain (De ), 

which itself is proportional to the curvature (opening angle) of the keel. Taking the volume 

of the CIL as the volume of the lumen of the closed cell, the volume fraction of water was 

calculated at every strain as the volume increase with respect to the dry state divided by the 

actual volume of the lumen.  

Considering that the Xcell and cell height do not change significantly while opening, the 

CIL volume fraction was estimated as: 

fCIL =
VCIL
Vtot

=
j ycell -2twall( ) xcellhcell
1+De( ) ycell -2twalléë ùûxcellhcell

=1-fw
     

(Eq. 16) 

Where, VCIL and Vtot are respectively the inner volume of the dry keel and the expanding 

keel. To take into account the porosity of the CIL, an effective volume fraction of the dry 

swelling polymer j  was used which represents the fraction of the keel’s inner volume 

occupied by the CIL in the dry state. 

In this way, the water volume fraction could be obtained from this equations by substituting 

bDa  for De ; 

fw =1-
j. ¢y

b.Da +1-2 ¢t          

(Eq. 17) 
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Where Da  is the total opening angle, which can be normalized by (aDry -aWet ) to relate to 

the opening factor (OF in Figure 30), b is the materials/structure dependent constant linking 

De  and Da , ¢y =
ycell -2twall
ycell

 and ¢t =
2twall
ycell

 where ycell  and twall  are defined in Figure 33. 

Combining Eq. 12 with Eq. 17 and using the pressure vs. opening angle curve obtained by 

the finite elements simulation, the expected opening as a function of the water activity was 

calculated through Eq. 11 at 20°C (Figure 33e).  

 

Figure 33. Simple chemo-mechanical model for keel’s actuation. Left: Finite element 

simulated deformation of the keel's tissue under hydraulic pressure showing the 

dependency of the elongation of the keel as a function of the effective mechanical pressure 

acting in the cells. A representative unit cell (a) has been replicated to create a 5Xcell-by-

10Ycell array (b). Given the high anisotropy of the microstructure, the experimentally 

observed value of extension Y/Y0 = 4 (c) was achieved already at a value of pressure p = 

150 kPa. Bending of the keel-backing bilayer(Δα) upon changes in the mechanical pressure 

inside the cells, predicted from Timoshenko formula is presented in (d). The grey dotted 

line locates the value of pressure p=150 kPa at which Y/Y0 = 4 (fully swollen state). Using 

Eq.17 and the keel backing curvature curve in (d), the simulated opening vs. water activity 

(aw), was calculated at 20°C for a CIL effective density φ of 0.7 (blue curve) and was found 

to be in good agreement with the experimental data from PEG-water experiment presented 

here as red dots (e) (Reprinted from; Razghandi et al. 2014). 

The calculated opening factor vs. water activity curve shows a good agreement with the 

experimental data gained from the PEG-water experiment (Figure 33e). The model predicts 
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an onset of the actuation and opening of the keels to happen at water activities higher than 

98%. At this point, the free energy available to do mechanical work is still quite low, yet it 

can induce a full actuation only through an elaborate design of the keels to fully exploit 

small forces, without spending too much energy to deform the cell walls. 

To summarize, the chemical model could show how the available free energy from the 

entropic gain of the system upon free swelling of a model macromolecules inside confined 

cells (with the geometrical feature resembling the ice plant keel’s cells), can generate high 

enough mechanical pressure inside the cells (~150kpa), which based on the mechanical 

model, is sufficient to induce a four-fold opening of the model cells, and accomplish a full 

flexing cycle of the model honeycomb-backing bilayer structure. Through the combined 

chemo-mechanical model, we could relate the opening angle of the model honeycomb-

backing bilayer structure to the volume fraction of the swelling model macromolecule (or 

CIL) and plot an “opening factor vs. water potential” curve comparable to the one obtained 

from the PEG-water experiments (Razghandi et al. 2014). 

The bilayer actuation mechanism was found in plant actuators where big deflections could 

be achieved by dimensional amplification using long bilayers and small differential strain 

such as in wheat awns (Elbaum et al. 2007). However, in the case of the ice plant seed 

capsule, the same mechanism works with a relatively bulky, non-slender, bilayer structure 

and a massive differential strain, to produce a remarkable curvature change required for the 

reversible opening and closing of the seed chambers. 

4.6 Origami-like folding/unfolding of the seed capsules 

Beside the flexing movement of the two keel halves, the separation of the keels upon 

drying adds to the complexity of the folding/unfolding of the seed capsules. The two halves 

of the keel were found to be touching on their ridges in the wet state and moving apart from 

each other upon drying (Figure 19, 20). The gap between the two halves in the dry state 

seems to be a necessary requirement for the packing of the whole seed capsule, as we know 

that in the initial conformation, the valves are closed during the plant development. The 

backing tissue was found to have a concave-curved shape in the dry state which converts 

into a straight plane upon wetting. Figure 19 and 20 show how changes in the curvature of 

the backing tissue upon wetting/drying cycles enables the two keel halves to move apart 

and facilitate the tight packing of the septum into the resulted gap. The hydration-

dependent changes in the curvature of the backing tissue disappeared upon dissection of the 

honeycomb cell network from the backing, which suggested that the observed bending of 
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the backing could be related to the cooperative swelling of the cells in Y-direction and 

flexing of the keels. However, it should be noted that the separation of the two keel halves 

upon drying could also to some extend be related to the slight shrinkage of the cells in X-

direction (Figure 20). 

Simple finite element simulations performed by coworkers on the project (Harrington, 

Razghandi et al. 2011) proved that the shrinkage of the similar contractile elements (keels) 

attached on top of a passive plane (backing tissue) could lead to two distinct deformations 

observed in the biological model system (Figure 34). 

The resistance of the passive shell (backing tissue) against the contraction of the two active 

elements results in the bending and flexing of the bilayer structure as expected from the 

Timoshenko’s principle. Besides, the contraction of the active elements results in the 

development of elastic stresses in the passive plane. To release these stresses the shell 

bends in the XZ-plane and in the same direction observed for the backing, though the 

magnitude of the curvature was found to vary with shape, thickness and elastic properties 

of both backing and active elements (Harrington, Razghandi et al. 2011). A similar 

mechanism was reported in other planar structures like plant leaves, where the difference in 

growth rates leads to formation of differential stresses in the leaf plane, release of which 

could result in out-of-plane bending and wrinkling of the leaves (Audoly and Boudaoud 

2003; Liang and Mahadevan 2009). 

A simple paper-folding experiment could demonstrate how the curvature of the backing 

tissue in the dry state could hinders the unfolding mechanism and somehow locks the seed 

capsules in the close conformation. Bending the top half of a folded sheet of paper proved 

to lock the structure in the folded (closed) state (against the gravity), while releasing and 

straightening the top half resulted in ‘unlocking’ of the structure and opening of the folded 

paper (Figure 35). 

Hence it could be concluded that for the hygroscopic keel to initiate the flexing movement 

upon actuation, the backing tissue need to switch from a curved to a plane state. The 

difference between the finite element and the paper model is that the former allows for the 

stretching deformation of the backing while the later doesn’t, thus depicting the two 

extreme case of how bending can occur, with the biological system lying probably 

somewhere between the two mechanisms. 
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Figure 34. Mechanism of the flexing and packing of the keels. Schematics in (a) and (b) 

illustrate the changes in the curvature of the backing tissue and the separation of the two 

keel halves in the wet and dry state respectively. The influence of the shrinkage of the cells 

in the X direction on separation of the keels upon drying is depicted in the figure (c). Finite 

element simulation of two contractile elements (keels) on top of a passive plane (backing 

tissue) with geometrical and mechanical features similar to the biological model, 

performed by coworkers in the project (d), could show how the swelling of the cells in the 

Y-direction leads to both flexing of the bilayer structure and stress release and bending of 

the backing tissue in XZ-plane (Re-sketched after; Harrington, Razghandi et al. 2011). 

 

Figure 35. Paper model for ice plant seed capsule locking mechanism. Paper origami 

model (a-d) demonstrate the locking mechanism induced by the backing curvature; when 

the top half of the folded paper is straight (no bending) it allows the paper to move freely at 

the hinge (a). Inducing a curvature in the structure by bringing the corners of the top half 

together (b), results in the upward folding of the bottom half with (c) and (d) showing the 

folded structure from both sides. The structure was locked in the folded status, and gravity 

could unfold it only upon releasing the curvature on the top half (Reprinted from; 

Harrington, Razghandi et al. 2011).  
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It was also observed that the capsules were locked in a half-open conformation even in the 

dry state when the drying was accelerated under the vacuum condition, showing the 

importance of the temporal synergy between the flexing of the keels and bending of the 

backing. The differential drying of the highly hygroscopic CIL and the less hygroscopic 

lignified cell walls seems to be a key factor in concerting the temporal mismatch and 

interplay of the bidirectional movements. 

4.7 Ecological adaptation 

In terms of ecology, ice plant strategy to respond only to liquid water and not the changes 

in the environment relative humidity could be an effective adaptation to its natural habitat. 

Ice plants usually grow in vast ranges in arid regions (e.g. Namib Desert). In the areas close 

to the coast belonging to the natural habitat of ice plants in the Namib Desert, the night fog 

from the cold sea can move up to 100 km inland almost every day, increasing the relative 

humidity from below 10% during the day up to above 90% (Ebner et al. 2011; Eckardt et 

al. 2013). A system adapted to movements based on changing air humidity would 

consequently react every day while a system responding only to liquid water would be 

more preferred as it can ensure the seed dispersal in the right condition for germination. 

Although water condensation might happen and still result in opening of the capsule, this 

can be assumed as a less likely scenario as the fog is limited to few hours and the water 

condensation might be hindered and the swelling would only occur after sufficient 

exposure to liquid water (rain) (Razghandi et al. 2014). 
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5 Biomimetic design  

As discussed in the previous chapters, adsorption/desorption of water can provide the 

necessary energy for a variety of actuated stress generation or movement mechanisms in 

plant kingdom. Passive actuation systems which do not depend on the active role of the 

living organism are in particular a better candidate for biomimetic transfer and further 

development of autonomous ‘smart’ systems (Shahinpoor and Thompson 1995; Taya et al. 

2003; Fratzl et al. 2008; Reyssat and Mahadevan 2009; Turcaud et al. 2011; Erb et al. 

2013; Ma et al. 2013). By applying the same principles observed in the passive actuation 

systems in plants, various researchers have tried to embed the desired response to specific 

stimuli by modeling and tailoring various structural features at different hierarchical scales. 

