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ABSTRACT

In this paper, we present a novel passive model order reduction
(MOR) method via projection-based truncated balanced realiza-
tion method, PriTBR, for large RLC interconnect circuits. Dif-
ferent from existing passive truncated balanced realization (TBR)
methods where numerically expensive Lur’e or algebraic Riccati
(ARE’s) equations are solved, the new method performs balanced
truncation on linear system in descriptor form by solving gener-
alized Lyapunov equations. Passivity preservation is achieved by
congruence transformation instead of simple truncations. For the
first time, passive model order reduction is achieved by combining
Lyapunov equation based TBR method with congruence transfor-
mation. Compared with existing passive TBR, the new technique
has the same accuracy and is numerically reliable, less expensive.
In addition to passivity-preserving, it can be easily extended to pre-
serve structure information inherent to RLC circuits, like block
structure, reciprocity and sparsity. PriTBR can be applied as a
second MOR stage combined with Krylov-subspace methods to
generate a nearly optimal reduced model from a large scale inter-
connect circuit while passivity, structure, and reciprocity are pre-
served at the same time. Experimental results demonstrate the
effectiveness of the proposed method and show PriTBR and its
structure-preserving version, SP-PriTBR, are superior to existing
passive TBR and Krylov-subspace based moment-matching meth-
ods.
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1. INTRODUCTION

Model order reduction (MOR) is an efficient technique to reduce
the complexity of interconnect circuits while producing a good ap-
proximation of the input and output behavior.

Basically, there are two classes of MOR algorithms, namely, the
Krylov-subspace based moment-matching algorithms [11, 2, 12, 7]
and the recently promoted balanced truncation schemes [6, 8, 10,
14]. Starting with the modified nodal analysis (MNA) formulation
of an interconnect circuit, Krylov-subspace based methods project
the original system onto low rank subspace (Krylov-subspace) that
captures most state activities at those frequencies of interest. Those
approaches in general are scalable to reduce large VLSI intercon-
nect circuits as projection matrices can be computed efficiently by
solving linear equations. For RLC circuits, Krylov-subspace based
methods like PRIMA [7] can also preserve the passivity of the orig-
inal circuits and programs like SPRIM [3] can further preserve the
structure information of circuit matrices like block structure, reci-
procity, sparsity, etc, in addition to the passivity.

Krylov MOR techniques such as PRIMA, although is very suitable
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for analysis of large scale RLC circuits, do not necessarily generate
models as compact as desired (that is, small in order for a given ac-
curacy). There are no global error bounds between reduced model
and original model. Therefore, another approach, truncated bal-
anced realization (TBR), which has already well-developed in the
control community [6], has been studied intensively recently.

In TBR method, two steps are involved in the reduction process:
balancing step aligns the states such that states can be controlled
and observed equally. The truncating step then throws away the
weak states, which leads to a much smaller model. The major ad-
vantage of TBR methods is that TBR methods can give determin-
istic global bound for the approximate error and it can give nearly
optimal models in terms of errors and model sizes [4].

Standard TBR algorithms, which solve Lyapunov equations (linear
matrix equations) do not necessarily preserve passivity. To ensure
the passivity of reduced model, positive-real TBR (PR-TBR) has
to be carried out [9, 14] by solving more difficult Lur’e or Riccati
equations, which can be computationally prohibitive as they are
quadratic matrix equations.

Given a state-space model in descriptor form

d.
EG
y(t)

where E,A € R"*", BE R"*P,C € RP*", D € RP*P y(t), u(t) ERP.
When E =1, (1) is in standard state-space form. Note that the
descriptor form is the natural form of the circuit MNA formulation
for interconnect circuits, where E is the matrix of storage elements,
A is the matrix of conductance and B = CT is the input and output
position matrices and D = 0.

Ax(t)+ Bu(t)

Cx(¢) + Dul7) M

The existing passive TBR methods [9, 14] firstly convert origi-
nal descriptor system into standard state-space system by map-
ping E — I, A— E~'A, B — E~!B and then solving two Lur’e
or Riccati equations to guarantee the passivity of reduced model.
However, there are several issues related to PR-TBR: First, it is
not numerically reliable in the sense that given an ill-conditioned
E, the mapping can generate too much numerical error and some-
times even the stability of the system can not be guaranteed in this
process. Second, Lur’e and Riccati equations are quadratic ma-
trix equations and thus more expensive than Lyapunov equations,
which are linear matrix equations. Third, the structure property
(block structure, reciprocity, sparsity) inherent to RLC circuits can
not be preserved in the reduction process. Forth, in most cases,
PR-TBR is not as accurate as standard TBR [9].