To show the potential of how the basic principles of plant hydro-actuated movements can 

inspire the development of new smart systems, Reyssat and Mahadevan utilized the basic 

mechanism behind the bending movement of the wheat awns and pine cone scales to model 

and develop a simple bilayer that responds to changes in the surrounding humidity and 

undergoes a bending movement (Reyssat and Mahadevan 2009). Their flower pellets were 

made up of an active paper layer with a directional swelling along the leaf axis and a 

passive polymer film glued to the other side. The flower undergoes a reversible opening 

and closing upon wetting and drying cycles (Figure 36). 

 

Figure 36. “Hygromorph model”. A biomimetic model of a hydro-responsive flower made 

up of paper–plastic bilayer petals. The “blooming” of the flower can be controlled by 

humidity so that the petals open when wetted with water and close as they dry (Reprinted 

with permission from; Reyssat and Mahadevan 2009). 

Abstracting from the biological actuators, the source of actuation can be multiple. Any 

stimuli that can lead to a reversible volume change can be a potential candidate for passive 

actuation. Some examples are thermal expansion (Que et al. 2001, Park et al. 2001), solvent 

absorption (water or other proper solvents) (Guiducci 2013) or even magnetic fields as 

proposed and developed by Erb and colleagues (Erb et al. 2013). By controlling the 

orientation of inorganic particles inside a swellable polymeric matrix by a weak external 

magnetic field, they were able to design shape deforming “smart” materials, which can be 
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programmed to response differently to the external stimuli according to the required final 

state or function (Erb et al. 2013). Other abstractions can come from changing the source of 

heterogeneity. As it can be observed in bending of a paper strip upon wetting, water needs 

time to diffuse through the paper, so the activation field of water is heterogeneous while the 

swelling properties are approximately homogeneous. Therefore, in terms of a biomimetic 

transfer, the question of size and shape is of tremendous importance. Recently, sensitive 

hydro-actuated polymeric thin films were introduced which can perform a rapid and 

continuous movement through a slight water exchange with their environment (Ma et al. 

2013). A further aspect of these systems studied by Turcaud et al. is that the different 

arrangement of an expanding and a resisting phase can lead to a variety of responses and 

performances (Figure 37). Twisting, as an example, can occur when the two phases are no 

longer arranged along a mirror plane, but around a rotational axis (Turcaud et al. 2011).  

 

Figure 37. Actuation patterns simulated for a variety of cross-sectional distributions of 

the active and passive elements. (a) Bilayer bending in mirror plane; (b) Closed 4-fold 

cross section with bilayer unit cell remaining straight; (c) Opened 4-fold cross-section with 

bilayer showing a large twist; (d) Opened 4-fold cross-section with bigger moment of 

inertia resulting in less twisting than (c); (e) Opened 4-fold section with differently oriented 

bilayer unit cell remaining straight (Reprinted from; Turcaud, Guiducci et al. 2011). 

The aim of the last part of the thesis is to utilize the abstracted principles behind the passive 

hydro-actuated movement in ice plant seed capsules to develop biomimetic demonstrators 

as a proof of concept. Thereby showing the possibility of tailoring and amplifying the 

initial material’s response to external stimuli, through simple yet sophisticated design of the 

system. 
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5.1 Abstraction of the principles behind ice plant’s hydro-actuated 

movement  

The origami-like unfolding of ice plant seed capsules as a sophisticated passive hydro-

actuation systems is gaining rising interests in the biomimetic research, with few models 

already been inspired and developed based on the concepts behind this hydro-actuated 

system (Ionov 2013; Rafsanjani et al. 2013; Guiducci 2013).  

A well-defined extraction and abstraction of the basic principles behind the ice plant 

passive movement is essential for developing related smart actuation systems. The engine 

of the investigated actuated movement was found to be the water adsorption and swelling 

of the highly swellable cellulosic inner layer inside the lumen of the keel cells, yet the 

relatively complicated movement could only be explained in terms of the sophisticated 

design at various hierarchical levels of the system (Figure 38). 

 

Figure 38. Abstraction of the principles behind ice plant hydro-actuation system. 

Schematics illustrate the actuation principles at different hierarchical level of the system:  
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Figure 38 continued: (I) The first hierarchical level shows the starting point where a 

highly swellable polymer can play the role of inducing and adjusting the inner pressure 

inside a confined compartment, leading to an isotropic volume change of the cell (Cryo-

SEM image of the cellulosic inner layer). Next level (II), depicts how through tailoring the 

geometry of the cell one can achieve a desired anisotropic deformation upon changes in 

the inner pressure through swelling/shrinkage cycles (Raman image of the cells transverse 

cross-section). (III) illustrates the scaling up of the same concept, where the cooperative 

anisotropic deformation of individual cells can result in a unidirectional expansion/ 

retraction movement (autofluorescence confocal microscopy image of the keel’s 
honeycomb). (IV) Shows how a unidirectional expansion/extraction can be translated into 

flexing of the whole honeycomb structure when swelling of the cells in one side is restricted 

via attachment to an inert backing tissue (Flexing of the keels upon wetting based on the 

bilayer bending principle). 

‘Swelling-inflation’ strategy 

The first level of abstraction is the concept of utilizing a coupled ‘swelling-inflation’ 

strategy to induce a volume change in a confined cell. Ice plant hygroscopic keel cells are 

an ingenious example of utilizing the swelling/shrinkage of a highly swellable material 

(CIL) as a passive mean of inducing a passive inflation/deflation inside the lumen of the 

cells, mimicking the turgor pressure in living cells. By constraining a swellable material 

into a confined compartment, one can think of the volume changes of the swelling material 

as alteration of the cell’s inner pressure and achieve the desired change in the cell size by 

tailoring the specific characteristics of the swellable inner layers (composition etc.) and the 

mechanical response of the cell walls, thus creating a passive hydro-actuation system 

(Figure 38). The abstracted concept of a ‘swelling-inflation’ strategy was utilized in the 

development of the first hydro-actuated demonstrator in chapter 5.2.  

Tailoring the anisotropy of swelling 

Another important lesson that can be learned from the ice plant actuation system is the 

influence of the specific geometrical features of the cells on the final actuated shape of the 

cell. In the case of the ice plant, the unique ellipsoid-hexagonal shape of the cells, shows an 

example of how an isotropic swelling/shrinkage of a swellable inner layer inside the lumen 

of the cell, can be translated into an anisotropic directional deformation of the cells. 

Through scaling up the same concept for a single cell into a network of connected cells, 

one can see how the anisotropic deformation of a single cell is translated into a 

unidirectional expansion/contraction of the resulting honeycomb structure (Figure 38). By 

an elaborate design of the cells with various geometrical features and arrangements, one 

can tailor the response of the cellular structure upon actuation, giving yet another lever in 

exploring the biomimetic design space (Guidicci 2013). The abstracted idea of utilizing a 
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cellular structure to tailor the actuated movement was embedded in the design of both 

proposed biomimetic prototypes in chapters 5.2 and 5.3.  

From anisotropic expansion to more sophisticated movements 

The transaction from the unidirectional expansion to the flexing movement could easily be 

modeled as bending of a Timoschenko bilayer (Timoshenko 1925). The cell’s swelling 

gradient from the keel base (restricted to the inert backing tissue) to the keel ridge, results 

in a flexing of the whole structure as a bending bilayer (Figure 38). Through utilizing such 

simple models one can envision to translate the simple response of active and passive 

layers into further movements like bending or twisting through tailoring the architectural 

design as shown in Figure 37. The abstracted concept of simple bilayer bending elements 

inspired the design of the autonomously deforming bilayer-honeycomb actuator in chapter 

5.3. 

5.2 Bio-inspired hydro-responsive hydrogel-filled honeycomb actuators 

The first attempt towards a bio-inspired design based on ice plant as a biological model 

system, was to utilize the concept of ‘swelling’ as an ‘inflation’ mechanism in which 

swelling/shrinkage of a highly swellable material inside confined cells of a honeycomb 

framework would lead to a unidirectional expansion/contraction of the hydro-actuated 

honeycomb device. 

Highly swellable and pH sensitive super porous poly-acryl-co-acrylamide hydrogels 

(Gemeinhart et al. 2000) were synthesized inside the cells of a 3D printed polymeric 

cellular structure (prepared by Dr. James Weaver’s group at Wyss Institute, Boston), with 

geometrical features resembling ice plant keel’s honeycomb model previously used in the 

finite element simulation (more details in the experimental section). 

The initial analysis of the free swelling of the hydrogel discs from fully oven-dried weight 

to fully swollen state after almost a day showed water uptake of about 20 gr gr
-1

, which led 

to an almost 30 fold increase in the volume of the hydrogel discs. The macroscopic 

porosity introduced in the hydrogel system in the synthesis process enables higher swelling 

and shrinking rates through enhancing the diffusion of water into the structure by capillary 

forces (Gemeinhart et al. 2000). To study the pH sensitivity of the highly swellable 

hydrogels, the swelling/ shrinkage behavior of the hydrogels in acidic (pH 1.2) and basic 

(pH 8) solutions were monitored and revealed a ~30% increase in the swelling from a water 

uptake of about 3 gr gr
-1

 in the acidic solution to a 4 gr gr
-1

 water adsorption in the basic 

medium. 
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Due to the various problems associated with preparation and characterization of the 

hydrogel-honeycomb system, such as; (i) not having the necessary control over synthesis of 

a reliable hydrogel batch with consistent porosity and stiffness, (ii) lack of a proper 

attachment of the hydrogel into the hydrophobic cell walls and escaping of the swelling 

hydrogel out of the honeycomb cells (Figure 39), (iii) problems associated with measuring 

the dry weight of the hydrogel inside the cells and (iv) breakage of the walls of the 

honeycomb frames before reaching the equilibrium final swelling stages, a precise 

quantitative analysis of the actuation was not possible.  

 

Figure 39. Hydro-actuated hydrogel-filled-honeycomb structures. Swelling of 

superporous poly-acryl-co-acrylamide hydrogels inside the diamond shape cells of a 3D 

printed honeycomb structure result in ~65% expansion of the cells along the shorter 

transverse cross-section direction. The poor control over constraining the hydrogel inside 

the honeycomb cells, made it difficult to achieve a quantitative analysis of the system. 

The preliminary results showed a maximum of ~65% anisotropic expansion of the 

hydrogel-filled honeycombs measured along the shorter transverse cross-sectional axis of 

the cells, which was significantly smaller than the 4 fold opening of the ice plant keel’s 

cells. However, qualitatively the deformation of the honeycomb structure upon swelling of 

the super porous hydrogel inside the cells, was similar to the swelling of the ice plant keel 

cells, which could show the feasibility of such system as a proof of concept for passive 

actuated systems based on the constrained swelling of a highly swellable material inside a 

confined cellular structure.  