In this paper, we propose a novel passivity-preserving TBR method,
named PriTBR, for interconnect modeling. Instead of working
on standard state-space equations, PriTBR works on state-space
equations in descriptor form directly by solving generalized Lya-
punov equations. Due to the special matrix structure in descriptor
form, congruence transformation can be applied to ensure the pas-
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sivity of reduced model. Compared with existing PR-TBR, which
solves more difficult Lur’e or Riccati equations based on standard
state-space model, the new method is numerical reliable, less ex-
pensive and more accurate. More important, it can be easily ex-
tended to preserve the structure information of RLC circuit ma-
trices. Combined with structure-preserving Krylov-subspace based
MOR methods, it can generate optimal structure-preserved reduced
model from large-scale circuits.

This paper is organized as the following: Section 2 reviews the
standard TBR methods and positive-real TBR methods. Section 3
presents our new passive TBR method. Section 4 gives a structure-
preserving version of PriTBR. Experimental results are reported in
Section 5 and Section 6 concludes the paper.

2. REVIEW OF TBR METHODS

In this section, we review standard balanced truncation methods [6]
and positive real (passive) balanced truncation methods [9]. Both
of them are working on a standard state space system (E =/ in (1)):

dx

dt

y(t)

where A € R"™" B € R"™P,C € RP*", D € RP*P,y(t), u(t) € RP.

= Ax(t) + Bu(r)

= Cx(t) + Du(t) @

2.1 Standard balanced truncation

Consider the system with A stable in standard state space form, the
impulse response, h(t) = Cer'B,t > 0, can be decomposed into an
input-to-state map x(r) = ¢*’B, and a state-to-output map 1(¢) =
Ce?'. Thus the input 8 causes the state x(¢), while the initial condi-
tion x(0) causes the output y(z) = 1(#)x(0). The grammians corre-
sponding to x and 1 are

W. =[5 BBT A dt, W, = [y 'CTCAdr (3)

which are the unique symmetric positive definite solutions to the
Lyapunov equations.

AW, +W.AT +BBT =0
ATw, +w,A+cTc =0

4
&)

The eigenvalues of the product W, W, are especially important be-
cause they contain information about the input-output behavior of
the system: small eigenvalues correspond to internal sub-systems
that have a weak effect on the input-output behavior of the system
and are close to nonobservable or noncontrollable or both.

Since those eigenvalues are invariant under similarity transforma-
tion, we want to find a 7' to perform a similarity transformation to
diagonalize the product W.W,

W.W, = T~'WW,T = diag(c,%,65%,...,6,) (6)
Then the Hankel singular values of the system, G, are the square
roots of the eigenvalues of the product W, W,.. After a transforma-
tion x = T'X, the W, and W, are equal and diagonal and such a state
space form is called balanced.

WC:W():z:diag(cl>027“~7cn) (7)

The Hankel singular values characterize the ‘importance’ of state
variables. States of the balanced system corresponding to the small
Hankel singular values are difficult to reach and to observe at the
same time. Such states are less involved in the energy transfer from
inputs to outputs. Therefore, a general idea of balanced trunca-
tion is to transform system into a balanced form and to truncate the
states that correspond to the small Hankel singular values. It turns
out that every controllable and observable system can be trans-
formed to a balanced form by means of a similarity transformation
x=Tx

A=T7'"AT,B=T"'B,C=CT,D =D, ®)
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‘We may partition X into

_|Z 0
=% 3 ®
Conformally partitioning the transformed matrices as
i Ay Ap | 5 B, A A A
A=| 2 1 B=1 5 C=|C C 10
{An Azz} {Bz} (& & (19)

The reduced model of order ¢ is obtained by simple truncation, i.e.,
by taking the ¢ X g, ¢ X p, p X ¢ leading blocks of A, B, C, re-
spectively; the system satisfies g-th order Lyapunov equations with
diagonal solution X;. This truncation leads to a balanced reduced-
order system (A;1,B1,C1,D).