Using the same simple principle, similar hydro-responsive or pH sensitive actuation 

systems with a more pronounced actuated response could be designed and improved 

through a proper material selection for controlling the swelling and mechanical properties 

of both hydrogel and the honeycomb framework. Similar studies on the development of 
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such hydro-responsive actuation systems done by colleagues in different research groups 

have revealed promising results (Guidicci 2013). 

5.3 Hydro-actuated bilayer-honeycomb prototype 

 Principle of the design at various hierarchical levels   5.3.1

To detach from the ‘swelling-inflation’ mechanism, while keeping the extracted concepts at 

higher hierarchical level of the biological model system, we tried to locate the actuation 

inside the honeycomb walls as shown in figure 40. Getting inspired by the bilayer bending 

movement principle seen in the flexing of the ice plant keel and other passive hydro-

actuated movement in plants (Elbaum et al. 2008; Dawson et al. 1997), the idea was to 

make a cell with hydro-responsive walls which would change their curvature upon changes 

in the environment relative humidity. 

Figure 40 depicts the principle behind the design of such passive hydro-actuated bilayer 

honeycomb device at various hierarchical levels. In the lowest level of the hierarchy, the 

orientation of a none-deforming stiff element inside a softer extendible matrix determines 

the directionality of the swelling, here resulting in a unidirectional expansion of the 

“active” layer in the longitudinal direction (l), while a passive layer with random 

orientation of the stiff elements would have a less pronounced isotropic swelling (Figure 

40I). 

The bilayer made up of two of such elements attached together would bend upon actuation 

to compromise between the extending active element and the resistive layer, and by 

attaching two of such bilayers at their edges with the passive layers facing each other, the 

actuated-bending of the bilayers would result in opening/closing of a “bilayer-cell” (Figure 

40 II-III). Through scaling up and bringing the individual cells into a honeycomb structure, 

one can achieve a tailorable actuated movement at the macro scale (Figure 40 IV). 

At the smallest scales of the design, the goal is to translate the response of the material to 

an external stimulus into a unidirectional deformation of the active element, which can be 

satisfied through swelling of a fibre reinforced polymer composite. The higher levels of the 

hierarchical design are to amplify the initial response of the material in smaller scale, into a 

tailorable larger macro deformation. 
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Figure 40. Schematic illustration of the hydro-actuated bilayer-honeycomb device. The 

bioinspired principle behind the actuation mechanism is depicted at various hierarchical 

levels: (I) Orientation of the fibres inside a swellable matrix determines the directionality 

and extend of the deformation upon swelling. Here, resulting in an anisotropic expansion 

of the top (blue) layer in the longitudinal direction l, while preventing the grey layer with 

random orientation of the fibres (passive layer) to express such unidirectional swelling. A 

simple bending bilayer structure can be made out of attaching such an active and passive 

layer together resisting bottom layer (II), and the fixing two of such bilayers at their edges 

with the active layers facing outward, would translate the actuated bending of the bilayers 

into an opening/closing of a “bilayer-cell” (III). Through scaling up such passive hydro-

actuated cells into a “bilayer honeycomb”, a tailorable unidirectional movement in macro 

scale can be achieved (IV). 

 Material selection and characterization 5.3.2

For the material selection procedure, the goal was to stay in the biological realm and have a 

bio-inspired biomaterial, leading to wood as the first choice for the active element. In first 

tests on developing a prototype bilayer cell, spruce veneers with various thicknesses were 
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utilized as the active layer as the direction of the fibres in wood can give the required 

anisotropy of the swelling. For the passive resistive element, various materials with almost 

no swelling such as various polymeric films, or materials with more isotropic response 

such as paper, scotch tape etc. were used. Based on the cooperative response of the two 

elements in the resulted bending bilayer, and the simplicity of the fabrication and 

characterization, final hydro-actuated demonstrator was made up of 0,6 mm thick spruce 

veneers as the active layer, with the spruce cellulose microfibrils running along the 

bilayer’s width (w, parallel to bilayer-cell axis, Figure 40-I), while a 0.2 mm thick papers 

with a less anisotropic swelling compared to wood were utilized as the passive/resisting 

layer. The spatial arrangement of the spruce veneer bilayer is illustrated in Figure 41, with 

spruce cellulose microfibrils running along the bilayer’s width (w, along the bilayer-cell 

middle axis). As the fibres in the paper (resistive layer) reorient to some extent along the 

rolling direction in the production process and give the final paper a relatively anisotropic 

characteristic, the direction of the paper in the bilayer structure was chosen accordingly and 

the resistive thick paper layer were cut and laid so that the papers direction with the lower 

swellability and the higher elastic modulus would lie along the bilayer longitudinal 

direction (l) along the bilayer-cell longer transverse cross-section.  

 

Figure 41. Characterization of the active and passive elements in the bilayer-cells. The 

special arrangement of spruce and paper in the bilayer-cell is illustrated on the top with 

the bilayers longitudinal axis (l) constructing the cell’s longer transverse cross-section, w, 

representing the bilayers width running parallel to the cells middle axis, and t presenting 

the bilayer-cell wall thickness. Elastic modulus of the two layers at 50% relative humidity 

and their maximum swelling upon wetting are presented in the table. The acquired data 

were used as input for finite element simulation of the bilayer actuation. 
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The modulus of elasticity of both, active and passive layers at room condition (25°C, 50% 

RH), and their maximum swelling upon wetting, were acquired and utilized as an input for 

finite element simulation of the actuation to be presented and compared in a paper under 

preparation (Figure 41).  

 Passive hydro-actuation of bilayer-cells and honeycomb 5.3.3

The passive hydro-actuation response of the bio-inspired bilayer-cell were investigated by 

taking the cells from 50%RH at room temperature and exposing them to high relative 

humidity in an in-house-built humidity chamber (25°C, ~95%RH). The bilayer-cell’s 

dimensional change upon time of the exposure to the 95% RH is presented in Figure 42. 

The bilayer-cell starts to open almost immediately after exposure to 95% relative humidity 

and open up to 4 fold in the short cross-sectional axis (cell width) already in the first 20 

minutes of exposure, and reaches its equilibrium maximum 8.5 fold opening state after 

about 7 hours (with 80% of the opening occurring in the first hour). The cell contraction in 

the longitudinal direction (cell length) was found to be negligible.  

 

 

Figure 42. Deformation of the bilayer-Cell upon actuation. Starting from 50% relative 

humidity at room temperature to 95% RH, swelling of the spruce veneers results in bending 

of the bilayer-cell wall and an 8 fold opening of the cells in the shorter cross-sectional axis 

(w), while the longer cross-sectional axis of the cell (l) undergoes only a slight 10% 

contraction. 

To check the reversibility of the actuation, the actuation was done with wetting a bilayer-

cell by spraying liquid water on top of the cells and monitoring the opening/closing of the 

cells upon wetting and the consequent drying cycle at room condition with 25°C and 
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50%RH (Figure 43). The actuation upon wetting started in half a minute after spraying the 

water, and continued to an almost 7 fold opening of the cell’s in about 10 minute. The cells 

started to close only minutes after the wetting was stopped and the water desorption and 

drying of the bilayers continued until the closure to the initial closed state in about half an 

hour.  

 

Figure 43. Reversible actuation of the bilayer-cell upon wetting/drying cycles. Opening 

and closing of a bilayer-cell upon wetting and drying at room temperature (50%RH) is 

plotted as a function of time. The actuation starts immediately after spraying the liquid 

water with the full opening occurring in less than 15 minutes. 

Equilibrium final curvature of actuated bilayers and bilayer-cells upon exposure to 95% 

RH and in wetting experiment are presented in Figure 44. The bending and equilibrium 

curvature of the actuated bilayer-cell wall was found to be less than that of the single 

bilayer (about 80%) probably due to the geometrical and mechanical restrains at the cell 

hinges. 

The actuation measured in terms of changes in the curvature of the bilayers in the cells was 

almost the same for both wetting and relative humidity experiments, while the equilibrium 

curvature of the single bilayers measured in 95%RH was found to be almost 20% less than 

the final curvature of the same bilayer wetted with liquid water. The observed difference 

between the actuation upon wetting and exposure to high relative humidity can probably be 

explained by the difference between the changes in the elastic modulus of the active and 
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passive layers in the two experiments. The changes in the elastic properties of wood 

polymers upon water adsorption have been related to the breaking of hydrogen bonds by 

water molecules (Caulfield 1990; Nissan 1990; Engelund 2011). The effect is a time-

dependent diffusion process, thus the temporal difference between the adsorption process 

in the two experiments might have a different effect on the deterioration of the mechanical 

properties of the bilayer, leading to the locking of the bilayer in a different equilibrium 

actuated state upon exposure to high relative humidity compared to the final equilibrium 

opening observed in actuation upon wetting.  

 

Figure 44. Single bilayer and bilayer-cell actuation upon wetting and exposure to 

95%RH. Actuation of the single bilayers and bilayer-cells are shown as the final 

equilibrium curvature, κ (1/m). Bending of the bilayers in the bilayer-cells is less in 

general probably due to the restriction of the cell hinges. Actuation is more pronounced in 

case of wetting with liquid water compared to exposure to high relative humidity. 

Maximum swelling of the single spruce veneer exposed to 95% RH was measured to be 

about 6%. However, a rough calculation by putting a 6% strain for the active layer in the 

simplified version of the Timoshenko’s formula (Eq. 7) predicts a significantly higher 

bending curvature than observed in the actuated bilayers (Figure 44). Hence, it can be 

concluded that the real water adsorption and swelling of the spruce veneers in the bilayer 

structure must be significantly lower than that of single veneers, probably due to the 

smaller available surface area for adsorption in case of the bilayer, as one side of the veneer 

is covered with the glue attaching the two layers together. The geometrical restriction by 

the presence of the passive paper layer may also result in different kinetics of diffusion of 
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the water into the depth of the bilayer, leading to less swelling of the active layer and 

smaller bending curvature.  

Based on the introduced principles and by scaling up the bilayer-cells into a honeycomb 

structure, an autonomously acting hydro-actuated honeycomb device was constructed as a 

proof of concept to show how the initial response of the material (5% spruce swelling) can 

be amplified and translated through a simple yet efficient architecture at various 

hierarchical level of the system into a unidirectional 4-5 fold expansion and movement at 

the macro scale (Figure 45-46). It is worth noting that, for the honeycomb actuation 

experiments done in the 95% relative humidity climate room, the actuation time to the 

equilibrium full opening state was significantly longer than the equilibrium actuation time 

of the bilayer-cells in the smaller in-house-built humidity chamber. 