Notice that the TBR method can also be viewed as a special pro-
jection method by projecting (2) onto the dominant eigenspace of
the matrix W, W, corresponding to the largest eigenvalues, which
motivates our projection-based TBR method.

2.2 Positive real balanced truncation

Standard TBR method does not ensure the passivity of the reduced
models. To mitigate this problem, the following Lur’e equations
are solved based on the positive real Lemma [1]: H(s) is positive-
real iff there exist matrices X, = XCT >0, J., K. such that the Lur’e
equations

AX:+XAT = —K.KT
XC'—-B  =-KJ! (11)
JJT =D+DT

are satisfied. And there exist matrices X, = XOT >0,J,, K, such
that a dual set of Lur’e equations

ATX,+X,A =-KIK,
X,B—CT =-KlJ, (12)
Jr, =D+DT"

are satisfied. X, and X, are analogous to the controllability gram-
mian and observability grammian respectively. X X, transforms
under similarity just as W.W, so that their eigenvalues are invari-
ant, and in fact in most respects they behave as the grammians W,
and W,. We may find a coordinate system in which X, = X, = X,
with Z being again diagonal. In this coordinate system, the matrices
A, B, € may be partitioned and truncated, just as for the standard
TBR procedure. The positive-real TBR (PR-TBR) was proposed to
generate the passive models by solving the Lur’e equations [9].

The Lur’e equations can be transformed to Riccati equations, which
are quadratic matrix equations and are more expensive to solve than
Lyapunov equations, which are linear matrix equations.

3. NEWPASSIVE-PRESERVED BALANCED
TRUNCATION

Our new approach is motivated by the recent mathematic work on
balanced truncation for linear system in descriptor form [13] as
shown in (1). Based on the MNA formulation of RLC circuits,
we generalize this method so that both passivity and structure can
be preserved in the reduction process.

In our PriTBR method, we directly work on systems in descriptor
form, which is the natural form of RLC circuits in MNA formula-
tion. Instead of obtaining a balanced form and truncating, we com-
pute the basis, which spans the dominant subspace corresponding
to the first g largest Hankel singular values and project the sys-
tem onto the subspace so that the reduction process can be viewed
as a congruence transformation. The difference between the new
method and the standard TBR method is just like the difference be-
tween PRIMA [7] and Pade approximation via Lanczos (PVL) [2].



3.1 Projection based balanced truncation
Given a state-space model in descriptor form in (1) with the stable
pencil AE — A, which is usually the case in RLC circuit, we first
assume E is non-singular. This restriction can be easily released
with some additional steps [13]. If a system is in descriptor form,
the controllable and observable grammians can be computed by
solving generalized Lyapunov equations [13].

EPAT + APET +BBT =0

ETQA+ATQE+CTC=0 (13

The matrix PE TQE has nonnegative eigenvalues, and the square
A;(PETQE), define the Han-

kel singular values of the system. Notice that we can also use PQ

instead PET QF as an alternative grammian product. We assume
that the Hankel singular values are ordered decreasingly. System is
called balanced if

P:Q:diag(cl>027“~7cn) (]4)

PET QE here is similar to W, W, in standard TBR method. After
solving the generalized Lyapunov equations, one can compute the
similarity transformation matrix 7" in (15) based on the square root
method [5].

roots of these eigenvalues, 6; =

In this paper, instead of obtaining a balanced form and truncating,
we perform reduction in a projection framework. As we know in
standard TBR, the similarity transformation matrix 7 is the right

eigenmatrix of PET QF
T-'PETQET = diag(c,%,6,2,...,6,%) (15)

Therefore, the balancing and truncation can be viewed as a spe-
cial projection of the system onto the dominant eigenspace of the
matrix PET QF corresponding to the g largest eigenvalues. After
projection, the reduced model (E,A, B,C) is given by

EN% = fgx(t)—H?u(t)
y(t) = Cx(t)+Du(t)

=

16)

~—

where
A=wTav,E=WTEV,B=Ww'B,C=cv,D=D (17
Vixq and Wy 54 consist of the first ¢ dominant eigenvectors of right

eigenmatrix T and left eigenmatrix 7~7. Since two eigenmatrices
cannot be the same (V # W) for a general RLC circuit, the projec-
tion is an oblique projection and thus cannot guarantee the passivity
of reduced model, which is just like Krylov-subspace based tech-
nique PVL [2].

3.2 Optimal subspace projection

In order to preserve the passivity of reduced system, an orthogo-
nal projection has to be performed using one projection matrix like
PRIMA [7]. In this paper, we use the right eigenmatrix 7 and par-
tition 7' into

T=[T D] (18)

where T) € R"™4, Ty € R"("=49)_ Then the dominant subspace is
spanned by basis 77.

Although TBR-like methods are accurate globally, it cannot gener-
ate a reduced model with exact local behavior around DC as what
is done in moment-matching based approaches, where an expan-
sion point can be chosen right there. In this paper, we propose to
add zero-order moment to the projection matrix. Since principle
components under two optimal criteria are preserved at the same
time, the reduced model has both global accuracy and exact low
frequency behavior, which is much preferred. An orthonormalized
composite projection matrix is given by

XZOI"th(M(),Tl) (19)
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An orthogonal projection is performed to project the system onto
the subspace spanned by X The reduced order system matrices are

A=XTAX,E=XTEX,B=X"B,C=CX,D=D (20)
These transformations are known as congruence transformations.

In the following, we review congruence transformation and its pas-
sivity preserving property.

3.3 Passivereduction through congruence trans-

formation
For RLC interconnect circuits, we can formulate the original circuit
matrices with MNA formulation into a so-called passive form [7]

C%  — _Gx(t)+Bu(r)
Y1) =B"x(0)

such that conductance matrix G > 0 and storage element matrix
C > 0 are positive semi-definite and input and output position ma-
trices are the same (notice that such passive form is also the de-
scriptor form in (1)). It has been proved that the transfer function
of system in such a passive form is positive real, meaning that the
model is provably passive. The reduced matrices are

@n

C=xTcx,6=x"6x,B=x"B (22)

Since congruence transformation preserves the definiteness of ma-

trix, the reduced G, C are still positive semi-definite. Then the
transfer function of the reduced model will be positive real, and
thus passive. Therefore, PriTBR can preserve the passivity for gen-
eral RLC circuits.

For large systems, direct application of balanced truncation is com-
putationally infeasible. Therefore, the methods are of more inter-
est when combined with iterative Krylov-subspace procedures like
PRIMA. Since an initial reduced model via PRIMA is also in this
convenient passive form, PriTBR can always be used as the sec-
ond stage of a composite model reduction procedure to generate a
compact reduced model with provable passivity at a lower cost.

3.4 PriTBR reduction algorithm

A complete PriTBR reduction flow is given in Fig. 1. The basic al-
gorithm is a generalization of the square root method used in stan-
dard TBR [5].

ALGORITHM I: PROJECTION-BASED PASSIVE TBR

(PRITBR)
1. Solve EPAT + APET +BBT =0 for P
2. Solve ETQA+ATQE +CTC =0 for Q

3. Compute Cholesky factors P = L,L],, Q= LQLE

4. Compute SVD of LTET Ly:

TrTy 0 T
LpE LQ—[U],U2}|: 0 % [V],Vz]

5. Compute the dominant basis 71 = LU Zfl/ 2

6. Solve AM(y = B for My

7. Make a union of My and 77 and orthonormalize it
X = Orl‘h(M(),Tl)

8. Compute the reduced system with
E=XTEX; A=XTAX; B=X"B; C=CX

Figure 1: Projection-based passive TBR (PriTBR).
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On top of PriTBR, we also propose the combined PriTBR and
PRIMA flow to deal with large scale circuits, which is similar to
the method in [4].

ALGORITHM 2: COMBINED PRIMA AND PRITBR
MODEL ORDER REDUCTION

1. Perform PRIMA to get a small-size passivity-
preserved initial reduced model from a large-size orig-
inal model.

2. Perform PriTBR to get a optimal passivity-preserved
final reduced model from the initial model.

Figure 2: Combined PRIMA and PriTBR methods.