The core idea of the proposed design is to translate the initial response of the material into a 

tailorable amplified deformation/movement at the macro scale. The expansion can be 

enhanced to some extent by increasing the bending curvature and optimizing length, 

thickness and mechanical properties of the active and passive layer. One can take the same 

principles further and design structures with more sophisticated movements such as 

bending, twisting etc. By attaching a passive layer to one of the edges of the bilayer-

honeycomb structure, one can restrict the expansion of that side and achieve various 

flexing movements similar to that observed in ice plant keels. Bending can also be achieved 

through restricting the expansion of the honeycomb via covering one side of the 

honeycomb cells with a passive substrate. In this mode, two of such bending structures 

(bilayer-honeycomb + backing substrate) can be used as the building block to construct a 

bigger cell (or even honeycomb) through a similar concept used to make the initial bilayer-

cell (Figure 40 II-IV), and conceptually one can think of further amplification of the 

response through design of higher levels of hierarchy on top of each other.  

In general, using the same basic design principles extracted from the biological model 

system, one can tailor various aspects of the actuated movement by varying different 

features of the system to develop “smart” actuation devices with a variety of possible 

applications from facades and roofing systems to biomedical engineering etc. 
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Figure 45. Passive hydro-actuation in bilayer-cell and bilayer honeycomb prototypes. 
Initial (left) and final actuated (right) state of the passive hydro-actuation systems upon 

changing the relative humidity from 50 to 95% are depicted at various hierarchical level of 

the design; a) A bilayer made up of spruce veneer (active layer) glued to a thick paper 

(passive layer), bends upon anisotropic swelling of the spruce veneer in the direction 

perpendicular to the cellulose fibrils orientation. b) Two of such bilayers attached together 

on their edges, constructs a cell-like structure which can open/closes upon changes in the 

relative humidity. c) Scaling up the bilayer-cell into a hydro-actuated honeycomb device as 

a prototype roofing system that can expand up to 5 fold and close the roof upon actuation. 
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Figure 46. Passive hydro-actuation of bio-inspired bilayer-honeycomb device. Sequential 

images of bilayer-honeycomb opening upon 0, 2, 4 and 16 hours of exposure to 95% 

relative humidity room (from left to right). 

The hydro-actuated bilayer honeycomb device can also in principle generate forces along 

the shorter transverse cross-section of the cells. The force generated by a single bilayer-cell 

upon exposure to 95%RH was monitored by restricting its actuated movement by a load 

cell placed on top of its middle point (where the maximum bending occurs). The maximum 

force generated by the bilayer-cell upon actuation was measured to be about 2N. 

The results shows the feasibility of utilizing such simple bilayer-cell design for force 

generation, although one has to consider limitations in the reversibility of such systems due 

to the viscoelastic behavior of wood. Through scaling up the cells into a well design 

honeycomb structure and a proper material selection, one can think of improving the 

simple design-concept for practical applications as lifting systems such as passive hydro-

actuated flooring system for storage of hydro-sensitive goods, etc. 
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6 Summary and conclusion 

The focus of the present thesis is on understanding the underlying principles for passive 

hydro-actuated unfolding of the ice plant seed capsules and utilizing the extracted 

principles behind this actuation system for the development of passive actuated devices as a 

proof of concept. 

From actuation based on the reversible/ irreversible changes of the cells shape and size 

driven by the active changes of the cell turgor pressure, to passive actuation based on the 

anisotropic swelling of the secondary cell wall layers, plants have evolved variety of smart 

mechanisms to utilize water to actuate a specific movement or stress generation in their 

organs. Some species of Aizoaceae also known as ice plants, utilize a ‘swelling-inflation’ 

mechanism to actuate an origami-like unfolding of their seed containing capsules and 

release the seeds upon exposure to liquid water. The swelling of a highly swellable 

cellulosic inner layer (CIL) inside the lumen of the cells, was found to be the engine of 

the actuation as it provides the required pressure for passive inflation/deflation of the cells 

even after cell’s death. The specific cellular structure of the CIL containing hygroscopic 

tissue, with the “eye-like” shape cells, dictates an anisotropic deformation in the shorter 

transverse cross-section of the cells upon water adsorption and swelling of the cellulosic 

inner layer (CIL), which results in a unidirectional expansion of the honeycomb 

structure. The attachment and restriction of the two hygroscopic tissues (keels halves) to 

an inert backing tissue, introduces a swelling gradient, from the cells at the keel base 

restricted to the backing tissue, to the free cells at the keels ridge. The differential swelling 

at different height of the keels leads to the bending of the keel-backing “bilayer”, which 

results in the unfolding of each of the five seed containing valves in ice plant seed capsule. 

It was found that unlike other known plant hydro-actuation systems, ice plant actuation can 

only occur in presence of liquid water and not upon changes in relative humidity. Sorption 

isotherm acquired by thermogravimetric analysis showed that even at relative humidity as 

high as 85%, hygroscopic keels can adsorb only about 15 wt.% water which was not 

enough to initiate the actuation, and exposure to liquid water was necessary for the 

actuation to occur. Thermogravimetric analysis of CIL water sorption revealed that, up to 

40 wt.% moisture content the adsorption is enthalpy driven and is the result of the 

adsorption of the first layers of water molecules onto the network of the cellulose chains, 

which was found to be insufficient to initiate the actuation. The water adsorption after this 

moisture content and up to about 350 wt.% was found to have an entropic nature and to 
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be the mechanically working water responsible for the four fold swelling of the cells and 

flexing of the keels. 

A simple chemo-mechanical model could describe how the relatively small available 

energy from the entropic gain of the system upon swelling of the CIL can be translated into 

the desired deformation at the macro scale, through an elaborate design at higher 

hierarchical level of the system. 

A thorough study of the morphology of the cellulosic inner layer by scanning electron 

microscopy revealed that CIL has a highly porous structure that can exhibit a significant 

swelling only through exploiting the entropic gain from being exposed to liquid water. This 

was speculated to probably serve as an adaptation to prevent the opening to occur upon 

humidity changes in the environment and ensure the seed release and germination in the 

right condition. It was also concluded that, in comparison to various other swelling agents, 

water with high hydrogen bonding power (δh) and low molecular volume is the most 

effective medium for swelling of the cellulosic inner layer and actuation of the keels. 

By transferring the extracted underlying principles behind the hydro-actuated 

movement of the ice plant seed capsule into simple models, we could detach from the 

biological system and provide two different concepts for design of such passive actuated 

honeycomb devices as biomimetic prototypes: 

Hydro-actuated hydrogel-filled-honeycomb devices. 

This prototype resembles the mechanism observed in the biological model, where a 

unidirectional expansion of the honeycomb framework could be achieved through a 

coupled ‘swelling-inflation’ mechanism. Here swelling of a highly porous hydrogel inside 

the cell lumen of a honeycomb frame provides the required pressure to open the cells in the 

shorter transverse cross-sections, resulting in a unidirectional expansion of the cellular 

structure.  

Hydro-responsive bilayer-honeycomb demonstrator.  

By building the honeycomb walls from two layers with different swelling properties, we 

could bring the actuation inside the honeycomb frame, so that the differential swelling of 

the two layers upon actuation would result in bending of the cell walls and, in consequence, 

in a unidirectional expansion of the bilayer-honeycomb structure. 
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7 Outlook 

The reported work led to a better understanding of the underlying mechanism for hydro-

actuated opening of the ice plant seed capsules, and how abstraction of these principles can 

lead to the development of bio-inspired autonomous devices. Potential future research 

directions can be listed as follows; 

As for better understanding of the biological model system: 

• A more thorough study of the CIL composition. 

- Although the Raman studies showed the presence of a mainly cellulosic non-

lignified layer inside the cell’s lumen, a more thorough compositional study of the 

CIL via sugar analysis etc., may help to gain a better understanding of the nature 

of the swellable macromolecules and their interaction with water. 

• Investigation of the hydro-actuated seed dispersal in other ice plant species. 

- Various Aizoaceae species show a similar hydro-actuated unfolding of their seed 

capsule, with anatomical differences like fruit size, number of the seed containing 

valves etc., which would be worth studying to gain a more comprehensive 

understanding of the biological system. 

As for further exploration of the Biomimetic design; 

• Better attachment in the hydrogel-honeycomb system. 

- In our preliminary work on the hydrogel-honeycomb system, the attachment of 

the hydrogel macromolecules to the 3D-printed honeycomb was relatively poor. A 

proper material selection for the framework and the hydrogel can lead to a better 

attachment and a proper analysis of the hydro-actuated deformation. 

• Exploring the possibility of utilizing other environmental stimuli.  

- Water with high hydrogen-bonding power (δh), was found to be the most suitable 

swelling medium for the cellulosic system. However, the chemo-mechanical 

model showed that the entropic gain of the swelling of a model macromolecule 

can be sufficient to induce the pressure required for the inflation of the cells and a 

actuation of the systems, provided that the design principles at higher hierarchical 

levels of the cells and the keel are followed. Hence, one can think of the 

possibility of detaching from water-cellulose coupled systems, and design of a 

similar system that can exploit the swelling of different polymeric materials in 
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response to other suitable swelling agents to inflate the cells and actuate the 

desired movement. 

- The hydrogel system showed a promising pH sensitivity which could be utilized 

to tailor the actuation to be responsive to a certain pH. A more thorough material 

selection for the swellable inner layer can lead to development of autonomous 

systems that can be tailored to be responsive to pH, other solvents, temperature 

etc. 

- The same principle can be applied to the bilayer-honeycomb actuators. The key 

playing factor in the bending of the bilayer structures is the differential strain 

response of the two layers to an external stimuli. A thorough material selection of 

the active and passive layers in the bilayer-cell structure, may lead to the design of 

autonomous bilayer-honeycomb devices with response to other external stimuli 

such as temperature etc. 

• Further simulation and experiments for exploring the possibility of more sophisticated 

movements. 

- By considering each hydrogel-containing (or bilayer) cell as an actuation building 

block, one can think of exploring various design concepts by varying the 

arrangement of the “active” and “passive” cells to achieve more complex 

movements of the honeycomb structure, such as bending, twisting etc. 

- Besides varying the cells as the actuation building blocks, one can also think of 

restricting various sides of the honeycomb with an inert layer, and build bending 

bilayer structure at a higher hierarchical level to amplify the initial response of the 

material even further.  



88 

 

Bibliography 

Aizenberg, J. and P. Fratzl (2009). "Biological and Biomimetic Materials." Adv. Mater. 

21(4): 387-388. 

  

Aizenberg, J., A. Tkachenko, et al. (2001). "Calcitic microlenses as part of the 

photoreceptor system in brittlestars." Nature 412(6849): 819-822. 

 

Arzt, E., S. Gorb, et al. (2003). "From micro to nano contacts in biological attachment 

devices." Proceedings of the National Academy of Sciences 100(19): 10603-10606. 

 

Audoly, B. and A. Boudaoud (2003). "Self-Similar Structures near Boundaries in Strained 

Systems." Physical Review Letters 91: 086105. 

 

Bacic A., Harris, P. J., Stone B. A. (1998). In: Carbohydrates. Structure and Fucntion. The 

biochemistry of plants. New York: Academic Press. . 

  

Barth, F. (1998). The Vibrational Sense of Spiders. Comparative Hearing: Insects. R. Hoy, 

A. Popper and R. Fay, Springer New York. 10: 228-278. 

 

Barthlott, W. and C. Neinhuis (1997). "Purity of the sacred lotus, or escape from 

contamination in biological surfaces." Planta 202(1): 1-8. 

 

Barton, A. F. M. (1990). Handbook of Polymer-Liquid Interaction Parameters and 

Solubility Parameters. Boca Raton, FL., CRC Press. 

 

Berger, A. (1908). Mesembrianthemen und Portulacaceen. Beschreibung und Anleitung 

zum Bestimmen der wichtigsten Arten, mit kurzen Angaben über die Kultur. Stuttgart, 

Ulmer. 

  

Bhushan B. (2009). "Lessons from nature- an overview." Philos Trans Roy Soc A 367: 

1445-1486. 

  

Bhushan, B. (2009). "Biomimetics: lessons from nature–an overview." Philosophical 

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 

367(1893): 1445-1486. 

 

Bhushan, B. and R. Sayer (2008). Gecko Feet: Natural Attachment Systems for Smart 

Adhesion-Mechanism, Modeling, and Development of Bio-Inspired Materials. Applied 

Scanning Probe Methods X. B. Bhushan, M. Tomitori and H. Fuchs, Springer Berlin 

Heidelberg: 1-61. 

 

Bolus, H. M. L. (1928). Notes on Mesembrianthemnm and Some Allied Genera, Cape 

Town. 

 

Bond, J., L. Donaldson, S. Hill, K. Hitchcock (2008) “Safranine fluorescent staining of 

wood cell walls.” Biotech. Histochem. 83: 161–171. 

  

Bowling, A. J. and K. C. Vaughn (2009). "Gelatinous Fibers Are Widespread in Coiling 

Tendrils and Twining Vines." American Journal of Botany 96(4): 719-727. 

 



89 

 

Brown, N. E. (1921). Mesembryanthemum and some new genera separated from it. 

Gardeners' Chronicle. 

  

Brunauer S., Emmett, P. H., Teller E. (1938). "Adsorption of gases in multimolecular 

layers." Journal of the American Chemical Society 60: 309-319. 

  

Burgert, I. (2006). "Exploring the micromechanical design of plant cell walls." American 

Journal of Botany 93(10): 1391-1401. 

 

Burgert, I., M. Eder, et al. (2007). "Tensile and compressive stresses in tracheids are 

induced by swelling based on geometrical constraints of the wood cell." Planta 226(4): 

981-987. 

 

Burgert, I. and P. Fratzl (2009). "Actuation systems in plants as prototypes for bioinspired 

devices." Philosophical Transactions of the Royal Society A: Mathematical, Physical and 

Engineering Sciences 367(1893): 1541-1557. 

 

Burgert, I. and P. Fratzl (2009). "Plants control the properties and actuation of their organs 

through the orientation of cellulose fibrils in their cell walls." Integrative and Comparative 

Biology 49(1): 69-79. 

 

Burgert, I., J. Keckes, et al. (2002). "A Comparison of Two Techniques for Wood Fibre 

Isolation - Evaluation by Tensile Tests on Single Fibres with Different Microfibril Angle." 

Plant Biology 4(1): 9-12. 

 

Burgert I., Fratzl P., (2007). Mechanics of the expanding cell wall. Plant cell monogr (5) 

The expanding Cell. V. K. Verbelen JP. Berlin, Heidelberg:, Springer-Verlag: 191–215. 

  

Cai, J., S. Kimura, et al. (2008). "Cellulose aerogels from aqueous alkali hydroxide-urea 

solution." Chemsuschem 1(1-2): 149-154. 

 

Campbell N. A., Thomson, W. W. (1977). "Multi vacuolate motor cells in mimosa pudica." 

Annals of Botany 41(176): 1361-1362. 

  

Çarçabal, P., R. Jockusch, et al. (2005). "Hydrogen Bonding and Cooperativity in Isolated 

and Hydrated Sugars:  Mannose, Galactose, Glucose, and Lactose." J. Am. Chem. Soc. 
127(32): 11414-11425. 

 

Carpita, N. C. and D. M. Gibeaut (1993). "Structural models of primary cell walls in 

flowering plants: consistency of molecular structure with the physical properties of the 

walls during growth." The Plant journal : for cell and molecular biology 3(1): 1-30. 

 

Caulfield, D. F. (1990). Effect of moisture and temperature on the mechanical properties of 

paper. Solid mechanics advances in paper related industries. Proceedings of National 

Science Foundation workshop, Syracuse, NY, USA. 

  

Chen, Z., C. Majidi, et al. (2011). "Tunable helical ribbons." Applied Physics Letters 98(1): 

011906. 

 

Clair, B., T. Alméras, et al. (2011). "Maturation stress generation in poplar tension wood 

studied by synchrotron radiation microdiffraction." Plant physiology 155(1): 562-570. 



90 

 

 

Clair, B., J. Gril, et al. (2008). "Characterization of a gel in the cell wall to elucidate the 

paradoxical shrinkage of tension wood." Biomacromolecules 9(2): 494-498. 

 

Clair, B., J. Ruelle, et al. (2006). "Tension wood and opposite wood in 21 tropical rain 

forest species 1. Occurrence and efficiency of the G-layer." Iawa Journal 27(3): 329-338. 

 

Clair B., Ruelle, J., Thibaut B. (2003). "Relationship between growth stresses, mechano-

physical properties and proportion of fibres with gelatinous layer in chestnut (Castanea 

Sativa Mill.)." Holzforschung 57, 2: 189-195. 

  

Cleland, R. (1971). "Cell Wall Extension." Annual Review of Plant Physiology 22(1): 197-

222. 

  

Cohen, J. A., R. Podgornik, et al. (2009). "A Phenomenological One-Parameter Equation of 

State for Osmotic Pressures of PEG and Other Neutral Flexible Polymers in Good 

Solvents." Journal of Physical Chemistry B 113(12): 3709-3714. 

 

Collins (2004). Optimisation mechanics in nature, WIT press. 

  

Cosgrove, D. (2000). "Loosening of plant cell walls by expansins." Nature 407(6802): 321-

326. 

  

Cosgrove, D. (2005). "Growth of the plant cell wall." Nat Rev Mol Cell Biol 6(11): 850-

861. 

 

Currey, J. (2006). "Bones : structure and mechanics.", Princeton, NJ: Princeton University 

Press. 

  

Dawson, J., J. F. V. Vincent, et al. (1997). "How pine cones open." Nature 390(6661): 668-

668. 

  

Dent, R. W. (1977). "A Multilayer Theory for Gas Sorption." Textile Research Journal 

47(3): 188-199. 

 

Donaldson, L. A., J. Grace, G. M. Downes (2004). “Within-tree variation in anatomical 

properties of compression wood in radiata pine.” IAWA J. 25: 253–271. 

Dunlop, J. and P. Fratzl (2010). "Biological Composites." Annual Review of Materials 

Research 40(1): 1-24. 

 

Ebner, M., T. Miranda, et al. (2011). "Efficient fog harvesting by Stipagrostis sabulicola 

(Namib dune bushman grass)." Journal of Arid Environments 75(6): 524-531. 

 

Eckardt, F. D., K. Soderberg, et al. (2013). "The nature of moisture at Gobabeb, in the 

central Namib Desert." Journal of Arid Environments 93: 7-19. 

 

Eckelt, J., R. Sugaya, et al. (2008). "Pullulan and dextran: Uncommon composition 

dependent Flory-Huggins interaction parameters of their aqueous solutions." 

Biomacromolecules 9(6): 1691-1697. 

 



91 

 

Elbaum, R., S. Gorb, et al. (2008). "Structures in the cell wall that enable hygroscopic 

movement of wheat awns." Journal of Structural Biology 164(1): 101-107. 

 

Elbaum, R., L. Zaltzman, et al. (2007). "The role of wheat awns in the seed dispersal unit." 

Science 316(5826): 884-886. 

 

Elices, M. (2000). "Structural biological materials design and structure-property 

relationships.", New York: Pergamon.  

 

Emons, A., H. Höfte, et al. (2007). "Microtubules and cellulose microfibrils: how intimate 

is their relationship?" Trends in Plant Science 12(7): 279-281. 

  

Engelund E. T., Thygesen, L. G., Svensson S. H., Callum A. (2013). "A critical discussion 

of the physics of wood–water interactions." Wood Science and Technology 47(1): 141-161. 

 

Engelund E., Thygesen, L. H. P. (2010). "Water sorption in wood and modified wood at 

high values of relative humidity. Part 2: Appendix. Theoretical assessment of the amount of 

capillary water in wood microvoids." Holzforschung 64(3). 

  

Engelund, E. T. (2011). Wood-water interactions, Linking molecular level mechanisms 

with macroscopic performance. Department of civil engineering. DTU Civil engineering, 

Technical University of Denmark. PhD Thesis. 

  

Erb, R., J. Sander, et al. (2013). "Self-shaping composites with programmable bioinspired 

microstructures." Nature communications 4. 

 

Fagerberg W. R., Howe, D. G. (1996). "A quantitative study of tissue dynamics in Venus's 

flytrap Dionaea muscipula Droseraceae. II. Trap reopening." American Journal of Botany 

83(7): 836-842. 

  

Fagerberg W.R. , D. Allain (1991). "A quantitative study of tissue dynamics during closure 

in the traps of Venus's flytrap Dionaea muscipula (Ellis)." American Journal of Botany 78: 

647-657. 

  

Fantner, G., E. Oroudjev, et al. (2006). "Sacrificial bonds and hidden length: unraveling 

molecular mesostructures in tough materials." Biophysical journal 90(4): 1411-1418. 

 

Federle, W., W. J. P. Barnes, et al. (2006). "Wet but not slippery: boundary friction in tree 

frog adhesive toe pads." Journal of The Royal Society Interface 3(10): 689-697. 

 

Fengel, D. and G. Wegener (1984). Wood—chemistry, ultrastructure, reactions. Berlin, 

Germany, De Gruyter. 