3.5 Comparison with PR-TBR

Compared with passive PR-TBR method, this process has the fol-
lowing advantages:

First, we do not need to put a descriptor system into a standard form
by mapping £E — I, A — E~1A, B— E~!B. After an initial pro-
jection (assuming Krylov-subspace method is performed as a first
stage), E is usually nonsingular [9] but maybe ill-conditioned. As
a result, the result by PR-TBR is no more accurate from numerical
point of view. Even worse, sometimes, an unstable system can be
generated after the mapping so that the Lur’e equations do not have
positive semi-definite solutions.

Second, Lur’e equation is quadratic matrix equation, which is more
expensive than linear matrix equation like Lyapunov equation. Gen-
eralized Lyapunov equation is still linear matrix equation and when
E is nonsingular, it needs almost the same cost as Lyapunov equa-
tion [13].

Third, PriTBR has comparable accuracy as standard TBR while
PR-TBR is usually not so accurate as standard TBR [9].

Fourth, as shown in the next section, in addition to passivity, PriTBR
can be generalized to preserve block structure and reciprocity in-
herent to RLC circuits.

However, like PRIMA, it can not be used to systems outside the
class of RLC circuits because both of them rely on congruence
transformation to preserve passivity.

4. STRUCTURE-PRESERVED BALANCED

TRUNCATION

While PR-TBR [9] generates provably passive reduced model, it
does not preserve block structure or reciprocity, which are inherent
to RLC circuits. However, the new approach, PriTBR, can be easily
extended such that both passivity and structure can be preserved in
a balanced truncation process, just like what is done in a moment-
matching process SPRIM [3].

4.1 Structure preserved balanced truncation
Similar to SPRIM [3], we assume only current sources are applied
and the transfer function is an impedance matrix function.

Z(s) =BT (G+sC)"'B (23)

In MNA formulation of RLC circuits, G, C, and B have the block

structure
_ 1
| ok

|

Gy
_G2

G

p } SGT)
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Let V be the union of matrices My and 7 used in PriTBR. Let

_|"
=%
be the partitioning of V corresponding to the block sizes of G and

C. We then split the projection matrix V and orthonormalize each
block respectively as

(25)

= | orth(Vy) 0
V= { 0 : orth(V,) } (26)
Since
span(V) C span(V) (27)

Therefore, we can project onto V, which spans subspace containing
the subspace spanned by V. As shown in experiments, it has the
good property of the standard TBR and matches the original model
globally well.

At first glance, SP-PriTBR is not optimal in model size compared
with PriTBR because given the same error bound, SP-PriTBR model
would be twice as large as the corresponding PriTBR model. How-
ever, SP-PriTBR model can always be represented in second-order
form. In this sense, the SP-PriTBR model (when written in second-
order form) has the same dimension as PriTBR model given the
same error bound.

Gl = VITG1V1,G~2 = VzTszl,Cl = V1TC1V1

_ ~ (28)
C, =V] V5, B, = V] B,
and
~ ~ T ~ ~
A G Gy ~_ | C Q 5_ | Bi
Gi{*ﬂz 0 }’Ci{ 0 G B=10 29

So the block structure is preserved. The reduced model Z, in first-
order form

Z(s) =BT (G+sC)"'B (30)
and in second-order form
~ - ~ ~ I ~7 ~ 1 ~ "
Z(s) = BT (sC| + G, +;G§C2_1G2)_131 (31
and
C170,G61-0,65C,'G, =0 (32)

and thus Z(s) is passive and also symmetric. This means that the
reduced model preserves reciprocity and thus can be more easily
synthesized as an actual circuit.

4.2 SP-PriTBR reduction algorithm

A complete SP-PriTBR reduction flow is given in Fig. 3. The SP-
PriTBR can also work together with structure-preserving moment-
matching based method like SPRIM to produce structure-preserved
compact model from large scale circuits as shown in Fig. 4.

5. EXPERIMENTAL RESULTS

In this section, we show examples that illustrate the effectiveness
of proposed PriTBR methods and compare it with existing relevant
approaches. All the algorithms are implemented in Matlab 7.0

5.1 The accuracy of PriTBR

First, we demonstrate empirically that PriTBR has comparable ac-
curacy as standard TBR. And compared with PRIMA, both of them
are optimal in the sense that given the same reduced order, they are
more accurate. Here, original model is a 515 order RC circuit stim-
ulated by current sources. In Fig. 5, given the same reduced order
10, both PriTBR and standard TBR match equally well with the
original curve and far better than PRIMA.