  

Firn, R. D. and A. B. Myers (1989). "Plant movements caused by differential growth--unity 

or diversity of mechanisms?" Environmental and experimental botany 29(1): 47-55. 

 

Forterre, Y. and J. Dumais (2011). "Generating Helices in Nature." Science 333(6050): 

1715-1716. 

  

Forterre, Y., J. M. Skotheim, et al. (2005). "How the Venus flytrap snaps." Nature 

433(7024): 421-425. 



92 

 

 

Fratzl, P. (2003). "Cellulose and collagen: from fibres to tissues." Current Opinion in 

Colloid & Interface Science 8(1): 32-39. 

  

Fratzl, P. (2007). "Biomimetic materials research: what can we really learn from nature's 

structural materials?" Journal of the Royal Society, Interface / the Royal Society 4(15): 

637-642. 

 

Fratzl, P. and F. Barth (2009). "Biomaterial systems for mechanosensing and actuation." 

Nature 462(7272): 442-448. 

 

Fratzl, P., I. Burgert, et al. (2004). "On the role of interface polymers for the mechanics of 

natural polymeric composites." Phys. Chem. Chem. Phys. 6(24): 5575-5579. 

 

Fratzl, P., R. Elbaum, et al. (2008). "Cellulose fibrils direct plant organ movements." 

Faraday Discussions 139(0): 275-282. 

 

Fratzl, P., H. S. Gupta, et al. (2004). "Structure and mechanical quality of the collagen-

mineral nano-composite in bone." J. Mater. Chem. 14(14): 2115-2123. 

 

Fratzl, P. and R. Weinkamer (2007). "Nature’s hierarchical materials." Progress in 

Materials Science 52(8): 1263-1334. 

 

Fromm, J. and S. Lautner (2007). "Electrical signals and their physiological significance in 

plants." Plant, Cell & Environment 30(3): 249-257. 

 

Fry, S. C., R. C. Smith, et al. (1992). "Xyloglucan endotransglycosylase, a new wall-

loosening enzyme activity from plants." The Biochemical journal 282 ( Pt 3): 821-828. 

 

Garside, S. and S. Lockyer (1930). "Seed dispersal from the hygroscopic fruits of 

Mesembryanthemum carpanthea (Mesembryanthemum), pomeridiana N. E. Br." Annals of 

Botany 44(175): 639-655. 

  

Gemeinhart, R. A., J. Chen, et al. (2000). "pH-sensitivity of fast responsive superporous 

hydrogels." Journal of Biomaterials Science-Polymer Edition 11(12): 1371-1380. 

  

Gibson, L. J. and M. F. Ashby (1988). Cellular solids structure & properties. Oxford etc., 

Pergamon Press. 

 

Gierlinger, N. & M. Schwanninger (2006). “Chemical imaging of poplar wood cell walls 

by confocal Raman microscopy.” Plant Physiology 140; 1246–1254. 

  

Gorb, S. (2009). Functional Surfaces in Biology: Adhesion Related Phenomena Volume 2, 

Springer. 

 

Gorb, S. (2012). Adhesion and friction in biological systems, Springer. 

  

Goswami, L., J. W. C. Dunlop, et al. (2008). "Stress generation in the tension wood of 

poplar is based on the lateral swelling power of the G-layer." Plant Journal 56(4): 531-538. 

 



93 

 

Guiducci L. (2013). Passive biomimetic actuators: the role of material architecture. 

Mathematisch-Naturwissentschaftlichen Fakultät. Potsdam Universität. PhD Thesis.  

 

Gupta, H., J. Seto, et al. (2006). "Cooperative deformation of mineral and collagen in bone 

at the nanoscale." Proceedings of the National Academy of Sciences 103(47): 17741-

17746. 

 

Hansen, C. M. (1969). "The Universality of the Solubility Parameter." Ind. Eng. Chem. 

Prod. Res. Dev. 8, No. 1: 2-11. 

  

Harrington, M. J., K. Razghandi, et al. (2011). "Origami-like unfolding of hydro-actuated 

ice plant seed capsules." Nature Communications 2:337. 

 

Hart, J. W. (1990). Plant tropisms and other growth movements. London etc., Unwin 

Hyman. 

  

Haupt, W. (1977). Bewegungsphysiologie der Pflanzen. Stuttgart, Germany, Thieme 

Verlag. 

  

Hetherington, A. and I. Woodward (2003). "The role of stomata in sensing and driving 

environmental change." Nature 424(6951): 901-908. 

 

Hodick, D. and A. Sievers (1989). "On the Mechanism of Trap Closure of Venus Flytrap 

(Dionaea-Muscipula Ellis)." Planta 179(1): 32-42. 

  

Huber, J. A. (1924). Zur Morphologie von Mesembrianthemum, Botanisches Archiv. 

  

Iino M., Long, C., Wang, X. (2001). "Auxin- and abscisic acid-dependent osmoregulation 

in protoplasts of Phaseolus vulgaris pulvini. ." Plant and cell physiology 42(11): 1219-

1227. 

  

Ionov, L. (2013). "Bioinspired Microorigami by Self-Folding Polymer Films." Macromol. 

Chem. Phys. 214(11): 1178-1183. 

 

Jeronimidis, G. and A. G. Atkins (1995). "Mechanics of Biological Materials and 

Structures: Nature's Lessons for the Engineer." Proceedings of the Institution of 

Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 209(4): 221-

235. 

 

Jin, H., Y. Nishiyama, et al. (2004). "Nanofibrillar cellulose aerogels." Colloids and 

Surfaces a-Physicochemical and Engineering Aspects 240(1-3): 63-67. 

 

Kamat, S., X. Su, et al. (2000). "Structural basis for the fracture toughness of the shell of 

the conch Strombus gigas." Nature 405(6790): 1036-1040. 

 

Keckes, J., I. Burgert, et al. (2003). "Cell-wall recovery after irreversible deformation of 

wood." Nat Mater 2(12): 810-813. 

  

Kerner A., Oliver, F. W. (1894). The Natural History of Plants; their forms, growth, 

reproduction, and distribution. . 

  



94 

 

Kerstens, S., W. Decraemer, et al. (2001). "Cell Walls at the Plant Surface Behave 

Mechanically Like Fiber-Reinforced Composite Materials." Plant Physiology 127(2): 381-

385. 

 

Kimura, M., T. Hatakeyama, et al. (1974). "DSC study on recrystallization of amorphous 

cellulose with water." J. Appl. Polym. Sci. 18(10): 3069-3076. 

 

Knippers, J. and T. Speck (2012). "Design and construction principles in nature and 

architecture." Bioinspiration & Biomimetics 7(1): 015002. 

 

Kovalenko, V. I. (2010). "Crystalline cellulose: structure and hydrogen bonds." Russian 

chemical reviews 79(3): 231-241. 

  

Lakes, R. (1993). "Materials with structural hierarchy." Nature 361(6412): 511-515. 

 

Lanvermann, C., R. Evans, et al. (2013). "Distribution of structure and lignin within growth 

rings of Norway spruce." Wood Science and Technology 47(3): 627-641. 

 

Levin, S., H. Muller Landau, et al. (2003). "The Ecology and Evolution of Seed Dispersal: 

A Theoretical Perspective." Annual Review of Ecology, Evolution, and Systematics 34(1): 

575-604. 

 

Liang, H. and L. Mahadevan (2009). "The shape of a long leaf." Proceedings of the 

National Academy of Sciences 106(52): 22049-22054. 

 

Lloyd, C. and J. Chan (2008). "The parallel lives of microtubules and cellulose 

microfibrils." Current opinion in plant biology 11(6): 641-646. 

 

Lockhart, J. A. (1965). "An analysis of irreversible plant cell elongation." Journal of 

theoretical biology 8(2): 264-275. 

  

Lockyer (1932). "Seed dispersal from hygroscopic Mesembryanthemum fruits, 

Bergeranthus scapigerus, Schw., and Dorotheanthus bellidiformis, N.E.Br, with a note on 

Carpanthea pomeridiana, N.E.Br." Ann. Bot. 46: 323–342. 

  

Ma, M., L. Guo, et al. (2013). "Bio-Inspired Polymer Composite Actuator and Generator 

Driven by Water Gradients." Science 339(6116): 186-189. 

  

Martone, P., M. Boller, et al. (2010). "Mechanics without Muscle: Biomechanical 

Inspiration from the Plant World." Integrative and Comparative Biology: icq122. 

 

Mäthger, L., E. Denton, et al. (2009). "Mechanisms and behavioural functions of structural 

coloration in cephalopods." Journal of the Royal Society, Interface / the Royal Society 6 

Suppl 2(Suppl 2): S149-S163. 

 

Mattheck, C. (1998). Design in nature : learning from trees, Springer-Verlag. 

  

Mattheck, C. and K. Bethge (1998). "The Structural Optimization of Trees." 

Naturwissenschaften 85(1): 1-10. 

  



95 

 

McCann M. C., Roberts, K. (1991). The cytoskeletal basis of plant growth and form, New 

York: Academic Press. 

  

Mellerowicz, E. J. and T. A. Gorshkova (2012). "Tensional stress generation in gelatinous 

fibres: a review and possible mechanism based on cell-wall structure and composition." 

Journal of Experimental Botany 63(2): 551-565. 

 

Mellerowicz, E. J., P. Immerzeel, et al. (2008). "Xyloglucan: The Molecular Muscle of 

Trees." Annals of Botany 102(5): 659-665. 

 

Meyers, M., P.-Y. Chen, et al. (2008). "Biological materials: Structure and mechanical 

properties." Progress in Materials Science 53(1): 1-206. 

 

Michielsen, K. and D. G. Stavenga (2008). "Gyroid cuticular structures in butterfly wing 

scales: biological photonic crystals." Journal of the Royal Society, Interface / the Royal 

Society 5(18): 85-94. 

 

Moon, R., A. Martini, et al. (2011). "Cellulose nanomaterials review: structure, properties 

and nanocomposites." Chem. Soc. Rev. 40(7): 3941-3994. 

 

Moran, N. (2007). "Osmoregulation of leaf motor cells." FEBS Letters 581(12): 2337-

2347. 

  

Morillon, R., D. Liénard, et al. (2001). "Rapid movements of plants organs require solute-

water cotransporters or contractile proteins." Plant physiology 127(3): 720-723. 

   

Nissan A. H., Batten, G. L. (1990). "On the primacy of the hydrogen-bond in paper 

mechanics." Tappi Journal 73: 159-164. 

  

Nobel (1970). Introduction to Biophysical Plant Physiology, W H Freeman. 

  

Okuyama, T., H. Yamamoto, et al. (1994). "Growth stresses in tension wood: role of 

microfibrils and lignification." Annales des Sciences Forestières 51(3): 291-300. 

  

Ortiz, C. and M. Boyce (2008). "Bioinspired Structural Materials." Science 319(5866): 

1053-1054. 

 

Paredez, A., C. Somerville, et al. (2006). "Visualization of Cellulose Synthase 

Demonstrates Functional Association with Microtubules." Science 312(5779): 1491-1495. 

 

Paris, O., I. Burgert, et al. (2010). "Biomimetics and Biotemplating of Natural Materials." 

MRS Bulletin 35: 219-225. 

 

Park, J.S., L. L. Chu, et al. (2001).”Bent-beam electrothermal actuators Part II: Linear and 

rotary microengines". Journal of Microelectromechanical Systems 10 (2): 255–262. 

 

Postek, M., A. Vladár, et al. (2011). "Development of the metrology and imaging of 

cellulose nanocrystals." Measurement Science and Technology 22(2): 024005. 

 

Que L., J. S. Park et al. (2001). “Bent-beam electrothermal actuators Part 1: Single beam 

and cascaded devices.” Journal of microelectromechanical systems 10(2): 247-254.  

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=925774
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=925774


96 

 

 

Raabe, D., C. Sachs, et al. (2005). "The crustacean exoskeleton as an example of a 

structurally and mechanically graded biological nanocomposite material." Acta Materialia 

53(15): 4281-4292. 

  

Rafsanjani, A., D. Derome, et al. (2013). "Swelling of cellular solids: From conventional to 

re-entrant honeycombs." Applied Physics Letters 102(21): 211907. 

  

Raven, P. H., R. F. Evert, et al. (1999). Biology of plants. New York, Freeman and 

Company. 

 

Razghandi, K., L. Bertinetti, et al. (2014). “Hydro-actuation of ice plant seed capsules 

powered by water uptake.” Journal of Bioinspired, Biomimetic and Nanobiomaterials 3(3): 

169-182.  

  

Reiterer A., L. H., Tschegg H., Fratzl P. (1999). "Experimental evidence for a mechanical 

function of the cellulose microfibril angle in wood cell walls." Philosophical Magazine, 

Part A 79: 2173-2184. 

 

Reyssat, E. and L. Mahadevan (2009). "Hygromorphs: from pine cones to biomimetic 

bilayers." Journal of the Royal Society Interface 6(39): 951-957. 

 

Rho, J. Y., L. Kuhn-Spearing, et al. (1998). "Mechanical properties and the hierarchical 

structure of bone." Medical engineering & physics 20(2): 92-102. 

 

Roelfsema and R. Hedrich (2005). "In the light of stomatal opening: new insights into ‘the 
Watergate’." New Phytologist 167(3): 665-691. 

 

Salmén, L. (2002). Proceedings of 1st International Conference of the European Society of 

Wood Mechanics, Lausanne, Switzerland, EPFL. 

  

Salmen, L. and J. Fahlen (2006). Reflections on the ultrastructure of softwood fibers. 

Cellulose Chem. Technol. 40, 3/4: 181-185. 

  

Saxena, I. M. and R. M. Brown (2000). "Cellulose synthases and related enzymes." Current 

Opinion in Plant Biology: 523-531. 

  

Schmid, W. (1925). "Morphologiche, anatomische und entwicklungsgeschlchtllche 

Untersuchungen an Mesembryanthemum pseudotroncatellum Berger." j. Naturf. Gesellsch. 

Zurich 70. 

  

Schreiber, N., N. Gierlinger, et al. (2010). "G-fibres in storage roots of Trifolium pratense 

(Fabaceae): tensile stress generators for contraction." Plant Journal 61(5): 854-861. 

  

Shahinpoor, M. and M. S. Thompson (1995). "The Venus-Flytrap as a Model for a 

Biomimetic Material with Built-in Sensors and Actuators." Materials Science & 

Engineering C-Biomimetic Materials Sensors and Systems 2(4): 229-233. 

  

Sheppard, S. E. (1933). "The structure of xerogels of cellulose and derivatives." Trans. 

Faraday Soc. 29(140): 77-85. 

  



97 

 

Shimomura (2010). "The new trends in next generation biomimetics material technology: 

learning from biodiversity." SciTechnol Trends Quart Rev. 37: 53–75. 

  

Sibaoka, T. (1991). "Rapid plant movements triggered by action potentials." The botanical 

magazine, Shokubutsu-gaku-zasshi 104(1): 73-95. 

  

Skaar, C. (1988). Wood-water relations. Berlin, Springer. 

  

Skotheim, J. and L. Mahadevan (2005). "Physical Limits and Design Principles for Plant 

and Fungal Movements." Science 308(5726): 1308-1310. 

  

Speck, T. and O. Speck (2008). Process sequences in biomimetic research. Design and 

Nature IV, Algarve, Portugal, WIT Press. 

  

Steinbrinck, C. (1883). "uber einige Friichtgehause, die ihre Samen infolge von Benetiung 

freilagen." Ber. d. deutsch bot. Ges. 1. 

  

Sundar, V., A. Yablon, et al. (2003). "Fibre-optical features of a glass sponge." Nature 

424(6951): 899-900. 

  

Taiz, L. (1984). "Plant Cell Expansion: Regulation of Cell Wall Mechanical Properties." 

Annual Review of Plant Physiology 35(1): 585-657. 

  

Taya, M., A. Almajid, et al. (2003). "Design of bimorph piezo-composite actuators with 

functionally graded microstructure." Sensors and Actuators A: Physical 107(3): 248-260. 

  

Teraoka, I. (2002). Polymer solutions an introduction to physical properties. New York, 

Wiley. 

  

Thompson, D. A. (1992). On Growth and Form, Cambridge University Press. 

  

Thompson, J., J. Kindt, et al. (2001). "Bone indentation recovery time correlates with bond 

reforming time." Nature 414(6865): 773-776. 

  

Thygesen L., Engelund, E. T., Hoffmeyer P. (2010). "Water sorption in wood and modified 

wood at high values of relative humidity. Part I: Results for untreated, acetylated, and 

furfurylated Norway spruce." Holzforschung 64(3). 

  

Timoshenko, S. (1925). "Analysis of bi-metal thermostats." Journal of the Optical Society 

of America and Review of Scientific Instruments 11(3): 233-255. 

  

Tirrell, D. A. (1994). Hierarchical structures in biology as a guide for new materials 

technology, National Academy Press. Washington. DC. 

  

Toriyama, H. and M. J. Jaffe (1972). "Migration of Calcium and Its Role in the Regulation 

of Seismonasty in the Motor Cell of Mimosa pudica L." Plant physiology 49(1): 72-81. 

  

Treloar, L. R. G. (2005). The physics of rubber elasticity. Oxford, Oxford University Press. 

  



98 

 

Turcaud, S., L. Guiducci, et al. (2011). "An excursion into the design space of biomimetic 

architectured biphasic actuators." International Journal of Materials Research 102(6): 607-

612. 

  

Uehlein, N. and R. Kaldenhoff (2008). "Aquaporins and plant leaf movements." Annals of 

botany 101(1): 1-4. 

  

van der Sman, R. G. M. and M. B. J. Meinders (2011). "Prediction of the state diagram of 

starch water mixtures using the Flory-Huggins free volume theory." Soft Matter 7(2): 429-

442. 

  

Veytsman, B. A. and D. J. Cosgrove (1998). "A model of cell wall expansion based on 

thermodynamics of polymer networks." Biophysical journal 75(5): 2240-2250. 

  

Vincent, J. (1990). Structural biomaterials, Princeton University Press. 

  

Vincent, J. and D. Mann (2002). "Systematic technology transfer from biology to 

engineering." Philosophical transactions. Series A, Mathematical, physical, and 

engineering sciences 360(1791): 159-173. 

  

Volkov, A., T. Adesina, et al. (2008). "Kinetics and mechanism of Dionaea muscipula trap 

closing." Plant physiology 146(2): 694-702. 

  

Vukusic, P. and R. Sambles (2003). "Photonic structures in biology." Nature 424(6950): 

852-855. 

  

Wallenberger F. T., Weston, N. E. (2003). Natural fibers, plastics and composites. London, 

UK., Springer. 

  

Wegst, U. G. K. and M. F. Ashby (2004). "The mechanical efficiency of natural materials." 

Philosophical Magazine 84(21): 2167-2186. 

 

Weiner, S. and H. D. Wagner (1998). "THE MATERIAL BONE: Structure-Mechanical 

Function Relations." Annual Review of Materials Science 28(1): 271-298. 

 

Zwaag, S. (2007). Self healing materials an alternative approach to 20 centuries of 

materials science. International Conference on Self Healing Materials, Springer.



v 

 

List of Figures 

Figure 1. Natural vs. Engineering materials. 

Figure 2. Biomimetic approaches.  

Figure 3. Classification of plant and fungal movements.  

Figure 4. Inflation’s principle.  
Figure 5. Structure of the natural cellulose chains in the plant cell wall.  

Figure 6. Simple schematic of plant primary cell wall architecture and composition.  

Figure 7. Simple schematic of secondary cell wall architecture and composition.  

Figure 8. A typical sorption isotherm for wood.  

Figure 9. Stomatal movement.  

Figure 10. The Venus flytrap hydro-actuated movement.  

Figure 11. Anisotropy of swelling in the secondary cell wall. 

Figure 12. Passive hydro-actuated bending of the pine cone scales. 

Figure 13. Hydro-driven movement of wild wheat awns.  

Figure 14. Principles behind actuated-deformation of bi-layer structures.  

Figure 15. Proposed mechanisms for tensile stresses generation in tension wood fibres.  

Figure 16. First anatomical illustration of the ice plant seed capsule. 

Figure 17. Experimental set up for hydro-actuated stress generation in bilayer-cells.  

Figure 18. Ice plant seed capsule hierarchical morphology.  

Figure 19. Detailed analysis of keel movement. 

Figure 20. Separation of the two keels upon drying. 

Figure 21. Variation of the size of the keel’s cells in wet open state.  
Figure 22. Composition and morphology of hygroscopic keel cells. 

Figure 23. Cryo-SEM micrographs of a cell transverse cross-section in swollen state.  

Figure 24. Cryo-SEM micrographs of a cell in swollen state. 

Figure 25. Cryo-SEM micrographs of keel’s cell in swollen state.  
Figure 26. Cryo-SEM micrographs of CIL in higher magnification.  

Figure 27. Effect of enzymatic removal of cellulosic inner layer (CIL) on cell’s actuation.  
Figure 28. Water adsorption-desorption isotherm in TGA.  

Figure 29. Keel water loss in TGA.  

Figure 30. Keel actuation in various PEG-water concentrations.  