ALGORITHM 2: STRUCTURE-PRESERVING PRITBR AL-
GORITHM (SP-PRITBR)

1. Perform Algorithm?2 (step 1- step 6) for V = [My, T1]

2. Partition V corresponding to the block sizes of G,C

v=[¥%]

SetV — { orth(Vy) 0

0 orth(V,)

. Obtain the reduced model by projection:
G=VTGV,C=VTcV,B=VTB

Figure 3: Structure-preserving PriTBR algorithm

ALGORITHM 4: COMBINED SPRIM AND SP-PRITBR
MODEL ORDER REDUCTION

1. Perform SPRIM to get a small-size structure-
preserved initial reduced model from a large-size orig-
inal model.

2. Perform SP-PriTBR to get an optimal structure-
preserved final reduced model from the first step.

Figure 4: Combined SPRIM and SP-PriTBR methods.

5.2 The guaranteed passivity of PriTBR

The second example is a RLC transmission line (order 904) with
voltage sources as input. The initial reduction is done by PRIMA
and then followed by a TBR and PriTBR, respectively. The final
reduced order is 12.

In Fig. 6, the Nyquist plots of the driving-point admittance is shown.
This Nyquist plots contain both magnitude and phase information
about the network admittance. It also provides a graphical test of
port passivity. Indeed, it is well known that the Nyquist plots of
positive real transfer functions lie entirely in the right half of the
complex plane.

At first glance, it seems that reduced models are both passive. But
when zooming in, we find that, for PriTBR, the entire Nyquist plot
lies in the right half of the complex plane. However, for standard
TBR, the Nyquist plot extends to the left half of the complex plane,
which means that the passivity is not guaranteed in the reduced
model.

5.3 The numerical reliability and accuracy of
PriTBR

We use a RC circuit of 517 order with voltage sources as input to
demonstrate the advantage of PriTBR. We do a initial reduction
by PRIMA and get a reduced model of 75 order, which matches
original curve very well.

First, if we want to use PR-TBR to do the second stage, we need to
do the mapping E — I, A — E~'A, B— E~!B to put a descriptor
system into a standard form. We find that after the mapping, the
standard form is no more stable and thus no positive semi-definite
solution is available for the following Lur’e equations. Fig. 7 show
the pole zero maps of the system around origin before and after
mapping. We can see after mapping a positive pole is generated.

Then, we employ PriTBR as the second reduction stage and get a
final 15 order reduced model, which is still indistinguishable with
the original curve as shown in Fig. 9. However, if we use PRIMA
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Figure 5: Frequency responses of TBR, PriTBR, PRIMA re-
duced models and original circuit.
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Imaginary Axis
o
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Figure 6: Nyquist plots of TBR reduced model and PriTBR
reduced model.

to get a 15 order reduced model directly, we find the difference is
so obvious.

5.4 The comparison of SPRIM and SP-PriTBR
We use a 302 order RLC circuit with current sources as input to

compare SPRIM and SP-PriTBR with the same reduced order 10.

The structure inherent to RLC circuit is preserved in both of them.

We find SP-PriTBR inherits the optimal property of standard TBR

and matches original curve better than SPRIM in a wide frequency

band.

6. CONCLUSION

In this paper, we proposed a novel passive projection-based bal-
anced truncation model reduction method, named PriTBR. The new
method combines traditional TBR method with projection frame-
work to produce passive models for the first time. It has both good
error bounds from TBR method and passive reduction benefit from
congruence transformation. Compared with existing passive TBR,
the new technique is numerically reliable, more accurate and less
expensive. In addition to passivity, PriTBR can be extended to
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Figure 7: The pole-zero map of system before and after map-

ping.
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®
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Figure 8: Frequency responses of PRIMA, composite (PRIMA
and PriTBR) reduced models and original circuit.

preserve structure information like block structure and reciprocity.
Combined with Krylov-subspace based approaches, it can be ap-

plied

as a second stage of a composite MOR process to generate a

nearly optimal reduced model for a large scale interconnect circuit
while passivity, structure, and reciprocity can be preserved at the

same

time. Experimental results demonstrated the effectiveness of

the proposed method and the advantage over existing passive TBR
and Krylov-subspace based moment-matching methods.
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