Figure 31. Role of different solvent parameters in actuation of the ice plant keel. 

Figure 32. Simplified model of the hygroscopic keel’s cells.  
Figure 33. Simple chemo-mechanical model for keel’s actuation.. 
Figure 34. Mechanism of the Flexing and Packing of the keels.  

Figure 35. Paper model for ice plant seed capsule locking mechanism.  

Figure 36. “Hygromorph model”.  
Figure 37. Actuation patterns simulated for a variety of cross-sectional distributions of the 

active and passive elements.  

Figure 38. Abstraction of the principles behind ice plant hydro-actuation system.  

Figure 39. Hydro-actuated hydrogel-filled-honeycomb structures. 

Figure 40. Schematic illustration of the hydro-actuated bilayer-honeycomb device.  

Figure 41. Characterization of the active and passive elements in the Bilayer-cells.  

Figure 42. Deformation of the Bilayer-Cell upon actuation.  



vi 

 

Figure 43. Reversible actuation of the bilayer-cell upon wetting/drying cycles. 

Figure 44. Single bilayer and Bilayer-cell actuation upon wetting and exposure to 95%RH. 

Figure 45. Passive hydro-actuation in bilayer-cell and bilayer honeycomb prototypes.  

Figure 46. Passive hydro-actuation of bio-inspired bilayer-honeycomb device.  

 

- Different movies have been made to show various aspect of the hydro-actuated 

movements at different hierarchical levels of both the biological model system and the 

developed prototype, which can be provided upon request. 

 



vii 

 

Acknowledgements 

Foremost, I would like to express my gratitude to my doctoral advisor Ingo Burgert for 

supporting me during this period with his valuable guidance. I am thoroughly grateful for 

the opportunity to nurture under his supervision which provided me with an optimum 

flexibility within a structured plan. I would like to thank Peter Fratzl not only for the 

valuable scientific discussions we had, but also for providing a novel concept of leadership, 

under which scientists from various disciplines could work together in a cooperative and 

friendly environment. 

I would also like to thank Michaela Eder, who gracefully accepted me into her group in 

MPIKG during the last phase of my project, and was always there for me with a smile on 

her face supporting me with any problem I had. I would like to specially thank Matt 

Harrington who was working on the project before I joined the group. I’m grateful to him 

for leading me through the first phase of the project during which I learnt a lot from him 

and his contributions in understanding the biological system. I also want to give my warm 

thanks to Luca Bertinetti for his support and guidance, helping me with a lot of patience 

and enthusiasm through various experiments, calculations etc.  

I highly appreciate the collaboration with Sebastien Turcaud and Lorenzo Guiducci, and 

want to thank them for their contribution with finite element simulations and fruitful 

discussions, which ended up in various joint conference presentations and joint papers. I 

would also like to thank Markus Rüggeberg who was a great help not only during our work 

together in MPI, but also in my time as a PhD guest at ETH Zurich.  

I also highly appreciate the support from Susann Weichold, Ingrid Zenke, Annemarie 

Martins, Antje Reinecke, Birgit Schonert and Gabriele Wienskol and all the colleagues 

from the workshop, who were always there to help with any problem concerning various 

experiments, materials etc. and a big thank you to Kerstin Gabbe for her great help 

concerning organizational matters. Warm thanks to all my colleagues and friends at the 

MPIKG and ETHZ, who made this period an enjoyable time with many wonderful 

memories that I will carry on for the rest of my life.  

Thanks to all my friends who were there for me all along, from Berlin, to Zurich, to 

Stockholm, to Vancouver, to Tehran. 

Finally, I would like to close this thesis with a big thank you “Hug“ to my parents; 

Nothing in my life could have been possible without your support and love, Merci. 

 

 



viii 

 

Curriculum Vitae 

Khashayar Razghandi 

 

28th March 1983, Tehran, Iran 

 

Contact 

Max Planck Institute of Colloids and Interfaces, Department of Biomaterials 

Am Mühlenberg 1, 14476 Potsdam-Golm, Germany. 

Khashayar.razghandi@mpikg.mpg.de  

Khashayar.razghandi@gmail.com 

+49 (0)17670875464 

 

Education 

• PhD Candidate; Material Science and Engineering    

Max-Planck-Institute of Colloids and Interfaces, Biomaterials Department. 

(ETH Zurich, Institute for Building Materials, Switzerland.)     

Technical University of Berlin, Germany. 

Thesis: “Passive hydro-actuated unfolding of ice plant seed capsules as a concept 

generator for autonomously deforming devices.” 

 

• M.Sc. Applied Polymer Science      Jan. 2010 

M.L.U Halle, Germany.             

Thesis: “Electrospinning of PVA/PHB blend nanofibres as a scaffold for skin tissue 

engineering” 

 

• B.Sc. Material Sci. & Eng., Industrial Metallurgy   Sep. 2007 

Sharif University of Technology (SUT), Tehran, Iran. 

Thesis: “Equal channel angular pressing (ECAP) of Aluminum alloys” 

 

List of publications 

• "Origami-like unfolding of hydro-actuated ice plant seed capsules”, Nature 

Communications, 2011, 2: 337, M. J. Harrington, K. Razghandi, F. Ditsch, L. Guiducci, 

M. Rueggeberg, J. W. C. Dunlop, P. Fratzl, C. Neinhuis & I. Burgert. 

• “Hydro-actuation of ice plant seed capsules powered by water uptake”, Journal of 

Bioinspired, Biomimetic and Nanobiomaterials, 2014, 3(3): 169-182, K. Razghandi, L. 

Bertinetti, L. Guiducci, J. W. C. Dunlop, C. Neinhuis, P. Fratzl and I. Burgert. 

• Book chapter: “Hydro actuated plant devices.” In: Coupled fluid-elastic systems (eds. R. 

Guyer & A. Kim), Wiley, in press. K. Razghandi, S. Turcaud, I. Burgert. 

mailto:Khashayar.razghandi@mpikg.mpg.de
mailto:Khashayar.razghandi@gmail.com


ix 

 

• “Bio-inspired hydro-actuated Honeycomb Devices”, K. Razghandi, L. Guiducci, L. 

Bertinetti, S. Turcaud, J. Weaver, P. Fratzl, I. Burgert & J. W. C. Dunlop (In 

preparation). 

•  “Nanofibers from Blends of Polyvinyl Alcohol and Polyhydroxy Butyrate As Potential 
Scaffold Material for Tissue Engineering of Skin”, Biomacromolecules, 2010, 11 (12): 

3413–3421. A. Sh. Asran, K.Razghandi, N. Aggarwal, G. H. Michler, T. Groth. 

 

Conference contributions 

• Keynote speaker, Workshop “Moving Without Muscles”, Sept 2013, Grenoble, France. 

• Conference Talk, EUROMAT, European Congress and Exhibition on advanced Material 

and Processes, Sept. 2013 Seville, Spain. 

• Conference Talk & Poster, DGM, Bio-inspired Materials, International School and 

Conference on Biological Materials Science, 2012 Potsdam, Germany. 

• Conference Talk & Poster, EUROMAT, European Congress and Exhibition on 

advanced Material and Processes, 2011 Montpellier, France. 

• Conference Talk & Poster, COST Action FP0802 Thematic workshop Mixed numerical 

and experimental methods applied to the mechanical characterization of bio-based 

materials, 2011, Vila Real, Portugal. 


	Abstract
	Table of content
	1 Introduction
	1.1 Nature as a source of inspiration
	1.1.1 Biomimetics

	1.2 Hydro-actuated movement and stress generation in the plant kingdom
	1.2.1 Water as an actuator
	Inflation vs. Swelling
	Water in plant cells
	1.2.2 Actuation based on inflation/deflation of living turgid cell
	Differential Growth; Plastic deformation of primary cell wall
	Deformation by an elastic response of the cell wall upon turgor pressure
	Venus flytrap; a turgor-based rapid movement
	1.2.3 Passive actuation based on anisotropic swelling/shrinkage of dead tissue
	Passive hydro-actuation based on bending bi-layer structures
	Passive hydro-actuation based on differential swelling of secondary cell wall layers

	1.3 Ice plant hydro-actuated seed dispersal
	1.4 Objectives of the thesis

	2  Materials and Methods
	2.1 Analysis of the ice plant hydro-actuated movement
	Sample preparation
	Cell dimension measurements
	Raman spectroscopy
	Confocal microscopy
	Enzymatic removal of cellulosic inner layer
	Cryo Scanning Electron Microscopy (Cryo SEM)
	Measuring keel’s water uptake
	Thermogravimetric analysis (TGA)
	Keel opening in water-PEG solution

	2.2 Biomimetic design
	Super porous hydrogel in 3D printed honeycomb frame
	Hydro-actuated bilayer-cell prototype
	Modulus of elasticity of spruce veneers and paper
	Swelling properties of spruce and paper
	Bilayer-cell hydro-actuated movement
	Bilayer-cell hydro-actuated force generation


	3 Investigation of the ice plant hydro-actuated seed dispersal
	3.1 Ice plant hierarchical structure and basic movements
	3.2 Characterization of Hygroscopic keel cells
	3.2.1 Keel’s cells morphology and composition
	3.2.2 Morphology of the cellulosic inner layer (CIL)
	3.2.3 Enzymatic removal of the cellulosic inner layer

	3.3 Physicochemistry of keel’s actuation
	3.3.1 Thermogravimetric analysis (TGA)
	Sorption isotherm
	Desorption experiment

	3.3.2 Keel’s actuation at various concentration of PEG-water solutions
	3.3.3 Actuation in different swelling agents


	4   The underlying mechanisms of the hydro-actuated movement
	4.1 The cellulosic inner layer (CIL) as an actuator
	4.2 CIL water uptake and swelling mechanism
	4.3 Swelling-Inflation: a coupled strategy
	4.4 Unidirectional expansion and flexing of the keels
	4.5 Chemo-mechanical model for actuation
	4.6 Origami-like folding/unfolding of the seed capsules
	4.7 Ecological adaptation

	5  Biomimetic design
	5.1 Abstraction of the principles behind ice plant’s hydro-actuated movement
	‘Swelling-inflation’ strategy
	Tailoring the anisotropy of swelling
	From anisotropic expansion to more sophisticated movements

	5.2 Bio-inspired hydro-responsive hydrogel-filled honeycomb actuators
	5.3 Hydro-actuated bilayer-honeycomb prototype
	5.3.1 Principle of the design at various hierarchical levels
	5.3.2 Material selection and characterization
	5.3.3 Passive hydro-actuation of bilayer-cells and honeycomb


	6  Summary and conclusion
	7 Outlook
	Bibliography
	List of Figures
	Acknowledgements
	Curriculum Vitae

